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Abstract 

 

We discuss the evolution of Korea in the context of a relatively short-lived, 

tectonically induced, magmatic and metamorphic pulse that affected large portions of 

the crust of the peninsula‟s southern part during the Late Triassic. Recent 
40

Ar/
39

Ar 

single grain laser step-heating dates imply a prolonged metamorphic recrystallization 

between 243-220 Ma, which occurred in distinct phases that were not coeval 

throughout the peninsula. We obtained identical plateau ages between 231.4±0.8 and 

228.9±0.8 Ma (1σ; 85-95% 
39

Ar release) on single grains of detrital muscovite from 

Jurassic sandstones (Gimpo Group). A literature review shows that the ages of detrital 

muscovites are identical to: (1) concordant 
40

Ar/
39

Ar ages of biotite (228 Ma) and 

amphibole (230 Ma) in amphibolites of the Deokjeongri Gneiss Formation and the 

Weolhyeonri Complex, pointing to very rapid cooling of 100-150°C/Ma, and (2) 231-

229 Ma muscovite from the low-grade metamorphic mid-Paleozoic turbidites of the 

Taean Formation. The efficiency of cooling is further underlined by the near-

coincidence of these 
40

Ar/
39

Ar ages with 243-229 Ma (average: 234.6 Ma) zircon U-

Pb ages in the Gyeonggi Massif and the Hongseong belt, in the literature. It is argued 

that the Late Triassic magmatic and metamorphic pulse is superimposed on an earlier 

tectono-metamorphic event, possibly related to collision, indicated by: (1) ∼243-237 

Ma muscovite ages, or age components in age spectra, (2) two generations of folds 

and associated tectonic foliations truncated by ∼229.5-Ma-old syenites and earlier 

mafic dykes. The Late Triassic thermal pulse could have been the result of post-

collisional delamination of the lower crust and uppermost mantle, and/or oceanic slab 

break-off, which is also suggested by almost coeval, widespread mantle-sourced Mg-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 3 

rich potassic magmatism. Continuing ductile deformation is shown by mylonitization 

of Late Triassic magmatic rocks; a ∼220 Ma muscovite age may be related to this.  

 

Keywords: 

Geochronology, 
40

Ar/
39

Ar laser probe, very fast cooling, Triassic, Korean Peninsula, 

thermal pulse 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 4 

1. Introduction 

 The Korean Peninsula forms part of an orogenic system where prolonged 

deformation, metamorphism and magmatism combined to create great complexity 

that has challenged geoscientists of different breed for several decades. Most studies 

on the geology of Korea are focused on the study of high-pressure metamorphic rocks 

(e.g., Ree et al., 1996; Lee and Cho, 2003; Oh et al., 2005; 2014; S.W. Kim et al., 

2006b, 2011b; M. Cho et al., 2007; Kwon et al., 2009), litho-tectonic units (e.g., S.W. 

Kim et al., 2008; Oh et al., 2009; Oh, 2012; Chough et al., 2000, 2013) or more 

recently age distributions of detrital zircons (e.g., Jeon et al., 2007; Cho et al., 2010; 

S.W. Kim et al., 2014) and their correlations across the Yellow Sea to China and more 

specifically to the Qinling–Dabie–Sulu belt. Instead of such model-driven approaches, 

the goal of the present paper is rather to reconstruct geological processes, and to 

elucidate the tectonism responsible for them, ultimately aiming at placing the 

geological evolution in a geodynamic context. Isotope geochronology is instrumental 

in our effort, because every tectonic model should be based on well-constrained ages 

for different events. 

 Currently, the architecture and evolution of the Korean tectonic system are yet 

far from clear and timing of major events is not yet well constrained. Relatively 

commonly occurring isotopic ages between ca. 290 and 215 Ma in some of the 

tectonic terranes, show that the peninsula was affected by Permo-Triassic 

metamorphism and consequently by tectonism. The occurrence of amphibolite bodies 

with very rare relics of pervasively retrogressed mafic high-pressure granulite and 

eclogite (Oh et al., 2005; Kim et al., 2006; Zhai et al., 2007; Park et al., 2014b) 

suggests subduction to depths in the order of 60-75 km. Yet, the age of subduction 

and collision is not well known as zircons from these rocks yielded U-Pb dates of 240 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 5 

± 5 and 231 ± 3 Ma (Guo et al., 2005; Kim et al., 2006; Park et al., 2014b). Many 

mountain belts that formed by crustal thickening were later in their tectonic evolution 

affected by horizontal crustal extension and associated lithospheric thinning and 

intruded by mantle-sourced Mg-rich potassic magmatic rocks (e.g., Liégeois and 

Black, 1987; Davies and von Blanckenburg, 1995; Turner et al., 1996; Gill et al., 

2004; Duggen et al., 2005; Bianchini et al., 2008; Fowler et al., 2008; Dilek and 

Altunkaynak, 2009; Jiang et al., 2013; von Raumer et al., 2014). von Blanckenburg 

and Davies (1996) pointed out that associated late syn-collisional basaltic 

(lamprophyric, high-K calc-alkaline) and granitoid magmatism is the most valuable 

witnesses of slab break-off. A late Triassic gabbro–monzonite and syenite–granite 

suite with medium- and high-K calc-alkaline composition and shoshonitic affinity is 

also present in all major tectonic terranes of the Korean tectonic system (Fig. 1). Most 

plutons are between 233 and 224 Ma old, with only two bodies being older, viz., 237 

and 240 Ma (Oh et al., 2006b; Wu et al., 2007; Jeong et al., 2008; Peng et al., 2008; 

Choi et al., 2009; Williams et al., 2009; Seo et al., 2010; Kee, 2011; J.M. Kim et al., 

2011; S.W. Kim et al., 2011a). 237–228 Ma mineral ages in (migmatitic) gneisses in 

large parts of central Korea imply a coeval regional metamorphic event. The Carnian 

to early Norian magmatic suite is usually interpreted as due to a change of tectonic 

regime subsequent to plate collision from compressional to tensional (Williams et al., 

2009; Kim et al., 2011a), often linked to asthenospheric upwelling induced by 

lithospheric delamination (Choi et al., 2009), or oceanic slab break-off (Seo et al., 

2010; Oh, 2012). Two alkali granites with A-type geochemistry yielded identical 

219.3 ± 3.3 Ma and 219.6 ± 1.9 Ma U–Pb SHRIMP ages on zircon (Cho et al., 2008), 

which the authors interpreted as dating the extensional tectonism subsequent to major 

collision.  
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 The above overview shows that some of the currently available age estimates 

for the high-pressure metamorphism and the Late Triassic magmatism and associated 

regional high-temperature metamorphism that took place at low- to intermediate-

pressure are the same. However, the Late Triassic magmatism is often linked to 

delamination/slab detachment, which in tectonic models occurs significantly later 

than the high-pressure event. This underscores the difficulty linking U–Th–Pb age 

data of polygenetic accessory minerals to the evolution of assemblages of 

metamorphic minerals or to fabric-forming main phase silicates. In contrast to 

accessory mineral dating, 
40

Ar/
39

Ar dating is applied to rock-forming and fabric-

forming K-bearing minerals. This is a big advantage as their growth can be more 

straightforwardly correlated to major phases of the tectono-metamorphic evolution of 

rocks. In the present paper we report new high-quality 
40

Ar/
39

Ar age determinations 

between 231 and 229 Ma obtained from a number of detrital grains from metamorphic 

muscovite, some of which have a biotite core. We put these new dates into 

perspective with recently published isotopic ages in the ca. 243-220 Ma range 

obtained by 
40

Ar/
39

Ar laser-probe and Sensitive High-Resolution Ion Micro-Probe 

(SHRIMP) of metamorphic silicates and accessory minerals (e.g., de Jong and Ruffet, 

2014a, b; de Jong et al., 2014; Han, 2014; S.W. Kim et al., 2014; Y. Kim et al., 2014; 

Oh et al., 2014; Park et al., 2014b) from different key areas along the northern and 

western margins of the Gyeonggi Massif (Figs. 2, 4, 7), combined with structural and 

other field data. Especially, information offered by low-grade metamorphic middle 

Paleozoic sediments (Taean Formation) on Anmyeon Island (Fig. 7), place important 

constraints on the tectonic evolution, as in contrast to the other key locations these 

rocks have only experienced early Mesozoic deformation and metamorphism. This 

approach helps to meet a major geochronological challenge of obtaining age estimates 
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for the duration and speed of tectonic and metamorphic processes in the Korean 

orogenic system, and to constrain timing of different phases during the evolution - 

information that is currently lacking. With this new information, pointing to very fast 

cooling in the late Triassic, we attempt to elucidate the meaning of the regional post-

collisional magmatic-metamorphic pulse, and aim to put up a model for the tectonic 

evolution of the Korean Peninsula in during this period. We use the most recent 

international chronostratigraphic chart of the International Commission on 

Stratigraphy (Cohen et al., 2013; updated) to transfer isotopic dates to 

chronostratigraphical ages. 

 

2. Regional Geology 

 

 Much of Korea consists of Precambrian continental crust formed from 

material extracted from the mantle in the late Neoarchean, subsequently strongly 

affected by Paleoproterozoic high-grade metamorphism and magmatism, peaking in 

the 1.93-1.83 Ga period (Lee and Cho, 2012). The Precambrian basement is 

subdivided into three gneiss terranes, viz. the Nangrim, Gyeonggi and Yeongnam 

Massifs, from North to South (Fig. 1). Of these three, only the Gyeonggi Massif has 

been seriously affected by Triassic metamorphism, as recorded in isotopic ages of U-

bearing accessory minerals in the 250-215 Ma range, but mostly between 235 and 231 

Ma (D.L. Cho et al., 1996; Oh et al., 2006b, 2015; S.W. Kim et al., 2006, 2008; J.M. 

Kim et al., 2008; K.H. Kim et al., 2008; Kim et al., 2009; Suzuki, 2009; Yi and Cho, 

2009; Kee, 2011; Cho et al., 2013b; Lee et al., 2014; Yengkhom et al., 2014). The 

three Precambrian terranes are separated by two belts of multiple-deformed and 

metamorphosed sedimentary and volcanic rocks of late Neoproterozoic to middle and 
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late Paleozoic age: the Imjingang and Ogcheon Belts (Fig. 1; e.g., Kim, 1998; Chough 

et al., 2000; Lim et al., 2005; M. Cho et al., 2007, 2013a; Kee, 2011; Choi et al., 

2012). Multiply deformed greenschist facies metamorphic middle Paleozoic turbidites 

(Figs. 1, 7; Taean Formation), which are comparable to similar series in the Imjingang 

Belt and part of the southwestern Ogcheon Belt (Choi et al., 2008; Kee, 2011; So et 

al., 2013; Cho et al., 2013a; S.W. Kim et al., 2014), crop out discontinuously along 

the western margin, and structurally uppermost part, of the Gyeonggi Massif (Fig. 1). 

