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Abstract

The study of mass and energy transfer across landscapes has recently evolved

to comprehensive considerations acknowledging the role of biota and humans as

geomorphic agents, as well as the importance of small-scale landscape features.

A contributing and supporting factor to this evolution is the emergence over the

last two decades of technologies able to acquire High Resolution Topography
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(HRT) (meter and sub-meter resolution) data. Landscape features can now be

captured at an appropriately fine spatial resolution at which surface processes

operate; this has revolutionized the way we study Earth-surface processes.

The wealth of information contained in HRT also presents considerable chal-

lenges. For example, selection of the most appropriate type of HRT data for a

given application is not trivial. No definitive approach exists for identifying and

filtering erroneous or unwanted data, yet inappropriate filtering can create arti-

facts or eliminate/distort critical features. Estimates of errors and uncertainty

are often poorly defined and typically fail to represent the spatial heterogeneity

of the dataset, which may introduce bias or error for many analyses. For ease of

use, gridded products are typically preferred rather than the more information-

rich point cloud representations. Thus many users take advantage of only a

fraction of the available data, which has furthermore been subjected to a series

of operations often not known or investigated by the user. Lastly, standard HRT

analysis work-flows are yet to be established for many popular HRT operations,

which has contributed to the limited use of point cloud data.

In this review, we identify key research questions relevant to the Earth-

surface processes community within the theme of mass and energy transfer

across landscapes and offer guidance on how to identify the most appropriate

topographic data type for the analysis of interest. We describe the operations

commonly performed from raw data to raster products and we identify key

considerations and suggest appropriate work-flows for each, pointing to use-

ful resources and available tools. Future research directions should stimulate

further development of tools that take advantage of the wealth of information

contained in HRT data and address present and upcoming research needs such

as the ability to filter out unwanted data, compute spatially variable estimates

of uncertainty and perform multi-scale analyses. While we focus primarily on

HRT applications for mass and energy transfer, we envision this review to be rel-

evant beyond the Earth-surface processes community for a much broader range

of applications involving the analysis of HRT.
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1. Introduction

One of the fundamental principles for understanding Earth-surface processes

is conservation (Anderson and Anderson, 2010); the total rate of change of a

quantity, such as mass or energy, within a control volume equals the rate of

change of the quantity stored within the control volume plus the quantity net5

outflow across the control surface. Rates of change depend on sources and

sinks of the quantity of interest and on spatial gradients in transport rates.

Many problems of interest to geomorphologists and hydrologists can be cast in

these terms (Kirkby, 1971). Development of a sediment budget of a watershed,

for example, requires the identification of sediment sources and sinks, and the10

understanding of how sediment is transformed and transported from one point

of the watershed to another.

The ability to predict water, sediment, and nutrient transfer, map natu-

ral hazards, perform a radiation balance, and understand biophysical feedbacks

that control landscape form and function is of great value to Earth-surface15

scientists and natural resources managers. This ability relies on the under-

standing of how mass and energy are transferred through watersheds and land-

scapes. Contributions on this topic have populated the geomorphologic and

hydrologic literature for over a century (Gilbert and Dutton, 1880; Davis, 1892;

Gilbert, 1909; Gilbert and Murphy, 1914; Strahler, 1952; Culling, 1960; Kirkby,20

1971; Smith and Bretherton, 1972; Willgoose et al., 1991a,b,c; Anderson, 1994;

Howard, 1994; Tucker and Slingerland, 1994, 1997; Dietrich et al., 2003) which

also account for the effect of biota and humans on landscapes. A large set of field

observations and models, in fact, supports the knowledge that biological pro-

ductivity affects directly and indirectly landscape evolution (e.g., Drever, 1994;25

Butler, 1995; Gabet, 2000; Lucas, 2001; Sidle et al., 2001; Bond et al., 2002;

Meysman et al., 2006; Yoo et al., 2005; Phillips, 2009; Foufoula-Georgiou et al.,
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2010). Humans, long recognized as geomorphic agents (Marsh, 1869, 1882), have

now significantly impacted landscapes and their ecosystems (Hooke, 1994, 2000;

Foley et al., 2005; Ellis et al., 2006; Montgomery, 2007; Syvitski and Saito, 2007;30

Wilkinson and McElroy, 2007; Ellis, 2011; Sidle and Ziegler, 2012; Tarolli et al.,

2014). Roads, for example, can play an important role in a watershed sediment

budget as they constitute a significant source of sediment (Sidle and Ziegler,

2012) and disrupt ecosystem connectivity (Riitters and Wickham, 2003).

The evolution in mass and energy transfer studies is also reflected in mathe-35

matical modeling approaches. From the employment of classic mass and energy

conservation laws (Eagleson, 1986; Lane, 1998; Trimble, 1999; Dietrich et al.,

2003), recent years have also seen the development of nonlocal constitutive laws

expressing the material flux at a point (e.g., sediment flux) as a function of the

conditions in some neighborhood around this point in space and/or in time40

(e.g., Bradley et al., 2010; Foufoula-Georgiou et al., 2010; Ganti et al., 2010;

Tucker and Bradley, 2010; Foufoula-Georgiou and Passalacqua, 2013; Furbish and Roering,

2013). The nonlocal approach allows incorporating the heterogeneity and com-

plexity typical of geomorphic systems and the wide range of spatial and temporal

scales that characterizes geomorphic processes.45

Topographic gradients are a key factor in the transport of mass and energy.

Whether computed at the location of interest or over a domain of influence as

in nonlocal approaches, topographic attributes, such as slope, curvature, and

roughness, play a fundamental role in the transport of mass and energy through

landscapes. In the past, however, the representation of the Earth-surface was50

possible only at coarse spatial resolutions (i.e., ≥ 10 m). Data collected dur-

ing the Shuttle Radar Topography Mission (SRTM data), for example, were a

major breakthrough in the early 2000s, but are quite coarse (30 m resolution)

compared to today’s standards. SRTM data do not capture many of the small

scale features and perturbations, both natural and anthropogenic, that combine55

to exhibit significant control over mass and energy transfer. This applies also

to the US Geological Survey’s National Elevation Dataset that has traditionally

only been available at 10 m and 30 m resolutions.
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The explosion of availability of high resolution topography (HRT) over the

last two decades is revolutionizing the way we study mass and energy transfer60

through landscapes. We define HRT as any topographic dataset, which in its raw

form consists of location (x,y) and elevation (z) measurements that collectively

comprise a point cloud, and which have average spatial resolutions greater than

or equal to one point per square meter (needed to achieve at least meter scale

representation of the terrain). Thus, features in the landscape can be accurately65

characterized and quantified at the fine spatial resolutions at which many hy-

drologic, geomorphic, and ecologic processes occur. HRT data can be obtained

remotely from various mobile platforms (e.g., planes, boats, vehicles) or static

platforms (e.g., a tripod on the ground), using different techniques (e.g., Light

Detection and Ranging (LIDAR), Synthetic Aperture Radar (SAR), Structure70

from Motion (SfM), SOund Navigation And Ranging (SONAR)).

While remotely sensed HRT data are not a substitute for other forms of

field observations (Roering et al., 2013), they do markedly enhance our ability

to study Earth-surface processes quantitatively (Tarolli, 2014); an example is

the emergence of characteristic scales of geomorphic processes (Perron et al.,75

2009; Gangodagamage et al., 2011, 2014). In addition to the characterization

of landscape structure through feature detection, identification, and extraction,

HRT data allow capturing kinematic and dynamic changes of the Earth’s sur-

face through differencing of data sets acquired at different times. An example is

the ability to measure surface displacements and rotations due to earthquakes80

(Nissen et al., 2012; Oskin et al., 2012; Glennie et al., 2014). The variability

and complexity of landscapes, particularly at large scales (Rhoads, 2006) and

over time can be fully embraced with HRT data. Preliminary mapping can be

performed over vast areas from a personal computer and can be used to identify

specific locations of interest to be subsequently field surveyed. The completeness85

of HRT also offers the opportunity to advance process-understanding through

change measurement (e.g., vegetation development, sedimentation, bank ero-

sion) and heterogeneity characterization (e.g., vegetation, rockfall size distribu-

tion).
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In addition to these substantial advantages, working with HRT data presents90

significant challenges. Given that numerous combinations of platforms and tech-

niques for HRT acquisition exist, users often have little basis for determining

which platforms are best for their specific application (Bangen et al., 2014).

For many applications (e.g., fluvial environments), no single HRT platform or

technique paints a complete topographic picture and instead multiple techniques95

are combined (Williams et al., 2014). Raw HRT data post processing techniques

and related parameters are often not known to the earth scientist end-user and

frequently not made available from the data provider. What operations are per-

formed on raw data to create a usable point cloud? What further operations are

needed to create a Digital Terrain Model (DTM)? Can geomorphic features be100

extracted automatically and objectively? How does one quantify change over

time from point cloud or rasterized data? Despite the rapidly growing avail-

ability of HRT data, scientific discovery and applications of HRT data analyses

to directly inform natural resource policy and management have been limited.

Tools for extracting useful information from HRT data have been developed105

and new ones are under development, but the Earth Sciences community lacks

guiding principles and standard analysis work-flows as well as best practices for

determining and reporting HRT data quality. These factors have resulted in a

knowledge gap that separates HRT viewers and HRT analysts.

With this review, we wish to reduce this knowledge gap. In the material110

that follows, we offer an overview of available data types and guidance on how

to choose the most appropriate HRT data platform for the application at hand.

We identify sources of error and work-flows to account for uncertainty. We

discuss the operations that are commonly, or should be, performed in convert-

ing raw data to point clouds to raster products and how the analysis of mass115

and energy transfer through landscapes has changed with HRT data. It is

not our goal to provide a comprehensive review of HRT acquisition and HRT-

based research, which have been recently provided by Glennie et al. (2013b),

Roering et al. (2013), and Tarolli (2014). We also narrow our focus to the anal-

ysis of mass and energy transfer across landscapes, but many of the ideas and120
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tools presented in this review will be relevant to other facets of the Earth-surface

processes community and beyond.

The paper is organized in four main sections. The ‘Ask’ section (Section 2)

covers HRT data sources, how to choose the most appropriate data type, critical

questions to ask when acquiring a new HRT dataset or attempting to determine125

the quality of an existing HRT dataset, and key considerations to account for

uncertainty. The ‘Do’ section (Section 3) is focused on the operations performed

from raw data to point clouds to raster products, work-flows for feature and

change detection, and broad considerations on mass and energy transfer studies

with HRT. The ‘Next’ section (Section 4) explores the next generation of HRT130

data, opportunities for development of appropriate analysis tools, and needs

to further our understanding of mass and energy transfer through landscapes.

