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Abstract. This study investigates spatial patterns in glacier

characteristics and area changes at decadal scales in the

eastern Himalaya – Nepal (Arun and Tamor basins), India

(Teesta basin in Sikkim) and parts of China and Bhutan

– based on various satellite imagery: Corona KH4 im-

agery, Landsat 7 Enhanced Thematic Mapper Plus (ETM+)

and Advanced Spaceborne Thermal Emission Radiometer

(ASTER), QuickBird (QB) and WorldView-2 (WV2). We

compare and contrast glacier surface area changes over the

period of 1962–2000/2006 and their dependency on glacier

topography (elevation, slope, aspect, percent debris cover)

and climate (solar radiation, precipitation) on the eastern side

of the topographic barrier (Sikkim) versus the western side

(Nepal).

Glacier mapping from 2000 Landsat ASTER yielded

1463±88 km2 total glacierized area, of which 569±34 km2

was located in Sikkim and 488± 29 km2 in eastern Nepal.

Supraglacial debris covered 11 % of the total glacierized

area, and supraglacial lakes covered about 5.8 % of the

debris-covered glacier area alone. Glacier area loss (1962 to

2000) was 0.50± 0.2 % yr−1, with little difference between

Nepal (0.53± 0.2 % yr−1) and Sikkim (0.44± 0.2 % yr−1).

Glacier area change was controlled mostly by glacier area,

elevation, altitudinal range and, to a smaller extent, slope and

aspect. In the Kanchenjunga–Sikkim area, we estimated a

glacier area loss of 0.23± 0.08 % yr−1 from 1962 to 2006

based on high-resolution imagery. On a glacier-by-glacier

basis, clean glaciers exhibit more area loss on average from

1962 to 2006 (34 %) compared to debris-covered glaciers

(22 %). Glaciers in this region of the Himalaya are shrinking

at similar rates to those reported for the last decades in other

parts of the Himalaya, but individual glacier rates of change

vary across the study area with respect to local topography,

percent debris cover or glacier elevations.

1 Introduction

Himalayan glaciers have generated a lot of concern in the

last few years, particularly with respect to potential conse-

quences of glacier changes on the regional water cycle (Kaser

et al., 2010; Immerzeel et al., 2010, 2012; Racoviteanu et al.,

2013a). In the last decades, the availability of low-cost data

from optical remote sensing platforms with global coverage

provided opportunities for glacier mapping at regional scales.

Remote sensing techniques have considerably helped im-

prove estimates of glacier area changes (Bhambri et al., 2010;

Bolch, 2007; Bajracharya et al., 2007; Kamp et al., 2011;

Bolch et al., 2008a), glacier lake changes (Bajracharya et al.,

2007; Bolch et al., 2008b; Gardelle et al., 2011; Wessels et

al., 2002) and region-wide glacier mass balance (Berthier et

al., 2007; Bolch et al., 2011; Gardelle et al., 2013; Kääb et al.,

2012), but significant gaps do remain. The new global Ran-

dolph Glacier Inventory (RGI) v.4 (Pfeffer et al., 2014) pro-

vides a global data set of glacier outlines intended for large-

scale studies; however, in some regions the quality varies and

the outlines may not be suitable for detailed regional anal-

ysis of glacier parameters. A new Landsat-based inventory

Published by Copernicus Publications on behalf of the European Geosciences Union.



506 A. E. Racoviteanu et al.: Patterns in glacier characteristics and area changes

Figure 1. Location map of the study area, with spatial domains 1, 2 and 3 corresponding to the coverage of each satellite data. The background

is a Landsat ETM+ color composite (432) overlaid on shaded relief from the SRTM DEM.

has been complied using imagery from 1999 to 2003 that,

along with the current study, may help improve the accuracy

in some areas of RGI (Nuimura et al., 2014). Some other re-

gional glacier inventories have been constructed in the past,

for example for the western part of the Himalaya (e.g., Kamp

et al., 2011; Bhambri et al., 2011; Frey et al., 2012), but only

a few are available for the eastern extremity of the Himalaya

(e.g., Krishna, 2005; Bahuguna, 2014; Basnett et al., 2013;

Bajracharya et al., 2014; Kulkarni and Narain, 1990). The

use of remote sensing for glacier mapping in this area is lim-

ited by frequent cloud cover and sensor saturation due to un-

suitable gain settings and the persistence of seasonal snow,

which hampers quality satellite image acquisition. Further-

more, this area has very limited reliable baseline topographic

data needed for glacier change detection, as discussed in de-

tail in Bhambri and Bolch (2009). The earliest Indian glacier

maps date from topographic surveys conducted by expedi-

tions in the mid-nineteenth century (i.e. Mason, 1954), but

these are limited to a few glaciers. The Geologic Survey of

India (GSI) inventory based on 1970s Survey of India maps

(Sangewar and Shukla, 2009; Shanker, 2001) is not in the

public domain. For eastern Nepal, 1970s topographic maps

from Survey of India on a 1 : 63 000 scale are available, but

their accuracy is not known with certainty. Given these lim-

itations, declassified Corona imagery from the 1960s and

1970s has increasingly been used to develop baseline glacier

data sets, for example in the Tien Shan (Narama et al., 2010),

Nepal Himalaya (Bolch et al., 2008a) and parts of Sikkim Hi-

malaya (Raj et al., 2013).

With a wide variety of satellite data becoming available,

the topographic and climatic controls on glacier surface area

have received increasing attention in recent studies, particu-

larly with respect to debris-covered glaciers (Basnett et al.,

2013; Thakuri et al., 2014; Bolch et al., 2008a; Salerno et

al., 2008). Some studies have characterized the small-scale

glacier surface topography of debris-covered glaciers using

field-based surveys (Iwata et al., 2000; Sakai and Fujita,

2010; Zhang et al., 2011), while other studies focused on

understanding patterns at the mountain-range scale (Scher-

ler et al., 2011; Bolch et al., 2012; Gardelle et al., 2013;

Racoviteanu et al., 2014). Glacier shrinkage and mass loss

has been documented in the Himalaya concomitantly with an

increase in debris cover (Bolch et al., 2011; Nuimura et al.,

2012). However, the influence of debris cover on glacier mass

balance remains debatable (Scherler et al., 2011; Kääb et al.,

2012), and modeling of melt under the debris cover is subject

to uncertainties due to limited field-based measurements of

debris thickness needed for model parameterization (Zhang

et al., 2011; Foster et al., 2012; Mihalcea et al., 2008a, b).

While significant progress has been made in recent years

in remote sensing glacier mapping in the Himalaya, some

of the subregions still need updated glacier area and sur-

face characteristics including debris cover. The objective

of this study is twofold: (1) to present the current glacier

distribution and characteristics in a data-scarce area of the

eastern Himalaya based on an updated 2000 Landsat 7

Enhanced Thematic Mapper Plus (ETM+) and Advanced

Spaceborne Thermal Emission Radiometer (ASTER) inven-

tory, along with elevation data from the Shuttle Radar Topog-

raphy Mission (SRTM); and (2) to investigate spatial patterns

in glacier surface area changes from 1962 (Corona KH4)

to 2000 (Landsat/ASTER) and 2006 QuickBird (QB)/2009

WorldView-2 (WV2) and their dependence on topographic

and climatic factors, with a particular emphasis on debris-

covered glacier tongues. These updated glacier data sets will

help filling a gap in global glacier inventories such as the RGI

The Cryosphere, 9, 505–523, 2015 www.the-cryosphere.net/9/505/2015/
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(Pfeffer et al., 2014), as well as for subsequent future mass

balance applications at regional scales.

2 Study area

The study area encompasses glaciers in the eastern Hi-

malaya (27◦04′52′′–28◦08′26′′ N latitude and 88◦00′57′′–

88◦55′50′′ E longitude), located on either side of the border

between Nepal and India in the Kanchenjunga–Sikkim area

(Fig. 1). Based on SRTM data, relief in this area ranges from

300 m at the bottom of the valleys to 8598 m (Mt. Kanchen-

junga). Valley glaciers cover about 68 % of the glacierized

area, mountain glaciers cover 28 % and the remaining area

is made up of cirque glaciers and aprons (Mool et al., 2002).