These middle Paleozoic meta-sedimentary terranes, draped around the Gyeonggi 

Massif, have been variously deformed and metamorphosed starting from the latest 

Paleozoic to early Mesozoic (D.L. Cho et al., 1996, 2005; Cheong et al., 2003; Oh et 

al., 2004; Kim, 2005; Kim et al., 2007; Kee, 2011; de Jong and Ruffet, 2014a, b; de 

Jong et al., 2014; Han, 2014; S.W. Kim et al., 2014). Paleozoic meta-sedimentary 

rocks surrounded by gneisses also occur as small isolated outcrops in the eastern part 

of the Gyeonggi Massif (Kee, 2011; S.W. Kim et al., 2014). The pressure and 

temperature conditions in rocks of these meta-sedimentary terranes indicate that 

metamorphism and deformation occurred at maximum depths in the order of 20-35 

km, which would agree with a collisional setting. All terranes affected by Triassic 

metamorphism have been regarded as major tectonic boundaries, or suture zones, and 

thus considered as possible eastward extension of the Late Paleozoic – Early 

Mesozoic Qinling-Dabie-Sulu ultrahigh-pressure metamorphic belt in often sharply 

conflicting models (Ernst et al., 1988; Cluzel et al., 1990; Yin and Nie, 1993; Ree et 

al., 1996; Chough et al., 2000, 2013; Lee and Cho, 2003; Oh et al., 2005, 2006a, 

2009; S.W. Kim et al., 2006b, 2008, 2011b; M. Cho et al., 2007, 2013a; Zhai et al., 

2007; Kwon et al., 2009; Oh, 2012; Choi et al., 2012; Lee et al., 2014; Yengkhom et 

al., 2014; S.W. Kim et al., 2014). 
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Although most of the U–Th–Pb age data of polygenetic accessory minerals 

fall in the 235-231 Ma range, researchers found a number of older isotopic dates for 

such minerals between 245 and 260 Ma (errors: 3-16 Ma) in the Gyeonggi Massif 

(Suzuki, 2009; Lee et al., 2014; Yengkhom et al., 2014) and the Imjingang Belt and 

correlatives (D.L. Cho et al., 1996, 2005; Kim et al., 2014). The Ogcheon 

Metamorphic Belt too has yielded older isotopic ages in the 275-290 Ma range 

(errors: 10-15%) (Cheong et al., 2003; Oh et al., 2004; Kim, 2005; Kim et al., 2007). 

But there are no indications that these Permian to earliest Triassic dates refer to the 

high-pressure metamorphism. Zircons from the relict eclogite and mafic high-pressure 

granulite (Bibong and Baekdong bodies) that occur associated with strongly 

serpentinized ultramafic rocks in the Hongseong area along the Gyeonggi Massif‟s 

western margin (Figs. 1, 4) have yielded U-Pb dates of 240 ± 5 and 231 ± 3 Ma (Guo 

et al., 2005; Kim et al., 2006; Park et al., 2014b). The petrology of these strongly 

retrogressed bodies suggests subduction to depths in the order of 60-75 km, but their 

tectonic position and age is controversial. Kim et al. (2011b, c, 2014), Kwon et al. 

(2013) and Park et al. (2014) refer to this area as the Hongseong suture zone, although 

it is not clear which plates collided. They envisaged that this zone was the site of 

sedimentation, volcanism and plutonism in a “Pacific-type” arc-trench system due to 

prolonged subduction followed by “Alpine-type” plate collision in terminal Paleozoic 

to earliest Mesozoic time. However, the exact tectonic meaning of this mélange-like 

rock distribution in the Hongseong area is unclear due to very poor outcrop 

conditions, low relief and intense superimposed (Jurassic and younger) deformation, 

in the form of faults and thrusts (Fig. 4). 

All major tectonic terranes were intruded by late Triassic and Early to Middle 

Jurassic plutonic rocks (Fig. 1). The Triassic gabbro–monzonite and syenite–granite 
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suite forms relatively small, compositionally zoned, isolated plutons, forming about 

10% of the granitoids in Korea. In contrast, the Jurassic intrusions making up 65% 

(Sagong et al., 2005; Park et al., 2010), form complex linear chains of coalesced giant 

Cordilleran-type batholiths, generated during 50 to 60 million years of subduction of 

Pacific oceanic lithosphere below the East Asian continental margin (Maruyama et 

al., 1997). This underscores that both magmatic episodes occurred in strikingly 

different geodynamic settings, also reflected by chemical differences (J.M. Kim et al., 

2011). 

Late Triassic (?) to Middle Jurassic non-marine sedimentary succession of the 

Daedong Supergroup, occurring as relatively small isolated fault-bounded outcrops, is 

regarded to have been deposited in a foreland basin or an intra-arc setting (Egawa and 

Lee, 2008, 2009). U-Pb zircon geochronology implies that sedimentation principally 

took place in the late Early to earliest Middle Jurassic (ca. 187–172 Ma; Han et al., 

2006; Jeon et al., 2007). The most prominent peak in age probability diagrams for 

detrital zircons corresponds to the Paleoproterozoic age range found in the Gyeonggi 

Massif; other prominent peaks are of Early Permian, Middle-Late Triassic, and Early-

Middle Jurassic age, in addition there are very subordinate Archean, Neoproterozoic 

and middle Paleozoic peaks (Jeon et al., 2007). This suggests that most pre-

Cretaceous rock types currently cropping out were already at erosion level by mid 

Jurassic time, or being recycled. Subsequent significant deformation (Daebo tectonic 

phase: e.g., Chang, 1997; Kim 1998; Chough et al., 2000) strongly fragmented the 

outcrop pattern of most Korean rocks, severely hampering a complete reconstruction 

of the early Mesozoic collisional architecture of the Korean Peninsula.  
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 3. Gyeonggi Massif and rocks along its western and northern margins 

 

3.1 Gyeonggi Massif 

 

 The Gyeonggi Massif (Fig. 1) is a poly-metamorphic terrane that mainly 

comprises middle Paleoproterozoic (ca. 1.93–1.83 Ga) high-grade gneiss (e.g., Kee, 

2008; Lee and Cho, 2012; Lee et al., 2014; Oh et al., 2015) with minor 

Neoproterozoic (0.9-0.75 Ga) magmatic and sedimentary material along its western 

and northern margins (Lee et al., 2003; J.M. Kim et al., 2008; Oh et al., 2009; Park et 

al., 2014b). The Paleoproterozoic rocks experienced two superimposed tectono-

metamorphic cycles: M1 under lower granulite-facies to upper amphibolite-facies 

conditions of middle Paleoproterozoic age and a second, weaker one (M2) that is 

characterized by decompression with or without reheating (e.g., Y. Cho et al., 1996; 

Lee and Cho, 2003; Oh et al., 2006a, 2015; Cho et al., 2013b; Lee et al., 2014; 

Yengkhom et al., 2014). Metamorphism during the M2 event (0.5–0.35 GPa, 650–

750°C; Cho et al., 2013b; Lee et al., 2014; Oh et al., 2015) gave rise to moderate but 

widespread anatexis. Zircon from a cordierite-rich migmatite near a Triassic intrusion 

yielded a ca. 235 Ma U-Pb SHRIMP age (Oh et al., 2015). A leucosome formed by 

tourmaline-bearing granite gneiss that occurs in migmatitic biotite gneiss of the 

central Gyeonggi Massif yielded monazite with a 232.5 ± 1.4 Ma U-Pb SHRIMP age 

(Kee, 2008), which would date this regional metamorphism. Locally far more extreme 

metamorphic conditions (T= >900°C, P = 0.75 GPa) are recorded by rare granulites 

containing hercynitic low-Zn spinel (ZnO=1.6-2.6) in the eastern Gyeonggi Massif 

(Oh et al., 2006a, Odesan area, Fig. 1). Upper amphibolite and granulite facies 

conditions frequently result in the formation of metamorphic rims around older zircon 
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crystals likely due to the release of zirconium from mineral phases that became 

unstable (Williams, 2001; Parrish and Noble, 2003). Therefore, zircon rims that 

yielded SHRIMP U-Pb ages of 237–235 Ma (errors ca. 2%) in the Gyeonggi Massif 

also show that M2 probably is a Late Triassic metamorphic overprint. The Odesan 

spinel granulites occur <2 km from hypersthene-bearing monzonite pluton (Oh et al., 

2006a), zircons of which yielded a 229 ± 1 Ma U–Pb age (Jeong et al., 2008). 

 

3.2 Northern Margin Gyeonggi Massif - Juksung Area 

 

 The Juksung area (Fig. 2) is formed by the strongly retrogressed and ductilely 

deformed upper part of the northern Gyeonggi Massif. The rocks typically comprise 

quartz-biotite-muscovite-chlorite schists with up to 30-50 m thick series of well-

foliated micaceous, occasionally garnet-bearing, quartzite, with some layers of fine-

grained, sometimes garnet-bearing, amphibolite. The Juksung area is located between 

the Imjingang belt (North) and Neoproterozoic alkaline meta-granitoids with a 

compositional range from syenite to alkali granite, which yielded an ion microprobe 

U–Pb zircon age of 742 ± 13 Ma (Lee et al., 2003) (South). The latter are variably 

deformed, strongly retrogressed and transformed into muscovite-bearing augen 

gneisses and (ultra)mylonites in the Gyeonggi shear zone (Fig. 2; Kim et al., 2000). 

These authors obtained a Rb–Sr age of 226 ± 1 Ma on newly formed muscovite from 

a mylonite from this ductile shear zone, which is among the youngest isotopic ages 

obtained on gneisses of the Gyeonggi Massif. Laser probe step-heating by de Jong 

and Ruffet (2014b) of muscovite single grains from the strongly retrogressed and 

ductilely deformed rocks in this area resulted in 
40

Ar/
39

Ar (pseudo)plateau ages (1σ

242.8 ± 1.0 Ma (mica schist) and 219.7 ± 0.9 Ma (mylonitic quartzite) (Fig. 3a), as 
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well as a plateau age of 240.3 ± 1.0 Ma from a chlorite-muscovite-biotite schist (Fig. 

3b). A second muscovite grain from this rock, with a sizeable core of biotite has step 

ages that are concordant or only slightly younger during the main 90% of the 
39

Ar 

release (Fig. 3b). The combined age steps define a sharp 239.1 Ma age peak in a 

relative frequency diagram.  