Finally, we offer guiding principles for HRT analysis in Section 5.

2. ASK: Considerations for planning HRT acquisition or working

with previously collected HRT data135

Use of HRT data poses challenges for the Earth science community; however,

these can be mitigated with a fuller understanding of data characteristics, for-

mats, provenance, and by identification of proper tools to measure data quality,

manipulate and analyze data and address the scientific question of interest.

In this section, we address important factors to consider when acquiring new140

data, including what should be standard requirements for new data acquisition,

whether you are acquiring the HRT data yourself or requesting from a com-

mercial vendor, as well as what information is needed to assess the quality of

data previously collected by someone else. We offer an overview of the types of

available HRT, their characteristics, and guidance on how to choose the most145

appropriate HRT for the application at hand. We then discuss sources of un-

certainty and present strategies for uncertainty assessment of data and data

processing. The main steps to obtain derived products (workable point clouds

and rasters) from raw data will be presented in Section 3.

7
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2.1. How to identify the proper data to address scientific questions150

When acquiring new HRT data, the selection of the most appropriate HRT

platforms and methods is best driven by the science application. Often in the

Earth sciences, leveraging of HRT data has been more opportunistic based on

what already exists (Erwin et al., 2012), particularly due to cost considerations,

but this frequently results in significant effort and attention explaining fixes to155

overcome inadequate data resolution, incomplete coverage, datum offsets and in-

consistent control networks. Ideally, deliberate and pragmatic decisions should

be made about the HRT platform and method to use that are best suited to the

science application. What spatial resolution, extent and accuracy are needed

will largely be determined by the scope of the analysis and the characteristics160

of the system being studied (Bowen and Waltermire, 2002; Lane and Chandler,

2003; Bangen et al., 2014). There are 4 main factors that control the identifica-

tion of the most appropriate HRT platform and method: (i) spatial extent of the

area to be acquired; (ii) point density needed to accurately represent the sur-

face in analysis (and thus, horizontal and vertical measurement accuracy with165

respect to typical spatial or temporal gradients to be captured); (iii) need for

detailed representation versus elimination of vegetation and other above-ground

features; (iv) capability to penetrate water and acquire bathymetry. The char-

acteristics of common HRT data with respect to these factors are summarized

in Fig. 1 and Table 1. When existing data are available for the area in analysis,170

these factors can guide the assessment of whether or not the existing data are

appropriate for the analysis being planned. Additional factors that contribute

to the choice of HRT platform are cost and flexibility. While these are not sci-

entific factors per se, they do affect the decision process, particularly in the case

of analyses requiring repeated surveys.175

2.2. Available platforms and system components

Lidar sensors have been deployed from both airborne (typically called Airborne

Laser Scanning ALS) and ground-based platforms (typically called ground based

lidar or Terrestrial Laser Scanning TLS). ALS is the only technique that can

8



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

effectively penetrate the canopy to obtain information on the ground, which is180

the main advantage of ALS with respect to other platforms. Conventional lidar

systems (airborne and terrestrial) operate in the near infrared (NIR) part of the

light spectrum, which is rapidly attenuated or reflected by water and therefore

provides limited information in wet areas.

Airborne acquisition allows the ability to cover large areas (Fig. 1, Table 1,185

Fig. 2 (a)) in small amounts of time (hours). Tripod base (TLS) is instead used

when a higher resolution and more flexibility in the scanning angle are needed

(Fig. 2 (b)). The spatial extent of TLS is much smaller than ALS (Table. 1,

Fig. 1) and the feasible extents vary by instrument (long-range versus short-

range) and geometry of the area of interest.190

Vegetation can be very difficult to remove from ALS and TLS data and

may in fact be the largest source of uncertainty in locations with moderate

to high vegetation density. There are not many comparable alternatives that

provide the spatial extent and point density that can be attained with ALS data

(Table 1, Fig. 1), so imperfect removal of vegetation (when needed) may be an195

acceptable cost for obtaining the HRT data of interest. On relatively small

spatial scales, however, conventional rtkGPS or theodolite surveys may provide

a more accurate representation of the ground surface compared with TLS.

Recently developed mobile lidar systems (MLS) include sensors mounted on

mobile vehicles (including boats) (Alho et al., 2009; Vaaja et al., 2011; Williams et al.,200

2013, 2014), compact systems portable in backpacks (Brooks et al., 2013; Glennie et al.,

2013a), and mounted on Unpiloted Aerial Vehicles (UAV), kites, and blimps.

Such systems blend some of the greatest benefits of ALS and TLS. The main

advantages of these units are the capability of responding much faster to geo-

morphic and hydrologic events and of accessing steep or challenging areas where205

tripod-based surveying may not be possible.

Bathymetric lidar (green Airborne Laser Scanning gALS) uses the green-blue

portion of the light spectrum which can penetrate water. However, even within

the green-blue portion of the spectrum, the capability of detecting channel bed

topography varies with water depth and turbidity (Glennie et al., 2013b). A210
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good rule of thumb is that data will be acquired down to approximately the

depth that can be visually seen, although recently developed systems are ex-

pected to reach twice the visible depth.

Given that channels are often the most dynamic 1% of the landscape and

play critical roles in mass and energy transfer in landscapes, it may be desir-215

able to utilize sonar instruments to capture bathymetry and subsequently stitch

those data into HRT data covering the terrestrial surface. Single-beam SONAR

(SBS) and multibeam bathymetric SONAR (MBS) are mounted on boats or on

small floating devices (preferred when navigation is limited by shallow water

and/or presence of vegetation). The primary advantages of SBS are cost, rel-220

atively low (easily manageable) data density and ease of operation in shallow

water. SBS surveys tend to be adequate for monitoring relatively large geomor-

phic change and coarse bathymetric surveys for 1D hydrologic modeling. MBS

provides a much higher data density and captures many more of the fine-scale

features (ripples, dunes, boulders, etc.), which may or may not be necessary225

depending on the question at hand. Because of the sparser data density, SBS

surveys often require interpolation between survey lines, which can introduce

error into the bathymetric dataset. Another emergent bathymetric technology is

interferometric sonar, which has the benefits of much wider swath width, lower

sensitivity to vessel roll and wave action, and lower cost, compared to MBS.230

Synthetic Aperture Radar (SAR) is a class of side-looking radar systems

that are deployed from airborne platforms, typically mounted on an aircraft or

spacecraft (Doerry and Dickey, 2004; Oliver and Quegan, 2004). SAR systems

can create HRT data (with m to cm precision) using advanced echo timing

techniques (Doppler processing). Interferometric SAR (IfSAR or InSAR) uses235

the parallax (phase shift) in two different SAR images collected at different

radar antenna elevation angles to generate a 3D surface with vertical resolution

typically less than 1 m. Advantages of SAR include the ability to collect data

during the day or night and penetrate weather and dust that might limit other

remote sensing techniques.240

The latest generation of Very High Resolution (VHR) satellite imagery (< 1
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m pixel resolution; e.g., WorldView-2, Pleiades, Geoeye-1) can also be used

to reconstruct digital surface models (DSM) down to 1 m spatial resolution

and vertical accuracy as good as 0.5 m in the best conditions (Table 1). The

current limitations in using SAR and VHR comes from the relatively high level245

of expertise needed to process the imagery into a high quality surface model.

Recent photogrammetric techniques, such as Structure from Motion (SfM)

(James and Robson, 2012) and Multi-View Stereo (MVS), can be mounted on

UAVs and represent a low-cost option for acquiring HRT (Fig. 2 (c)). Such

approaches require relatively little training and are extremely inexpensive, and250

thus potentially represent a methodological leap in ad hoc HRT data collec-

tion (Fonstad et al., 2013). Point cloud densities with vertical and horizon-

tal error on the order of cm can be achieved, although the resulting datasets

may be subject to large errors due to incorrect flight plans or lens calibration

(James and Robson, 2014).255

Comprehensive reviews on each platform can be found in the literature,

such as Mallet and Bretar (2009), Petrie and Toth (2009c), and Glennie et al.

(2013b) (ALS including full waveform), James and Robson (2012) andWestoby et al.

(2012) (SfM), Heritage and Hetherington (2007), Petrie and Toth (2009a), Petrie and Toth

(2009b), Day et al. (2013a), and Day et al. (2013b) (TLS), Brooks et al. (2013),260

Glennie et al. (2013a), andWilliams et al. (2014) (MLS), Hobi and Ginzler (2012)

and Stumpf et al. (2014) (VHR), Bangen et al. (2014) (SBS, MBS), andWasklewicz et al.

(2013) for an overview on ALS, TLS, photogrammetry, and SAR.

2.3. Sources of uncertainty, error modeling and error propagation

Regardless of the HRT platform, uncertainty assessments of raw HRT data and265

subsequent post processing into point clouds, terrain and surface models should

be completed and reported with any scientific study. For both the investigator

and the audience, the most important question to address is whether or not

the uncertainty is significant to the question or purposes for which the HRT

is being used (Wheaton et al., 2008). The type of assessment and the extent270

to which one explores uncertainty should be driven by the research question(s)

11
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one is answering. A comprehensive uncertainty analysis or full error budget can

be challenging (Joerg et al., 2012) and is not always necessary. We advocate

focusing the uncertainty analysis on whether the signal sought from HRT data

and analyses is larger than the noise inherent in the HRT data (i.e., signal to275

noise ratio; see following sections).

Data inventory and exploration are first steps to an uncertainty assessment.

For example, in addition to the point cloud information, are there independent

ancillary data such as Ground Control Points (GCPs) of elevation and vegeta-

tion heights available? Visual analysis of the data, either in 2D or 3D (with280

an immersive environment) and ideally with ancillary data such as topographic

or vegetation information, may reveal both obvious (e.g., data corduroy) and

subtle errors in the data (e.g., power lines confused with tree tops). In addi-

tion, assessing the topographic complexity and the distribution and species of

vegetation across the site will provide information about the potential spatial285

distribution and magnitude of uncertainty in the point cloud and/or raster data

(Hopkinson et al., 2005; Hodgson et al., 2005; Spaete et al., 2011). This assess-

ment may include parameters such as slope, surface roughness (bare earth and

vegetation), and/or vegetation height and cover derived from the point cloud

and/or raster data.290

2.3.1. Scope of uncertainties

The scope of uncertainties with respect to HRT can be overwhelming and a full

accounting is beyond the scope of this paper. However, we can usefully identify

three primary types of uncertainties specific to HRT data that span the full

scope (Table 2): i) positional uncertainties , ii) classification uncertainties, and295

iii) surface representation uncertainties.

