Mise en évidence numérique de l'effet klinkenberg par une méthode Boltzmann-BGK sur réseau Résumé :

Les méthodes de Boltzmann sur réseau (LBM) sont bien adaptées pour suivre des écoulements dans le régime hydrodynamique, en particulier dans des milieux poreux. Actuellement, des études sont menées pour étendre leur validité aux écoulements transitionnels, voire raréfiés. Nous proposons une méthode de type Boltzmann-BGK sur réseau valide sur une large gamme de nombres de Knudsen (typiquement 10 -4 < Kn < 10) et supportant la thermique. Basé sur la décomposition de la fonction de distribution sur la base des polynômes d'Hermite, ce schéma numérique a été testé avec succès sur un écoulement de Poiseuille et a permis de rendre compte du paradoxe de Knudsen. Une version raffinée de cette approche est présentée ici. Elle est utilisée pour mettre en évidence l'effet Klinkenberg sur des simulations d'écoulements dans des modèles simplifiés de micro-canaux.

Abstract :

We propose a lattice method for Boltzmann-BGK equation (similar to"Lattice Boltzmann Methods") valid over a wide range of Knudsen numbers (typically 10 -4 < Kn < 10) and supporting weak heat transfer. These numerical schemes based on a decomposition on a Hermite polynomial basis have been previously tested on a Poiseuille flow with promising results and helped to explain the Knudsen's paradox. A refined version of this approach is presented here. It is used to highlight the Klinkenberg effect on flow in discrete porous media.

Mots clefs : Boltzmann-BGK, régime transitionnel, milieux poreux En ce qui concerne l'hydrodynamique incompressible dans des géométries complexes, typiquement dans des milieux poreux, les méthodes de Boltzmann sur réseaux (LBM) sont devenues une alternative crédible aux méthodes conventionnelles de CFD [START_REF] Wolf-Gladrow | Lattice-Gas Cellular Automata and lattice Boltzmann Models[END_REF]. Les LBM donnent aussi de bons résultats pour les écoulements à nombre de Knudsen modéré (Kn ≈ 0, 1), caractéristiques du régime de glissement, 1 en utilisant des conditions aux limites cinétiques. Il serait pourtant intéressant, pour de nombreuses applications [START_REF] Kutay | Laboratory validation of lattice boltzmann method for modeling pore-scale flow in granular materials[END_REF], d'améliorer encore ces méthodes de façon à accéder au régime transitionnel, c'est-àdire pour un nombre de Knudsen de l'ordre de un. Deux directions sont actuellement suivies pour atteindre cet objectif. Soit la simplicité des LBM standards est conservée et alors la discrétisation des vitesses permet de passer directement d'un noeud de grille à un autre, mais au prix d'une plus grande complexité sur les opérations de relaxation, soit cette dernière opération reste simple, mais au prix de l'augmentation de la discrétisation de l'espace des vitesses. C'est cette dernière approche qui est proposée ici. Elle a permis [START_REF] Izarra | Construction d'une méthode multifaisceaux pour les écoulements en milieux poreux[END_REF] de rendre compte des effets liés à la raréfaction et, en particulier du paradoxe de Knudsen. Ici, elle nous permet d'aborder des effets dûs au confinement et plus précisément à l'effet Klinkenberg [START_REF] Tang | Gas slippage effect on microscale porous flow using the lattice boltzmann method[END_REF]. Ce dernier a en fait déjà été abordé avec les méthodes LBM standard pour lesquelles les effets de discrétisation sont importants, ce qui requiert de faire appel à des temps de relaxation modifiés [START_REF] Tang | Gas slippage effect on microscale porous flow using the lattice boltzmann method[END_REF].

2 Approche cinétique multifaisceaux L'objectif est d'intégrer l'équation de Boltzmann avec l'opérateur de collision linéarisé de BGK :

∂f ∂t + v • ∇ x f + F m • ∇ ξ f = - f -f e τ (1) 
f et f e sont décomposées sur la base des polynômes d'Hermite [START_REF] Shan | Discretization of the velocity space in the solution of the boltzmann equation[END_REF] jusqu'à l'ordre q et q e , respectivement. Pour des problèmes à une dimension on a :

f (x, v, t) = w [θ0] (v) q n=0 b n (x, t) n! H [θ0] n (v), (2) 
et

f e (x, v, t) = w [θ0] (v) qe n=0 a n (x, t) n! H [θ0] n (v) (3) 
où w [θ0] (v) est la gaussienne centrée réduite de température θ 0 -w