Rocks of the Gimpo Group, forming the northernmost outcrops of the 

Daedong Supergroup in South Korea, crop out to the north of the Gyeonggi Shear 

Zone (Fig. 2). These are dull dark grey to black shales that contain lenses of thick-

bedded medium to coarse-grained rarely cross-bedded sandstones with isolated 

pebbles and matrix supported conglomerates with angular to sub-rounded and 

randomly oriented quartz, and dark chert-like pebbles. Some conglomerate levels 

have large K-Fsp pebbles, similar to the K-Fsp crystals present in the underlying 

Gyeonggi Massif. Both upward fining and upward coarsening series are present. We 

sampled coarse-grained sandstone for 
40

Ar/
39

Ar dating of single detrital muscovite 

grains (JK52, 53 and 56; Fig. 2). Locally, pelitic rocks contain a cleavage oblique to 

bedding that is axial planar to large-scale tight (southward overturned) folds. Pelites 

in the lowermost parts of the group are shiny phyllites with a well-developed bedding 

parallel tectonic foliation and lineation, whereas psammites at this level are quartzitic. 

These metasediments contain brittle-ductile deformation structures. 

 

3.3 Western Margin Gyeonggi Massif - Hongseong Area and Anmyeon Island  

 

A unique suite of rocks crops out along the Gyeonggi massif‟s western margin in the 

Hongseong area (Figs. 4) and on Anmyeon Island (Fig. 7). These are: the Deokjeongri 

Gneiss Formation and the Weolhyeonri Complex that include many lenses of mafic-
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ultramafic rocks of Neoproterozoic to Mesozoic age (Oh et al., 2005, 2009, 2014; 

S.W. Kim et al., 2006, 2008, 2011c, 2014) (Hongseong area), the middle Paleozoic 

meta-turbidite sequence of the Taean Formation, and finally the Paleoproterozoic to 

Mesoproterozoic (Kee, 2011), metasedimentary rocks of the Gonam Complex, which 

may be as young as Triassic (Kim et al., 2014) and exclusively cropping out at the 

southern tip of Anmyeon Island (Fig. 7). Late Triassic post-collisional magmatic 

activity is manifest by Haemi pluton (230-234 Ma; Choi et al., 2009; Seo et al., 2010; 

Cheong et al., 2014) in the Hongseong area (Fig. 4), and the Mongsanpo intrusion 

(229.6 ± 3.5 Ma; Han, 2014) on Anmyeon Island (Fig. 7). 

 

3.3.1 Weolhyeonri Complex and Deokjeongri Gneiss Formation  

 

The definitions of the Weolhyeonri Complex and the Deokjeongri Gneiss Formation 

defined on the one hand by e.g., Kim et al. (2011), Choi et al. (2012), Kim et al. 

(2013), and Park et al. (2014), and on the other by Oh et al. (2005), Kim et al. (2006, 

2008), and Kee (2011) are different. The first group of authors incorporated the 

western part of the Deokjeongri Gneiss Formation into the Weolhyeonri complex 

based on the finding of ca. 437–370 Ma SHRIMP U–Pb ages for zircons from arc-

related metavolcanic and metamorphic rocks. They, thus, consider the Weolhyeonri 

complex as a middle Paleozoic subduction accretion complex. In contrast, in earlier 

publications Kim et al. (2006, 2008) and Oh et al. (2005) regard the Weolhyeonri 

complex as essentially Neoproterozoic on the basis of a widespread 850-750 Ma 

tonalite–trondhjemite–granodiorite and alkaline magmatic rocks, which were 

subsequently metamorphosed during the middle Paleozoic. 
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The distribution of lithologies of different age and provenance in the 

Hongseong area has a distinct lens-shaped aspect, bolstered by the pattern of mafic–

ultramafic rocks (Fig. 4). One outcrop that was sampled for 
40

Ar/
39

Ar forms as a large 

lens of the Weolhyeonri Complex in the Deokjeongri Gneiss Formation (Fig. 4), 

which undoubtedly point to importance of tectonic processes. Kim et al. (2011b, c, 

2014) incorporated the eastern part of the Deokjeongri Gneiss Formation into the 

Weolhyeonri Complex because of a significant population of 850–750 Ma-aged 

detrital zircons present in alleged middle Paleozoic metasediments that they regarded 

as derived from the adjacent Deokjeongri rocks. In addition to this broad and low 

peak of Neoproterozoic ages, this relative frequency diagram contains a sharp main 

peak of Early Paleozoic ages (average/mean peak: 420 Ma) (Kim et al. 2014). 

Striking is the virtual absence of Precambrian zircons; there are no ages 

corresponding to the age range of the Gyeonggi Massif. For this reason we do not 

regard the Weolhyeonri Complex as part of the Gyeonggi Massif, but as an 

independent tectono-sedimentary unit, tectonically emplaced adjacent to it, and 

metamorphosed in the Late Triassic. The occurrence of mafic-ultramafic rocks, partly 

associated with retrogressed eclogite would fit in a mélange type setting.  

The Weolhyeonri Complex (Fig. 4) comprises both Neoproterozoic gneisses 

and Middle Paleozoic intermediate- to high-grade metamorphic sediments, including 

marble, as well as metabasites, felsic rocks and lens-shaped bodies of highly 

serpentinized ultramafic rocks (Kim and Kee, 2010; Kim et al., 2011b, c; Kwon et al., 

2013). These authors regard this volcano-sedimentary series as having formed in an 

arc – fore-arc setting during the Silurian and Devonian (ca. 437–370 Ma). 

Metamorphic overgrowth in zircon rims with ages of 427–400 Ma point to Late 

Silurian to Early Devonian metamorphism (Kim et al., 2011b; Park et al., 2014a). 
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Geothermo-barometry of rare garnet amphibolite, quartz garnetite, marble and 

hornblende gneiss that occur surrounded by strongly deformed tonalitic and 

granodioritic gneiss of the Deokjeongri Gneiss Formation (Fig. 4) point to 

metamorphic conditions in the range of 1.0-1.4 GPa and 700-800°C (Kee, 2008), and 

0.8-1.4 GPa and 550–740°C (Kwon et al., 2013). Hornblende-plagioclase 

symplectites around the garnet porphyroblasts indicate decompression of these rocks.  

The Deokjeongri Gneiss Formation (Fig. 4) originated from a tonalite–

trondhjemite–granodiorite suite intruded in a Neoproterozoic (ca. 750–850 Ma) arc 

(Oh et al., 2005; S.W. Kim et al., 2006, 2008; Kee, 2011) that was strongly deformed 

and migmatized. Anatexis was localized in shear zones that deflect the main foliation, 

and also occurred in irregular veins and patches along the main foliation (Fig. 5a). 

Irregular veins of fine-grained essentially non-deformed leuco-granitic rocks cut the 

shear zones, the main foliation, and earlier partial melt zones (Fig. 5a). This process 

probably took place in part during the Triassic, as suggested by isotopic ages, see 

below.  

Some of the strongly retrogressed (ultra)mafic lenses formed in 

Neoproterozoic and middle Paleozoic times in different tectonic settings, and contain 

relics of high-pressure metamorphism with a strikingly different timing, viz., 

Devonian and (?)Triassic (Kwon et al., 2013; Oh et al., 2014; Park et al., 2014). The 

803-806 Ma (errors 1.5-3%; Kim et al., 2006; Park et al., 2014) mafic intrusive rocks 

of the Bibong body (Fig. 4) underwent eclogite facies metamorphism (1.65–2.1 GPa, 

775–850°C) followed by near-isothermal decompression to 1.1-1.6 GPa to granulite-

facies conditions, and a final phase of amphibolite-facies metamorphism (0.8-0.9 

GPa, 550-735°C) (Oh et al., 2005; Kim et al., 2006). On the one hand, based on 

mapping Park et al. (2014) claimed that these mafic rocks originally intruded 
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Paleoproterozoic gneisses in Neoproterozoic time. These gneisses could, hence, form 

part of the westernmost limit of the Gyeonggi Massif, suggesting that at least this part 

was affected by deep subduction. On the other hand, other studies concluded that this 

metabasite body and Paleoproterozoic rocks were in fault contact (e.g. Oh et al., 2005, 

2014). In addition, these authors pointed out that their island arc geochemical 

character would not fit into a continental arc setting. This interpretation would imply 

that only rocks along the Gyeoggi Massif‟s southwestern margin, viz. the Deokjeongri 

Gneiss Formation and the Weolhyeonri Complex were affected by subduction-related 

metamorphism, but not the massif itself.  

Rocks in the Hongseong area, including those with eclogitic relics, display 

widespread Triassic U-Pb zircon ages, often in rims, between 243 ± 6 and 229 ± 10 

Ma (Fig. 4), averaging 234.6 Ma (N=22) (Guo et al., 2005; S.W. Kim et al., 2006, 

2008, 2011a, b; Kee, 2011; Kwon et al., 2013; Park et al., 2014). Two amphibolites 

(Fig. 6) yielded concordant single grain 
40

Ar/
39

Ar laser probe step-heating (pseudo-) 

Deokjeongri Gneiss Formation and 229.8 ± 1.0 Ma (hornblende) the Weolhyeonri 

Complex (de Jong and Ruffet, 2014a). The latter hornblende age is nearly concordant 

with a 234 ± 2 Ma U-Pb age of a zircon rim in the Neoproterozoic Sinri garnetite 

(Kwon et al., 2013) from the same outcrop. The combined age steps define a sharp 

229.1 Ma age peak in a relative frequency diagram (Fig. 6). These plateau ages are 

40
Ar/

39
Ar plateau age (Kee, 2008), and 

essentially concordant with U-Pb ages of 234 ± 2 and 235 ± 8 Ma from rims of zircon 

in nearby tonalitic gneisses (Kee, 2011). 

The Gonam complex (Fig. 7) comprises a highly heterogeneous assemblage of 

gneisses, metasediments, with lenses of mafic and ultramafic rocks. Highly striking is 
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the association of dark-grey to black metapelites, strongly folded marble with 

deformed lenses of mafic-ultramafic rocks (Fig. 5b) that occur jointly with rare fine-

grained brick red siliceous layers/fine quartzites (Fig. 5c). This association resembles 

part of an ocean plate stratigraphy, which may suggest that the Gonam Complex is 

part of a subduction-accretion complex, albeit of unknown age.  

 

3.3.2 Taean Formation on Anmyeon Island  

 

The Taean Formation on Anmyeon Island, located about 50 km to the west of the 

Hongseong area (Fig. 7), comprises rhythmically layered and graded-bedded series of 

light-coloured sandstone and dark gray pelite with intercalations of calcareous 

psammite and minor carbonate, as well as rare thin black very-fine-grained tuff 

horizons. These rocks were probably originally deposited by deep-water turbidites in 

a submarine distal fan/lobe environment (Lim et al., 1999; Choi et al., 2008; So et al., 

2013). The youngest Paleozoic peaks of concordant SHRIMP U–Pb spot ages in rims 

of detrital zircon are between 431 and 420 Ma (errors ∼1%), implying their 

deposition after the late Silurian (Cho, 2007; Cho et al., 2010; Kee, 2011; Na et al., 

2012; So et al., 2013; Han, 2014; Kim et al., 2014). A compilation by Kim et al. 

