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Abstract. Submarine melting of the calving face of tidewa-

ter glaciers and the mechanical back force applied by the

ice mélange layer are two mechanisms generally proposed

to explain seasonal variations at the calving front of tide-

water glaciers. However, the way these processes affect the

calving rate and glacier dynamics remains uncertain. In this

study, we used a finite element-based model that solves the

full Stokes equations to simulate the impact of these forcings

on two-dimensional theoretical flow line glacier configura-

tions. The model, which includes calving processes, suggests

that frontal melting affects the position of the terminus only

slightly (less than a few hundred metres) and does not affect

the multiannual glacier mass balance at all. However, the ice

mélange has a greater impact on the advance and retreat cy-

cles of the glacier front (more than several kilometres) and its

consequences for the mass balance are not completely negli-

gible, stressing the need for better characterization of forcing

properties. We also show that ice mélange forcing against the

calving face can mechanically prevent crevasse propagation

at sea level and hence prevent calving. Results also reveal

different behaviours in grounded and floating glaciers: in the

case of a floating extension, the strongest forcings can dis-

rupt the glacier equilibrium by modifying its buttressing and

ice flux at the grounding line.

1 Introduction

In the context of global warming, the cryosphere’s contribu-

tion to sea level rise is a major concern. Depending on the

four RCP scenarios (representative concentration pathways)

considered in the IPCC fifth assessment (Church et al., 2013),

the sea level is predicted to rise between 0.26 and 0.82 m in

2081–2100 relative to 1986–2005. The Greenland Ice Sheet

(GIS) mass loss, which was 142± 49 Gt a−1 on average over

the past 2 decades, has increased in recent years to reach

an estimated value of 263± 30 Gt a−1 between 2005 and

2010 (Schrama and Wouters, 2011; Shepherd et al., 2012)

and 359.8± 28.9 Gt a−1 between April 2009 and 2012 (Khan

et al., 2014). This mass loss extended over a large part of the

GIS (Khan et al., 2010; Schrama and Wouters, 2011; Khan

et al., 2014), which is thus becoming a major contributor to

sea level rise (Cazenave, 2006; Rignot et al., 2011).

Increasing ice loss highlights the need for accurate estima-

tions of the future mass balance, but the large discrepancies

in the behaviour of Greenland’s outlet glaciers make a sim-

ple mass balance extrapolation unreliable unless we under-

stand the processes that control their dynamics (Howat et al.,

2011; Seale et al., 2011). The mass loss from the GIS is the

consequence of two main mechanisms: the dynamic ice dis-

charge (through calving and frontal melting) and the negative

surface mass balance. Ice discharge was estimated to repre-

sent 40 to 60 % of the total mass loss (Rignot et al., 2008;

van den Broeke et al., 2009; Khan et al., 2014), correspond-

ing to −156.3± 40.9 Gt a−1. Ice discharge is therefore a sig-

nificant mechanism, and the two related processes (melting

and calving) not only directly affect the position of the front

but also affect the forces at the front; feedback between calv-

ing processes and ice dynamics are therefore to be expected.

Holland et al. (2008) hypothesized that the increased dis-

charge in Greenland may have been triggered by an increase

in the subsurface ocean temperature. This claim was sup-

Published by Copernicus Publications on behalf of the European Geosciences Union.



990 J. Krug et al.: Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics

ported by Straneo et al. (2010), who stated that a rapid advec-

tive pathway exists between North Atlantic’s oceanic vari-

ability and the margin of the ice shelf in the vicinity of Ser-

milik Fjord, east Greenland. The underlying process suggests

that submarine frontal melting promotes the emergence of an

ice block overhanging the water line, which calves rapidly

due to an undercutting effect. Remote observations of east

GIS glaciers revealed a correlation between variations in the

position of the terminus and variations in the temperature of

the ocean (Seale et al., 2011). However, melting intensity is

hard to measure accurately and is usually inferred from hy-

drographic measurements (water velocity, temperature, and

salinity) of the heat transport within the water layers. Sum-

mer melt rates vary between 1 and 17 m day−1 depending on

the glacier and the associated fjord system (Motyka et al.,

2003; Rignot et al., 2010; Sutherland and Straneo, 2012;

Bartholomaus et al., 2013; Inall et al., 2014).

Another quantity, that of ice mélange, a heterogeneous

mixture of sea ice, marine ice, blown snow, and fragments

of icebergs, is suspected to play an important role in the

seasonal cycles of the glacier front (Higgins, 1991; Sohn

et al., 1998; Reeh et al., 2001; Khazendar and Jenkins, 2003;

Fricker et al., 2005; Copland et al., 2007; Joughin et al.,

2008a, b, c). Observations showed that winter freezing of the

ice mélange is correlated with a decrease in the calving rate,

an advance of the glacier front, and a slowing down of the ice

flow (Sohn et al., 1998; Joughin et al., 2008c) and that sum-

mer decay is followed by an increase in the calving rate, a

retreat of the front, and accelerated ice flow (Higgins, 1991;

Copland et al., 2007). Some authors argue that ice mélange

may directly resist the ice flow (Walter et al., 2012), while

others suggest that it only maintains the integrity of the ter-

minal part of the glacier (Sohn et al., 1998; Amundson et al.,

2010). Thus, although variations in the position of the ter-

minus and the existence of a layer of ice mélange layer are

clearly correlated, the underlying processes that control this

behaviour are still poorly understood.