HRT positional uncertainties describe the uncertainty in both the horizontal

and vertical location of individual topographic points in a point cloud. The

source of positional uncertainties are the sensor’s precision and accuracy, the

geometry of acquisition (e.g., range and angle of incidence), and the position of300

the sensor (Lichti and Skaloud, 2010). Mobile and airborne systems require a

12
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combination of GPS and inertial measurement unit (IMU) systems to position

and orient the sensor and yield directly globally georeferenced point clouds.

Ground-based surveys from a static position (e.g., TLS or TS) can be kept in

a local coordinate system with high accuracy (e.g., using fixed targets) before305

being globally georeferenced (e.g., by knowing the GPS position of the targets).

Beyond the actual precision of the sensors, this difference in georeferencing

translates into a position accuracy that is an order of magnitude better for TLS

(sub-cm) compared to ALS (≈ 5-10 cm). Quite importantly, the georeferencing

error is unlikely to be spatially uniform due to variations in the quality of the310

GPS/IMU positioning during a survey (Lichti and Skaloud, 2010) and actual

distribution and number of targets in a static TLS survey (e.g., Bae and Lichti,

2008). Data delivered by commercial providers rarely provide the means to

propagate the georeferencing errors into a spatially variable uncertainty such

that a uniform georeferencing error is systematically used.315

Beyond the georeferencing error, error inherent to the instrument (in partic-

ular the angular accuracy and range accuracy/precision) and error introduced

during calibration (e.g., boresight), it is important to understand that the posi-

tion uncertainty of any given point obtained by a lidar system (fixed or mobile)

will depend on the scanning geometry, that is the range to the ground and the320

incidence angle (e.g., Schaer et al., 2007; Soudarissanane et al., 2011). In the

absence of a simple model to account for these effects, most studies assume a

uniform position uncertainty related to instrument error and scanning geometry.

For high accuracy requirements it is however possible to filter out points of high

incidence angle to only keep the best measurements in the subsequent point325

cloud analysis (e.g., Schaer et al., 2007). To our knowledge, there is no way at

present to directly derive a spatially explicit error model for SfM-derived point

clouds. Estimates of the accuracy of SfM point clouds have been based on a

comparison with higher quality data (numerous GCPs or lidar) and have shown

that the position uncertainty is of the order of 1/1000 the camera distance (e.g.,330

James and Robson, 2012). Recent work has shown that incorrect survey organi-

zation can introduce large scale deformation of the surface (James and Robson,
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2014).

HRT classification uncertainties depend on quality of the detection of bare

earth and method of classification (see Section 3.2). For simple scenes without335

vegetation, without objects obstructing the view of the surface (e.g., tripods,

people, etc.), and flat ground, no uncertainty is introduced at this stage. How-

ever, for more typical cases of interest to Earth scientists, with different types

of vegetation (e.g., trees and grass), significant roughness (e.g., debris, pebbles)

and complex topography (e.g., steep slopes, vertical surfaces such as channel340

banks), the detection and classification of the point cloud into ground and

non-ground elements can be difficult and may require significant manual val-

idation/correction. The first issue is to know if the ground has actually been

sampled by the sensor, or if vegetation or other objects were obscuring the

measurement of the ground. In that case, characterizing uncertainty in ground345

detection requires an estimate of vegetation height. A second issue is that many

algorithms for bare earth detection have been developed for 2.5D geometry typ-

ical of ALS surveys (e.g., Sithole and Vosselman, 2004; Tinkham et al., 2011)

and can fail when applied in steep landscapes, or cannot be applied on ver-

tical surfaces documented by TLS (e.g., cliffs, overhangs, and undercut river350

banks) where only 3D methods can be used (Brodu and Lague, 2012). Another

issue specific to change detection is the fact that rough surfaces will never be

sampled identically by a scanning instrument, which means that a change will

always be measured even if the surface was not modified. This change is however

not significant when compared to the surface roughness (e.g., Wheaton et al.,355

2010; Lague et al., 2013). A local measure of point cloud roughness (such as

the detrended standard deviation (Brasington et al., 2012)) is thus a first order

estimate of the uncertainty in the ground position in the context of change de-

tection. Point density also impacts the quality of bare earth detection as the

denser the point cloud, the more likely that one can correctly classify vegetation360

and ground.

HRT surface representation uncertainties are related to the transformation

of the unorganized point cloud into a continuous elevation surface. The most
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commonly used representation is a raster digital elevation model (DEM), but

TINs, 2.5D meshes, and fully 3D meshing algorithms are being used with in-365

creasing prevalence. For simple (smooth) 2D environments without vegetation

and that have been densely sampled, this operation introduces very little un-

certainty beyond a loss of horizontal accuracy. In complex scenes with vertical

features (channel banks, cliffs), rough surfaces (debris (Schurch et al., 2011),

gravel (Wheaton et al., 2010)) and wetted zones, DEM creation introduces sev-370

eral uncertainties. First, for TLS, the more complex and rough the surface, the

more likely it is that occlusion occurs such that the surface will be incompletely

sampled and inappropriately interpolated during the DEM creation. This is also

the case for ALS data for which wetted surfaces cannot be surveyed and typical

standard interpolation by triangulation approach can result in severe artifacts375

(e.g., Williams et al., 2014). Second, DEM creation increases horizontal uncer-

tainty (up to the pixel size) and vertical uncertainty for sharp features, which

results in a loss of accuracy for horizontal measures (e.g., channel width), hori-

zontal change detection (e.g., channel bank erosion), and vertical change detec-

tion in steep slopes (e.g., hillslope erosion). Surface representation uncertainty380

can be avoided by working directly on point clouds, especially in the context of

accurate change detection on complex geometries (Lague et al., 2013).

2.3.2. Accounting for uncertainty: simple to complex

The most basic approach to HRT uncertainty accounting for Earth science ap-

plications is to start simple and conservative and add complexity and sophisti-385

cation in the error analysis only as warranted by the question of interest. For

example, if HRT is to be used for geomorphic change detection of a very large

magnitude signal (e.g., massive lateral retreat of a cliff face), a simple and con-

servative error model may suffice because the signal will be much greater than

the estimated noise. If by contrast, the geomorphic change detection is of a very390

small magnitude (e.g., shallow sheets of deposition across a floodplain) a less

conservative and more sophisticated model of error may be warranted to see if

the signal can be detected and if/how the pattern varies spatially.
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A second principle of HRT uncertainty accounting and error estimation is

that a more sophisticated model of error cannot reduce the uncertainty, just395

more accurately quantify it (Wheaton et al., 2010). That is, it makes sense

to invest time in a more sophisticated model when there is reason to believe

that the data is fundamentally of high enough quality and accuracy to reveal

the HRT-derived signal of interest. This is not necessarily known a priori,

but general rules of thumb as highlighted in the best case error magnitudes of400

Table 2 can give some lower plausible bounds on what is possible depending on

the survey technique. However, a more accurate estimate of HRT errors may

simply highlight locations where the signal is indistinguishable from noise. This

in itself may be helpful for identifying primary sources of error worth attempting

to constrain or rectify in future HRT data acquisition or post processing, but for405

any existing HRT dataset or derivative it cannot convert poor quality data to

good quality data. For example, if the signal is obscured by noise, considering

the classification uncertainty or positional uncertainty in more detail may help

identify if fundamental problems exist in the raw data (e.g., GPS positioning

was inaccurate) or in what was surveyed (e.g., are there any ground shots in the410

TLS survey?) that cannot be rectified, or if they may be other problems that

more sophisticated post-processing may rectify (e.g., flight line misalignment or

incorrect vegetation versus ground classification).

Finally, it is important to remember that the estimation of HRT error needs

to be done independently for each survey. Many HRT analyses are based entirely415

off a single survey, at one point in time, with one acquisition/platform/method.

It goes without saying that the uncertainty in subsequent HRT analyses are

a function of the errors in that survey. However, some HRT models may be

a hybrid product of multiple types of HRT surveys, or a composite of HRT

surveys from multiple points in time (e.g., an ALS survey of hillslopes and420

valley bottom from one point in time with a more recent MBS survey of the

channel bathymetry). Similarly, any geomorphic change detection problem in-

volves HRT surveys from at least two points in time, and the subsequent un-

certainty will be based on independently estimated errors for each HRT survey
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that are propagated into each other. Most use simple error propagation methods425

(Taylor, 1997) which propagate independently estimated errors for each survey

(in case of change detection) using the square root of sum of errors in quadrature

(Lane et al., 2003; Brasington et al., 2003). For example, to estimate the total

propagated error in a DEM of Difference calculation (σDoD), the estimates of

errors in the new DEM (σDEMnew
) and the old DEM (σDEMold

) are combined430

using:

σDoD =
√

σ2
DEMold

+ σ2
DEMnew

(1)

Below we highlight five situations using HRT data that span from the sim-

plest error modeling to full error budgeting. The examples primarily apply to

the estimation of vertical errors in a surface model, but the principles are the

same whether describing horizontal or vertical errors for cells in a surface or435

individual points in a point cloud.

1. Situations where spatially uniform may be enough

A spatially uniform error estimate assumes that σ is not a function of lo-

cation and is constant in space. A spatially uniform error assessment may

be sufficient where the signal that one aims to obtain is large relative to440

the uncertainty. As an example, a study in which an ALS dataset is used

to differentiate target features on the order of meters, a spatially uniform

accounting of the error may be sufficient. In this example, visual exam-

ination of the data for offset between flight lines, analyzing independent

GCPs of the data, and analyzing the topographic and vegetation complex-445

ity may be sufficient to assume the reported error by the vendor (e.g., +/-

15 cm). Note that spatially uniform error estimates that are derived from

independent check point data that span the whole range of conditions sur-

veyed are strongly preferable to those just done in the simplest and easiest

conditions (e.g., check points on the airport runway). If independent check450

points were not surveyed, but the HRT survey overlaps a previous survey,

which used the same ground control network and coordinate system, us-
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ing fiducial (or reference) surfaces in areas that have not changed (e.g.,

bedrock outcrops) can be used as an alternative (Klapinski et al., 2014).