The glacier ablation area is typically covered by heavy debris

cover originating from rockfall on the steep slopes (Mool

et al., 2002), reaching up to a thickness of several meters

at the glacier termini (Kayastha et al., 2000). The eastern

part of this area constitutes the Sikkim province of India,

and the western part is located in eastern Nepal and encom-

passes the Tamor basin and parts of the Arun basin. Cli-

matically, this area of the Himalaya is dominated by the

South Asian summer monsoon circulation system (Bhatt and

Nakamura, 2005) caused by the inflow of moist air from the

Bay of Bengal to the Indian subcontinent during the sum-

mer (Benn and Owen, 1998; Yanai et al., 1992). The Hi-

malaya and Tibetan plateau act as a barrier to the mon-

soon winds, bringing about 77 % of precipitation on the

south slopes of the Himalaya during the summer months

(May–September) (Fig. 2). This climatic particularity causes

a “summer-accumulation” glacier regime type, with accu-

mulation and ablation occurring simultaneously in the sum-

mer (Ageta and Higuchi, 1984). In Sikkim, rainfall amounts

range from 500 to 5000 mm yr−1, with annual averages of

3580 mm recorded at Gangtok station (1812 m; 1951–1980)

(IMD, 1980), and 164 rainy days per year (Nandy et al.,

2006). Mean minimum and maximum daily temperatures at

Gangtok station were reported as 11.3 and 19.8 ◦C, with an

average of 15.5 ◦C based on the same observation record

(IMD, 1980).

3 Methodology

3.1 Data sources

3.1.1 Satellite imagery

Remote sensing data sets used in this study are summa-

rized in Table 1 and included (1) baseline remote sens-

ing data from Corona declassified imagery (year 1962),

(2) “reference” data sets for 2000s from Landsat ETM+ and

ASTER and (3) high-resolution imagery from QB (2006) and

WV2 (2009), all described below.

Figure 2. Precipitation regime over domain 1 expressed as rain rate,

from the TRMM 2B31 data averaged for the period 1998–2010.

The graph shows the monsoon period from June to September, with

a peak precipitation in July, and the influence of the northeastern

monsoon during the winter/early spring (January–March).

1. Corona KH4 scenes (1962) were obtained from the

US Geological Survey EROS Data Center (USGS-

EROS, 1962). The Corona KH4 system was equipped

with two panoramic cameras (forward-looking and rear-

looking with 30◦ separation angle) and acquired im-

agery from February 1962 to December 1963 (Dashora

et al., 2007). We chose images from the end of the ab-

lation season (October/November in this part of the Hi-

malaya), suitable for glaciologic purposes. Six Corona

stripes were scanned at 7 microns by USGS from the

original film strips, with a reported nominal ground res-

olution of 7.62 m (Dashora et al., 2007). Corona im-

ages are known to contain significant geometric distor-

tions due to cross-path panoramic scanning. The Frame

Ephemeris Camera and Orbital Data camera/spacecraft

parameters (roll, pitch, yaw, speed, altitude, azimuth,

sun angle and film scanning rate) for Corona missions,

needed to construct a camera model and to correct

these distortions, are not easily available. To orthorec-

tify the scenes, we defined a non-metric camera model

in ERDAS Leica Photogrammetric Suite (LPS), with fo-

cal length, air photo scale and flight altitude extracted

from the declassified documentation of the KH4 mis-

sion (Dashora et al., 2007). We used the bundle block

adjustment procedure in LPS to simultaneously esti-

mate the orientation of all the CORONA stripes on

the basis of 117 ground control points (GCPs). Lati-

tude and longitude (x, y) information (of the GCPs)

were extracted from the panchromatic band of the 2000

Landsat ETM+ image (15 m spatial resolution) on non-

glacierized terrain including moraines, river crossings

and outwash areas, whereas elevation information (z)

were extracted from the SRTM DEM v.4 (CGIAR-CSI

2004).

www.the-cryosphere.net/9/505/2015/ The Cryosphere, 9, 505–523, 2015
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Table 1. Summary of satellite imagery used in this study.

Sensor Scene ID Date Spatial resolution Image type

Corona DS009048070DA244 25 Oct 1962 7.5 m Panchromatic

KH4 DS009048070DA243

DS009048070DA242

Landsat ETM+ L7CPF20001001_20001231_07 26 Dec 2000 15 m Pancromatic

28.5 m Visible, shortwave

90 m Thermal infrared

ASTER AST_L1A#003_12012000051205_07292001131755 1 Dec 2000 15 m Visible

AST_L1A#003_12012000051214_07292001131813 1 Dec 2000 30 m Shortwave

AST_L1A_00311272001045729_02222004173619 27 Nov 2001 90 m Thermal infrared

AST_L1A#00301052002050207_01302002193030 5 Jan 2002 90 m Surface kinetic

AST_L1A#00301052002050216_01302002193046 5 Jan 2002 temperature

AST_08_00310292002045428_20101212181710_16443 29 Oct 2002

QuickBird 1010010004BD8700 1 Jan 2006 2.4 m Visible,

1010010004BB8F00 6 Jan 2006 shortwave

WorldView -2 102001000FBA1D00 2 Dec 2010 0.50 m Panchromatic

102001000586E700 1 Dec 2009

Tie points were automatically extracted in LPS on over-

lapping Corona strips, and visually checked on the

Landsat image. The Corona stripes were mosaicked in

ERDAS LPS to produce the final orthorectified image,

with a horizontal accuracy (RMSE x, y) of the bundle

block adjustment of 10.5 m. The orthorectification pro-

cess of the 1962 Corona yielded a RMSE x, y error

of ±10 m and the actual “ground” RMSE x, y of the

Corona block of ∼ 60 m. A trend analysis on the hori-

zontal shifts between Corona and the reference Landsat

scene showed that the largest errors occurred towards

the edges of the images, mostly outside the glaciers, and

did not impact the area change analysis.

2. The orthorectified Landsat ETM+ scene from Decem-

ber 2000, obtained from the USGS Eros Data Center,

was the main data set for the updated glacier inventory.

In addition, six orthorectified ASTER products (2000–

2002) were obtained at no cost through the Global Land

Ice Monitoring from Space (GLIMS) project (Raup et

al., 2007). Images were selected at the end of the abla-

tion season for minimal snow and had little or no clouds.

Five of these scenes were used for on-screen man-

ual corrections of the Landsat-based glacier outlines in

challenging areas where shadows or clouds obstructed

the view of the glaciers. In addition, the surface ki-

netic temperature product (AST08) from the 27 Novem-

ber 2001 ASTER scene was used for clean ice delin-

eation of debris cover along with topographic informa-

tion using a decision-tree algorithm (Racoviteanu and

Williams, 2012). The 29 October 2002 scene, cover-

ing the Kanchenjunga–Sikkim area east and west of the

topographic divide, was used to investigate the spatial

distribution of surface temperature over selected debris-

covered tongues.

3. Two QB scenes from January 2006 were obtained from

Digital Globe as ortho-ready standard imagery (radio-

metrically calibrated and corrected for sensor and plat-

form distortions) (Digital Globe, 2007). These scenes,

covering an area of 1107 km2 were well contrasted and

mostly snow-free outside the glaciers. We orthorectified

these scenes in ERDAS Imagine Leica Photogramme-

try Suite (LPS) using rational polynomial coefficients

(RPCs) provided by Digital Globe and the SRTM DEM

and mosaicked them in ERDAS Imagine. The scenes

were resampled to 3 m pixel size during the orthorectifi-

cation process using the cubic convolution method suit-

able for continuous raster data in order to reduce disk

space and processing time. One WV2 panchromatic,

ortho-ready scene at 50 cm spatial resolution from 2 De-

cember 2010 was also obtained to cover the terminus of

Zemu glacier, which was missing from the QB extent.

All data sets were registered to UTM projection zone

45N, with elevations referenced to the WGS84 datum.