Several attempts have been made to incorporate frontal

melting and the ice mélange back force in ice flow mod-

els. In particular, the relation between calving and undercut-

ting was investigated by Vieli et al. (2002), who applied a

seasonal calving pattern on a simplified geometry of Hans-

breen Glacier in Svalbard, assuming that calving was con-

trolled by melting at the water line. These authors con-

cluded that melting-driven calving only had a minor impact

on glacier dynamics. On the contrary, O’Leary and Christof-

fersen (2013) used a fixed geometry to investigate the ef-

fect of different melting patterns on the stress field in the

ice. These authors showed that undercutting can be a strong

driver of calving due to the concentration of stress that oc-

curs at the upper surface. However, recent studies using calv-

ing parameterization based on an instantaneous stress bal-

ance (Benn et al., 2007a, b; Nick et al., 2009, 2010) applied

on two-dimensional flow line geometries of Helheim (Cook

et al., 2014) and Store glaciers (Todd and Christoffersen,

2014) tempered these conclusions. According to Cook et al.

(2014), when undercut, the upper surface of the glacier drops,

thereby reducing tensile stress. The effect of ice mélange on

glacier dynamics was analyzed by Nick et al. (2010) and

Vieli and Nick (2011) using a depth- and width-integrated

model combined with the calving parameterization of Nick

et al. (2010). Both studies managed to reproduce the cycles

of advance and retreat of the glacier fronts with realistic am-

plitudes. However, the authors did not undertake further in-

vestigation of the underlying processes. Cook et al. (2014)

stated that only unrealistically high back pressure would be

able to change the position of the front, highlighting the need

for further modelling focused on processes, whereas Todd

and Christoffersen (2014) applied a back force similar to the

one evaluated by Walter et al. (2012) to Store’s calving front

and showed that this realistic forcing could have a significant

impact on the advance and retreat cycles of the glacier front.

In this article we examine the consequence of submarine

frontal melting and the ice mélange on glacier dynamics and

on the behaviour of the glacier front using a full Stokes ice-

flow finite element model combined with calving parameteri-

zation based on damage and fracture mechanics. This enables

a complete representation of the stress field in the vicinity

of the front and provides a reliable tool to study front dy-

namics. To be sure our conclusions are robust for a num-

ber of glacier geometries and flow specifications, we ran

more than 200 simulations combining a wide range of glacier

sizes, flow and damage parameters, and forcing constraints.

We provide a brief description of the model in Sect. 2, and

in Sect. 3 we describe the setup and list the parameters. In

Sect. 4 we describe glacier responses to seasonally variable

forcings, and in Sect. 5 we provide a deeper analysis of the

processes and mechanisms and compare the behaviour of

grounded and floating glaciers.

2 Model presentation

2.1 Ice-flow model

We considered an incompressible, isothermal, and gravity-

driven ice flow. The ice exhibits non-linear viscosity, and the

flow is ruled by the Stokes equations, which reads

div(σ )+ ρig = 0 (1)

div(u)= 0, (2)

where σ represents the Cauchy stress tensor, g the gravity

force vector, ρi the density of ice, and u the velocity vector.

The Cauchy stress tensor can be expressed as a function of

the deviatoric stress tensor S and the cryostatic pressure p

with σ =S−pI and p=− tr(σ )/3. Ice rheology is rep-

resented by a non-linear Norton–Hoff-type flow law called

Glen’s flow law, which can be expressed as

The Cryosphere, 9, 989–1003, 2015 www.the-cryosphere.net/9/989/2015/
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S= 2ηε̇. (3)

This equation links the deviatoric stress tensor S to the strain

rate tensor ε̇. The effective viscosity η is written as

η =
1

2
(EA)−1/nI

(1−n)/n
ε̇2

, (4)

where I2
ε̇2

represents the square of the second invariant of

the strain rate tensor, A is the fluidity parameter, and E is

an enhancement factor. A complete description of the model

can be found in Gagliardini et al. (2013).

2.2 Damage and calving model

The ice-flow model described above was coupled with a calv-

ing model based on damage and fracture mechanics. Damage

mechanics were used to describe the slow degradation of the

mechanical properties of ice under the stress field, averaged

at a mesoscale. Linear elastic fracture mechanics (LEFM)

were used to describe the brittle initiation and propagation

of crevasses.

Our damage model is inspired from the work of Pralong

and Funk (2005) and relies on damage mechanics (Lemaitre

et al., 1988). The level of isotropic damage in the ice is

quantified by a scalar variable D called the damage variable,

which equals 0 for undamaged ice and tends to 1 for fully

damaged ice. In order to avoid singularity when D= 1, an

upper bound is set such that D cannot exceed 0.7, account-

ing for the fact that D= 0.6 usually refers to fully damaged

ice (see Pralong and Funk, 2005; Borstad et al., 2013). Dam-

age is advected with the ice flow and it follows

∂D

∂t
+u∇D =

{
B ·χ if B ·χ > 0

0 otherwise,
(5)

where B is a numerical parameter called damage enhance-

ment factor. Damage increase depends on the stress state:

χ (σI,σth,D)=max

{
0,

σI

(1−D)
− σth

}
. (6)

Here σI is the maximum principal stress and σth represents a

stress threshold for damage initiation. χ is called the damage

criterion and quantifies the damage source term. Then, dam-

age alters the deviatoric part of the Cauchy stress tensor S by

introducing an effective deviatoric stress:

S̃=
S

(1−D)
. (7)

This new effective stress reduces the effective viscosity of

the ice through the expression of the enhancement factor that

enters Eq. (4):

E =
1

(1−D)n
. (8)

The depth of crevasse fields can be represented using a dam-

age contour and a stress history of the ice can be recorded.