2. Situations where simple zonal spatially uniform may suffice455

There are a variety of situations where using a single spatially uniform

value to estimate vertical surface representation errors will be overly con-

servative in some areas and overly liberal in other areas (Wheaton et al.,

2008). A simple improvement can come from defining regions (i.e., poly-

gons) within which it is reasonable to assume σ is constant. For exam-460

ple, Lane and Chandler (2003) identified differences in σ on the basis of

whether the surface was wet or dry. Others have differentiated ALS DEM

errors on the basis of vegetated or unvegetated. Klapinski et al. (2014) dif-

ferentiated regions in hybrid HRT surveys on the basis of survey methods

and roughness (e.g., TS, MBS - rough, MBS - smooth, ALS).465

3. Situations where statistical error models make sense

Statistical error modeling of both surface representation uncertainty and

point clouds are possible when HRT point clouds are sufficiently dense to

calculate meaningful statistics. Such statistics can be calculated for all

the points that fall within a moving window centered on sample points470

(i.e., point-cloud based), or within a grid cell (i.e., surface representation

uncertainty). For elevation statistics to be meaningful, they should be

calculated only where 4 or more points exist in the sample window or cell.

Typical statistics include zMin, zMax, zMean, zRange and zStdDev. Such

statistics can be heavily skewed by local surface slope. Brasington et al.475

(2012) developed a method to fit a mean surface through each grid cell and

then recalculate detrended statistics. For example on a reasonably sloping

surface comprised of cobbles and/or boulders, the standard deviation of

elevation may be more a reflection of the relief and slope across that cell,

whereas the detrended standard deviation is a proxy for the surface rough-480

ness. In fact Brasington et al. (2012) found a tight correlation between

grain size, surface roughness, and standard deviation. For HRT survey
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methods like TLS, SfM, and MBS, individual point accuracy is generally

very high and surface roughness is often the dominant driver of surface

representation uncertainties and is a reasonable first cut itself as an er-485

ror model. Brasington et al. (2012) developed the ToPCAT (Topographic

Point Cloud Analysis Tool) to facilitate these calculations.

In very dense point clouds, it is not uncommon to have 100’s to 1000’s of

coincident points (points that have different z ’s but share the same x and

y coordinates). Hensleigh (2014) used the overlap in MBS boat passes490

(analogous to ALS flight lines) to calculate coincident points as a proxy

for measurement uncertainty.

Another approach to statistical estimation of errors is bootstrapping. Us-

ing this approach, an elevation surface is built with some random fraction

of the data (e.g., 90% of points) and the remaining points (e.g., 10%)495

are used to calculate residual errors between the interpolated surface and

measured points (Wheaton et al., 2008). Those residual error value points

can be interpolated to approximate an error surface. The process can be

repeated multiple times with different random samples to increase the

density of points in the interpolated error surface. Note that the result-500

ing distribution of residual errors is sometimes used to estimate spatially

uniform errors across an entire surface or within zones.

4. Situations where more complicated spatially variable error models are war-

ranted

Although the statistical error models described above are spatially vari-505

able, there may be other factors important in determining the surface

uncertainties than just simple elevation statistics. For example, angle of

incidence, footprint size, topographic complexity of the surface, sampling

density, positional point quality, and interpolation error may all trump sur-

face roughness as the primary driver of error in certain localities within an510

HRT survey. In these cases, spatially variable error models are warranted.

For these studies, one can expand upon the error analysis above. Assum-
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ing the point cloud data are available, assessing the spatial relationship

between slope, roughness, and vegetation height and cover may be nec-

essary. This can be completed by developing statistical relationships be-515

tween independent GCPs and these parameters, using a machine learning

approach such as RandomForest (Breiman, 2001). Milan et al. (2011) re-

viewed some of the approaches available for estimating spatially variable

errors. For example, fuzzy inference systems provide a convenient way of

combining multiple lines of evidence and the outputs can be calibrated to520

independent statistical models of error (Wheaton et al., 2010). All of the

above methods are supported in the Wheaton et al. (2010) Geomorphic

Change Detection Software (GCD: http:\gcd.joewheaton.org).

5. Situations where full error budgets are warranted

Sometimes, if none of the cases described above applies, full error bud-525

gets may be warranted and additional information will be needed. For

example, complete metadata, including SBET (Smoothed Best Estimate

of Trajectory) information of the data collection, will allow for analysis of

error in relation to flight parameters such as scan angle, and use of inten-

sity data to identify the relationship between error and ground/vegetation530

targets (Glennie, 2007; Streutker et al., 2011). Spatially distributed inde-

pendent GCPs should be collected and used to estimate the error in dif-

ferent slopes and vegetation types. Perhaps one of the most mature exam-

ples of full error budgeting comes from the multi-beam sonar community,

where TPE (total propagated error) is used in the CUBE (Combined Un-535

certainty Bathymetric Estimator) tools (Calder and Mayer, 2003) to esti-

mate uncertainties and minimize user subjectivity when data are cleaned

and filtered. The TPE estimates attempt to quantify all sources of er-

rors leading to point-based estimates of uncertainty as well as surface-

based estimates of uncertainties. The TPE estimates frequently result540

in overly conservative estimates of total error, but they are none-the-less

useful in reliably defining the spatial pattern of those errors, their rela-

20



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

tive magnitudes and revealing the key sources. The downside of full error

budgeting is that it requires a considerable amount of extra input data

that is often not available (with the notable exception of hydrography545

surveys in MBS). These methods are supported in most of the industry-

standard MBS manufacture post-processing software (e.g., HPACK and

HYSWEEP: http://www.hypack.com/).

In the context of change detection, simple tests should be performed on

various parts of one of the surveys to make sure that the uncertainty model550

is consistent with the change detection method used. For instance, com-

paring two different decimations of the same point cloud should not yield

a statistically detectable change given the uncertainty estimated locally

as a function of point density and point cloud roughness (Lague et al.,

2013). These methods are supported in the M3C2 algorithm within the555

CloudCompare software (http://www.danielgm.net/cc/)

2.4. Summary of common sources of error in HRT analysis and questions one

should ask

In Table 3 we list several common sources of error in HRT analysis and provide

recommendations for each. As seen from the previous sections, there are nu-560

merous sources of uncertainty that are commonly unknown to the user. To help

designing the acquisition of new HRT data or planning the analysis of existing

HRT data, we provide in Box 1 and Box 2 questions that any user should ask

prior to the beginning of the project. Information on how to address most of

these questions is provided in the sections that follow. Some of these questions565

are too specific to the project at hand to be properly addressed in this review.

We recommend users to collect the information needed to address each question

before starting the analysis of data.

2.5. Metadata and reproducibility of scientific results

New data acquisition should follow basic criteria for data storing and sharing.570

Specifications on the instrument used for acquisition, point density, horizontal
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and vertical accuracy must be stored with the data as well as information on how

the data were further processed (e.g., point cloud decimation and classification).

While some vendors prefer to keep this information proprietary and inaccessible,

it is fundamental to allow reproducibility of scientific results. Helpful reviews575

on this topic with specific rules to follow for storing and sharing data have been

recently provided by White et al. (2013) and Goodman et al. (2014) and include

(i) sharing data; (ii) provide metadata; (iii) provide an unprocessed form of the

data; (iv) use standard format; (v) perform basic quality control.

3. DO: Working effectively with HRT data, from raw point clouds to580

usable data and derivative products

In this section we discuss research questions of interest to the understanding of

how mass and energy are transferred through landscapes and how their analysis

has changed with the availability of HRT data. We also discuss important con-

siderations in data processing, including segmentation and filtering, and present585

general work-flows for feature detection and change detection, which are among

the most recurrent operations performed on HRT data. While we refrain from

listing available software for each operation (as software is in constant evo-

lution), we refer the reader to the OpenTopography Tool Registry where an

updated list of available tools is maintained as well as comments and feedback590

from the tool users (http://www.opentopography.org/).

3.1. Science with HRT data

Viewing HRT as simply a higher resolution version of its coarser predecessors

(e.g., 30 m SRTM data) greatly understates the value of these data for two

primary reasons. First, HRT is typically collected at a resolution that per-595

mits identification and measurement of the fine-scaled features that inform our

understanding of the rates and mechanisms of eco-hydro-geomorphological and

earthquake processes. The fact that fine-scaled features can be resolved, changes

our approach for analysis and calls for a suite of new techniques and tools for
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data analysis. Secondly, most HRT datasets contain valuable information be-600

yond the bare earth surface elevations (e.g., above ground vegetation density,

variability in surface reflectance). Such information can be immensely useful for

characterization of the landscape and modeling Earth surface processes.

3.1.1. HRT provides new approaches to answer fundamental questions

In the material that follows, we discuss some high level questions currently605

being pursued by the Earth Surface and Critical Zone communities and discuss

how HRT provides opportunities for entirely new approaches to answer these

questions.

1. How are mass and energy transported through landscapes?

This question encompasses a wide range of studies, from understanding610

stress and strain fields in tectonically active environments (Frankel and Dolan,

2007; Oskin et al., 2012), to using HRT-derived canopy models to estimate

radiative transfer (Lefsky et al., 2002; Vierling et al., 2008; Morsdorf et al.,

2009), to constraining sediment, carbon and nutrient budgets and predict-

ing fluxes at the reach or watershed scale (Paola et al., 2006; Belmont et al.,615

2011; Hudak et al., 2012; Tarolli et al., 2012). Regardless of the spe-

cific application, HRT substantially enhances our capacity to answer this

question by offering precise quantification of critical features distributed

throughout a large spatial domain (e.g., geometry and location of fault

scarps, tree canopy, channel heads, river banks, detention basins, see620

Pike et al. (2009)). Directing budgeting of mass redistribution provides

constraints on the magnitude and spatial patterns of geomorphic and

ecologic processes. Further, HRT provides a much more detailed and

reliable boundary condition for eco-hydro-morphodynamic models, es-

pecially insofar as it allows direct coupling with the built environment625

(Priestnall et al., 2000) and explicit representation of surface roughness

(typically dominated by vegetation) (McKean and Roering, 2004; Glenn et al.,

2006; Cavalli et al., 2008; McKean et al., 2014), which, for example, has
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allowed for vast improvement in flood inundation prediction (NRC, 2007).

Since HRT allows users to derive higher dimensional information about630

the surface (e.g., surface cover, roughness), it provides an opportunity to

directly link hydraulics, geomorphology, and ecology. In this way, HRT

improves the accuracy, spatial extent and response time for hazard assess-

ment and risk mitigation, as well as restoration and conservation planning

(Farrell et al., 2013). In cases where it is not feasible or desirable to in-635

clude all of the detailed information in a model, HRT provides a basis for

upscaling localized measurements and generating sub-grid scale parame-

terizations (Casas et al., 2010; Helbig and Lowe, 2012; Ganti et al., 2012).