[θ0] (v) = 1/ √ 2πθ 0 exp -v 2 /2θ 0 - et H [θ0]
n (v) est le polynôme de degré n défini par

H [θ0] n (v) = w [θ0] (v) d n w [θ0] (v) dv n . (4) 
La base de décomposition invite à calculer les moments a m (m = 1, . . . , q) grâce à une quadrature de Gauss-Hermite :

a m = θ m 0 ∞ -∞ w [θ0] (v) f H [θ0] m (v) w [θ0] (v) dv = θ m 0 q ′ i=1 f i H [θ0] m (v i ), avec f i = ω i f (x, c i , t) w [θ0] (c i ) (5) 
Les c i sont les zéros de H

[θ0] q ′ et les w i les poids associées. Comme f H

[θ0] m (v)/w [θ0] (v) est un polynôme de degré m + q, la sommation sur q ′ points rend la quadrature exacte si q ′ > q + m. Le moment d'ordre le plus grand, impliqué dans la décomposition (2), est m = q, il faut donc au minimum q ′ = q + 1 points, c'est-à dire q + 1 vitesses. On considère ici le cas de collisions élastiques pour lequel les 3 premiers moments de f et f e sont conservés, aussi les coefficients b m du développement (3) sont tels que b m = a m pour m = 0, 1, 2.

Les équations (5) se généralisent pour des dimensions supérieures, soit par la méthode de Grad [START_REF] Grad | Note on N-dimensional Hermite polynomials[END_REF], soit, plus simplement, en combinant D développements à une dimension (un développement par dimension) et en tronquant le polynôme à l'ordre m sur les vitesses. Pour les résultats qui suivent, q e = 2 et f e s'écrit alors :

f eq i = ω i ρ 1 + u • v i θ 0 + (u • v i ) 2 2 θ 2 0 + (θ -θ 0 ) 2 θ 0 v 2 i θ 0 -D - u 2 2 θ 0 (6) 
où D est la dimension de l'espace des configurations et

ρ = q D i=1 f i , ρ u = q D i=1 v i f i , D ρ θ + ρ u 2 = q D i=1 v 2 i f i . (7) 
En dimension D = 2 et pour q = 3, la figure 1(a) donne les 3 × 3 faisceaux du modèle H

[θ0]

3 . Ces faisceaux sont obtenus par combinaison des 3 vitesses -c 0 , 0, c 0 selon x et de même suivant y. Si θ = θ 0 dans la fonction d'équilibre [START_REF] Tang | Gas slippage effect on microscale porous flow using the lattice boltzmann method[END_REF], alors le modèle H Comme pour les LBM standards, l'intégration de l'équation (1) est alternée entre l'espace des configurations (propagation) et celui des vitesses (collisions). Cependant les v i étant dans des rapports irrationnels, il est nécessaire d'interpoler les f i entre les noeuds du réseau. Un schéma minmod a été adopté. Les forces volumiques ou de pression sont introduites directement en incrémentant la quantité de mouvement macroscopique avant l'étape de collision. Le traitement des conditions aux limites est crucial pour les nombres de Knudsen significatifs. Les conditions diffusives avec accommodation parfaite, adoptées ici, sont celles qui prêtent le moins à la critique et ne requièrent pas de paramètre supplémentaire. 

Simulation de l'effet Klinkenberg

Pour utiliser la loi de Darcy dans les micro écoulements gazeux, l'expression usuelle de la perméabilité doit être modifiée. Pour des nombres de Knudsen de l'ordre de 0.1, la forme donnée par Klinkenberg permet de tenir compte des effets de glissement aux parois. Au premier ordre, la vitesse de glissement aux parois est donnée par :

u x (y = 0) = C 1 λ ∂u x ∂y (y = 0) et u x (y = H) = -C 1 λ ∂u x ∂y (y = H) (8) 
où λ est le libre parcours moyen et C 1 un paramètre généralement pris égal à 1 [START_REF] Tang | Gas slippage effect on microscale porous flow using the lattice boltzmann method[END_REF].