3.1.2 Elevation data sets

Two elevation data sets were used in this study:

1. The hydrologically sound, void-filled CGIAR SRTM

DEM (90 m spatial resolution) (CGIAR-CSI, 2004) was

used to extract glacier parameters for 2000. The SRTM

data set is known to have biases on steep slopes and

at higher elevations (Fujita et al., 2008; Berthier et al.,

2006; Nuth and Kääb, 2011), as well as due to radar

penetration on snow (Gardelle et al., 2012b). For this

area, the vertical accuracy of the SRTM DEM, calcu-

lated as root mean square (RMSE z) with respect to

25 field-based GCPs, was 31 m± 10 m. The GCPs were

obtained in the field on non-glacierized terrain including

roads and bare land outside the glaciers using a Trimble

Geoexplorer XE series.

The Cryosphere, 9, 505–523, 2015 www.the-cryosphere.net/9/505/2015/
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Table 2. Spatial domains used for analysis and their characteristics.

Spatial domain Number of glaciers Area in 2000 (km2) Details

1. Landsat/ASTER 487 1463± 88 The entire study area extending from Sikkim to China, as well

as into parts of western Bhutan and eastern Nepal

2. Corona KH4 232 777± 46 Glaciers of eastern Nepal (Tamor basin) and Sikkim (Zemu

basin)

3. QB/WV2 50 551± 34 Selected glaciers from the Kanchenjunga–Sikkim area

Figure 3. Spatial patterns in TRMM annual precipitation rate de-

rived from the 3B43 data set for spatial domain 1. Also shown are

the four main basins delineated based on topography and watershed

functions. 2000 glacier outlines are also shown. We note several

cells of high precipitation at high altitudes over the Kanchenjunga

summits and parts of Tibet, most likely errors in TRMM data.

2. The Swiss topographic map (1 : 150 000 scale), com-

piled from Survey of India maps from the 1960s and

published by the Swiss Foundation for Alpine Research,

was used for manual corrections of the 1962 Corona

glacier outlines to discard any seasonal snow and to cor-

rect shadow areas or bright water bodies that could be

misclassified as ice. The exact month or year of each

quadrant or of the original air photos is not known

with certainty because the original large-scale Indian

topographic maps at this scale are restricted to within

100 km of the Indian border and are therefore inacces-

sible (Srikantia, 2000; Survey of India, 2005); how-

ever this map was useful for manual corrections of the

Corona outlines.

3.2 Analysis extents

We defined three analysis extents for our study area (Fig. 1

and Table 2):

1. The Landsat/ASTER domain includes the Sikkim

province of India, parts of eastern Nepal (Tamor and

Table 3. Topographic zones in spatial domain 1.

N side W side E side E side

(China) (Nepal) (Sikkim) (Bhutan)

Mean basin 4931 4819 4658 4491

elevation (m)

Mean rainfall 146 805 977 383

TRMM (mm yr−1)

Arun basins) and parts of Bhutan and China (Table 2).

This domain was used to construct the updated 2000

glacier inventory.

The Landsat/ASTER domain was split into four sub-

regions on the basis of east–west and north–south cli-

mate/topographic/political barriers, as shown in Fig. 3.

Rainfall averages from the Tropical Rainfall Measuring

Mission (TRMM) data 2B31 product (Bhatt and Naka-

mura, 2005; Bookhagen and Burbank, 2006) were used

to characterize the subregions climatically. The data

set contains rainfall estimates calibrated with ground-

control stations derived from local and global gauge

stations (Bookhagen and Burbank, 2006) with a spa-

tial resolution of 0.4◦, or∼ 5 km. Given the well-known

biases in the TRMM data (Bookhagen and Burbank,

2006; Palazzi et al., 2013; Andermann et al., 2011), here

we are not concerned with the absolute values of grid-

ded precipitation but only with characterizing the sub-

regions in our study area using relative rainfall values.

TRMM data integrated over 10 years (1998–2007) show

differences in precipitation patterns among the four re-

gions and justifies our choice of spatial domains (Ta-

ble 3). The eastern side of the study area (Sikkim) re-

ceives higher precipitation amounts than the western

side (Nepal) (977 versus 805 mm yr−1). There is a pro-

nounced north–south gradient in precipitation, with the

lowest amount of precipitation noticeable on the Chi-

nese side (146 mm yr−1) (Table 3).

2. The Corona spatial domain is a subset of the Land-

sat/ASTER domain, which was covered by the 1962

Corona image. Glacier surface area changes and their

dependence on climate and topography were computed

for this extent between two time steps: the 1960s (rep-

www.the-cryosphere.net/9/505/2015/ The Cryosphere, 9, 505–523, 2015
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resented by Corona imagery) and 2000s (represented by

Landsat/ASTER). Glaciers from Bhutan in the east and

China in the north were not covered by the Corona im-

age, so the area change analysis only focused on glaciers

of Sikkim and eastern Nepal, east and west of the topo-

graphic divide.

3. The Kanchenjunga–Sikkim domain is a smaller sub-

set covered by all three data sets (Landsat/ASTER,

Corona and QuickBird), allowing us to extend the

glacier change analysis to 2006. It comprises of 50

glaciers from the Tamor basin (Nepal) and Zemu basin

(Sikkim, India), located on the southern slopes of the

Himalaya. The high-resolution 1962 and 2006 imagery

was used here to illustrate glacier area changes at a

smaller scale, to show surface characteristics of debris-

covered glaciers and to evaluate mapping of debris-

covered glaciers.

3.3 Glacier delineation and analysis

For the 1960s, clean glacier outlines were extracted from

the panchromatic Corona imagery by thresholding the digital

numbers (DN > 200= snow/ice), chosen based on visual in-

terpretation. Debris-covered glacier tongues were delineated

manually on the basis of lateral moraines and other visual

clues such as supraglacial lakes. A 5× 5 median filter was

used to remove noise (isolated pixels from snowfields or in-

ternal rocks), as recommended in other studies (Racoviteanu

et al., 2009; Andreassen et al., 2008). Ice polygons with

area < 0.02 km2 were not considered valid glaciers and were

excluded from the analysis. Manual corrections were ap-

plied subsequently on the basis of the topographic map us-

ing on-screen digitizing in areas of poor contrast or transient

snow/clouds, which obstructed the view of glaciers.

For the 2000s, glaciers were delineated from the Land-

sat ETM+ scene using the normalized difference snow in-

dex (NDSI) (Hall et al., 1995), with a threshold of 0.7

(NDSI > 0.7= snow/ice). The NDSI algorithm relies on the

high reflectivity of snow and ice in the visible to near infrared

wavelengths (0.4–1.2 µm), compared to their low reflectiv-

ity in the shortwave infrared (1.4–2.5 µm) (Dozier, 1989;

Rees, 2003). Compared to other band ratios (Landsat 3/4

and 3/5), the NDSI glacier map was cleaner and less noisy

and was therefore preferred (Racoviteanu et al., 2008b). A

5× 5 median filter was used here as well to remove remain-

ing noise, and a few areas were adjusted manually on the

basis of the ASTER images, notably frozen lakes misclas-

sified as snow/ice and some glaciers underneath low clouds

in the southern part of the image. Some transient snow per-

sisting in the deep shadowed valleys was manually removed

from the glacier outlines on the basis of the topographic map.

Debris-covered glacier tongues were delineated using mul-

tispectral data (band ratios, surface kinetic temperature and

texture) from the 27 November 2001 ASTER scene com-

bined with topographic variables in a decision tree, as de-

scribed in Racoviteanu and Williams (2012).

For the QB (2006) image, clean ice surfaces were delin-

eated using band ratios 3/4, then ISODATA clustering with

a threshold of 1.07 (snow/ice > 1.07) and a majority filter of

7× 7 to remove noise. Debris-covered tongues for this data

set were delineated manually on the basis of supraglacial

features (lakes and ice walls), along with lateral and frontal

moraines visible on the high-resolution images. We also

mapped supraglacial lakes from this high-resolution data

based on band ratios along with texture analysis.