For many such applications, it is useful to utilize 3D point cloud data to

retain information about the above-ground features.640

2. What are the patterns on the Earth’s surface that can inform our under-

standing of ecologic, hydrologic, and geomorphic processes and coupling

thereof?

Understanding how topography and biota are organized at the micro-,

meso-, and macro-scales has been a long standing question in Earth sur-645

face science (e.g., Gilbert and Dutton, 1880; Dietrich and Perron, 2006;

NRC, 2010). Quantifying the organization of landscape features brings

us one step closer to understanding the mechanisms of landscape change

(Chase, 1992; Roering, 2008; Hilley and Arrowsmith, 2008; Perron et al.,

2009; Roering et al., 2010). Certain features can only be represented and650

measured accurately/precisely at HRT scales. Therefore, we have only

recently acquired the capability to answer this question over large spa-

tial scales. For example, HRT provides a more detailed representation

of micro-climates and micro-habitats and a bridge between atmospheric

boundary layer and highly localized features/characteristics (e.g., temper-655

ature, soil moisture, snow depth) (Molotch et al., 2004; Galewsky et al.,

2008; Galewsky, 2009; Deems et al., 2013). HRT data also allows for cou-

pled 3D mapping and modeling of vegetation, hydrology, and topography
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(Ivanov et al., 2008) and in some cases captures the influence/signature of

bioturbation (e.g., plants, gophers) (Yoo et al., 2011; Reed and Amundson,660

2012; Hugenholtz et al., 2013). Lastly, HRT allows for direct identifica-

tion and quantification of human imprints on the landscape, permitting

distinction between the effects of natural and anthropogenic processes

(Passalacqua et al., 2012).

3. How do processes in one location influence processes or rates in another665

part of the landscape?

One of the most intriguing opportunities presented by HRT data is the

ability to predict non-localized effects of processes (Anderson et al., 2012).

For example, initiation of a landslide near a ridge crest is likely to cause

deposition of a slug of sediment in the valley bottom. Bank erosion at one670

or many individual locations throughout a watershed is likely to influence

turbidity and sediment flux at the mouth of the watershed. Such pre-

dictions can only be reliable if the critical features can be identified and

the transport mechanisms between the points of interest are known. HRT

provides a new mechanism for satisfying the inputs needed for detailed675

models of mass and energy transfer and takes us a step closer to robust

spatially-distributed modeling over large domains.

Improved algorithms to quantify landscape topology and conduct ensem-

ble feature mensuration enable analysis of spatial relationships, from sim-

ple metrics such as distance, height, and volume to more complex evalu-680

ations of feature proximity and transport pathways (Huang et al., 2011;

May et al., 2013; Tomer et al., 2013). Such analyses require the ability to

recognize discrete objects whose scale may range between slightly larger

than the data resolution and something smaller than the extent of the

entire dataset.685
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3.1.2. Fully utilizing HRT requires new approaches, tools, and techniques

The fact that in HRT we can resolve many of the fine-scale features that

are critical for eco-hydro-geomorphic processes changes our analytical ap-

proach and demands a new set of tools and techniques. HRT contains

an immense amount of information, much of which is not easily extracted690

with conventional tools. The analysis challenges shift from relatively sim-

ple operations performed either on individual pixels or the entire dataset,

to the realm of image processing, where the richness of the image can be

deconstructed into more meaningful components and manipulated accord-

ingly. For example, coarse topographic datasets that have been prevalent695

for the past few decades were limited to evaluating macro-scale features,

such as basin hypsometry, slope and relief, using pixel-based approaches.

Watershed and channel network delineation could only be automated using

algorithms that mapped pixel-to-pixel paths of steepest descent and chan-

nel heads would be somewhat arbitrarily located at some average/uniform700

value of upstream contributing area. Small order channels were not iden-

tifiable and the boundaries of large channels were poorly resolved. The

presence of fine-scaled features in the HRT landscape does not entirely

circumvent the need for such approaches, but does open the door to en-

tirely new approaches that are able to take advantage of the wealth of705

information provided by HRT.

For example, preservation of sharp landscape features, those which are

characterized as abrupt changes in topography (e.g., streambanks or fresh

fault scarps), requires the use of anisotropic filters (such as nonlinear fil-

ters) for cleaning and analysis of HRT. Conventional topographic filters710

(e.g., Gaussian) have a tendency to diffuse or altogether eliminate such

features (Passalacqua et al., 2010b). Another important shift in tools and

techniques between conventional topography data and HRT is the use of

object-based image (Bian, 2007; Blaschke, 2010). Object-based techniques

have been used extensively since the 1980s and 1990s in the industrial and715
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medical fields, but have only recently emerged as useful tools for Earth sur-

face science, as the resolution of satellite imagery and topographic datasets

has come to exceed the scale of many of the objects, or features, of inter-

est. While it is not the goal of this paper to comprehensively review all of

these emerging approaches, it is important to acknowledge their growing720

use.

Some common object based techniques include segmentation, edge-detection,

and feature extraction (Alharthy and Bethel, 2002; Suárez et al., 2005;

Brennan and Webster, 2006). Segmentation involves identification of dis-

tinct objects by one or more homogeneous criteria in one or more dimen-725

sions of feature space. Clearly, objects exist across a variety of scales in

HRT, and so segmentation often requires a multi-scale analysis (Hay et al.,

2001; Burnett and Blaschke, 2003; Hay et al., 2003; Schmidt and Andrew,

2005; Brodu and Lague, 2012). Other techniques, such as artificial neu-

ral networks (Nguyen et al., 2005; Priestnall et al., 2000), fuzzy set meth-730

ods (Schmidt and Hewitt, 2004; Cao et al., 2011; Hofmann et al., 2011;

Hamedianfar et al., 2014), genetic algorithms (Li et al., 2013; Garcia-Gutierrez et al.,

2014), machine learning (Zhao et al., 2008, 2011; Gleason and Im, 2012b,a),

and support vector machines (Mountrakis et al., 2011; Zhao et al., 2011;

Brodu and Lague, 2012) also show great promise to represent discrete fea-735

tures within complex and heterogeneous environments, but applications

of such approaches for HRT analysis have been relatively few. Such ap-

proaches can greatly expand our capacity to extract useful information

from HRT and we thus expect them to become more prevalent in the near

future.740

3.2. Getting the data right: From raw to derivative products

Currently, the vast majority of HRT users begin their analysis work-flows with

a gridded product (i.e., DEM) that has previously been subjected to extensive

cleaning and filtering and perhaps manual editing (Fisher, 1997). In some cases

this is an appropriate starting point for the task at hand, although users should745
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be aware of the operations previously performed on the data and associated

potential for bias/error, as discussed above. In other cases users may start from

this point because upstream versions of the data (raw, classified, or filtered

point cloud) are not made available from the data provider, a situation that is

becoming less common as vendors and users recognize the value of such data.750

In yet other cases, many users simply start with the gridded dataset because

the common software packages are ill-equipped to deal with point cloud data, or

are perceived to require an unwarranted investment of time and effort to utilize.

However, tools for cleaning and analyzing point clouds have been improved con-

siderably and, for a variety of applications, the general HRT analysis community755

has much to gain by beginning their analysis workflow further upstream.

In the material that follows, we cover the operations that are commonly

performed from raw data to the creation of derivative products (such as usable

point cloud and DEM). Users should require specifics on these operations from

the data providers. If new HRT are collected, this information should be com-760

piled and released with the data to facilitate data reuse and reproducibility of

scientific results and allow for problems to be rectified in the future as tools for

data cleaning and interpolation are improved.

3.2.1. Georeferencing

During the georeferencing operation raw data are converted from a local coor-765

dinate frame to a geodetic coordinate frame using direct and indirect methods.

Direct methods imply that geodetic coordinates have been collected and

assigned to positions on the ground at the time of data acquisition. A terres-

trial example is ground-based rtkGPS surveying where topographic points are

assigned x,y,z coordinates in real time. Accuracy of such surveys is greatly en-770

hanced when users post-process the data to obtain differentially corrected static

GPS measurements. This can be achieved using, for example, the Online Po-

sitioning User Service (OPUS) to tie GPS positions collected using an antenna

and local base station to the U.S. National Spatial Reference System from nearby

Continuously Operating Reference Stations (http://www.ngs.noaa.gov/OPUS/).775
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Similar post-processing tools are freely available from a variety of other sources

on the web.

Aerial and mobile direct methods are based on the exterior orientation of

the sensor relative to the Earth, which can be obtained using GPS and an

Internal Navigation System (INS) (Legat, 2006). Geodetic coordinates of po-780

sitions in the scene are extrapolated from sensor x -y positions and altitudes.

This method is most common for ALS and mobile mapping systems as well as

stereo-photogrammetry flown by a manned-aircraft.

Sensors, such as cameras or lasers, fixed to UAVs typically do not have on-

board navigation systems sufficient for accurate geodetic positioning. There-785

fore, indirect georeferencing methods that rely on GCPs are common. GCPs

are on-the-ground features (natural or artificial) with known coordinates that

are identifiable in the collected point cloud or imagery. Typically, the positions

of GCPs are surveyed close to the time of data acquisition using GPS. Georef-

erencing occurs after data acquisition and can be performed easily in common790

spatial data programs. Both error and distortion need to be considered when

applying spline and polynomial georeferencing transformations.

The georeferencing operation for SfM is discussed in the next section as

part of the work-flow from raw data to PC generation. For a discussion on the

uncertainty associated with georeferencing see Section 2.3.1. We refer the reader795

to Shan and Toth (2009), Vosselmann and Maas (2010), and Renslow (2012) for

further reading on georeferencing.