(2014) shows that meta-sandstones of the Yeoncheon Group (Imjingang Belt), the 

Weolhyeonri Complex and the southwestern Ogcheon Metamorphic Belt have similar 

zircon age distributions. The rhythmic intercalation of quartzites of the Yeoncheon 

Group, occasionally containing multiple sets of graded bedding, with metapelites is 

indicative of a turbidite sequence (Kee, 2008; Han, 2014), like the Taean Formation.  

 The metasediments of the Taean Formation are affected by two phases of 

superimposed deformation. The earliest cleavage S1 in meta-pelites generally is a 
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well-developed bedding-parallel quartz-mica differentiation foliation, and only locally 

axial planar to rare recumbent isoclinal folds (Fig. 8a). But in meta-sandstone and 

calc-silicate rocks shape fabric development is generally minor. F2 folds are 

megascopic open to tight disharmonic flexural slip structures (Fig. 8b), which in 

meta-pelites may have a well-developed crenulation cleavage S2 as axial plane 

foliation. Mesoscopic F2 folds and their axial plane cleavage S2 are truncated by mafic 

dykes (Fig. 8c).  

 De Jong et al. (2014) argued that metamorphism of meta-pelites (main 

metamorphic minerals: biotite and muscovite) in the Taean Formation, with garnet 

being extremely rare, and aluminum-silicates absent, occurred below ca. 450°C. 

These conditions were below the minimum required upper amphibolite facies 

metamorphism to form significant overgrowths around older zircon crystals 

(Williams, 2001; Parrish and Noble, 2003). Consequently, the ca. 280 Ma date from a 

zircon rim (Kee, 2011) probably reflects mixing with older material below the tiny 

outermost metamorphic rim. Recently de Jong et al. (2014) published the first high-

quality age estimates for timing of the metamorphism of the Taean Formation. 

Applying SHRIMP for U-Pb dating of titanite from a calc-silicate rock with a layer-

parallel main cleavage S1, these authors obtained a well-defined regression line with a 

lower intercept age of 232.5 ± 3.0 Ma (MSWD = 1.2). 
40

Ar/
39

Ar laser probe dating of 

two non-deformed muscovite single grains in metapelites that cross-cut the main 

tectono-metamorphic fabric S1 or lie as non-deformed recrystallized grains within S2 

yielded concordant pseudo-plateau ages (1σ) of 230.7 ± 1.0 and 228.8 ± 1.0 Ma (Fig. 

9). One pronouncedly saddle-shaped age spectrum has identical ages of 237.5 ± 0.4 

Ma and 237.1 ± 0.4 Ma for the low and high temperature steps, respectively, which 

are much older than the pseudo-plateau age (Fig. 9). Some other complex muscovite 
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40
Ar/

39
Ar age spectra obtained from the Taean Formation also show clear evidence of 

older concordant low and high temperature steps of 241 and 243 Ma for muscovite 

that was recrystallized around 228-231 Ma (saddle-minimum, or pseudo-plateau) 

(Han, 2014). These concordant low and high temperature steps, as well as the main 

peak around 231 Ma, are well expressed as (sub)peaks in a relative frequency plot of 

all age steps from these sample (Fig. 10). The 231 Ma mica recrystallization age is 

clearly concordant with the age of metamorphism shown by the ages of the titanite 

and the intrusion of the Mongsanpo syenite (Fig. 10). The complexities of these age 

spectra will be discussed in detail elsewhere in relation with electron probe micro 

analyses of these micas.  

 

3.3.3 Magmatic intrusions in the Taean Formation on Anmyeon Island  

 

The Taean Formation on Anmyeon Island is intruded by a swarm of NE to 

ENE striking about 0.5 to 7m thick mafic dykes. Their texture varies from fine-

grained without visible plagioclase crystals to coarse-grained doleritic with randomly 

oriented plagioclase crystals (micro-gabbro-like), or occasionally with a flow banding 

parallel to the dyke margin. The dykes have neither vesicles nor chilled margins, 

suggesting relatively deep intrusion levels. These mafic dykes truncate the locally 

well-developed S1 foliation in meta-pelites and some calc-silicate rocks, as well as S2 

and mesoscopic F2 folds to which this crenulation cleavage is axial planar (Fig. 8c).  

 The 10-15 km
2
 syenite body at Mongsanpo (Fig. 7) cuts the discordant 

intrusive contact between a 7-metres-thick mafic dyke and the moderately dipping 

layering in the Taean Formation, showing that the dyke intruded the meta-sediments 

before the syenite did. Zircon from the syenite gave a SHRIMP 
206

Pb/
238

U age of 
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229.6 ± 3.5 Ma (Han, 2014), which is concordant to the ca. 229 Ma U-Pb age 

obtained on zircon by D.L. Cho (2007). The course-grained syenite contains metre-

scale bodies of medium-grained mafic rocks. Contacts between both types of 

magmatic rocks are often sharp and straight, suggesting minimal chemical mixing 

between the two melts, but also gradational, rounded and undulating. A number of 

features in the Mongsanpo body (Fig. 11 a-c) can be attributed to mingling of mafic 

and felsic melts, showing that they coexisted intimately in (semi)liquid state, and did 

not mix due to the thermal, compositional and viscosity contrasts (Vernon, 1984; 

Barbarin, 2005; Sklyarov and Fedorovskii, 2006; Seo et al., 2010). Syenite melts are 

extensively injected into the mafic rocks in flame-like veins (Fig. 11a) or by net-

veining. Scattered mafic schlieren, as well as isolated, rounded and elongated 

decimeter-long pillow-like lobes of mafic enclaves define a preferred orientation in 

the syenite, and have darker and finer grained margins (Fig. 11b). These chilled 

margins and the much finer grain size of the mafic rocks point to relatively rapid 

crystallization (quenching) when they were injected into cooler, partially crystalline 

leucocratic rock. Upon cooling the partially crystallized mafic melt would be come 

more viscous and break-up into smaller scattered lobate-formed enclaves by flow of 

the syenite host. Such enclaves record magmatic strain of the host over a limited 

temperature-time range in its cooling history, their ellipticity depending mainly on 

viscosity contrast (Pesquera, 1994; Smith, 2000). At more elevated temperature the 

more mafic melt has a lower viscosity, but during progressively crystallisation 

becomes more viscous than the felsic melt (Smith, 2000). Interfaces between both 

magmatic rock types are deformed into small wavelength cuspate-lobate fold-like 

patterns, locally with a faint flow banding developed in the mafic rocks parallel to the 

contact (Fig. 11c). The angular cusps are an indication of the magnitude of the 
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viscosity ratio (Smith, 2000), in Fig. 11c suggesting that the mafic rock is the more 

viscous in this case, reflecting advanced cooling. At the finer scale the interface 

between both rock types is also festoon-like almost dendritic, with feldspar crystals 

and aggregates pointing into the mafic rock also suggesting immiscibility (Fig. 11c, 

left and right side; Sklyarov and Fedorovskii, 2006). 

 Locally the syenite shows clear evidence of solid-state ductile tectonic 

deformation in centimeter to decimeter wide zones of lineated and very platy ultra-

mylonite (Fig. 11d). The magmatic rocks also contain deformed and boudinaged 

quartz-tourmaline veins, the strongest deformed and thinnest parts contain a lineation 

of elongated quartz grains and oriented extended tourmaline crystals. These 

observations underscore that tectonism continued after the intrusion of these 

magmatic bodies. Asymmetric fabric elements like porphyroclast tails and SC-fabrics 

indicate top-to-the-West shear. A number of smaller bodies of granitic rocks in the 

Gonam Complex are variable ductilely deformed indicated by their strong quartz-

feldspar tectonic fabric enhanced by stringers of extended NNW plunging tourmaline 

crystals (Fig. 11e). Such veins of tourmaline granite may form boudins, without a 

strong internal fabric, that cut through the axial plane of second-generation folds that 

already deform a shear fabric (Fig. 11f).  

 

 

4. 
40

Ar/ 
39

Ar geochronology  

 

4.1 Analytical Procedure 
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Following thorough ultrasonic rinsing in distilled water single muscovite 

grains, obtained by handpicking the 0.3-2.0 mm size fraction of crushed rock under a 

binocular zoom microscope, were wrapped in Al foil envelopes (11 mm × 11 mm × 

0.5 mm), which were stacked in an irradiation can, with neutron flux monitors 

inserted after every 8 to 10 samples. Samples and standards (sanidine TCR-2; age: 

28.608 ± 0.033 Ma; Renne et al., 1998, 2010, 2011) were irradiated together at 

location 8E of the McMaster reactor (Hamilton, Canada) for 127 hours under Cd-

shielding with a J/h of 4.75 x 10
-5

 h
-1

. The sample arrangement allowed monitoring of 

the neutron flux gradient with a precision of ±0.2%. Muscovite single grains were 

40
Ar/

39
Ar step-heated with a Synrad

®
 CO2 continuous laser at Geosciences Rennes, 

following the procedure outlined by Ruffet et al. (1991, 1995). Blanks were 

performed routinely at the start of an experiment and repeated typically after each 

third run, and subtracted from the subsequent sample gas fractions. Isotopic analyses 

were performed on a MAP215
®
 noble gas mass spectrometer. The five argon isotopes 

and the background baselines were measured in eleven cycles, in peak-jumping mode. 

All isotopic measurements are corrected for mass discrimination and atmospheric 

argon contamination, following Lee et al. (2006) and Mark et al. (2011), as well as K, 

Ca and Cl isotopic interferences. Decay constants used: Renne et al. (2011). Apparent 

age errors are plotted at the 1σ level and do not include the errors on the 
40

Ar
*
/
39

ArK 

ratio and age of the monitor and decay constant. Plateau ages were calculated if 70% 

or more of the 
39

ArK was released in at least three or more contiguous steps, the 

apparent ages of which agreeing to within 1σ of the integrated age of the plateau 

segment. The errors on the 
40

Ar
*
/
39

ArK ratio and age of the monitor and decay 

constant are included in the final calculation of the error margins on the pseudo-
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plateau age or on apparent ages individually cited. The 
40

Ar/
39

Ar analytical data are 

listed in Table 1, and shown as age spectra in Fig. 12a-c. 