For all inventories in the Landsat/ASTER domain, ice

masses were separated into glaciers on the basis of the

SRTM DEM, using hydrologic functions in an algorithm

developed by Manley (2008), described in Racoviteanu et

al. (2009). Glacier area, terminus elevation, maximum and

median elevation, average slope angle and aspect were ex-

tracted on a glacier-by-glacier basis using zonal functions on

the SRTM DEM. Average glacier thickness and length were

calculated from mass turnover principles and ice flow me-

chanics by Huss and Farinotti (2012), based on the approach

of Farinotti (2009). Their method used our glacier outlines

and the SRTM DEM to derive thickness estimates iteratively

based on Glen’s flow law and a shape factor (Paterson, 1994).

For simplicity and consistency for change analysis, we as-

sumed no shift in the ice divides over the period of analy-

sis and excluded all nunataks and snow-free steep rock walls

from the glacier area calculations. Bodies of ice above the

bergschrund were considered part of the glacier (Racoviteanu

et al., 2009; Raup and Khalsa, 2007). Glacier area changes

(1962–2000) and their dependency on topographic and cli-

matic variables were calculated on a glacier-by-glacier basis

for the 232 glaciers in spatial domain 2 using linear regres-

sion.

3.4 Uncertainty estimates

Glacier outlines derived from remote sensing data at vari-

ous spatial and temporal resolution are subject to various de-

grees of uncertainty, as discussed in recent studies (Paul et

al., 2013; Racoviteanu et al., 2009). This becomes an im-

portant issue in glacier change analysis, where errors from

various data sources accumulate at each processing step. The

main sources of uncertainty considered here are (1) image

classification errors (positional errors and/or errors due to

the semi-automated glacier mapping method) and (2) con-

ceptual errors associated with the definition of a glacier, in-

cluding mapping of ice divides, mixed pixels of snow and

clouds and internal rock differences, which propagate to the

glacier change analysis, all described in detail in Racoviteanu

et al. (2009).

1. The errors in remote sensing glacier surface areas

due to classification (Eclassif) were estimated using

Perkal’s epsilon band around each glacier outline data
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Table 4. Topographic parameters for glaciers in spatial domain 1 and subregions based on 2000s Landsat/ASTER analysis. All parameters

are presented on a (a) region-by-region and (b) glacier-by-glacier basis from the SRTM DEM. Debris cover fraction is calculated as a percent

of glacier area of debris-covered glaciers only.

Parameter All Nepal Sikkim Bhutan China

(a) Region-wide averages

Number of glaciers 487 162 186 30 109

Glacierized area (km2) 1463± 88 488± 29 569± 34 106± 6 300± 18

Number of debris-covered tongues 68 30 27 7 4

Debris cover area (km2) 161± 10 64± 4 78± 5 14± 1 6± 0.4

Debris cover (% total glacier area) 11 13 14 13 2

(b) Glacier averages

Minimum elevation (m) 4908 4760 4702 4926 5425

Median elevation (m) 5702 5715 5569 5652 5950

Maximum elevation (m) 6793 6928 6908 6685 6530

Slope (◦) 23 24 23 27 21

Aspect (◦) 177 236 131 134 180

Mean glacier size (km2) 3 3 3 4 3

Length (km) 2 2 2 3 2

Thickness (m) 24 23 23 31 27

Debris cover fraction (%) 23 21 23 32 17

set (Racoviteanu et al., 2009; Bolch et al., 2010), with

a∼ 1-pixel variability (Congalton, 1991). Using±30 m

for Landsat/ASTER,±6 m for Corona and±3 m for QB

outlines, the area uncertainty was ±3, ±6 and ±2 % of

the glacierized area for Corona, Landsat/ASTER and

QuickBird, respectively. The Perkal method is known

to slightly overestimate the errors, as described in Bur-

rough and McDonnel (1998). Recent glacier analysis

comparison experiments reported a range of uncertainty

of < 5 % for remote sensing glacier outlines compared

to high-resolution imagery (Raup et al., 2007; Paul et

al., 2013). For manually adjusted glacier outlines, par-

ticularly debris-covered tongues, we used screen digi-

tizing in streaming mode with a high density of vertices

to minimize area errors (B. Raup, National Snow and

Ice Data Center, personal communication, 2014).

2. Uncertainties due to different digitization of internal

rocks (Erocks) were derived by comparing area changes

computed with internal rocks specific to each data set

versus “merged” internal rocks from all data sets. The

differences in glacier data sets due to rock inconsisten-

cies amounted to∼ 2 % of the glacier area. To minimize

uncertainties in the glacier area change, we merged rock

outcrops from each data set and removed them from all

the area calculations. The “inactive” bodies of ice above

the bergschrund were included as part of the glacier

(Racoviteanu et al., 2009). For simplicity, we neglected

the area change that might be due to exposure of new

internal rock due to glacier ice thinning.

Total errors in glacier area estimate for each data set (E)

were calculated as RMSE of the classification (Eclassif) and

the internal rocks (Erock):

E =

√
E2

classif+E2
rocks. (1)

Errors in glacier surface area change (Echange) from 1962

to 2000 were computed as RMSE of the total error for each

time step calculated in Eq. 1:

E1962−2000 =

√
E2

1962+E2
2000. (2)

4 Results

4.1 The 2000 Landsat/ASTER glacier characteristics

The 2000 glacier inventory based on Landsat and ASTER

yielded 487 glaciers (of which 162 were situated in Nepal,

186 in Sikkim, 30 in Bhutan and 109 in China), covering a

total surface area of 1463± 88 km2 (Table 4a). Of the 487

glaciers in this spatial domain, 68 glaciers (13 %) had de-

bris cover on their ablation areas. Supraglacial debris cov-

ered 160± 10 km2 (11 % of the glacierized area in spatial

domain 1), with some differences between north and south

slopes of the study area (discussed in Sect. 5.1). In Sikkim,

supraglacial debris covered an area of 78± 5 km2 in 2000

(14 % of the glacierized area).

In 2000, glacier size ranged from 0.02 to 105 km2, with

an average size of 3 km2 and a median size of 0.9 km2 (Ta-

ble 4b). The histogram of glacier area (Fig. 4a) is skewed to
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Figure 4. Frequency distribution of glacier parameters for the 487 glaciers in spatial domain 1 based on Landsat/ASTER analysis: (a) area,

(b) slope, (c) length and (d) thickness. Glaciers smaller than 10 km2 in area, < 2 km in length and < 30 m thickness are prevalent, with an

average slope of 23◦.

the right (skewness= 8.4), showing that glaciers with area

< 10 km2 are predominant in this region, and glacier size de-

creases non-linearly. The long right-tail extremes represent

only a few glaciers, such as Zemu with an area > 100 km2.

The average slope of all glaciers in the inventory was

23◦ with a positive skew (skewness= 0.38) (Table 4b and

Fig. 4b) and no significant differences among the four re-

gions (p > 0.05) (Table 4b). Glacier length ranged from 0.08

to 23 km (Zemu glacier), with an average of 2 km (Table 4b

and Fig. 4c). Glacier thickness ranged from 3 to 144 m,

with the highest frequency for thicknesses less than 30 m

(Fig. 4d). The frequency distribution of both glacier length

and thickness were positively skewed with long tails, indi-

cating the prevalence of short, shallow valley-type glaciers.

Glacier aspect shows two predominant orientations: west-

northwest (W-NW) and east-northeast (E-NE), following the

topographic divide (Fig. 5). On average, glaciers on the

Nepal side had an average aspect of 237◦ (SW), whereas

glaciers on the Sikkim side had an average aspect of 131◦

(SE), consistent with local topography (Table 4b).

Glacier terminus elevations in the Landsat/ASTER do-

main ranged from 3990 to 5777 m, with a mean of 4908 m;

median glacier elevation ranged from 4515 to 6388 m, with a

mean of 5702 m (Table 4b). Considering glacier median ele-

vation as a coarse approximation of glacier equilibrium line

altitude (ELA), our results are in agreement with Benn and

Owen (2005), who documented higher ELAs on the northern

slopes of the Himalaya (6000–6200 m) compared to ELAs

on the southern slopes (4600–5600 m).