3.2.2. Processing raw data to create a usable point cloud

In some cases it may be required to combine multiple point clouds into a single

point cloud, for example in HRT surveys with point clouds obtained from mul-800

tiple positions on a landscape. This requires bringing multiple point clouds into

the same coordinate system, which may be global or local. These point clouds

may be from the same HRT platform or from some combination of ALS acqui-

sition, multiple TLS scans, sonar and/or cameras. Merging these point clouds

into a unified dataset is achieved through a registration operation performed by805
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either relying on points common to multiple clouds (minimum 3 points shared)

or setting up targets during the acquisition that can then be used as reference

points during the registration operation (some targets can reoccupy exactly the

same position during subsequent surveys for high accuracy local georeferencing

(Lague et al., 2013)). In natural scenes the latter approach is preferred as it is810

commonly difficult to identify common points in multiple clouds and surfaces

are generally rough which reduces the accuracy of cloud matching techniques

(e.g., Schurch et al., 2011; Lague et al., 2013) (unlike engineering applications

where features such as structure corners can be used). A lack of common targets

can significantly diminish the quality of the data acquired.815

In the case of SfM, camera pose and scene geometry are reconstructed simul-

taneously using the automatic identification of recurrent features in multiple im-

ages that have been taken from different angles (Snavely, 2008; Westoby et al.,

2012). Although only 3 images per recurrent feature are needed, it is usually

recommended to take as many photographs as possible. The point cloud is820

created in a relative ‘image-space’ coordinate system. GCPs or physical tar-

gets are commonly employed to align the ‘image-space’ to an ‘object-space’

coordinate system. The georefencing operation consists of a Helmert Trans-

formation (7 parameters: 1 scale parameter, 3 translation parameters, and 3

rotation parameters) (Turner et al., 2012). Example applications can be found825

in Westoby et al. (2012), James and Robson (2012), Javernick et al. (2014), and

Johnson et al. (2014).

3.2.3. Point cloud processing, filtering, and classification

Once the point cloud has been created, several processing operations may be

needed before analysis of the point cloud or creation of raster products can be830

performed. These operations are performed to reduce the size of the point cloud,

distinguish ground points from off-ground points, and classify the point cloud

into homogeneous portions.

No matter what the data source is, the generated point cloud can be ex-

tremely dense. In these cases the number of points often needs to be reduced835
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in order to analyze the point cloud. This operation is called decimation. Proce-

dures for decimation include point removal, refinement, and cloud segmentation

approaches (Wasklewicz et al., 2013).

Filtering and classification are needed to distinguish ground and off-ground

points and further classify the off-ground points. There are 4 main categories840

of filtering approaches (Sithole and Vosselman, 2004; Pfeifer and Mandlburger,

2009) and they are different in the assumption they make about the structure of

the ground points: (i) morphological filters (often slope-based), (ii) progressive

densification filters starting from seeds (e.g., lowest points), (iii) surface-based

filters (progressive removal of points that do not fit the surface model), (iv) seg-845

mentation and clustering (operates within homogeneous segments rather than

individual points). Many of these filters operate directly on the point cloud,

but others require gridding to take full advantage of image processing tech-

niques (e.g., segmentation). Sithole and Vosselman (2004) report results for a

filter comparison on 12 different landscapes and concluded that while all filters850

are successful in landscapes with low complexity level, the presence of urban

structures or steepness influenced the performance of the filters resulting in

surface-based filters (filters that rely on a parameterization of the local surface

and an above buffer within which ground points are expected to be found) be-

ing more successful than others. As noted by Pfeifer and Mandlburger (2009),855

when this analysis was performed segmentation strategies had not been fully

developed yet, while they have been found particularly successful in landscapes

modified by humans. Further work by Meng et al. (2010) identified three types

of terrain for which filtering algorithms do not work optimally: (i) rough terrains

or landscapes with discontinuous slopes, (ii) areas with dense vegetation where860

the laser cannot penetrate sufficiently, and (iii) areas with short vegetation.

The classification of the point cloud, including vegetation classification, can

be one of the most critical operations, particularly in natural and complex land-

scapes due to the multi-scale nature of the features present. The method pro-

posed by Brodu and Lague (2012) exploits this aspect by probing the surface865

with spheres of varying diameter, achieving accuracy > 98% in distinguishing,
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for example, vegetation from ground points and classifying a mountain stream

in several classes (vegetation, rock, gravel, water surface). Other vegetation

classification approaches have been proposed by Streutker and Glenn (2006),

specifically for arid landscapes, and by Evans and Hudak (2007) (the multi-870

scale curvature algorithm MCC designed for high biomass areas). The two lat-

ter methods were compared by Tinkham et al. (2011) in a semi-arid landscape.

The authors found both methods accurate and suggested specific applications

for each.

Information on which decimation, filtering, and classification operations were875

performed on the point cloud should always be required from the data provider

and reported when distributing the collected data.

The operations needed to create a raster and derived raster products are

covered in the next section. Before presenting this material, we note that many

HRT analyses can (and should) be performed directly on the point cloud. Grid-880

ded data are often perceived as the more ‘convenient’ or easy option to users.

Point clouds are more difficult to analyze and are seen as less intuitive than grid-

ded data. These suppositions are further supported by the limitations of com-

monly used geospatial software, such as ArcGIS, which are so far limited when

it comes to point cloud analysis tools. There are, however, many advantages in885

working directly with the point cloud and it should not be discarded too early.

The further into a work-flow the point cloud is carried leads to preservation

of the 3D point uncertainty, greater control on 2D products and multidimen-

sional analysis, and a congruent representation of field data collection. Point

clouds offer opportunities for the exploration and extraction of more detailed890

information (e.g., vegetation classification (Brodu and Lague, 2012)) and higher

level modeling (segmentation, textures, machine learning), while also achieving

accurate estimates of geometric properties of the 3D environment, particularly

relevant to the estimation of 3D change and 3D oriented deformation measure-

ments (e.g., Teza et al., 2007; Nissen et al., 2012; Lague et al., 2013). Gridding895

data involves interpolation which reduces the information originally contained
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in the point cloud.

3.2.4. Raster generation and derived raster products

Interpolation algorithms are applied to estimate unknown elevation from eleva-

tion data at known location. This operation may be needed to obtain a gridded900

surface or interpolate over regions that present shadows or data voids to limit

their effect on the final gridded surface. It may also be necessary to change the

resolution of the raster for the application at hand.

Commonly used interpolation approaches can be distinguished into three

categories (Wasklewicz et al., 2013): (i) local neighborhood (e.g., nearest neigh-905

bors, inverse distance, creation of Triangular Irregular Network (TIN)), (ii)

geostatistical methods (rely on the spatial correlation structure; kriging), and

(iii) spline methods (e.g., thin plate spline). Each method has its strengths

and weaknesses and an appropriate range of applicability (Chaplot et al., 2006;

Erdogan, 2009; Heritage and Large, 2009), although differences among interpo-910

lation approaches are reduced with increasing point density. Interpolation and

estimation errors are associated to each approach (Wheaton et al., 2010).

Raster users need to carefully consider the sources of uncertainty mentioned

in Section 2.3 as they affect DEMs (Fisher and Tate, 2006) and derived topo-

graphic attributes (Sofia et al., 2013).915

3.2.5. Filtering rasters to remove small scale variability and enhance features

of interest

No matter what the specific analysis entails, operations involving derivatives

should be performed after small scale variability (e.g., due to local terrain rough-

ness or to vegetation removal operations) has been removed and features of920

interest enhanced (Passalacqua et al., 2010a,b). Several filters have been pro-

posed in the literature, most of which have been developed within the image

processing community. The most common options include Gaussian filtering,

nonlinear Perona-Malik filtering, and Wiener filtering.

Gaussian filtering is most often used to smooth noise from data with the925
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aid of a spatially uniform smoothing operation. The scale of the features re-

moved depends on the size of the kernel employed for smoothing. The wider

the standard deviation of the kernel, the coarser the filtered landscape will be.

Considering as an example a high resolution DEM h0(x, y) : R2 → R, the fil-

tered landscape h(x, y, t) is obtained through a convolution operation with a930

Gaussian filter G(x, y; t) of standard deviation t:

h(x, y, t) = h0(x, y) ∗G(x, y; t) (2)

where the Gaussian kernel of standard deviation t is defined as:

Gx,y,t(u, v) =
1

2πt
exp

[

−
(u− x)2 + (v − y)2

2t

]

(3)

The employment of Gaussian filtering is at the core of the channel network

extraction method proposed by Lashermes et al. (2007) which uses the convolu-

tion with the first and second derivative of the Gaussian to calculate landscape935

slope and curvature on regularized gridded data.

A feature of Gaussian filtering that may be problematic is the lack of fea-

ture localization; the filter is spatially uniform resulting in landscapes uniformly

diffused in all directions. This can be problematic in landscapes containing

sharp features (e.g., fault scarps, stream banks, roads, etc.) as illustrated940

by Passalacqua et al. (2010a) (see Fig. 3) and Passalacqua et al. (2010b), who

proposed the use of a nonlinear (anisotropic) filter (Perona and Malik, 1990;

Catté et al., 1992) able to achieve preferential smoothing of the landscape:

∂th(x, y, t) = ∇ · [p(|∇h|)∇h] (4)

where the edge-stopping function p(·) allows preferential smoothing of small

scale variability and enhancement of features of interest. In the application of945

Passalacqua et al. (2010a), the edge-stopping function has the form:

p(|∇h|) =
1

1 + (|∇h|/λ)2
(5)
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Locations with gradients smaller than λ are smoothed out, while locations with

gradients above λ are enhanced. The parameter λ is computed as the 90th

quantile of the probability density function (pdf) of the elevation gradients

(Passalacqua et al., 2010a). The main advantage of the Perona-Malik filter is950

the capability of enhancing features of interest, while preserving feature local-

ization and removing small scale variability.

The Wiener filter (Wiener, 1949) distinguishes small scale noise from other

image features based on the analysis of a radially averaged power spectrum. Its

use was recently proposed by Pelletier (2013) to smooth small scale variability955

in elevation data. The filter operates in the frequency domain through a transfer

function defined as:

Φ(ν) =
|H(ν)|2

|H(ν)|2 + |N(ν)|2
(6)

where |H(ν)|2 represents the spectrum of the signal and |N(ν)|2 the spec-

trum of noise, determined by fitting the radially averaged power spectrum

of the landscape for lower and higher frequencies. At low frequencies, where960

|H(ν)|2 > |N(ν)|2, the transfer function Φ(ν) is approximately equal to 1

and no modification is made to the data, while at high frequencies, where

|H(ν)|2 << |N(ν)|2, the amplitude of the noise is reduced in a measure propor-

tional to noise to signal amplitude ratio. The main advantage of the Wiener filter

is that if the spectrum is fitted correctly, the appropriate smoothing threshold965

emerges from the data itself.