This damage model was coupled with an LEFM model

(inspired from van der Veen, 1998a, b), which was used to

represent the rapid propagation of crevasses that character-

izes calving events. In LEFM, the initiation of crevasse prop-

agation depends on the stress intensity factor KI. To trigger

propagation, the stress intensity factor, which depends on the

size of the initial flaw and on the stress field, must be higher

than the ice toughness KIc. An initial crevasse depth pro-

vided by the previously computed damage field was used to

compute the stress intensity factor. Once propagation is ini-

tiated, the stress intensity factor is computed at sea level. If

the stress intensity factor is higher than an arrest criterion

KIa, the crevasse continues to propagate until it reaches the

bottom of the glacier and triggers calving. Crevasse propa-

gation may be facilitated by surface meltwater entering the

crevasse. However, our model currently does not incorporate

this process especially because of the lack of field observa-

tion that would be required to constrain it (see Krug et al.,

2014, for details).

Among the numerical parameters required to run the

model, three have to be calibrated, and are discussed below:

the damage critical valueDc, the stress threshold σth, and the

damage enhancement factorB. The damage contour given by

D=Dc corresponds to the depth of pre-existing flaws (from

which LEFM is applied), σth is the load that has to be ap-

plied to trigger ice damaging, and B quantifies the rate at

which damage increases. The criterion for calving was ini-

tially proposed by Benn et al. (2007b) for the calculation of

penetration depth of surface crevasses. It was then expanded

by Nick et al. (2010) in order to incorporate the growth of

basal crevasses. The main difference with our model is that

the crevasse propagation, in the formulation of Benn et al.

(2007b), does not rely on linear elastic fracture mechanics.

The model summarized here is described in detail in Krug

et al. (2014) (along with all sensitivity tests) and imple-

mented in the finite element open-source model Elmer/Ice

(see Gagliardini et al., 2013).

3 Setup and forcing parameterization

3.1 Geometries and boundary conditions

We wanted to generalize our conclusions to a wide range

of two-dimensional synthetic flow line glacier geometries of

time-varying length (L) and thickness (H ). To this end, we

built 60 geometries that depend on five parameters: the in-

let ice flux (Finlet), water depth (Hw), and damage param-

eters (σth, B, Dc). These parameters were sampled using a

Latin hypercube sampling (LHS) method, which ensures that

each probability distribution in the model is evenly sampled,

using a given number of simulations and a given number

of parameters to sample. The glaciers were built up from

ice slabs initially grounded on a linear analytical prograde

slope (1 %). The choice of prograde slopes is motivated by

www.the-cryosphere.net/9/989/2015/ The Cryosphere, 9, 989–1003, 2015
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Ice
Flow direction HT(x)

y

x

Mélange layer

WaterHwT(x)

x = xG Bedrock

h
Sea level

Finlet

Figure 1. Setup of the experiment. HT(x), HwT(x), and h represent glacier thickness, water depth, and ice mélange thickness respectively.

The glacier is grounded on a solid bedrock with a slightly positive slope (exaggerated here) represented by the thick brown line. The

grounding line is indicated by the red dot, at the abscissa x= xG. The blue arrow shows the direction of the ice flow.

the fact that dynamical instabilities arising from retrograde

sloped glaciers make intercomparison of a large set of ge-

ometries difficult. The meshes comprise∼ 7000 quadrilateral

elements. Horizontally, the refinement is higher at the front

(10 to 15 m) and in the vicinity of the upper surface (2 to 3 m)

to account for the processes that occur at the calving front as

well as the production of damage and advection at the upper

surface. The setup is illustrated in Fig. 1.

Boundary conditions are the same as those given in Krug

et al. (2014). In addition, some specific conditions are given

below.

– At the bed, the glacier can be either grounded or float-

ing. The grounding line position is obtained through the

resolution of a contact problem (Durand et al., 2009).

The basal friction is linearly decreasing along the flow

from 1.5× 10−2 MPa m−1/3 a1/3 at the inlet boundary

to 1.0× 10−4 MPa m−1/3 a1/3 at x= 10 km. Feedbacks

on basal friction arising from changes in glacier geom-

etry are not studied here.

– As glacier thickness can vary with time, the total depth-

integrated flux through the inlet boundary is kept con-

stant (Finlet).

– A lateral friction is prescribed to account for a con-

stant fjord width of 10 km. This parameterization fol-

lows Gagliardini et al. (2010).

For the purpose of comparison, we chose to apply sub-

marine melting and ice mélange forcing on glaciers in a

quasi-steady-state (QSS) mode, i.e. their front has to stabi-

lize within a given range lower than the length of one calv-

ing event. Among the 60 simulations generated by the LHS

sampling, 20 had this feature and are listed in Table 1. Other

geometries either advanced too far without calving or col-

lapsed because of prolific calving. The sets of damage pa-

rameters with which a QSS was reached generally differed

slightly from those calibrated in Krug et al. (2014). B ranged

from 1.5 to 3 MPa−1 and σth from 0.01 to 0.11 MPa (com-

pared with 0.5 to 2 MPa−1 and 0.01 to 0.2 MPa respectively

in Krug et al., 2014). The explanation for these differences is

straightforward: the geometries studied here flow on a linear

bedrock with no bumps or roughness. Consequently, except

near the front, no high-velocity gradients appeared in the up-

per surface. Damage is consequently more difficult to initi-

ate than in cases of rough bedrock and consequently has to

be promoted. In addition, since thinner glaciers are subject

to less internal stress, they require parameters that promote

damaging, unlike thicker glaciers (see Table 1).

For the sake of clarity, out of the 20 representative geome-

tries, unless otherwise specified, in Sects. 4 and 5, we only

use one to illustrate the model’s response. This terminus-

floating geometry (hereafter referred to as Geo 9) is shown

in bold in Table 1. However, the conclusions obtained in this

study are robust against all the geometries considered, as dis-

cussed in Sects. 4.1 and 4.2.