4.2 Glacier area changes 1962–2000/2006

Overall, glaciers in the Corona spatial domain 2 lost 182.5±

40 km2 of their area (19± 7 %, or 0.5± 0.2 % yr−1) from

Figure 5. Aspect frequency distribution of the 487 glaciers in spatial

domain 1 based on Landsat/ASTER analysis. On average, glaciers

in this area are preferentially oriented towards NW (300◦) and NE

(60◦).

1962 to 2000 (Table 5). Overall, the average glacier area

changes were slightly smaller on the western side of the di-

vide (Nepal, 16.9± 4 %, 1962–2000 or 0.44± 0.2 % yr−1)

compared to the eastern side (Sikkim, 20.1±8 %, 1962–2000

or 0.52± 0.2 % yr−1). When focusing on a smaller glacier

subset in the Kanchenjunga–Sikkim subset area (50 glaciers),

we obtained an area loss of 10 %±3 % (0.23± 0.08 % yr−1)

based on high-resolution imagery (1962–2006) (Table 5).

The rates of glacier area loss for this group are overall 50 %

lower than the rates of loss in the larger spatial domain 1 per-

haps due to higher percentage of debris (21 %) compared to

the entire Landsat/ASTER spatial domain 2 (11 %).
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Table 5. Overall glacier area changes (loss) (east versus west) for the 232 glaciers in spatial domain 2 from 1962 (Corona) to 2000 (Land-

sat/ASTER).

Subregion Area (km2) Area loss 1962–2000

1962 2000 km2 % % yr−1

Nepal 323.9± 10 269.1± 16 54.8± 19 16.9± 6 0.44± 0.2

Sikkim 634.7± 19 507.0± 35 127.7± 42 20.1± 8 0.52± 0.2

All spatial domain 958.7± 31 776.1± 47 182.5± 40 19.0± 4 0.50± 0.2

Table 6. Glacier area loss for debris-covered versus clean glaciers in spatial domain 2 from 1962 to 2000. Area loss is shown as a percent of

glacier area on a glacier-by-glacier basis.

Sikkim Nepal All

Glacier type/ Number of Area loss Number of Area loss Number of Area loss

Subregion glaciers (%) glaciers (%) glaciers (%)

Clean glaciers 144 34.7 53 31.6 197 33.9

Debris-covered glaciers 20 20.8 15 23.8 35 22.1

Both types 164 33.0 68 29.9 232 32.1

On a glacier-by-glacier basis, glaciers in the Corona do-

main lost 2–95 % of their area, with a mean of 32 % from

1962 to 2000 (Fig. 6). The spatial distribution of these area

changes, illustrated in Fig. 6, shows that the largest area

changes (> 70 % area loss) occurred for only a few isolated

glaciers in the northern and southern extremities of the study

area (17 glaciers). A closer examination of these glaciers re-

vealed that these were small clean glaciers (< 0.1 km2) with

steep slopes (mean of 26◦), indicating a need to investigate

the topographic controls on area change and clean versus

debris-covered glaciers separately.

Clean glaciers lost more of their area from 1962 to 2000

(34 %) compared to debris-covered glaciers (22 %) across

the region, with few differences from east to west (Nepal

and Sikkim) (Table 6). The difference in mean rates of area

change between clean and debris-covered glaciers was statis-

tically significant based on a two-sample F test (p < 0.05).

Figure 7a and b show a larger spread and a higher percent-

age of surface area loss of clean glaciers compared to debris-

covered glaciers. For both glacier types, however, there is a

high variability in percent area change, perhaps due to other

factors such as local topography.

Linear regression analysis showed that percent area

change per glacier was negatively correlated to glacier area,

altitudinal range, and glacier median and maximum eleva-

tion (significant correlations at 99 % confidence interval, p <

0.01) (Table 7). Glacier minimum elevation and slope were

significant positive controls on glacier area change at 95 %

confidence interval (p < 0.05). Solar radiation, precipitation

and percent debris were not statistically significant controls

on glacier area change (p > 0.1, confidence interval 90 %)

(Table 7). These are discussed in Sect. 5.3.

Table 7. Linear regression of area change on topographic and cli-

matic variables for the 232 glaciers in the spatial domain 2.

Regression Coefficient p value

Glacier area −0.47 0.0003b

Altitudinal range −0.01 < 0.001b

Minimum elevation 0.008 0.02a

Median elevation −0.01 0.001b

Maximum elevation −0.01 < 0.001b

Percent debris −0.004 0.83

Slope 0.47 0.01a

Aspect 0.03 0.007b

Solar radiation 0.01 0.74

Latitude −19.8 0.04a

Longitude −4.79 0.93

Precipitation −0.002 0.26

a Significant at the 0.05 level (two-tailed); b significant at the

0.01 level (two-tailed).

A further analysis of the clean and debris-covered glaciers

showed significant differences in terms of glacier area, area

change, minimum elevation, altitudinal range and length

based on a two-sample F test for variances) (p < 0.05) (Ta-

ble 8). Clean glaciers in this area are ∼ 12 times smaller

(1 km2 on average) than debris-covered glaciers (15 km2)

and they have higher termini elevations (+391 m) and an

overall altitudinal range about 3 times smaller than debris-

covered glaciers (Table 7). On a glacier-by-glacier basis,

clean glaciers lost more area (34 %) than debris-covered

glaciers (22 %) from 1962 to 2000. Clean glaciers with

smaller altitudinal range tend to display more area loss com-

pared to debris-covered glaciers.
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Figure 6. Spatial patterns in glacier area change derived from 1962 Corona and 2000 Landsat/ASTER data on a glacier-by-glacier basis.

Table 8. Comparison of glacier parameters for clean glaciers versus

debris-covered glaciers in spatial domain 2.

Parameter Clean Debris-covered

glaciers glaciers

Area (km2) 1.2 15.0

Area loss (%) 33.9 22.1

Slope 25.8 24.5

Minimum elevation (m) 5105.6 4714.2

Median elevation (m) 5424.5 5538.9

Altitudinal range (m) 627.6 1928.6

Length (km) 1.3 6.7

5 Discussion

5.1 Spatial distribution of glacier characteristics across

the study area

One of the important steps in utilizing our glacier inventory

data is to understand spatial patterns in glacier characteristics

across the region. Our study area displays region-wide con-

sistency in glacier characteristics, notably glacier area, eleva-

tion and topography across the four subregions based on the

2000 glacier data (Table 4). For example, the prevalence of

small glaciers noted in this area is consistent with worldwide

patterns also observed for the Cordillera Blanca of Peru in a

previous study (Racoviteanu et al., 2008a). There is however

variability in glacier size within eastern Himalaya: for exam-

ple, the mean glacier size reported in this study area (3 km2)

is double compared to the Khumbu region west of our study

area (1.4 km2) (Bajracharya and Shrestha, 2011). The glacier

slope across our study area (23◦) is consistent with average

glacier slopes reported for the Khumbu region in Nepal (22◦)

(Bajracharya and Shrestha, 2011; Salerno et al., 2008), indi-

cating a general tendency for steep glaciers across the re-

gion. There are only a few large, long glaciers in the area,

such as Zemu glacier (103 km2, 23 km in 2000). With respect

to glacier aspect, we also note similar predominant orienta-

tions of glaciers southwards, in the direction of the prevail-

ing monsoon circulation consistent with other studies such as

the Khumbu region (average aspect 181◦) (Mool et al., 2002;

Salerno et al., 2008).

The comparison of glacier characteristics across subre-

gions points to a pronounced gradient from north to south

(Bhutan/China subregions compared to Sikkim/Nepal), par-

ticularly with respect to glacier elevations and debris cover.