3.3. HRT analysis work-flows

We focus on two operations commonly performed on HRT data: feature extrac-

tion (the identification of geomorphic features from a data set acquired at a

certain time), and change detection (the quantification of differences between970

data sets acquired at different times). These are two of the most common and

mature analyses attempted with HRT and are presented as examples for similar

work-flows that might be developed to standardize other HRT analysis practices.
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3.3.1. Feature extraction work-flow

HRT offers a valuable view of the near surface environment. However, the dense975

3D point clouds simply sample the entire exposed surface, while all science and

engineering applications require the extraction or identification of specific fea-

tures represented by a sub-set of points within these data. The feature iden-

tification work-flow (Fig. 4) begins with the point cloud and the question of

interest (e.g., identification of channel elements or canopy characteristics, or980

feature changes over multiple measurement epochs). A usual first step is to se-

lect or segment points in the relevant time and/or space window. Points can be

selected based on some attribution from the initial measurement process (e.g.,

return number, intensity) or from post-processing (e.g., classification). This op-

eration may produce a continuous representation of a surface or field, irregularly985

sampled or gridded (e.g., classified point cloud, DTM, DSM, canopy character-

istics, relief, feature probability), or vectorize and delineate discrete objects

(e.g., channel elements including heads, geomorphic units, boulders, vegetation,

structures). Further iterative operations may be needed on fields or objects if

the extraction method used is not fully automatic. Other data such as addi-990

tional remote sensing (e.g., Infrared imagery) or field observations (e.g., from

sensors or mapping-derived) can be integrated to refine the identified features.

The ensemble of identified features forms a near surface model which is the ba-

sis for an empirical or biogeochemical/physics-based interpretation. The near

surface model may be further generalized, extrapolated, or idealized and rep-995

resented by visualizations or derived products (e.g., statistical characterization

of the extracted features and relevant metrics). Feature changes over time can

be identified by comparing near surface models (or relevant metrics) computed

over multiple epochs of interest.

A variety of features can be extracted from HRT, including channel net-1000

works and channel heads (Lashermes et al., 2007; Passalacqua et al., 2010a,b;

Sofia et al., 2011; Pelletier, 2013), channel morphology (Passalacqua et al., 2012;

Fisher et al., 2013), fluvial terraces (Stout and Belmont, 2014), landslides (Booth et al.,
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2009; Roering et al., 2009; Tarolli et al., 2012), river bed and floodplain mor-

phology (Marcus and Fonstad, 2010; Belmont, 2011), and vegetation character-1005

istics (Lefsky et al., 2002; Brandtberg, 2007; Breidenbach et al., 2010; Gleason and Im,

2012b,a).

3.3.2. Change detection work-flow

The change detection work-flow starts with a distinction of the type of geometric

change of interest (Fig. 5). As discussed above, the two datasets must be simi-1010

larly georeferenced and uncertainty in each dataset must be quantified to develop

an error model that would be used to report the most probable real change. In

the case of ground movements displacing topographic features (e.g., landslid-

ing, earthquakes), change can be captured as a 2D-3D displacement field, while

when interested in geomorphic processes changing topographic features (e.g.,1015

bank erosion, patterns of erosion and deposition), change can be quantified in

terms of distance and volume. In all cases, the analysis starts with point cloud

data acquired at different epochs that capture the change of interest (e.g., before

and after an event). After removal of vegetation and other erroneous points,

a 2D-3D displacement field can be obtained directly with a 3D piecewise Iter-1020

ative Closest Point (ICP) operation (Besl and McKay, 1992; Teza et al., 2007;

Nissen et al., 2012), point cloud cross-correlation (Borsa and Minster, 2012), or

with 2D correlation techniques (PIV) applied to a 2.5D DTM (Aryal et al., 2012;

Mukoyama, 2012). Distance and volume can be quantified directly with a 3D

cloud to cloud distance calculation (Lague et al., 2013), or with cloud to mesh1025

comparisons (Rosser et al., 2005; Day et al., 2013a), or vertical subtraction of

gridded data (Lane and Chandler, 2003; Wheaton et al., 2010; Schurch et al.,

2011; Wheaton et al., 2013; Pelletier and Orem, 2014).

For change detection completed on regularized (gridded) data, one additional

requirement is to ensure that the two grids have the same resolution and are1030

concurrent and orthogonal. This means that each pixel being differenced shares

the same center point. Operations based on meshed or gridded data are simple

to run, but can result in a reduction of accuracy and resolution that should be
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evaluated with respect to the amplitude and spatial characteristics of the to-

pographic signal to be detected (see Section 2.3). In general, for high accuracy1035

application in complex environments, point cloud based methods are more suit-

able. However, these methods are still in their infancy and key building blocks

are still missing (e.g., simple volume computation directly on 3D point clouds).

As HRT is increasingly collected, standards and best practices have im-

proved. Legacy data, or the dataset collected first in time, have likely been col-1040

lected under different standards and using different practices. These data may

contain errors and subsequently produce systematic errors, especially in a differ-

encing analysis. Glennie et al. (2014) describe legacy data issues and a near-field

earthquake displacement example for which they used original GPS/IMU and

laser measurement data to recalibrate. When those data are not available, oth-1045

ers have tried to match some kind of surface or infrastructure in overlapping

areas to calculate the alignment (Bretar et al., 2004; Alka, 2010). Another tech-

nique used local slope and local elevation difference between adjacent points in

the overlap area to more accurately re-align flightlines (Streutker et al., 2011).

Others have corrected the final product (a differential DEM in both cases) using1050

a fast Fourier transform filter (Goodwell, 2014).

4. NEXT: Learning from the present and directions of further devel-

opment

This is an important time for HRT research; technology supporting HRT ac-

quisition has seen major developments in the last two decades resulting in the1055

current availability of significant amounts of data. Numerous papers based on

the analysis of HRT data have been published up to present, corresponding

to an increased understanding of mass and energy transfer through landscapes

and of Earth-surface processes in general. From the identification of landscape

characteristic scales, to earthquake assessment, to landslide dynamics, the avail-1060

ability of HRT has advanced scientific understanding of Earth-surface processes

in terms of both static and dynamic processes. Notably, these scientific ad-
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vancements have been accompanied by the development and release of broadly

applicable open source tools. Sharing open source software requires the com-

mitment of the scientist to overcome several challenges (Easterbrook, 2014) to1065

benefit the community at large.

Too often, however, data analysis tools are not integrated in the same plat-

forms used for visualization, favoring a net separation between a large number

of HRT viewers, and a much smaller number of HRT analysts that actively

manipulate and query the data in more sophisticated and quantitative ways1070

and develop new open source analysis tools. Development of a framework that

supports visualization while facilitating higher level filtering, segmentation, and

analysis is needed. Given the immense amount of multi-scale information con-

tained in HRT and the challenges involved in manipulating such large datasets,

the HRT community has much to gain by implementing practices and standard-1075

ized work-flows that have been developed by the image processing and Big Data

analytics communities, among others.

HRT data represent the common ground among a variety of disciplines; the

atmospheric, surface, biological, anthropogenic, and subsurface processes com-

munities all rely on these data (Paola et al., 2006; Reinhardt et al., 2010). We1080

can thus think of HRT as an interdisciplinary means for achieving a deeper un-

derstanding of Earth-surface processes and as a platform to facilitate collabora-

tion across disciplines (Bond et al., 2007). Training of students, researchers, and

practitioners has to continue and further develop along this direction to make

sure computational, technological, scientific, and engineering aspects of HRT1085

analysis are taught across disciplines. Research centers such as the NSF-funded

OpenTopography, National Center for Earth-Surface Dynamics (NCED), and

the network of Water, Sustainability and Climate (WSC) and Critical Zone Ob-

servatories (CZO) have facilitated an interdisciplinary approach to research and

education, including the collection and distribution of HRT data, the develop-1090

ment of open source software, and the organization of training workshops and

summer schools for junior scientists.

As we witness the development of newer technologies such as mobile li-
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dar, photon counting, hyperspectral lidar, and bathymetric lidar (Glennie et al.,

2013b), we note that challenges posed by current technologies still have to be1095

overcome. For example, better acquisition of multi-temporal data is needed for

accurate differential topography analysis. The El Mayor Cucapah 2010 earth-

quake is an important event for which pre- and post-event lidar data are available

(Oskin et al., 2012) and pre-event data required re-processing to improve the es-

timation of coseismic surface displacement (Glennie et al., 2014). Nissen et al.1100

(2014) applied topographic differencing on Japanese HRT to characterize two

M6-7 earthquakes in Japan to produce new understanding of near-field coseismic

deformation. However, the coverage was limited to just a few km2.

Community standards are still not identified creating considerable problems

for data and tools sharing. While existing groups and resources (e.g., NSF1105

SI2, NSF ISEES, OpenTopography, GitHUB, Figshare, HydroShare, CSDMS)

have worked significantly in this direction, the effort has to be embraced by

the community at large and a broader swath of researchers must be trained to

use and further develop such tools. We need to achieve better understanding

of the multi-scale dynamics at finer spatial and temporal scales with broader1110

extent. At the global scale we still rely on coarser resolution data such as SRTM;

increased access to HRT data globally should be promoted.

As the availability of full waveform hyperspectral, bathymetric, photon count-

ing data becomes common (Glennie et al., 2013b), tools are needed to take

advantage of these data sets and integrate HRT data collected on multiple plat-1115

forms. The point cloud community has a strong basis to build from (e.g., Cloud-

Compare http://www.danielgm.net/cc/ and http://pointclouds.org/), but more

documentation and further development are needed.

HRT can also be fundamental for tool and model testing. The development

of sets of examples and applications would be particularly useful to show the1120

performance of existing and new tools on the same landscape. As such, we see

the need to identify a set of benchmarking examples to be used for testing models

and tools. HRT represent the perfect source for such benchmarking examples,

but specific landscapes need to be identified for each modeling task (e.g., sedi-
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ment transport at hillslope scale versus landslide modeling) and collected on the1125

same platform. The Oregon Coast Range, the Eel River Basin, and Tennessee

Valley, for example, are excellent validation cases for hillslope transport model-

ing (e.g., Roering et al., 1999; Foufoula-Georgiou et al., 2010) and for channel

initiation detection (e.g., Montgomery and Dietrich, 1989; Passalacqua et al.,

2010a).1130

We need to work together as a community towards implementing software

and making computational resources available to analyze full resolution datasets

for entire watersheds. Hubs of HRT related information exist (OpenTopogra-

phy, NCALM, UNAVCO, CSDMS, CUAHSI, CZO, NCED, NCEAS, NEON),

but better coordination and communication is needed to integrate expertise1135

and content (e.g., centralized tutorials and training). The HRT community also

needs to be more proactive in developing and borrowing techniques that main-

tain the integrity of the data and function on multiple scales, as discussed in

Section 3.1.2.