Ainsi, la loi de Darcy

V d ≡ q A = κ µ ∆P L (9) 
où κ est la perméabilité intrinsèque caractéristique de la géométrie, devient

V d = κ µ (P e + P s ) 2P s ∆P L (10) 
Dans le cas d'écoulement dans des géométries simples (essentiellement unidimensionelles, soit entre plans infinis, soit dans des tubes), il est possible d'introduire une perméabilité équivalente κ fonction de la pression ou du nombre de Knudsen K n , qui dans le cas plan s'écrit :

κ(K n ) = κ(0)(1 + 6C 1 K n ) ; K n = λ d = k B πd 3 √ 2 T P . (11) 
Les micro réseaux peuvent faire apparaitre des canaux de tailles caractéristiques très différentes, impliquant des nombres de Knudsen différents et donc des régimes d'écoulements différents. Ce type de situations peut être illustré dans le cas simple suivant. L'écoulement se produit entre 2 plans de longueur L et distant de H où L et H sont de l'ordre ou grand devant le libre parcours moyen des particules du fluide. On introduit une paroi en y = H/2 (Fig. 2) centrée par rapport à x = L/2 et de longueur βL (0 ≤ β ≤ 1). Ainsi, cet écoulement présente 2 Knudsen différents : celui du début et de fin du canal et celui des 2 canaux en parallèles. Dans ce cas, la présence de la paroi ne modifie ni la porosité, ni la tortuosité, mais seulement l'aire spécifique qui doit jouer un rôle important puisque liée à la surface de contact fluide-paroi. On labellise i = 1, 2 et 3 les 3 tronçons du conduit (Fig. 2). Pour les deux conduites en parallèle (j = 1, 2), les relations entre débit q 2j et pertes de charges en incompressibles ∆H 2j sont q 21 +q 22 = q 0 et ∆H 2 = ∆H 21 = ∆H 22 . Tandis que pour 3 conduites en série, on a q i = q 0 et ∆H = ∆H 

Conclusion

Des différentes simulations réalisées, dont on a donné ici un résultat typique, on peut tirer les conclusions suivantes :

-Pour un milieu simplifié modèle, on met en évidence l'effet Klinkenberg lié à un glissement d'autant plus important que le Knudsen est grand et que les surfaces des paroies sont importantes (ici liés au facteur β). Ces mêmes conclusions ont été tirées dans un milieu plus complexe. -Tous les modèles concordent avec le régime hydrodynamique.

-Les modèles pairs surestiment les résultats à Knudsen élevé ; c'est l'inverse pour les modèles impairs.

-Les modèles convergent vers les résultats théoriques ou expérimentaux en fonction de leur ordre, les pairs restant toujours au dessus, les impairs en dessous (convergence alternée). -Les modèles H q , s'ils possèdent un nombre de faisceaux supérieur à D2Q9, ne nécessitent qu'un temps de relaxation unique lié au Knudsen pour dans les problèmes de dynamique, c'est à dire dans le cas où les processus visqueux sont dominants. -Enfin, ces améliorations semblent bien adaptées pour le type de situations abordées ici. Elles évitent notamment de recourir à des temps de relaxation multiples pour retrouver des résultats comparables.
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  au D 2 Q 9 . De la même façon les 16 faisceaux du modèle [θ0] 4 sont donnés 1(b).

Fig. 1 :

 1 Fig. 1: Systèmes de vitesses en deux dimensions basés sur H 3 (a) et H 4 (b).

Fig. 2 :

 2 Fig. 2: Lignes de courant dans le micro réseau élémentaire. β = 1/2. Le nombre de Knudsen dans les zones 1 et 3 est la moitié de celui des zones 2 et 2'.

1 +∆H 2

 12 +∆H 3 . Ainsi pour β = 0, et pour la même chute de pression imposée, le débit (Q β ) dans le réseau est plus faible que celui (Q 0 ) pour un simple tube (β = 0). Le rapport α = Q β /Q 0 < 1. Cependant pour des valeurs significatives de K n , l'influence du glissement à la paroi se fait sentir par la réduction du cisaillement. La figure3montre le rapport α en fonction du Knudsen pour un réseau de taille Lx = 128 et Ly = 128. Ce rapport croît rapidement à partir de K n = 5% et un point d'inflexion apparaît au minimum de la courbe de Knudsen[START_REF] Cercignani | The Boltzmann Equation and Its Applications[END_REF]. Au delà, la prudence est nécessaire pour le moment. En effet, on a constaté que, au delà de ce minimum, les modèles H n surestiment les flux quand n est impair et inversement quand n est pair[START_REF] Izarra | Construction d'une méthode multifaisceaux pour les écoulements en milieux poreux[END_REF].

Fig. 3 :

 3 Fig. 3: Rapport Q β /Q 0 en fonction de K n et pour β = 1/4, 1/2, 3/4 et 1, où Q β est le débit obtenu pour le réseau dont la paroi interne est de longueur βL.
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