 

4.2 Results and interpretation 

 

40
Ar/

39
Ar step-heating dating of originally metamorphic muscovite present as detrital 

grains in sandstones JK52, 53 and 56 of the Gimpo Group yielded two strikingly 

different types of age spectra that correspond to two different age groups (Fig. 12a-c; 

Table 1). In each of the samples JK52 and 53 we dated both a pure muscovite and a 

muscovite with some sizeable biotite inclusions. All four muscovite grains yielded 

well-defined, concordant plateau ages (1σ) of 231.4 ± 0.8 and 231.3 ± 0.8 Ma (JK52; 

Fig. 12a) and 228.9 ± 0.8 and 230.6 ± 0.8 Ma (JK53; Fig. 12b). Pure muscovite 

yielded better-defined age plateaux (>95% 
39

Ar release) than the grains with some 

included biotite (85-92% 
39

Ar release). In contrast, muscovite grain JK56 has an 

irregular age spectrum with step ages between about 1600 and 1800 Ma (Fig. 12c, 

Table 1). 

 Middle-Late Triassic and mid-Paleoproterozoic ages are also well represented 

in age frequency plots for detrital zircon from sandstones of the Daedong Supergroup 

(Jeon et al., 2007). The 1.6-1.8 Ga 
40

Ar/
39

Ar step ages are somewhat younger than the 

1.8-1.9 Ga zircons, which might point to slow cooling of the Precambrian source 

rocks, or alternatively may have been derived from a source rock that differs from 

lithologies used for U-Pb dating of zircons. Our concordant ca. 231-229 Ma plateau 

ages of detrital muscovite are identical to 
40

Ar/
39

Ar ages of metamorphic mica and 

amphibole in the Weolhyeonri Complex, and muscovite from the Taean Formation, 

which are all between 231 and 228 Ma. These detrital 
40

Ar/
39

Ar muscovite ages 
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compare well with 239-232 Ma and 252-213 Ma sub-peaks formed by magmatic 

zircons in relative frequency diagrams of zircon ages that Jeon et al. (2007) obtained 

for the Bansong and Nampo Groups, respectively. This shows that during deposition 

of the Gimpo Group in Early to Middle Jurassic boundary times, potential Late 

Triassic metamorphic and magmatic source rocks were probably widespread at the 

Earth surface. The observation that two muscovite grains with biotite inclusions have 

step ages that are only marginally different from those of the pure muscovite grain in 

each sample may suggest that cooling of these rocks in the Late Triassic was fast, as 

outlined below.  

Usually, isotopic dates in metamorphic rocks are interpreted to record when 

the temperature in a geological system drops below a critical threshold, the closure 

temperature, permitting minerals to start accumulating isotopes formed by radioactive 

decay in their crystalline lattices. In addition to temperature, argon diffusion in 

minerals and isotopic closure depend on the mineral‟s chemistry (e.g., Fe/Mg ratio, 

halogen content), diffusion geometry, and grain size, as well as on the cooling rate, 

pressure and fluid-assisted recrystallization (e.g., Lister and Baldwin, 1996; Di 

Vincenzo and Palmeri, 2001; Harrison et al., 2009; Tartèse et al., 2011; Villa et al., 

2014). Calculation of isotopic closure temperatures versus cooling rates using 

estimates of Arrhenius parameters - activation energy and diffusion coefficient - for 

biotite (Grove and Harrison, 1996) and muscovite (Harrison et al., 2009) reveals that 

the closure temperature for the former is between 125 and 175˚C lower than the latter 

for diffusion dimensions between 0.1 and 1 mm, and different cooling rates. Due to 

their difference in chemistry and crystal structure both mica types do not degas at the 

same energies during dating experiments in the laboratory. If the much smaller biotite 

inclusions and the host muscovite in samples JK52 and 53 would have had highly 
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different ages, the dating would not have resulted in flat age spectra, but a complex 

ones with different step ages. This implies that both age components were not 

strongly different, which then suggests that cooling must have been relatively fast.  

 

 

5. Tectonic interpretation of isotopic ages 

 

5.1 Tectonically-induced cooling  

 

Rates of post-metamorphic cooling are controlled primarily by exhumation 

mechanisms. Rapidly evolving terranes and tectonic systems often yield a small range 

of ages for mineral geochronometers that have very different closure temperatures, 

including polygenetic Th- and U-bearing accessory minerals formed at or close to 

peak metamorphic conditions (e.g., Dallmeyer et al., 1986; Dokka et al., 1986; 

Goodwin and Renne, 1991; Baldwin et al., 1993, 2004; Brown and Dallmeyer, 1996; 

Platt et al., 1998; Treloar et al., 2000; Di Vincenzo and Palmeri, 2001; Zeitler et al., 

2001; de Jong 2003; Štípská et al., 2004; Çelik et al., 2006; Schulmann et al., 2008; 

Pitra et al., 2010; Wilke et al., 2010; Charles et al., 2012; Cubley et al., 2013a, b; 

Daoudene et al., 2013). Tectonically exhumed terranes generally experienced rapid 

cooling, whereas exhumation by erosion record slow cooling (e.g., Dallmeyer et al., 

1986; Dokka et al., 1986; Baldwin et al., 1993, 2004; Brown and Dallmeyer, 1996; 

Platt et al., 1998; Charles et al., 2012; Cubley et al., 2013a, b; Daoudene et al., 2013; 

Scibiorski et al., 2015), unless erosion was forced by extreme exhumation and became 

the driving force, as exemplified by the eastern and western Himalayan syntaxes (e.g., 

Treloar et al., 2000; Zeitler et al., 2001).  
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Many of the examples of very rapidly (>100°C/Ma) cooled high-grade 

metamorphic rocks are from metamorphic core complexes. Such crustal and 

lithospheric-scale features form by the extreme extension of not metamorphosed or 

low-grade metamorphic upper crustal rocks along low-angle normal faults 

(detachments), and exhume deeper crustal levels (e.g., Dallmeyer et al., 1986; Dokka 

et al., 1986; Vanderhaeghe et al., 2003; Rey et al., 2009; Le Pourhiet et al., 2012; 

Whitney et al., 2013). Footwall rocks of core complexes are thick ductilely deformed 

medium- to high-grade metamorphic rocks associated with partially molten middle to 

lower continental crust, very much like the Gyeonggi Massif. Removal of overburden 

due to extreme thinning of the hanging wall along such along a trans-crustal or trans-

lithospheric detachment faults leads to buoyant and viscous uplift of the footwall that 

is cooled during this process. Conversely, if the uplift exceeds 15 km hanging wall 

rocks can be metamorphosed up to amphibolite-facies grade and granitic wet-melt 

conditions if the strain rate is larger than the cooling rate (e.g. Dallmeyer et al. 1986). 

Syn-tectonic sediments in half-grabens can similarly be metamorphosed. 

Metamorphic core complexes have been documented in areas marked by crustal 

extension interpreted as the result of gravitational collapse of a previously thickened 

crust (Buck, 1991; Brun, 1999; Corti et al., 2003; Jolivet et al., 2013). Their 

occurrence has been discussed for the North American Cordillera (e.g., Dallmeyer et 

al., 1986; Dokka et al., 1986; Norlander et al., 2002; Vanderhaeghe et al., 2003; 

Kruckenberg et al., 2008; Rey et al., 2009; Cubley et al., 2013a, b; Whitney et al., 

2013), the eastern Mediterranean (Cyclades, western Turkey-Aegean) (Thomson et 

al., 2009; Dilek and Altunkaynak, 2009; Le Pourhiet et al., 2012; Jolivet et al., 2013), 

the Variscan Orogen of Europe (Brown and Dallmeyer, 1996; Ledru et al., 2001; 

Augier et al., 2015), and the central part of eastern Asia (Charles et al., 2012; 
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Daoudene et al., 2013). Results of thermo-mechanical modelling of the evolution of 

many metamorphic core complexes show very rapid cooling after near-isothermal 

decompression under peak temperature conditions (e.g., Rey et al., 2009; Le Pourhiet 

et al., 2012).  

 

5.2 Fast cooling and exhumation: is the Gyeonggi Massif a core complex?  

 

If excess argon is not present, for a given sample or in area, hornblende generally has 

an older 
40

Ar/
39

Ar age than biotite as both minerals have different closure 

temperatures. The fact that de Jong and Ruffet (2014a) obtained concordant 
40

Ar/
39

Ar 

(pseudo)plateau ages for hornblende (230.1 ± 1.0 and 229.8 ± 1.0 Ma) and biotite 

(228.1 ± 1.0 Ma) (Fig. 6) thus shows that rocks in the Hongseong area have been 

cooled rapidly during the earliest Late Triassic. In rapidly cooled geological systems 

the closure temperatures for the K-Ar system are likely to be significantly higher than 

the values usually used in the literature, viz., 500 ± 50°C for amphibole (Harrison, 

1981; Baldwin et al., 1990) and 300-325°C for biotite (e.g., Purdy and Jäger, 1976; 

Harrison et al., 1985) that are valid only for moderate cooling rates. In view of the age 

concordance for 0.5-1 mm diameter biotite and hornblende grains de Jong and Ruffet 

(2014a) used closure temperatures of 360°C and 650°C, respectively. The latter 

temperature is in the upper part of the 550–650°C range for hornblende suggested by 

Villa (1998), which he had revised upward with respect to the closure temperature 

band width of 520–600°C Dahl (1996) calculated for an effective diffusion radius of 

80 μm and a cooling rate of ca. 200°C/Ma, using the ionic porosity model. Using 

these closure temperature estimates and the ∼2 Ma difference between the average 

values of the hornblende and biotite single grain dates gives a cooling rate in the order 
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of 150°C/Ma. Using the lowest estimate for hornblende closure in the K-Ar system 

(500°C) would still imply a cooling rate of about 100°C/Ma. 

The efficiency of cooling is also shown by the fact that these concordant 230-

228 Ma hornblende and biotite 
40

Ar/
39

Ar ages are almost identical within uncertainty 

with U–Pb ages of metamorphic rims on zircons reported in the literature (e.g., Guo et 

al., 2005; S.W. Kim et al., 2006, 2008, 2011a, b; Kee, 2011). Rim ages are 234 to 236 

Ma in adjacent Deokjeongri gneisses, 229 to 243 in the Weolhyeonri Complex (Fig. 

4), averaging at Ma in various rocks in the Hongseong area, and between 235 and 237 

Ma in the Gyeonggi Massif. We interpret these zircon rim ages in rocks of central 

Korea as dating their growth because the U–Th–Pb closure temperature of unaltered 

zircon is well over 900°C (Villa, 1998; Cherniak and Watson, 2001; Ireland and 

Williams, 2003; Reiners, 2009), much higher than the temperature during upper 

amphibolite facies experienced by these rocks. At least part of the multiple phases of 

partial melting experienced by the rocks of the Deokjeongri Gneiss Formation (Fig. 