Finally, HRT should be integrated into education at all levels: from K-12, to1140

undergraduate, graduate, and professionals. We note that NCALM facilitates

HRT-based graduate research through their Seed Program. More initiatives in

this direction are needed at every level. The availability of place-based virtual

exploration resources (e.g., http://www.earthscope.org/ information/publications/newsletters/2012/summer/place-

based-education) would be particularly useful. The availability of HRT data1145

local to where students are would substantially enhance the integration of HRT

and field-based educational resources.

5. Conclusions: Guiding principles for HRT analysis

As we look forward to the next decade of HRT technology development and

HRT-based scientific discoveries, we offer the following guiding principles:1150

1. Promote an environment conducive to data intensive exploration. Existing

examples are Hubble Space Telescope, EarthScope, and NEON. This will

favor unanticipated and broader uses of the data;

41



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2. Distribute open and well documented data. This is very important for

data reuse, particularly relevant to enable unanticipated applications;1155

3. Develop and distribute open source software coupled with benchmark test

cases to facilitate reproducible science by the community at large;

4. Promote better integration of visualization and higher level processing and

analysis tools;

5. Support community coordination and optimal overlap among facilities,1160

groups, and funding agencies;

6. Compile data to be most useful (scale, sampling) for conceptual and phys-

ical model and analytical tool testing and enable widespread data integra-

tion (e.g., gage data, material properties, historic, subsurface);

7. Incorporate HRT data and related technical skills (programming, image1165

processing, etc.) in education at all levels (K-12, public, higher education).
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Source of error Further reading and existing solu-

tions

Lack of alignment among coordi-

nate systems, datums, geoids

Require relevant metadata

Unawareness of factors influencing

computational efficiency: unneces-

sary data precision and density, lo-

cal versus global calculations, land-

scape characteristics

Estimate computational cost on a

small data set and proceed with

tiling, parallel computing, or dec-

imation if needed. Work on local

coordinates rather than global to

maintain accuracy.

Inappropriate data resampling

strategy

Consider strengths and weak-

nesses of each intepolation

method including associated

errors (Wheaton et al., 2010).

Coregistration error Legacy ALS data and flight lines

(Glennie et al., 2014). Visual

checks: flight lines, offset among

datasets (change detection).

Filtering impacts on feature sharp-

ness (isotropic filters and loss of fea-

ture localization)

Nonlinear and Wiener filtering,

breaklines

Classification method Require information on classifica-

tion method used. Visual checks:

vegetation above or below ground,

create TINs to visualize data gaps

Data cleaning and manual alter-

ation of data

Employ classification methods and

limit manual alteration. If manual

intervention is performed, maintain

data versions and collect metadata

Mismatched resolution among anal-

ysis, tools, data

Know scale that matters for anal-

ysis at hand and choose data and

tools consistent with that scale re-

quirement

Table 3: Common sources of error in HRT data analysis and references for further reading

and existing solutions. See also text for additional discussion on each point.
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Figure 1: Diagram of typical spatial resolution versus practical extent of analysis reach for

Airborne Laser Scanning (ALS), green ALS (gALS), Mobile Laser Scanning (MLS), Total

Station (TS), real time kinematic GPS (rtkGPS), single-beam SONAR (SBS), multibeam

SONAR (MBS), stationary and mobile photogrammetry, Structure from Motion (SfM), and

Terrestrial Laser Scanning (TLS). Figure modified from Bangen et al. (2014).
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Figure 2: Comparison of raw data acquisition from ALS (a), TLS (b), and SfM (c). Figure

reproduced from Johnson et al. (2014).
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Figure 3: Comparison of the performance of Gaussian (linear) and Perona-Malik (nonlinear)

filtering on an idealized landscape with added noise. The white portion is at higher eleva-

tion (ridge) than the surrounding landscape. (a) Original noisy image; (b) Noise reduction

achieved by Gaussian filtering (standard deviation of the kernel 7 m) at the expense of the

boundaries localization; (c) Noise reduction achieved by Perona-Malik filtering (number of it-

erations t = 50). The filter is able to preserve feature localization by avoiding diffusion across

its boundaries; (d) Further noise reduction with Gaussian filtering (14 m) results in complete

blurring of the ridge; (e) Further Perona-Malik filtering (t = 200) results in more noise reduc-

tion without affecting the feature and its localization. Figure adapted from Passalacqua et al.

(2010a).
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Science question

Point cloud selection

Continuous 

field
Discrete

object

Iterative operations

on fields and objects

Other data integration:

Remote sensing

Field sampling/monitoring

Near surface model:

Ensemble of features

Empirical  or 

biogeochemical/physics 

based interpretation

Select, generalize, idealize:

Metrics

Derived products

Multitemporal

feature change

Classified point cloud, 

DTM, DSM, local 

statistics (canopy 

characteristics, relief, 

feature probability, etc.)

Feature Identification

Channel elements 

including heads, 

geomorphic units, 

sediment (boulders, 

etc.), vegetation (trees, 

etc.), structures

Figure 4: Feature identification work-flow. Principal tasks are to progressively add meaning

to a segmented point cloud by identifying continuous fields or discrete objects. The ensemble

of identified features is the near surface model and is the basis for scientific interpretation or

engineering application. Changes in the near surface model may further indicate process. See

text for additional explanation.
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Type of geometric change

Ground movements displacing 

topographic features

Geomorphic processes changing 

topographic features

Suitable measurement

Feature matching

2D-3D displacement field

No features to match

Distance and volume

Existing automatic work-flows

3D Point cloud t1 + t2 3D Point cloud t1 + t2

Vegetation removal Vegetation removal

2.5D DTM

2D Correlation 

techniques (PIV)

3D Piecewise 

ICP

3D mesh

3D Cloud to 

mesh distance

3D Cloud to 

cloud distance

2.5D DTM

Vertical grid 

subtraction

Landslide displacement field

Earthquake deformation 

Ice flow velocities

Dune migration

Geomorphic change on complex 

scenes and steep topography: 

rockfall statistics, bank erosion, 

mountain rivers

Sediment budget

Erosion, sedimentation 

on flat topography 

(river bed, glacier)

Accurate change 

detection

3D Volume calculation

Figure 5: Schematic of work-flows for change detection. Solid gray arrows indicate operations

for which fully open source solutions exist; dashed gray arrows indicate operations that require

at least one commercial software; blue boxes show examples of products obtainable with each

work-flow. Gray filled boxes indicate operations producing a product easier to handle but

interpolated resulting in potential accuracy and resolution loss.
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Box 1: Questions to consider before acquiring HRT

1) Specification Document: Should a specification document be 

written to define minimum requirements, deliverables, and answers 

to the following questions?

2) HRT Method: What HRT acquisition method(s) would allow 

collection of the data?

3) Who acquires HRT: Will a vendor be employed, will you be 

responsible for data collection, or will the responsibility be shared?

4) Acquisition Timing: When should acquisition be scheduled to 

maximize likelihood of successful and useful data collection? 

Considerations include: season, antecedent moisture or flow levels 

(rivers), vegetative cover (e.g., leaf on vs. leaf off)

5) Hybrid Data: Will the HRT dataset need to be meshed with other 

topographic data to paint a complete picture of the study area? How 

will continuity among datasets be ensured? 

6) Acquisition Perspective: How will scans (e.g., flight lines, TLS 

scans, photo orientation, boat paths) be oriented relative to features 

of interest?

7) Overlapping Coverage: How much overlap is needed between 

scans to obtain the needed point cloud density? Does increased 

density from overlapping coverage constrain HRT models or present 

conflicting evidence uncertainties?

8) Accuracy Assessment: What independent data (e.g., check 

points, check surfaces, other methods of acquisition, air photos) are 

available in the area or should be collected concurrently for 

verification and accuracy assessment?

9) Accuracy and Precision Specifications: What point cloud 

density or vertical and horizontal accuracy are needed to answer the 

question of interest?

10) Cost-Benefit: Are there inflections in the cost/data characteris-

tics relationships that would make additional data collection feasible 

with current project budget?

11) Features of Interest: What are the features of interest where the 

best quality information is needed? Is penetration through water or 

dense vegetation needed?

12) Breaklines: How and where will breaklines be used to ensure 

that critical features/boundaries are well defined?

13) Coordinate Systems and Control Network: Do data need to 

be referenced to a local or global coordinate system (i.e. georefer-

enced)? Is an adequate existing control network in place to facilitate 

this or does one need to be established or modified? Is it necessary 

to hire a professional surveyor to establish and improve the 

network?

12) Repeat Survey Planned or Plausible: Will the data be 

compared to future surveys? Even if not planned, but plausible 

future use by others, is the control network sufficiently redundant to 

facilitate future repeat occupation of the control network?

13) Uncertainty: What factors contribute to spatially variable 

uncertainty of the dataset (e.g., shadows, angle of incidence)? 

14) Output Formats: What are the required end product deliverable 

format(s) for the post-processed HRT data (e.g., classified point 

cloud, bare earth point cloud, TIN, raster)?

15) Reporting and Data Sharing: What level of metadata documen-

tation and reporting will be necessary to make the data useful for its 

current purposes and to other potential end-users? Do deliverable 

outputs need to be shared with others and how will this be 

achieved?

16) Post-Processing: What post-processing steps will be needed 

for the data to be useful for your purposes (e.g., filtering, interpola-

tion)? Will the vendor or user complete those steps? If performed by 
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Box 2: Questions to consider before analyzing new 

or existing HRT

1) Metadata Report: Does a metadata report exist that documents 

answers to the following questions?

2) Acquisition Timing: When were the data collected?

3) Coordinate Systems: If comparing to other data, are coordinate 

systems and reference GEOIDS consistent? In which datum, 

coordinate system, and GEOID were the data originally collected? Is 

re-projection of the data required? If so, is re-projecting the point 

cloud instead of the derivative surfaces desirable?

4) Hybrid Dataset: Do the data contain multiple HRT types that 

have been stitched together?

5) Format: What data formats are available (e.g., LAS, raw point 

cloud, classified point cloud, TIN, DEM)?

6) Post-Processing: What filters, corrections, and modifications 

were applied to the data to convert it from raw data to its current 

state?

7) Blunders and Busts: Are there artifacts in the dataset? How to 

deal with them? Are there portions of the dataset that are of 

especially high or low quality?

8) Validation/Verification: Are validation/verification data available? 

Is information available for constraining vertical and horizontal error? 

Is the collection of additional verification data needed to determine 

whether the quality of the data is sufficient to answer the question of 

interest?

9) Analysis Methods: What are the most appropriate methods and 

protocols for processing and analyzing the data? Is the implementa-

tion of these methods and associated computational costs within 
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