3.2 Model experiments

The 20 setups summarized in Table 1 were run for 7 years

to reach the QSS discussed above (spin-up). After this spin-

up, for each setup we imposed eight perturbations in melting

or ice mélange as well as a control run (CR), in which the

glacier continues its QSS evolution (i.e. without any melting

or ice mélange forcing). These forcings were maintained for

5 years, after which they were removed, and we let the ge-

ometries evolve freely for 5 more years (relaxation period).

In total, we performed 180 simulations of 17 years each.

The perturbations described in Sect. 3.2.1 and 3.2.2 are

listed in Table 2. Perturbations in submarine frontal melting

are named U1 to U4 (for “undercutting”). Ice mélange pertur-

bations are named S1 to S4 (for “Sikussak”, the Greenlandic

word for ice mélange).

3.2.1 Submarine melting parameterization

Glacier frontal melting usually results from warm saline

ocean water entering the fjord and mixing with fresh and

cold subglacial freshwater flow. The resulting current melts

the ice it meets as it rises along the calving face (Motyka

The Cryosphere, 9, 989–1003, 2015 www.the-cryosphere.net/9/989/2015/
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Table 1. List of geometries and their associated parameters used for the model experiments. HT refers to the QSS mean ice thickness of

the terminus, Finlet represents the ice flux at the inlet boundary, and HwT is the QSS mean water depth at the terminus. HAB is the mean

height above buoyancy at the front, where the terminus is grounded. The letter F is used instead of HAB when the glacier is afloat. σth is the

stress threshold that starts damage, B is the damage enhancement factor, and Dc the damage contour. The line in bold is the representative

simulation.

Geometry HT Finlet HwT HAB σth B Dc

(m) (× 103 m2 a−1) (m) (MPa) (MPa−1)

Geo 1 358 710 308 16 0.017 2.9 0.47

Geo 2 356 679 307 14 0.014 1.6 0.42

Geo 3 362 488 319 7 0.025 1.8 0.44

Geo 4 362 572 317 10 0.041 2.2 0.46

Geo 5 456 1210 405 6 0.026 2.9 0.41

Geo 6 474 1133 427 F 0.021 1.5 0.44

Geo 7 465 1528 412 8 0.013 1.8 0.43

Geo 8 461 1432 409 7 0.037 2.2 0.41

Geo 9 631 3940 623 F 0.059 2.4 0.54

Geo 10 638 4406 632 F 0.024 2.1 0.6

Geo 11 597 2273 609 F 0.068 2.1 0.48

Geo 12 627 3535 632 F 0.021 1.7 0.53

Geo 13 824 7719 908 F 0.047 2.3 0.5

Geo 14 810 7143 909 F 0.050 1.6 0.41

Geo 15 860 10 203 975 F 0.032 1.5 0.48

Geo 16 842 8953 970 F 0.079 2.0 0.56

Geo 17 863 11078 923 F 0.068 2.0 0.41

Geo 18 866 11 389 942 F 0.016 2.2 0.59

Geo 19 854 9979 942 F 0.115 2.4 0.43

Geo 20 810 7233 924 F 0.100 1.9 0.46

Table 2. Complete list of the experiments performed for each setup

listed in Table 1. Runs U1 to U4 refer to the undercutting experi-

ments. The maximal melt rate (MMR) is indicated by ṁ. Runs S1

to S4 refer to the ice mélange experiments: σbmax
is the maximum

ice mélange back pressure applied over a depth h and results in a

maximum back force of max(σb(t) ·h). The control run did not un-

dergo either ice mélange or melting. For each forcing, the “realistic”

cases are in bold.

Run σbmax
h max(σb(t) ·h) MMR

name (kPa) (m) (× 107 N m−1) (m day−1)

U1 0 0 0.0 3

U2 0 0 0.0 6

U3 0 0 0.0 9

U4 0 0 0.0 12

S1 170 80 1.36 0

S2 200 100 2.0 0

S3 350 120 4.2 0

S4 750 80 6.0 0

CR 0 0 0.0 0

et al., 2003). The melting intensity appears to be tightly

linked with ocean water circulation, water stratification and

its variability, as well as the specificities of the fjord, topog-

raphy, size, or runoff seasonality (Straneo et al., 2011; Mo-

tyka et al., 2013; Mortensen et al., 2013, 2014) and could

partly explain the wide range of different measurements

from one glacier to another. Rignot et al. (2010) measured

summer melt rates ranging from 0.6 to 3.8 m day−1 at the

face of four calving glaciers in west Greenland. Sutherland

and Straneo (2012) calculated an annual mean melt rate of

around 2 m day−1 in the area of the Sermilik Fjord–Helheim

Glacier, whereas Inall et al. (2014) measured summer val-

ues of around 10 m day−1 along the face of Kangerdlugssuaq

Glacier, southeast Greenland. Using a similar technique, in

Alaska, Bartholomaus et al. (2013) obtained a range be-

tween 9 and 17 m day−1 for Yahtse Glacier, and Motyka et al.

(2003) measured 12 m day−1 at the calving front of LeConte

Glacier.

Most parameterizations of frontal melt in ice flow mod-

els published so far assume a linear variation of melt from 0

at sea level to a maximum value at the lowest point of

the front. Following these parameterizations, the maximum

value is used to characterize the intensity of the melt and is

referred to as maximal melt rate (MMR). Todd and Christof-

fersen (2014) applied a MMR of 8 m day−1 during 3 summer

months and 0 m day−1 for the rest of the year. Cook et al.