5a) must be related to this event, and thus of Late Triassic age. As suggested in 

section 3.1, the temperature during M2 was probably around 700–750°C in large parts 

of the Gyeonggi Massif, with moderate anatexis taking place, sufficient to form 

metamorphic rims around older zircon crystals. Taking an average age for M2 of 235 

Ma and a temperature of 750°C, cooling from the metamorphic conditions during this 

overprint to the 
40

Ar/
39

Ar closure temperature of 650°C for amphibole would, thus, 

have been completed in about 5 Ma. Oh et al. (2006a) inferred temperatures as high as 

900–950°C for the formation of the Odesan spinel granulite, which they dated at 245 

± 10 Ma using zircon. Using the 
40

Ar/
39

Ar hornblende age and these temperature-time 

estimates for M2, despite its large error, suggests that cooling took 15 Ma. Both 

approaches suggest cooling rates in the order of 20-60°C/Ma. The thermal history of 
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the Deokjeongri gneisses, the Weolhyeonri Complex and the Gyeonggi Massif in the 

Late Triassic, with a period with a cooling rate of 20-60°C/Ma followed by very fast 

cooling of 100-150°C/Ma would fit into a particle part typical of a core complex 

characterized by early near isothermal decompression followed by fast cooling close 

to the low-angle detachment fault (Fig. 13). Magmatic rocks formed by 

decompressional melting cool during exhumation and can be ductilely deformed (Fig. 

11 d-f) after passing the solidus in the upper crust close to the detachment (Fig. 13). 

Although the detailed structural geometry of the Korean Peninsula has been severely 

modified during the Jurassic Daebo tectonic phase, the overall architecture resembles 

that of a metamorphic core complex: the central part being occupied by the Gyeonggi 

Massif that experienced widespread Late Triassic low-pressure high-temperature 

metamorphism and partial melting due to extension and thinning, covered by much 

less metamorphic rocks of the Taean Formation and the Imjingang Belt, and possibly 

capped by Precambrian terranes of the Nangrim and Yeongnam Massifs (Fig. 13).  

A series of very rare low-grade metamorphic sedimentary rocks on Deokjeok 

Island in the Yellow Sea, contain slightly metamorphosed conglomerate, which is cut 

by a 225 ± 3 Ma granitic dyke (Y. Kim et al., 2014). These rocks have been 

speculated to have been deposited as post-orogenic sediments deposited during the 

Triassic in an extensional basin. De Jong and Ruffet (2014a) explained the 

metamorphism of these coarse-grained immature sediments as due to their down-

faulting into the rapidly exhuming still hot metamorphic rocks of the footwall (Fig. 

13), as described for various core complexes. On the basis of a Rb-Sr syntectonic 

muscovite whole-rock isochron age of 226 ± 1 Ma Kim et al. (2000) argued in favour 

of ductile normal faulting on the Gyeonggi Shear Zone along the northern margin of 

the Gyeonggi Massif. It is possible that the ca. 220 Ma-old muscovite from mylonitic 
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quartzite in the Juksung area is related to the same event, but its meaning is somewhat 

uncertain, as this age is only found in one sample.  

 

5.3 A ca. 230 Ma thermo-tectonic event in the Deokjeongri Complex and Taean 

Formation 

 

Meta-sediments of the Taean Formation on Anmyeon Island yielded 

concordant 233 ± 3 Ma (titanite, U-Pb SHRIMP) and 230.7 and 228.8 Ma (muscovite, 

40
Ar/

39
Ar, errors 1.0 Ma) dates (de Jong et al., 2014). Metamorphism probably 

occurred between 400 and 450°C. This is well below the closure temperature of 

titanite (660-700°C, Scott and St. Onge, 1995; Villa, 1998; Frost et al., 2000) and 

muscovite (420-520°C, diffusion dimensions 0.5-1.0 mm, cooling rates of 1-

100°C/Ma, pressures of 0.5 GPa: Harrison et al. (2009); 500-550°C: Villa et al. 

(2014) for muscovite that is not deformed). Thus, these 233-229 Ma mineral dates 

represent metamorphic recrystallization ages instead of cooling ages. Consequently, 

the Taean Formation has been metamorphosed in the Carnian with a timing that is 

strikingly similar to the period of fast cooling of the Hongseong area, about 50 km to 

the East (Fig. 1). The ca. 229.6 Ma syenitic magmatism at Mongsanpo (Fig. 7; Kee, 

2011; Han, 2014), as well as the mafic magmatism on Anmyeon Island, occurring as 

enclaves in the syenite and as doleritic dykes, took place during this time span too. 

Consequently, metamorphism of the Taean Formation and syenitic magmatism in and 

around Anmyeon Island are coeval. Mica and titanite are from rocks located at 6.5 to 

20 km from the dated syenite pluton (Fig. 7), which does not show contact 

metamorphism. The mineral ages are therefore probably not due to the heating by the 

relative small intrusion itself. Also pleading against a simple contact metamorphism 
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interpretation is the fact that the much more voluminous and widespread Jurassic 

plutonism has not resulted in formation of similar-aged rims around zircon. The 

Haemi intrusion in the Hongseong area (Fig. 4) has the same age (230-234 Ma; Choi 

et al., 2009; Seo et al., 2010; Cheong et al., 2014), which is identical within 

uncertainty with the hornblende and biotite 
40

Ar/
39

Ar plateau ages in the Deokjeongri 

Complex, and the average rim age of zircons in this area. Therefore, the Late Triassic 

metamorphism and magmatism that strongly affected rocks at structurally different 

levels probably have a common tectonic cause. Furthermore, the present study reveals 

the presence of ca. 231-229-Ma-old detrital muscovite (section 4.2, Fig. 12a-c) in the 

Early-Middle Jurassic Gimpo Group sandstones, cropping out about 150 km to the 

Northeast, indicating the importance of this Late Triassic event. The syenitic 

magmatism and the intrusion of the doleritic dyke swarm on Anmyeon Island took 

place after the area was affected by two superimposed folding phases. However, a 

number of such Late Triassic intrusive rocks on Anmyeon Island, both in the Taean 

Formation and their probable substratum formed by Proterozoic gneiss of the Gonam 

Complex are affected by local, but intense mylonitization (Fig. 11d, e). This implies 

that ductile deformation continued after intrusion of these ca. 229.6 Ma-old rocks. 

The ca. 226 Ma age of the Gyeonggi Shear Zone would fit into this picture.  

 

5.4 A ca. 240 Ma event in the northern Gyeonggi Massif and Taean Formation 

  

Near concordant ca. 243 and 240 Ma 
40

Ar/
39

Ar (pseudo)plateau ages (Fig. 3a, b) are 

recorded by muscovite from the strongly retrogressed and ductilely deformed rocks in 

the top of the northern Gyeonggi Massif. Consequently, at least part of the main 

ductile deformation, retrogression and cooling of these rocks took place in the Middle 
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Triassic. The saddle-shape of the 
40

Ar/
39

Ar age spectra (Fig. 9) of Paleozoic 

metapelites of the Taean Formation on Anmyeon Island (Fig. 7) implies that the 

partially recrystallized muscovite contains relics of an earlier isotopic system than the 

one indicated by the 229-231 Ma (pseudo)plateau ages of the younger saddle 

minimum in the intermediate temperature steps. The inherited, not completely 

recrystallized, domain would correspond to the concordant low and high temperature 

steps of 237.5 and 237.1 Ma, respectively (Fig. 9). Some other complex muscovite 

40
Ar/

39
Ar age spectra obtained from the Taean Formation on the island also show 

clear evidence of older concordant low and high temperature steps of 240 and 243 Ma 

for muscovite that was recrystallized around 231 Ma (Fig. 10). Similar age spectra for 

partially recrystallized muscovite from metamorphic and magmatic rocks have been 

interpreted similarly (e.g., Cheilletz et al., 1999; Alexandrov et al., 2002; Castonguay 

et al., 2007; de Jong et al., 2009; Tartèse et al., 2011).  

The presence of an older isotope system in Taean muscovites that has not been 

completely overprinted by recrystallization around ca. 231-229 Ma agrees with 

geological observations. The dated muscovite single grains occur as non-deformed 

grains that cross-cut the main tectono-metamorphic fabric in greenschist facies 

metapelites, or are present as non-deformed grains in samples with a well-developed 

S2, which is truncated by non-deformed doleritic dykes (Fig. 8c). At Mongsanpo one 

of such dykes is cut by a 229.5 Ma-old syenite. This clearly shows that the two phases 

of ductile deformation that affected the Taean metasediments occurred during an 

earlier tectono-metamorphic phase that produced folds and cleavages around 240 ± 3 

Ma (Fig. 10), likely during a collision event.  

 The finding of 243-237 Ma 
40

Ar/
39

Ar muscovite ages and age components at 

widely separated locations shows that a Middle Triassic tectonic event that produced 
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deformation structures must have been of regional extent. It also implies that the 

strong ca. 230-235 Ma-old metamorphic recrystallization did not affect all parts of the 

Gyeonggi Massif, or that the massif may contain important tectonic discontinuities. 

Isotopic ages of U–bearing accessory minerals in the range of 240 to 260 Ma are 

relatively common in Korean rocks (Gyeonggi Massif; Suzuki, 2009; Lee et al., 2014; 

Yengkhom et al., 2014; Imjingang Belt and correlatives; D.L. Cho et al., 1996, 2005; 

Kim et al., 2014), which are usually regarded as dating the collision (e.g., Ree et al., 

1996; Kwon et al., 2009; Chough et al., 2013).  

 

 

6. Regional Tectonic meaning of isotopic ages 

 

 In this section we look at the different aspects of the tectonic evolution of the 

Korean collision belt in the 228-235 Ma period characterized by a regional 

tectonically induced, magmatic and metamorphic pulse, which is probably related to 

the post or late collisional episode. The early Late Triassic regional metamorphism in 

Korea is too extensive to be only related to the magmatic intrusions, suggesting that 

the fundamental the thermal anomaly induced by mantle processes was ultimately 

responsible for both the metamorphism and magmatism. 