Glaciers on the northern side of the divide (China) have

higher glacier termini and median elevations compared to

the southern side (Nepal and Sikkim) (+700 and +400 m,

respectively) (Table 4). These differences seem to be con-

sistent with general air circulation patterns in the area. The

Asian summer monsoon brings large amounts of precipita-

tion on the southern slopes of the Himalaya, favoring glacier

growth at lower elevations and a lower ELA. In contrast, in

the upper reaches of the valleys and on the Tibetan plateau,

the monsoon is blocked by the topographic barrier (Clift

and Plumb, 2008), causing a drier climate and higher glacier

ELAs. There is a much less pronounced east–west gradient

in glacier elevations, with higher glacier minimum and me-
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Figure 7. Dependency of glacier area change during 1962–2000

on (a) glacier altitudinal range (maximum–minimum elevation) and

(b) glacier area. Debris-covered glaciers are shown as grey solid

circles; clean glaciers are shown as black solid triangles.

dian elevations on the western side (Nepal) (+50 m) com-

pared to the eastern side (Sikkim). This may be explained by

the location of Nepalese glaciers on the western side of the

topographic divide, away from the prevailing monsoon.

Debris coverage also shows a pronounced variability north

to south of the topographic divide. Himalayan glaciers are

often referred to as “heavily” debris-covered, but the percent

glacierized area covered by supraglacial debris varies across

the mountain range. In our study area, debris cover is more

prevalent on the southern side of the divide (Sikkim, 14 %

of glacierized area) compared to the northern one (China,

2 % of the glacierized area), perhaps due to different geo-

logic and topographic patterns. The northern side of the di-

vide, which is part of the Tibetan plateau, is situated in a

monsoon shadow and is therefore dry; the gentler slopes in-

duce lower rates of erosion. In contrast, the southern slopes

of the Himalaya tend to be heavily covered with debris due

to the abundance of rock material from the steep slopes. The

steep slopes made of soft sedimentary rocks and Precambrian

crystalline rocks (Mool et al., 2002) and are prone to high

rates of erosion, particularly with large amounts of monsoon

moisture. This north–south difference in debris cover amount

was also noted in other studies (Scherler et al., 2011). In our

study, we found a lower percent of debris coverage (21 %)

than in the entire central/eastern Himalaya reported in Scher-

ler et al. (2011) (36 % debris cover), or in the Khumbu region,

west of our study area, reported by Fujii and Higuchi (1977),

Nuimura et al. (2012) (34.8 %), Racoviteanu et al. (2013a)

(27 %) and Thakuri et al. (2014) (32 %).

5.2 Regional glacier area changes

The overall rate of surface area loss of 0.5±0.2 % yr−1 from

1962 to 2000 for Sikkim and eastern Nepal obtained here

is in agreement with other studies from the southern slopes

of the Himalaya. Similar rates of area loss (0.1–0.3 % yr−1)

were reported from the Khumbu and Garhwal regions, west

of our study area, for approximately the same time period

(Thakuri et al., 2014; Basnett et al., 2013; Nuimura et al.,

2012; Bolch et al., 2008a; Bhambri et al., 2011). Simi-

larly, for glaciers of Bhutan, east of our study area, Karma

et al. (2003) found an average surface glacier area loss of

0.3 % yr−1 from 1963 to 1993. It is worth mentioning that

these rates of area change are lower than those previously

reported for the drier monsoon-transition zone in the west-

ern Himalaya (Himachal Pradesh) (0.7 % yr−1) by Kulkarni

et al. (2007). In a more recent study, Bahuguna et al. (2014)

found lower rates of glacier area loss (0.4 % yr−1) for the

same area, which is in agreement with rates of area loss we

report here for eastern part. Updated glacier area changes

from other recent studies (Racoviteanu et al., 2014; Bolch

et al., 2012) also point at lower rates of area loss than pre-

viously reported, particularly for the Indian Himalaya. The

similar overall rate of glacier area change in the eastern com-

pared to the western part for both debris-covered glaciers and

clean glacier types suggests consistent patterns across the re-

gion (Table 5).

The smaller glacier area loss for debris-covered glaciers

noted in our study is in agreement with studies from Khumbu

(Nuimura et al., 2012; Thakuri et al., 2014) or other studies in

the central/eastern Himalaya (Bolch et al., 2008a; Thakuri et

al., 2014; Bhambri et al., 2011). These studies also reported

lower rates of glacier surface area loss and even stable or less

retreating glacier termini for debris-covered tongues com-

pared to clean glaciers (Scherler et al., 2011). Area changes

for debris-covered glaciers need to be interpreted with cau-

tion due to the wide variability in debris cover character-

istics such as thickness. Furthermore, these stagnating or

less changing tongues may not reflect the true state of the

glaciers, for example patterns of glacier thinning which may

occur at similar rates to clean glaciers (Gardelle et al., 2012a;

Kääb et al., 2012).
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5.3 Topographic and climatic controls on area changes

While the consistent area change patterns across the subre-

gions (east to west) are useful for comparison with larger

areas, these patterns cannot be used to understand glacier-

by-glacier variability in area changes, which may be con-

trolled by local topography and climate. In this study, we

found that topographic factors, notably glacier size, glacier

altitude (maximum, median, altitudinal range) and aspect,

were most important in determining rates of glacier area loss

in spatial domain 1. Glacier size plays a significant role in

determining area change, i.e., smaller glaciers experienced

higher rates of area loss (Table 7). The tendency of larger

glaciers to lose less area (> 20 km2) was observed in various

studies (Racoviteanu et al., 2008a; Salerno et al., 2008; Loibl

et al., 2014), though in the case of Salerno et al. (2008) the

correlation was not statistically significant for the Khumbu.

Higher glacier elevations and larger altitudinal ranges sig-

nificantly reduce the rates of area loss, as was also noted in

the Khumbu region in Nepal and elsewhere. The dependency

of area change on glacier size and elevation is also consis-

tent with observations from the Cordillera Blanca of Peru

(Racoviteanu et al., 2008a) in the outer tropics, indicating

consistent patterns in glacier area changes worldwide.

Glacier slope also plays a significant role in determining

glacier area change, i.e., the steeper the glacier, the larger

the area loss observed in our study. The same tendency

was observed in the Khumbu area (Salerno et al., 2008),

but the correlation is less significant than the glacier alti-

tude (p < 0.05). The presence of gentle slopes covered with

supraglacial debris in the ablation areas of glaciers, fairly

common in this area, may have reduced the strength of the

correlation. Glacier aspect was also found to be a significant

control on area change, with more area loss for glaciers ori-

ented southwards and southwest (p < 0.01). This is in agree-

ment with findings from Salerno et al. (2008) for the Khumbu

region but is in contrast with results from Loibl et al. (2014)

for the Nyainqêntanglha Range in southeastern Tibet, about

600 km east of our study area, who found that south-facing

glaciers experienced lower rates of terminus retreat. Percent

debris cover was a negative control on area change, i.e.,

glaciers with more extensive debris cover on their areas tend

to lose less area overall, but this was not statistically signif-

icant (p > 0.05). Debris-covered glaciers may benefit from

the insulating effect of debris cover above a certain “critical”

debris thickness (Mihalcea et al., 2008a; Zhang et al., 2011),

which needs to be further investigated.

Geographic location (latitude and longitude) were nega-

tive controls on glacier area change, suggesting that glaciers

located north and eastwards of the study area tend to lose

more area, but only latitude was statistically significant (p <

0.05). Climate indices (precipitation and solar radiation)

were not significant factors controlling glacier area loss. In

contrast, Loibl et al. (2014) showed that glaciers located

in a monsoon-influenced area were more sensitive to cli-

Figure 8. Daytime surface temperatures on several debris-covered

tongues, extracted from ASTER data from the 29 October 2002 im-

age. Labels point to: A – Kanchenjunga glacier, B – Yalung glacier

and C – Zemu glacier.

mate change. This is in agreement with larger-scale studies

(Gardelle et al., 2013) that indicated a tendency for enhanced

glacier wastage in the eastern, monsoon-influenced parts of

the Himalaya. With respect to climatic factors in this area,

Basnett et al. (2013) reported an increase in mean annual

temperature, more significantly in the winter (+2 ◦C yr−1 in

the last four decades). Increasing temperatures on the south

slopes of the Himalayas were also noted in other studies

(Shrestha et al., 2000; Thakuri et al., 2014) based on instru-

mental data but were estimated to have less effect on glacier

area than changes in precipitation because of the orientation

of these glaciers towards the prevailing monsoon circulation.