(2014) tested different values of MMR ranging from 2.7 to

13 m day−1 during the 5-month summer period and a winter

constant MMR of 0.41 m day−1 (actually 150 m yr−1).

www.the-cryosphere.net/9/989/2015/ The Cryosphere, 9, 989–1003, 2015
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Following these studies and measurements, we tested

different MMR summer values ranging from 0.41 to

12 m day−1, following a 4-month sinusoidal peak and decay.

In winter, following Cook et al. (2014) we prescribed a con-

stant MMR of 0.41 m day−1 (see Fig. 2a). The melt rate was

imposed in the front-normal direction, and its value is listed

in Table 2. We deliberately chose to ignore melting at the bot-

tom surface in the cases when the glacier started to float. We

do not deny that this choice is a limitation, but we made it be-

cause we had no information on how the measured melt rate

is distributed below the floating tongue and along the calv-

ing face. Considering that prescribing the same MMR under

the glacier tongue would lead to its rapid collapse and that

we wanted to compare the different behaviours of grounded

and floating glaciers, taking into account melting under the

tongue would require a more complex melting parameteriza-

tion which is beyond the scope of this study.

In addition, some modelling work suggest that “the melt-

ing increases with height above the freshwater subglacial

discharge”, leading to an overcutting effect rather than the

classical undercutting effect (Kimura et al., 2014). We do

not consider this distribution, because the subsequent calving

process would rely on basal crevasses, which are currently

not incorporated into the model.

3.2.2 Ice mélange parameterization

Although ice mélange and its effect on glacier dynamics

have been studied for a few decades (Rignot and MacAyeal,

1998; Reeh et al., 2001; Joughin et al., 2008c), two major un-

knowns remain: (i) the speed at which it becomes rigid and

collapse and (ii) the force it applies against the glacier front.

i. Seale et al. (2011) studied the correlation between ice

mélange disintegration and front retreat in fjords in

Greenland using MODIS imagery and showed that dis-

integration can occur in a very short time, from a few

days to a couple of weeks, whereas sea ice stiffening

can take much longer. However, due to the lack of so-

lar illumination, they did not obtain reliable information

regarding ice mélange formation. We thus chose to sim-

ulate a growing period of 5 months (150 days) followed

by a 20-day decay period.

ii. The question of the force transmitted up glacier by the

ice mélange is more complex: using a two-dimensional

flow line model, the back force must be represented as

pressure applied over a thickness. Measurements of the

back pressure σbmax are difficult to obtain. The main

studies inferred and used a broad range of values be-

tween 0.02 to 3 MPa (Nick et al., 2009; Vieli and Nick,

2011; Walter et al., 2012; Cook et al., 2014; Todd and

Christoffersen, 2014). To investigate glacier response to

maximum back pressure, we tested values up to 1 MPa.

Most of studies consider the mélange strength to be

much lower than 1 MPa. Considering the fact that sea
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Figure 2. Shape of perturbations over a period of 1 year. (a) Melt-

ing parameterization at glacier bottom. (b) Ice mélange parameter-

ization.

ice strength depends on many parameters (temperature,

salinity) which are poorly constrained for mélange, we

think that this value is a reliable upper bound for σbmax .

The mélange thickness h was broadly estimated from

70 to 130 m in several studies (Fricker et al., 2005;

Seneca Lindsey and Dupont, 2012; Cook et al., 2014;

Todd and Christoffersen, 2014).

Considering that sea ice binds fragments of icebergs to-

gether, we can reasonably assume its stiffness is the first-

order control on mélange strength. Anderson (1961) linked

the increase in sea ice thickness to the square root of time

and to the gradient between oceanic and atmospheric temper-

atures. Thus, considering sea ice strength to be closely corre-

lated with its thickness and keeping the same kind of kinet-

ics, we expressed the back pressure applied by the mélange

on the glacier as

σb(t)=


σbmax√

150

√
t(mod 365 days) in winter

σbmax −
σbmax√

20

√
t(mod 365 days) at the end of winter

0(mod 365 days) in summer

. (9)

Ice mélange growth and decay are depicted in Fig. 2b.

Finally, the ice mélange was prescribed through a time-

varying back-stress assumed to be homogeneous over its

thickness and resulting in a total back force equal to the

product σb(t) ·h. We tested several combinations of mélange

thickness and back pressure parameters, but for the rest of

this study we only illustrate the most representative (S1 to

S4, see Table 2).

4 Results

4.1 Melting impact

The simulation starts on 1 January (time= 0), when the pre-

scribed melt rate is set to its minimum value. The distribution

of maximum melt rate for U1 to U4 and for the control run

is given in Fig. 3a. The control run was not subject to any

melt rate and its front position never moved by more than a

few tens of metres (see Fig. 3b). Figure 4 shows the shape

of the glacier under perturbation U3 in the middle of the
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Figure 3. Glacier response in the undercutting experiments (Geo 9, Table 1) U1 to U4 (coloured lines) and CR (dashed black line). (a) Vari-

ation in the maximum melt rate imposed at the base of the calving front. During the 5-month summer season, melting follows a sinusoidal

pattern. Otherwise, a constant melt rate of 0.41 m day−1 is prescribed. (b) Variation in the position of the front as a function of time and

(c) ice velocity at the terminus. For the sake of clarity, the velocity was smoothed with a 10-day moving average.