 

6.1 Late Triassic post-collisional magmatism and metamorphism 

Subsequent to crustal thickening, orogenic belts were usually affected by 

horizontal crustal extension, and late-tectonic or post-collisional magmatism that 

evolved during a short period i.e., a magmatic pulse. Extensional tectonic settings 

developed during continuing plate convergence show the development of shoshonitic 
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rocks associated with low-, medium- and high-K calc-alkaline rocks that have their 

source in the mantle and typically evolve over a short time (Kay and Kay, 1993; 

Manley et al., 2000; Gill et al., 2004; Fowler et al., 2008; Kay and Coira, 2009). Such 

shoshonitic rocks, and associated granitoids, may form from potassic calc-alkaline 

magmas, which in turn were produced by partial melting of previously subduction-

modified (metasomatized) sub-continental mantle lithosphere by mafic magmas and 

underplates created during adiabatic decompressional melting of upwelling hot 

asthenosphere (e.g., Davies and von Blanckenburg, 1995; Turner et al., 1996; Gill et 

al., 2004; Duggen et al., 2005; Dilek and Altunkaynak, 2009; von Raumer et al., 

2014). This Mg-rich potassic magmatism has, consequently, been associated with 

thermal anomalies created in rifted areas in (continental) magmatic arcs, possibly by 

slab windows linked to subduction of aseismic and/or spreading ridges (Kay and 

Coira, 2009; Deng et al., 2011; von Raumer et al., 2014), or slab roll-back and 

steepening (Peccerillo, 2005; Dilek and Altunkaynak, 2009; Kay and Coira, 2009). In 

addition, such rocks characterize post-collisional settings where an elevated orogen 

may undergo gravity controlled extensional collapse and associated lithospheric 

thinning, related to Rayleigh–Taylor instability-related convective thinning (England 

and Houseman, 1989; Platt et al., 1998; Molnar and Stock, 2009), or thermo-

mechanical removal of lower crust and uppermost mantle (delamination) (Turner et 

al., 1996, 1999; Gîrbacea and Frisch, 1998; Duggen et al., 2005), or break-off of the 

dense oceanic portion of the subducted slab and separation from the stuck buoyant 

continental portion (Liégeois and Black, 1987; Davies and von Blanckenburg, 1995 

Brown and Dallmeyer, 1996; Ledru et al., 2001; Peccerillo, 2005; Schulmann et al., 

2008; Dilek and Altunkaynak, 2009; von Raumer et al., 2014). The distinctive trace-

element signature of the Late Triassic high-K calc-alkaline magmatic rocks in the 
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central Gyeonggi Massif and rare plutons in the Ogcheon Belt and the Yeongnam 

Massif (Fig. 1; Williams et al., 2009; S.W. Kim 2011a), viz: (1) large-ion lithophile 

element enrichment (Rb, Ba, Sr, Th, K: 100–1000x with respect to the primitive 

mantle) and (2) variable depletion of high field strength elements (Nb, Ta, P, Ti), 

agree with their formation by these processes.  

Mg-rich potassic magmatism is thus due to tectonic replacement of cold 

lithosphere, for instance below an orogen, by hot asthenospheric mantle. The result is 

a massif increased heat flux into the crust both by conductive heat transport (hot 

asthenosphere) and by advective heat transport (magma) (Elliott et al., 1998; 

Thompson, 1999; Bodorkos et al., 2002). This steepens the lithosphere geotherm, 

leading to mid-crustal felsic and mafic plutonism. Numerical modelling by Thompson 

(1999) has shown that especially mafic intrusions, following asthenospheric 

upwelling and underplating of basaltic magma, are instrumental in raising the 

geotherm. The effect of such disturbed thermal regimes is significant heating of the 

lower crust and creation of a thermal anomaly that propagates upwards into the 

middle and upper crust (e.g., Bakker et al., 1989; Loosveld and Etheridge, 1990; van 

Wees et al., 1992; Bodorkos et al., 2002). Advection of voluminous magmas has the 

potential to raise temperatures in the middle crust very quickly (Loosveld and 

Etheridge, 1990; van Wees et al., 1992; Elliott et al., 1998; Bodorkos et al., 2002). 

Such mechanisms could thus create temperatures in the range of 700–900°C at depths 

of only 20-30 km, typical for high-temperature/low–medium-pressure metamorphism, 

and associated anatexis. Without additional heating from an advected basic heat 

source, generally underplated or interplated mafic to intermediate, mantle-derived 

magma, it is unlikely that the continental crust will ever acquire temperatures needed 

for fluid-absent melting, disregarding peraluminous leucogranites (Thompson, 1999). 
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This corroborates the argument of Oh et al. (2006a) who underscored that the Late 

Triassic hypersthene-bearing monzonite intrusion in the eastern Gyeonggi Massif 

alone could not have been a sufficient heat source to produce the >900°C temperature 

needed for the nearby granulite facies metamorphism, and that large mafic-ultramafic 

complexes at a deeper level were required. One of the ways to create ultrahigh 

temperature metamorphism producing granulites containing hercynitic low-Zn spinel 

and quartz is by advection of heat in the form of basaltic melts or diapiric 

emplacement of the asthenosphere (Brown, 2007; Harley, 2008; Kelsey, 2008). 

The occurrence of mafic rocks mingled with the 229.6 Ma-old syenite and the 

dolerite dyke swarm on Anmyeon Island (section 3.3.3) clearly points to mafic 

underplating. Field relations on the island show that both magmatic bodies intruded 

the Taean Formation after the two main ductile deformation phases. This can also be 

inferred for the similar-aged (mostly 233-224 Ma) magmatic suite, including high-K 

calc-alkaline and shoshonitic series rocks, occurring throughout Korea, which shows 

the installation of an extensional tectonic regime in Late Triassic time after 

contraction-related structures were formed. Their Nd and Sr isotopic systematics 

suggest that the magmas from which most of these plutons formed were derived from 

mantle melts contaminated by middle to upper crustal materials (Williams et al., 

2009; S.W. Kim et al., 2011a). This process probably has been the trigger for the 

observed regional Late Triassic metamorphism. This event affected the middle 

Paleozoic greenschist facies metamorphic Taean Formation (T< 450˚C; age: 233-229 

Ma), large parts of the Gyeonggi Massif (M2 event), the Deokjeongri gneisses and 

Weolhyeonri complex (upper amphibolite facies grade, accompanied by moderate but 

widespread anatexis; P = 0.75 GPa, T = 700–750°C; age: ∼235-228 Ma), as well as 

the Odesan spinel granulites (T = 900-950˚C; probable age: 245 ± 10 Ma). The 
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regional thermal gradient in the Gyeonggi Massif indicated by the pressure-

temperature conditions during this M2 event was probably somewhat lower than 

suggested by the granulites, but still in the order of 30-40˚C/km. Such values 

correspond to thermal conditions found in many of the Cenozoic hyper-thermal basins 

present in the Alpine-Carpathian collision belt of Europe (Cermak, 1993), like e.g., 

the Alboran Basin, the Tyrrhenian Sea, western Turkey-Aegean and the Pannonian 

Basin. These extensional basins were formed in response to delamination, roll back 

and detachment of slabs (de Boorder et al., 1998; Wortel and Spakman, 2000; Duggen 

et al., 2005; Edwards and Grasemann, 2009; Jolivet et al., 2013). Much of the 

Neogene-Quaternary volcanism in the Mediterranean region is potassic and mantle-

derived (Gîrbacea and Frisch, 1998; Gill et al., 2004; Peccerillo, 2005; Duggen et al., 

2005; Bianchini et al., 2008). Therefore, the Late Triassic magmatism and 

metamorphism in Korea probably reflect the rapid transfer of heat promoted by 

extension and magmatic underplating, raising the temperature of the cool lithosphere 

sufficiently to initiate lithospheric melting. This also implies that there is a distinct 

possibility that the 231 ± 3 Ma (Guo et al., 2005; Kim et al., 2006) constraint for the 

timing of the high-pressure, obtained by U-Pb SHRIMP dating of zircons in the 

pervasively retrogressed eclogite and garnet granulite in the Hongseong area also 

reflect the metamorphism related to the Late Triassic magmatic and thermal pulse, 

and has no bearing on the age of the high-pressure metamorphism in Korea. First of 

all, these ca. 231 Ma ages are significantly younger than the most recently obtained 

age of 240 ± 5 Ma on the eclogite (Park et al., 2014b). Secondly, on the basis of rare 

earth element (REE) patterns indicative of eclogite facies metamorphism in ca. 231-

Ma-old rims of dated zircon grains, Kim et al. (2006) regarded this age as the timing 

of the high-pressure metamorphism. However, they also indicated that some 
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recrystallized zircons have old cores with ca. 231 Ma ages but that retained pre-

metamorphic magmatic zoning patterns and chemical composition. This disparity 

indicates that the observed approximately flat middle to heavy REE pattern and the 

absent negative Eu-anomaly in the zircon rims can no longer be taken as indicative 

for high-pressure metamorphism at around 231 Ma: both data sets may no longer 

point to the same event. Li et al. (2008) and de Jong et al. (2009) discussed a 

comparable case of fluid-mediated resetting of zircon that recrystallized during the 

exhumation of high-pressure metamorphic rocks in the Tianshan (NW China), also in 

association with widespread post-collisional bi-modal magmatism.  

 

6.2 Slab detachment/delamination and possible consequences  

 

Numerical modelling (Gerya 2010; van Hunen and Allen, 2011, and 

references therein) showed that it can take over 5-30 million years between the 

establishment of the peak pressure conditions in a subducted crustal unit or 

continental collision belt and initiation of the process leading to slab break-off, 

resulting in asthenospheric upwelling. Slab break-off occurs in the part of the slab 

where tensile stresses are the largest, and in a collisional context, therefore, will 

typically occur at the oceanic side of the previous „passive margin‟ (van Hunen and 

Allen, 2011; Duretz and Gerya, 2013). Therefore, plate strength is important for the 

time-lag between continental collision and slab break-off. This delay depends mostly 

on the strength, and thus age, of the previously subducted oceanic lithosphere, and 

ranges from 10 million years, for young, weak slabs, to 25 million years, for a 200-

Ma-old, strong slab (van Hunen and Allen, 2011). Lithospheric delamination, 

destabilization and convective removal of the dense lithospheric layer beneath rigid 
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lithosphere occur on a similar timescale (e.g., England and Houseman, 1989; Arnold 

et al., 2001; Bodorkos et al., 2002). The latter authors underscored that the period 

over which crustal heating occurs may increase to 20-25 million years when the 

vertical distance between the middle crust where magmatism and metamorphism are 

manifest and the zone where the thermal anomaly is generated is in the order of 65 

km. Data from Kim et al. (2011a) show that the Late Triassic high Ba-Sr magmatic 

suite in Korea has low HREE (Yb 0.6-2.2 ppm, av. 1.2; Y = 6-28 ppm, av. 12.5) 

contents and show relatively steep HREE patterns (chondrite normalized Gd/Yb ∼ 2-

5). Their data also show the almost exclusive lack of negative Eu anomalies. As Y 

and Yb fractionate in garnet and Eu in plagioclase this suggests that garnet was 

present as residual phase in the source of the magmas, but plagioclase was absent. 

Such a garnet-bearing, plagioclase-free source could be placed within a thickened 

lower crust and subducted slab or a mantle region. Using this reasoning Jiang et al. 