In our study, the climatic control on glacier area is not con-

clusive, and finer-resolution, more accurate temperature and

precipitation data sets would be needed. Furthermore, simi-

larly to areas further east (Loibl et al., 2014), average annual

solar radiation and latitude were not found to be significant

controls on glacier area change in our study.

5.4 Surface temperature distribution on

debris-covered tongues

Lower rates of area change for the debris-covered glaciers

may be further explained by surface characteristics of de-

bris cover (thickness, thermal conductivity and resistance).

However, these are not easily available in this area due to the

lack of field-based measurements and the difficulty of con-

ducting surveys on the debris-covered tongues. Therefore, in

this study, we are only qualitatively showing the distribution

of surface temperature on selected debris-covered tongues in

spatial domain 3 based on the 2002 ASTER scene. Figure 8

shows a high variability in supraglacial surface temperature

at 90 m spatial resolution, but there is no clear general tem-

perature trend for the eastern slopes (Sikkim side) versus the

western slopes (Nepal) side. The fluctuations in surface tem-
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peratures along transects are clearly visible in Fig. 9, with

some sharp spikes of high and low temperatures, particu-

larly for Kanchenjunga and Yalung glaciers (labeled “A” and

“B” in Fig. 8). This strong variability in supraglacial debris

temperatures may be due to the presence of surface features

such as debris thickness, size of the debris particles and ther-

mal resistance and conductivity of the debris. For the debris-

covered tongues investigated here, the supraglacial tempera-

tures range from 0 to 30 ◦C, suggesting that the supraglacial

debris heats up considerably during the day. At the glacier

scale, temperature drops over supraglacial features such as

ice walls and supraglacial lakes, which tend to be colder than

the surrounding debris, and this is visible even at the coarse

spatial resolution of the temperature data (90 m). In Fig. 9

we note the slight upward trend of the supraglacial tem-

perature towards the glacier termini, particularly for Zemu

glacier (“C” in Fig. 8). For this glacier, the upper-middle

part of the debris surface is colder (−3 to 5 ◦C) than the

last 10 km towards the glacier terminus (5 to 14 ◦C) (Fig. 9).

In a different paper (Racoviteanu and Williams, 2012), we

found similar patterns of surface temperature increasing to-

wards the glacier terminus for the same glacier but based on

a different ASTER scene (November 2001), indicating con-

sistent patterns for this glacier. The higher surface temper-

atures towards the glacier terminus may indicate a thicker

debris cover that insulates the ice underneath, noted in other

studies (Mihalcea et al., 2008a). The daytime debris temper-

ature ranges and strong spatial variability noted here are sim-

ilar to the ones we found for Khumbu, west of this study

area (−3 to 17 ◦C) (Racoviteanu et al., 2013b). In Khumbu,

we found that supraglacial debris had a distinct temperature

signal compared to other surfaces such as non-ice moraine,

clean ice and supraglacial/proglacial lakes, with more pro-

nounced differences among these three during the daytime.

The suitability of ASTER-based surface for inferring de-

bris characteristics, most notably thickness, has been demon-

strated in other studies (Mihalcea et al., 2008a; Zhang et

al., 2011). For this study area, there were no field measure-

ments available to test the validity of ASTER temperatures

for quantifying supraglacial debris characteristics. However,

in a different study (Racoviteanu et al., 2013b), we validated

ASTER-based surface temperatures extracted from nine

night scenes from 2010 to 2011 for the Khumbu by invert-

ing field-based long-wave radiation (Lout) using the Stefan–

Boltzmann law (Lout = εT 4). The measurements were from

the automatic weather station installed on Changri Nup

glacier (Wagnon et al., 2013). We found a good agreement

between ASTER temperatures and field-based measurements

(R2
= 0.92) using a sensitivity analysis (ε = 0.97± 0.1) to

account for small-scale variability in emissivity. Given that

the Kanchenjunga–Sikkim area has similar characteristics to

Khumbu in terms of debris cover and geographic location

and that the images were acquired around the same time of

the year as the Khumbu (November–January), we consider

Figure 9. Surface temperature distribution along longitudinal tran-

sects from selected glaciers (shown in Fig. 8): A is Kanchenjunga

glacier, B is Yalung glacier and C is Zemu glacier. Distance on the

x axis is measured from the upper part of the debris-covered area

down glacier to the terminus.

that this validation may be applicable to the present study

area.

5.5 The role of glacier lakes

The role of supraglacial/proglacial lakes for glacier area

change in this area of the Himalaya was addressed in de-

tail in recent studies (Basnett et al., 2013; Bajracharya et al.,

2014). Gardelle et al. (2011) also pointed out the increased

formation of supraglacial lakes particularly in the eastern part

of the Himalaya. A quantitative assessment of lake forma-

tion is beyond the scope of this paper; here we only illustrate

qualitatively some of the changes occurring on glaciers with

supraglacial or proglacial lakes using high-resolution Corona

and QuickBird imagery. For the Teesta basin in Sikkim, Mool
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Figure 10. Area changes for some glaciers in the Zema Chhu basin

Sikkim from 1962 to 2006: (a) 1962 Corona-based glacier outlines

(in blue) and (b) 2006 QB glacier outlines (in orange).

and Bajracharya (2003) inventoried 266 glacier lakes cov-

ering a total area of 20 km2 (3.5 % of the glacierized area)

based on 2000 Landsat ETM+ imagery. For spatial domain

3, we estimated that glacier lakes covered 1.3 % of the to-

tal debris-covered glacier area, or 5.8 % of the area if we

consider only the debris-cover (ablation) part, based on the

QB/WV2 imagery. Salerno et al. (2012) reported similar per-

centage for the area of supraglacial lakes, i.e., 0.3–2 % of

the overall glacierized area for the Khumbu region. While

supraglacial lakes do not cover extensive areas of the glacier-

ized surface, they were shown to increase surface ablation

rates in this part of the Himalaya (Fujita and Sakai, 2014;

Figure 11. Close-up view of glacier area changes around the North

and South Lhonak glaciers from 1962 to 2006, showing changes in

the pro-glacial lakes.

Sakai et al., 2002). It was also shown that supraglacial lakes

located at the glacier terminus tend to merge to create large,

fast-growing proglacial lakes that accelerate glacier area loss

(Basnett et al., 2013; Bajracharya et al., 2014).

Some of the proglacial lakes in our study area are visi-

ble in Figs. 10 and 11 for the northern part of spatial do-

main 3 (Changsang, east Langpo, Jongsang, middle Lhonak,

south Lhonak). Most of these lakes are moraine-dammed

lakes considered dangerous for potentially inducing glacier

lake outburst flood events and were shown to accelerate the

glacier area loss in recent decades (Bajracharya et al., 2014).

Figure 10a–b show the evolution of the proglacial lake on

North and South Lhonak glaciers in Sikkim, also noted in

Basnett et al. (2013). A closer look at a subset area (Fig. 11)

shows the visible growth of a proglacial lake for the adjacent

North Lhonak and South Lhonak glaciers. We estimate that

these two glaciers retreated ∼ 650 m and 1.3 km from 1962

to 2006, respectively. Another branch of the North Lhonak

glacier has wasted significantly by ∼ 1.5 km from 1962 to

2006, and a glacier outlet is now clearly visible. The north-

ern branch of Jongsang glacier was entirely covered by a

supraglacial lake in 2006, while another part shows less sig-

nificant rates of terminus retreat (∼ 100 m in 44 years). A

part of the Jongsang glacier shows a slight “false” glacier

tongue advance, most likely due to uncertainties in the map-

ping of Corona imagery. While our purpose here is not to

present glacier length changes, we note that these estimates

are in agreement with trends of glacier thinning and in-

creased glacier lake formation reported in this area of the

Himalaya previously (Gardelle et al., 2011; Basnett et al.,

2013; Kääb et al., 2012).
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5.6 Uncertainty and limitations

Inconsistencies in glacier area change estimates have been

pointed out in other studies, for the Himalaya and elsewhere

(Racoviteanu et al., 2008a, b), and are also noted in the cur-

rent study. Glacier area changes in the Himalaya are het-

erogeneous and depend on a variety of factors including lo-

cal topography and climate, so some caution should be ap-

plied when comparing rates of area changes from one area

to other areas, even in the same climatic zone. For example,

for Sikkim we estimated a surface area loss of 88.9± 5 km2

(13.5 % from 1962 to 2006, or 0.36± 0.17 % yr−1). Other

studies in this area point to contrasting results. For the same

geographic area, Basnett et al. (2013) reported an area loss

of 0.16±0.10 % yr−1 from 1989/1990 to 2009/2010), which

is about half of the area change in our findings. In contrast,

a recent study (Bahuguna et al., 2014) reported the high-

est rates of area loss (about 0.8 % yr−1) for the last decade,

even higher than rates reported previously for the western

Himalaya by Kulkarni et al. (2007). We speculate that such

large differences might be due to errors inherent in the base-

line data sets coupled with misclassification due to snow

cover or debris-covered areas.