Figure 4. Illustrative example of the glacier shape. (a) Velocity field

for the representative geometry (Geo 9, Table 1), undergoing pertur-

bation U3 at day 173 (first summer season). The red dot shows the

position of the grounding line. The glacier is about 6000 m long and

600 m thick. (b) Zoom in the black rectangle, glacier front geometry

and mesh.

summer season (day 173). Simulations U1 to U4 produced

slight oscillations, resulting in a slight advance of the termi-

nus compared to the control run, but it never moved more

than 400 m downstream. These advances may seem counter-

intuitive as most research suggests that submarine melting

causes the front to retreat. However, our model revealed that

when an advance takes place, it is not triggered by the same

mechanism in all the setups. It is related to (i) a decrease in

the frequency of calving events (this process is described in

Sect. 5.2 below) and/or (ii) a torque effect caused by the re-

treat of the lowest point of the front (due to melting) and the

advance of the highest point. In the case presented here, the

advance of the front is due to a decrease in the frequency of

calving events. Its geometry is illustrated in Fig. 4.

As soon as the forcing was removed, all the fronts reached

their QSS position within a few months, except in simula-

tion U4 (whose specific behaviour is discussed in Sect. 5.2).

The ice velocity at the front varied within a range of

200 m yr−1, which is very similar to the natural variation in

the control run after a calving event (see Fig. 3c).

Considering the contribution of melting and calving to ice

loss, the volume of calved ice always appears to be larger

than the melted volume. During summer, melting accounted

for up to ∼ 23 % of the total mass loss (Fig. 5). Comparing

winter and summer suggests that an increase in the inten-

sity of undercutting does not significantly alter the total loss:

more ice is melted but less ice is calved, meaning the cumu-

lated volume does not vary significantly over the seasons.

To account for the different geometries, we summarized

them as a function of their QSS mean thickness and velocity

at the terminus for a given realistic forcing in melting (U2)

(Fig. 6). The conclusions drawn above were qualitatively

confirmed for all the other geometries: mean ice loss during

the melting season was comparable to the ice loss during the

rest of the year, whatever the size and velocity of the glacier.
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Figure 5. Mean daily winter and summer ice loss due to calving

(blue) and melting (green) for five values of melt rate, over 5 years.

Computed from the control run (CR) and Geo 9, perturbations U1

to U4.

In summer, the calved volume was reduced by the increasing

melt rate, but the cumulative loss remained unchanged.

4.2 Ice mélange impact

To measure the impact of ice mélange, we ran simulations S1

to S4 (Table 2), as well as the control run. Figure 7a shows

the ice mélange intensity. Figure 7b shows changes in the

position of the front as a function of time in the four corre-

sponding experiments and in the control run (dashed black

line). Two types of behaviour were observed during the first

5 years. In winter, the ice mélange strengthened, and calv-

ing frequency decreased or stopped. As a consequence, the

front advanced. In summer, the decay of the ice mélange back

force was immediately followed by a rapid sequence of large-

scale iceberg calving events. In all the perturbation simu-

lations, the glacier front was always located further down-

stream than in the control run. Each winter, the gaps between

the positions of the S1–S4 fronts and that of the control run

increased to reach a value of 500 m in S1 and 3 km in S4.

Moreover, in perturbations S2, S3, and S4 after each year,

the front did not retreat back to its QSS position, suggesting

a consequence for interannual mass loss. These behaviours

are consistent with observations, confirming the hypothesis

that a strong mélange reduces calving discharge (Sohn et al.,

1998; Joughin et al., 2008c).

Figure 7c shows the ice velocity at the front using the same

colour scale. The position of the terminus was inversely cor-

related with the velocity of the ice. The advance of the front

in winter led to a decrease in ice velocity due to the increas-

ing buttressing effect of the glacier sliding against the fjord

walls and, to a lesser extent, to increasing back pressure with

increasing ice mélange strength (e.g. S3 and S4). As can be

seen for the three highest back forces (S2, S3, S4), when the

mélange collapsed, the ice flow at the front accelerated to a

faster speed than the maximum in the control run. The in-

crease in speed can be explained by the following chronol-

ogy: first, the release of the mélange back force accelerated

the ice flow; second, after the first calving event was trig-

gered, the resulting geometry was a high vertical ice cliff.

Velocity vectors were no longer parallel to sea level and a

torque appeared, leading to a force imbalance that further in-

creased the ice velocity at the front. The red inset in Fig. 7

shows the first year of the forcing and underlines this phe-

nomenon: at stage 1, mélange strength was maximum and its

decay accelerated ice flow. At stage 2, the major front retreat

in simulation S4 occurred, further accelerating the flow.

Such rapid acceleration of the flow was observed dur-

ing calving events at the front of the Jakobshavn glacier

in May 2007 by Amundson et al. (2008). Near the front,

GPS stations recorded an increase in ice velocity from

11 315 m a−1 to 12 775 m a−1 in 20 days, during which the

glacier underwent three calving events that were attributed to

an adjustment in the stress field. The freshly calved glacier

was shorter, the buttressing effect was reduced, and glacier

flow accelerated (Benn et al., 2007b). Walter et al. (2012)

monitored the magnitude of the speedup at 550 m a−1 dur-

ing the days following the break up of the ice mélange at the

terminus of Store Glacier. Our results are in agreement with

these variations in measured velocity.

Figure 8 shows the mass loss for all geometries for pertur-

bation S2. Whatever the glacier geometry, the loss in summer

was greater than in winter, as the winter ice mélange layer

reduced calving activity. However, the same back force does

not have the same effect on small and large glaciers. In the

case of smaller glaciers, it completely prevents calving; in

the case of larger geometries, it only decreases the iceberg

discharge. This explains why in the winter inset in Fig. 8, the

thickest glaciers show the smallest contrast between winter

and summer. This feature is also visible in Fig. 7b: large ice

mélange intensities prevent calving (light blue, yellow, and

red curves), while smaller intensities simply reduce calving

frequency (dark blue). This consideration reinforces the need

for better knowledge of the properties of ice mélange.

5 Discussion

5.1 Mechanical impact of the ice mélange on the

glacier front

According to Amundson et al. (2010), to prevent the rotation

of a calved iceberg away from the terminus, the required back

force is between ∼ 1.0× 107 N m−1 and 10.0× 107 N m−1,

depending on the glacier flotation and the inclination angle

of the iceberg.

Concerning perturbations caused by the ice mélange, our

model suggests that calving ceases as soon as the applied

back force reaches a given value. We investigated model sen-

sitivity to the applied back force by evaluating the value of
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depends on the pairs of parameters (σbmax
, h). (b) Variation in the position of the front as a function of time and (c) ice velocity at the

terminus. For the sake of clarity, velocity is smoothed with a 10-day moving average. The red inset shows the ice velocity at the terminus

without smoothing and the precise chronology of variations in velocity: the dashed vertical line 1 corresponds to the maximum mélange

strength and line 2 corresponds to the major calving event in experiment S4.

this threshold. To this end, we isolated the pairs of param-

eters (σbmax , h) for which the winter season was character-

ized by the absence of calving events. For each of the five

winter seasons, we then calculated the back pressure applied

when calving ceased using Eq. (5). Multiplying this back-

stress by the thickness of the ice mélange gives a back force

per metre of lateral width. The corresponding distribution for

the 45 values is given in Fig. 9, of which the mean value is

around 1.1× 107 N m−1. Thus, the value of the back force

that prevents the iceberg rotation (as calculated by Amund-
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son et al., 2010) and the one which prevents fracture propa-

gation are on the same order of magnitude.

Our coupled ice flow and calving model enabled us to dis-

tinguish between the different processes that culminate in

iceberg calving that could be affected by the ice mélange.

In the first stage, development of the crevasse field is de-

termined by the damage criterion χ , which quantifies the

damage increase in the ice. Figure 10a shows changes in

the position of the terminus over a period of 150 days, i.e. a

full winter season. Three key events are highlighted by dia-

mond symbols. The red diamond corresponds to a situation

in which the glacier is about to calve, the yellow diamond

illustrates a case where the glacier is subject to ice mélange,

and the blue diamond corresponds to a situation in which

the glacier has just calved. Figure 10b shows the value of χ

along the upper surface where the tensile stress is the highest.

During the ice mélange season (yellow curve), damage pro-

duction is slightly lower than that in the pre- and post-calving

situations but remains positive. This means that ice mélange

reduces the production of damage but that the effect is too

weak to completely halt damage to the ice.

Following damage to the ice, three criteria have to be

fulfilled to trigger calving: the condition on damage con-

tour D=Dc, the initiation of fracture propagation at a depth

given by the Dc contour, and propagation to sea level. These

criteria are shown in Fig. 10c, where the stress intensity fac-

tor is represented on the vertical axis. The horizontal extent

of the solid coloured lines shows the length of the damage

envelope (the front is located on the right side of the figure):

a longer one illustrates a more extended crevasse field. As

expected, the solid blue curve is almost nonexistent: as calv-

ing has just occurred, the crevasse field is not deep enough to

apply LEFM model (D<Dc) or the stress intensity factor is

lower than the propagation threshold (KI<KIc). In contrast,

the solid red and yellow lines show that the surface is suffi-

ciently damaged to reach the criterion D=Dc over a larger

surface area. Wherever the stress intensity factor becomes

higher than the ice toughness (KI>KIc), crevasse propaga-

tion begins. This condition was satisfied in the case of the

red and yellow lines near to the upper surface, so propagation

can begin. The criterion KI>KIa must then be validated at

sea level. The stress intensity at sea level is represented by

the coloured dashed curves. The red curve satisfies this cri-

terion at some points, meaning that the calving event can be-
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gin. However, when the ice mélange layer is present (yellow

dashed line), this criterion is not fulfilled, and as a conse-

quence the crevasse cannot propagate down to sea level.

Regarding model sensitivity to the thickness of the ice

mélange, we observed that a thinner layer associated with

a stronger back force reduced the calving rate more than a

thicker layer associated with a weaker back force, with the

same total back force (data not shown). This is because the

thinnest layer of ice mélange is concentrated at sea level,

which significantly reduces the stress intensity factor at this

depth, thereby preventing crevasse propagation.

These mechanisms could explain the behaviour observed

in Fig. 7b. For simulations S2, S3, and S4, the figure shows

that the decay of the mélange layer was followed by a “cas-

cade” of calving events. However, the glacier did not imme-

diately retreat to its QSS position. This rate of retreat depends

on the degree of damage at the surface, which depends on the

driving force of the ice mélange. This suggests that a stronger

or longer winter season could alter the position of the front

over a period of more than 1 year, when one considers the

“stress history” of the glacier, and does not only rely on a

one-off record of the stress balance.

The results presented in this section are in direct contrast

with those of Cook et al. (2014). These authors observed

no remarkable changes in the position of the front unless

they applied a back force of 50.0× 107 N m−1, although they

simulated a difference of 25 m in the longitudinal extent of

the crevasse field near the front for smaller values of ice

mélange (5.0× 107 N m−1). Conversely, the results of Todd

and Christoffersen (2014) clearly agree with ours, as they

simulated a comparable advance of the front (∼ 1.5 km) with

a back force close to ours in simulation S2. Finally, for an ap-

plied force of the same order of magnitude, our model shows

that the ice mélange acts sooner than suggested by Amund-

son et al. (2010) by preventing the propagation of the fracture

down to the glacier base.