Glacier area changes reported for Sikkim in different stud-

ies, using a variety of data including topographic maps (Ta-

ble 9), illustrate this point. For example, for Sikkim, our

study estimated 569± 70 km2 of glacierized area in 2000

based on Landsat/ASTER data. For the same time period,

Mool et al. (2002) reported an area of 577 km2 based on

the same source imagery (Landsat ETM+) (Table 9). These

two area estimates differ only by 8.2 km2 (1.4 %) of our es-

timated area and only the number of glacier differs substan-

tially (186 glaciers in our study compared to 285 glaciers

in ICIMOD study) most likely due to the way in which ice

masses were split and how glaciers were counted. Methodol-

ogy differences and inconsistencies in glacier estimates are

quite common in multi-temporal image analysis performed

by different analysts and were previously noted in other ar-

eas of the world (Racoviteanu et al., 2009). Similarly, for

the 1962 decade, our analysis of Corona 1962 imagery for

Sikkim yielded 178 glaciers with an area of 658± 20 km2.

In a recent publication (Racoviteanu et al., 2014), we re-

ported 158 glaciers with an area of 742 km2 for the 1960s

based on the Swiss topographic map. The GSI (Sangewar

and Shukla, 2009) reported 449 glaciers with an area of

706 km2 for the 1970s based on topographic maps. Our 1962

Corona glacier inventory yields a smaller total glacier area

than the one based on the topographic map (84 km2, or 11 %)

(Racoviteanu et al., 2014) or the GSI inventory based on

topographic maps (48.3 km2, or 7 % area) (Sangewar and

Shukla, 2009). We consider that both of these latter men-

tioned studies overestimated the glacier area in the 1960s,

perhaps due to the presence of persistent snow in the source

aerial imagery. We consider the Corona 1962 data set to

be more reliable than the inventories based on topographic

maps, and hence we used this data set as baseline for com-

parison with the recent imagery.

Glacier inventories in Sikkim for the recent decades also

point to contradictory patterns. For the 1980s, another study

(Kulkarni, 1992) reported a glacierized area of 431 km2 for

1987/1989 based on Indian IRS-1A and Landsat data. Con-

sidering our 1962 Corona inventory, this would imply an

area loss of 42 % since 1962 (2.1 % yr−1) followed by a

strong increase in glacier area (+33.5 %, or+3 % yr−1) from

1987/1988 to 2000 (based on our Landsat analysis), which

is undocumented and unlikely in this area. We consider the

1987/1989 estimates to be highly unreliable, given that there

are no glacier surges that might induce an apparent “glacier

growth”. In some areas, we noted omissions of some debris-

covered tongues from the glacier maps, which might explain

some of the differences.

6 Summary and outlook

In this study we combined remote sensing data from

various sensors to construct a new glacier inventory for

the Kanchenjunga–Sikkim region in the eastern Himalaya.

Based on 1962 Corona and 2006 QuickBird imagery, we

found an overall negative glacier surface area loss of 0.5±

0.2 % yr−1 since 1962, in agreement with those noted in

other studies in the Himalaya. The area loss rates reported

here are lower than the average rate of 0.7 % yr−1 reported in

other glacierized areas of the world such as the Alps (Kääb

et al., 2002), the Tien Shan (Bolch, 2007) and the Peruvian

Andes (Racoviteanu et al., 2008a). Glaciers exhibit hetero-

geneous patterns of area change depending on topographic

and climatic factors, most notably glacier altitude (maxi-

mum, median, altitudinal range), glacier size, slope and as-

pect. Glacier area changes depend strongly on glacier size

and elevation, which is consistent with other areas in the cen-

tral/eastern Himalaya (Thakuri et al., 2014) or elsewhere, for

example in the outer tropics (Racoviteanu et al., 2008a). The

conclusions drawn with respect to spatial patterns in glacier

characteristics, glacier area loss and their topographic and

climatic dependency are as follows:

– strong north–south gradient in terms of glacier eleva-

tions and debris cover, with larger percent of area cov-

ered by debris and higher glacier elevations on the

northern side for the divide but less east–west gradient

in these characteristics;

– supraglacial debris cover is prevalent on the southern

slopes of the Himalaya (14 % of the glacierized area)

compared to northern slopes (2 %);

– supraglacial lakes constitute about 6 % of the debris-

covered area, and some of these supraglacial lakes have

merged to form proglacial lakes;
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Table 9. Glacier area change in Sikkim based on previous studies. The percent area change is given with respect to the 1962 Corona glacier

inventory from this study.

Study Year Data Number of Area Area change since

source glaciers (km2) 1960s

% % yr−1

This study 1962 Corona KH4 178 658± 20 – –

Geological Survey of India (1999) ∼ 1960–1970s Indian 1 : 63 000 449 706 +7.3 +0.9

topographic maps

Kulkarni and Narain (1990) 1987/1989 IRS-1C satellite images n/a 426 −35.0 −1.4

ICIMOD Mool et al. (2002) 2000 Landsat TM, IRS-1C, 285 577 −11.4 −0.3

topographic maps

This study 2000 Landsat TM, ASTER 185 569± 34 −13.5± 6.4 −0.3± 0.1

– glacier area loss of 0.5 %±0.2 % yr−1 from 1962 to

2000, with some differences on the eastern side of the

divide (Sikkim, 0.52 %±0.2 % yr−1) versus the western

part (Nepal, 0.44 %± 0.2 % yr−1);

– higher rates of area loss for clean glaciers (34 %,

or 0.7 % yr−1) compared to debris-covered glaciers

(14.3 % or 0.3 % yr−1) across the subregions on a

glacier-by-glacier basis;

– the amount of glacier area loss is partly controlled by a

glacier’s headwater elevation, altitudinal range, glacier

area, slope and aspect, with the largest area loss ob-

served for small, steep glaciers with a smaller altitudinal

range and less debris cover;

– while Himalayan glaciers are undoubtedly undergoing

negative area change, the rates of area loss noted in

this study (0.5 % yr−1) as well as other recent studies

in the area (0.2–0.4 % yr−1 since the 1960s) are lower

than other glacierized areas worldwide (0.7 % yr−1).

The glacier area change estimates reported here are sub-

ject to uncertainties most notably with respect to early topo-

graphic maps and declassified Corona imagery; therefore a

considerable effort was given to minimizing errors by mul-

tiple re-iterations of the glacier outlines. The understanding

of the spatial patterns of glacier changes in the current study

is limited by (1) a lack of a baseline elevation data set for

the 1960 to compute glacier elevation changes from 1960s

to 2000 and (2) lack of field-based measurements to validate

debris-cover mapping and surface temperature distribution.

With respect to the latter, while surface temperature trends

show a slight increase towards the terminus, suggesting a

thicker debris cover, the supraglacial surface temperatures

are highly heterogonous and require additional investigation.

A further improvement in the current study will be to include

the supraglacial and proglacial lakes and surface tempera-

ture as determinant factors for the glacier area change, per-

haps in a more sophisticated multivariate regression model.

The glacier data sets constructed in this study can be fur-

ther utilized to understand the behavior of glaciers in this

little-investigated area of the Himalaya, particularly with re-

spect to spatial patterns of glacier melt, and the contribution

of glaciers to water resources.
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