5.2 Differences between floating and grounded termini

Figure 11a shows the maximum difference in the surface

along-flow component of the deviatoric stress tensor Sxx be-

tween the U2 and the CR simulations, in the vicinity of the

front (< 600 m) during the middle of the first summer pe-

riod. Undercutting grounded glaciers slightly increased the

tensile stress at the upper surface (red dots). It increased the

frequency of calving events but reduced the duration of each

event (see red dots and crosses in Fig. 11b). Conversely, in

the case of floating glaciers, the surface adjustment of the

tongue decreased the tensile stress compared with the con-

trol run (Fig. 11a, blue dots). Consequently, the frequency

of calving events decreased slightly, but the distance the

front retreated at each event increased slightly (blue dots and

crosses in Fig. 11b).

Concerning the behaviour of the grounded geometry of

Helheim Glacier, Cook et al. (2014) stated that the melting

of the front has relatively little effect on the position of the
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front, unless the prescribed melt rates are extremely high (up

to 20 m day−1). On Store Glacier, Todd and Christoffersen

(2014) modelled a slight increase in frequency with under-

cutting, as well as a decrease in the amplitude of the retreat

of the calving front, and they attributed this interannual sta-

bility to the glacier’s topographic setting. As the geometry

of Todd and Christoffersen (2014) was grounded for most of

the melt season, their modelling results are in agreement with

ours. Here, it is worth to be mentioned that we only man-

aged to observe a front retreat with especially high melt rates

(≥ 12 m day−1). Incorporating melting from underneath the

floating ice tongue would probably make the glacier front to

retreat.

In our simulations, another difference appeared between

grounded and floating glaciers. In Sect. 4, we showed that for

most perturbations, after the relaxation period, glacier fronts

usually reached their QSS position. However, this was not the

case for the glacier undergoing perturbation U4 illustrated

in Fig. 3b. Indeed, its front rapidly advanced further down-

stream than the others and appeared to stabilize at an extent

of 6.2 km, compared with 6.0 km for the other fronts. When

extended to other geometries, the same result also was ob-

tained in some of the ice mélange experiments. However, it

only concerned glaciers with a floating tongue and only oc-

curred under the strongest forcings.

Concerning these processes, we propose an explanation

for this phenomenon (see Fig. 12). The melting perturba-

tion applied on the glacier front affects the shape of the

floating tongue (Fig. 12b). It reduces its area along with the

subsequent buttressing effect. As a consequence, the whole

glacier accelerates and thins, and the grounding line retreats

(Fig. 12c). The ice flux at the grounding line is therefore

modified, and a new equilibrium is established that relies

on interactions between the ice flow, damage production,

and the calving law. Considering the ice mélange, the con-

cept is similar but the process is reversed (Fig. 12d). As

the ice mélange prevents the floating tongue from calving,

the area of the tongue increases. Consequently, the glacier

slows down and thickens, and the grounding line advances

(Fig. 12e). Again, a new equilibrium may be established with

an associated quasi-steady state front dynamics.

6 Conclusions

Ice mélange and melting of the glacier front have been re-

ported by many authors to influence the behaviour of tidewa-

ter glaciers. In particular, they have been cited as a possible

explanation for the seasonal advance and retreat cycles of

glacier fronts, among other external forcings. However, al-

though some correlations between these mechanisms and the

advance/retreat of the front have been established on many

outlet glaciers in Greenland, little is known about the exact

role of these forcings.

The Cryosphere, 9, 989–1003, 2015 www.the-cryosphere.net/9/989/2015/



J. Krug et al.: Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics 1001

a

b c

ed

Melting

Ice Mélange

Velocity increases
Buttressing decreases

Velocity decreases
Buttressing increases

Front advances because of increases velocity

Front advances because of calving ceasing

Control Run

Front advances because of increased velocity

Front advances because of calving cessation

Figure 12. Sketch of the process suggested for glacier equilibrium destabilization. (a) Control run disturbed by (b) increased melting and

(c) the resulting stable geometry. (d) Ice mélange perturbation and (e) resulting stable geometry.

In this study, we combined a full Stokes ice flow model

with a calving framework using damage and fracture me-

chanics to investigate the impact of these forcings on glacier

dynamics. This allowed us to represent the slow degrada-

tion of the mechanical properties of the ice and the initiation

and propagation of pre-existing fractures, which are essen-

tial to describe the processes occurring at the front. We per-

formed experiments on a large set of synthetic geometries us-

ing different values for melting and ice mélange back-stress

and thickness, and the conclusions we have drawn are ro-

bust in all these experiments. However, it is important to note

that the model used here considers surface crevasses only. A

deeper analysis would require the modelling of the develop-

ment and propagation of basal crevasses, and their feedback

with the stress field and the glacier dynamics.

Our modelling showed that frontal melting has an impact

on the calving rate and on the position of the front (less than

a few hundred metres), but no effect on inter-/multiannual

mass loss. On the contrary, applying an ice mélange layer

against the front affects its position to a larger extent (up to

several kilometres) compared to melting. In addition, its con-

sequences for the inter-/multiannual mass loss, when slight,

may not be completely negligible and thus support Joughin

et al. (2008c), according to whom “It is likely that the pro-

cesses that control the seasonal calving cycle may also in-

fluence the interannual variability”. By investigating the pro-

cesses occurring during calving events, we have shown firstly

that the ice mélange reduces the rate of surface damage by re-

ducing the tensile stress in the glacier upper surface and sec-

ondly prevents fracture propagation at sea level and hence

calving. Better field characterization of undercutting and ice

mélange properties should increase the accuracy of further

modelling.

Finally, our results also reveal a feature that is specific to

glaciers with floating termini, i.e. that strong perturbations

(either in melting or in ice mélange) may affect their multi-

annual behaviour. By affecting the buttressing effect of the

tongue, the perturbation may modify the subsequent glacier

equilibrium and lead to a new stable geometry for the same

model parameters. This new stable position then depends on

feedback between glacier flow and calving law parameters.
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