(2013) argued for a source region of high-K calc-alkaline granitoids in the western 

Kunlun orogeny below ~50 km. Duggen et al. (2005) established that partial melts in 

the garnet stability field generally have high Dy/Yb ratios (>2.5), whereas melting in 

the spinel stability field would produce melts with Dy/Yb ratios below 1.5. The data 

obtained by Kim et al. (2011a) show that the highest Dy/Yb ratios for Late Triassic 

intrusive rocks with SiO2 <55%, and MgO > 3.4%, are: 2.7 and 3.4 (a mangerite and 

diorite in the Hongseong and Yangpyeong areas), and between 2.2 and 2.0 for the 

Macheon monzodiorites. This may suggest an origin within the garnet peridotite 

stability field at depths ~70–80 km for the former and of <60 km for the latter. The 

most mafic rocks in the Hongseong and Yangpyeong areas have very high Cr (500 

ppm) and high Ni (> 100 ppm) contents. Such high values would point to a 

subduction-modified peridotite source (Jiang et al., 2010). 
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For such a deep source of least 50 km or maybe as high deep as 75 km it may 

take 20-25 million years for crustal heating to occur. Modelling studies of slab break-

off point to time-lags in the order of 10-30 million years. Taking 230-235 Ma as age 

of the magmatic and metamorphism pulse related to the delamination or slab break-

off, the latter event and the climax of the original collision might have taken place 10-

30 million years earlier, that is during the 240-265 Ma period. Recent 
40

Ar/
39

Ar dating 

of muscovite, biotite and hornblende single grains from different tectonic units in the 

Imjingang Belt yielded tightly clustered plateau ages of around 250 Ma (de Jong and 

Ruffet, in prep.). These ages are within error of a concordant U-Pb SHRIMP age of 

252.9 ± 1.9 Ma for a metamorphic overgrowth on detrital cores around zircons in a 

paragneiss in the Imjingang Belt, interpreted as dating the medium-pressure 

metamorphic peak (Cho et al., 2005). This would imply the collisional metamorphism 

and deformation, at least in the Imjingang belt, occurred around Permo-Triassic 

boundary times. Geochronology of many collision belts in the world has clearly 

documented that exhumation of (ultra)high-pressure metamorphic rocks is a fast 

process. Time-lags of 5-25 Ma between high-pressure conditions and emplacement at 

high crustal levels are commonly implied by the data (e.g., Treloar and Rex, 1990; 

Fossen and Dunlap, 1998; Milnes and Koyi, 2000; Treloar et al., 2003; de Jong 2003; 

Baldwin et al., 2004; Çelik et al., 2006; Schulmann et al., 2008; Qui et al., 2010; 

Wilke et al., 2010). Slab detachment may occur after ~15 millions years of 

continental subduction (van Hunen and Allen, 2011; Duretz and Gerya, 2013). This 

would imply that eclogite facies metamorphism and subduction in the Korean tectonic 

system might have occurred possibly 10 to 20 million years earlier than the 240-265 

Ma period, that is in the Late Permian. This then implies that the isotopic age estimate 
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for the eclogite facies metamorphism of 240 ± 5 Ma (Park et al., 2014b) is probably 

too young. 

 The Gyeonggi Massif, which is strongly affected by metamorphism in the 

latest Permian to late Middle Triassic, is bordered by two Precambrian terrains, the 

Nangrim and Yeongnam massifs (Figs. 1 and 12), that are essentially not affected by 

this, and which have been correlated to the North China Craton (Chough et al., 2000; 

Kwon et al., 2009; Oh, 2012). Subduction of oceanic lithosphere below a continental 

crustal domain containing the Nangrim and Yongnam massifs seems the most 

straightforward way to account for the depths of 60-75 km indicated by the petrology 

of retrogressed high-pressure metamorphic rocks. Parts of the Gyeonggi Massif may 

also have been underthrust below this crustal domain. Such a configuration does not 

only explain the present-day configuration of the Precambrian terranes in Korea (Fig. 

1), and the local high-pressure metamorphism, but also the important 235-228 Ma 

post-contractional metamorphism at lower crustal level, and the fast cooling that is 

linked to exhumation of the Gyeonggi Massif (Fig. 13). In response to such 

underthrusting of continental crust topography develops on the overriding plate (van 

Hunen and Allen, 2011; Duretz and Gerya, 2013). During slab detachment and 

delamination dense lithosphere is replaced by lower-density asthenosphere, which 

induces thermal uplift on the order of 100‟s of metres to several km (Arnold et al., 

2001; Molnar and Stock, 2009; van Hunen and Allen, 2011; Duretz and Gerya, 2013). 

The Pyeongan Supergroup forms part of the youngest Paleozoic sedimentary cover 

series of Nangrim and Yongnam massifs. It comprises a thick Late Paleozoic clastic 

successions formed in shallow marine, deltaic, and fluvial environments (Chough et 

al., 2000). Deposition was terminated by thick non-marine sandstone–shale series 

probably in Late Permian time (Chang, 1997), in which feldspathic components are 
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more abundant, implying a change in tectonic stability of the source area (Chough et 

al., 2000). This change in depositional environment in the overriding plate, and the 

absence of Late Permian (?) and Triassic sediments covering the Nangrim and 

Yongnam massifs may be related to topography generated by subduction initiation, 

underthrusting of crustal segments, and thermal uplift associated with slab break-off 

or delamination. 

 

 

7. Conclusions 

 

Our study has shown that: 

1. The 235 to 229 Ma metamorphism must have been of regional extend, 

affecting both low to mid-crustal levels, producing amphibolite and granulite 

facies metamorphism and local anatexis (Gyeonggi Massif, Hongseong zone), 

and greenschist facies metamorphism at higher crustal levels (Taean 

Formation).  

2. Cooling between 231 and 228 Ma was fast at the end (100-150˚C/Ma), 

whereas earlier cooling from peak temperature at 234-235 Ma conditions to 

hornblende closure was much less fast. Extension, heating and fast cooling 

were concentrated in the Gyeonggi Massif, suggesting that it formed a core 

complex in the Late Triassic. 

3. The Late Triassic thermal pulse is nearly coeval with widespread post-

collisional magmatism (237-226 Ma), suggesting the were linked. 
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4. This Late Triassic magmatism manifested by mafic dykes and syenite plutons 

and granitoids is clearly developed after contractional structures, truncating 

several generations of folds and tectonic foliations. 

5. The Late Triassic metamorphism and magmatism may reflect the rapid 

transfer of heat by combined advective and conductive asthenospheric heat 

transport promoted by extension and magmatic underplating. The heat supply 

was related to post or late collisional delamination of the lower crust and 

uppermost mantle, and/or oceanic slab break-off.  

6. 237-243 Ma plateau ages (Gyeonggi Massif) and age components (Taean 

Formation) point to an older tectono-metamorphic event, which is partially to 

strongly overprinted. Deformation structures of rocks with these ages show 

that this late Middle Triassic event is likely to be related to collisional 

tectonism.  
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Figure Captions 

 

Figure 1.  

Tectonic sketch map of the southern part of the Korean Peninsula. Maps of key areas 

discussed are outline; locations referred to in the text are marked; H, Hongseong; O, 

Odesan. 
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Figure 2.  

Geological sketch map of Juksung area based on Kee (2011) with sample locations; 

40
Ar/

39
Ar ages indicated from de Jong and Ruffet (2014b). DMZ, Demilitarized Zone; 

GSZ, Gyeonggi Shear Zone. 

 

Figure 3 a, b.  

Step-heating age spectra of muscovite single grains from quartzitic chlorite-mica 

schists in Juksung area (Fig. 2). Apparent age errors are plotted at the 1σ level and do 

not include the errors on the 
40

Ar*/
39

ArK ratio and age of the monitor and decay 

constant. 

 

Figure 4.  

Geological sketch map of the Hongseong area modified after Kee (2011), Kim et al. 

(2011b), de Jong and Ruffet (2014a); mafic and ultra mafic rocks after Oh et al. 

(2014). Isotopic ages from Kee (2011) (U-Pb, zircon) and de Jong and Ruffet (2014a) 

(
40

Ar/
39

Ar). BB, Bibong. 

 

Figure 5 a-c.  

Field photographs (a) Anatexis shown by irregular veins and patches along the main 

foliation and shear zones cut by irregular veins of fine-grained non-deformed granitic 

rocks, Hongseong area, (b) folded marble with mafic-ultramafic lenses that occur 

jointly with (c) fine-grained brick red siliceous layers/fine quartzites, Gonam 

Complex, Anmyeon Island. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 67 

Figure 6  

Step-heating age spectra of hornblende and biotite single grains from amphibolites in 

the Hongseong area, locations, see Fig. 4, and a corresponding relative frequency plot 

of all step ages, based on data from de Jong et al. (2014). Apparent age errors are 

plotted at the 1σ level and do not include the errors on the 
40

Ar*/
39

ArK ratio and age 

of the monitor and decay constant. 

 

Figure 7.  

Geological sketch map of Anmyeon Island based on Kee (2011), modified after de 

Jong et al. (2014). Isotopic ages from Kee (2011) (U-Pb, zircon) and de Jong et al. 

(2014) (
40

Ar/
39

Ar, mica; U-Pb, titanite). Age Mongsanpo syenite (SHRIMP U-Pb, 

zircon), after Han (2014); age intusive body in Gonam Complex from Kee (2011).  

 

Figure 8 a-c.  

Field photographs Anmyeon Island (a) The earliest cleavage S1 is only locally 

developed in meta-pelites as the axial plane cleavage of rare recumbent tight to 

isoclinal folds; note the cross-cutting S2, which also refracts on sandstone layers. (b) 

Megascopic open to tight disharmonic flexural slip F2 folds. (c) Curved but not folded 

mafic dyke truncates small-scale F2 folds and axial cleavage S2 (parallel to the 

hammer handle). 

 

Figure 9. 

Step-heating age spectra of muscovite single grains from low-grade metapelites of the 

Taean Formation, Anmyeon Island (locations, Fig. 7), modified after de Jong et al. 
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(2014). Apparent age errors are plotted at the 1σ level and do not include the errors on 

the 
40

Ar*/
39

ArK ratio and age of the monitor and decay constant. 

 

Figure 10.  

Relatively frequency plot of all age steps of muscovite samples (N=6), based on data 

from Han (2014). The ca. 237 Ma peak corresponds to the concordant low- and high-

temperature steps in sample JK20 (Fig. 9). Titanite U-Pb age (232.5 ± 3.0 Ma) from 

de Jong et al. (2014); Mongsanpo syenite (229.6 ± 3.5 Ma, SHRIMP U-Pb, zircon) 

from Han (2014). 

 

Figure 11 a-f.  

a-c) Features attributable to mingling of syenite and mafic melts in the intrusive body 

at Mongsanpo. a) Flames of syenite invading mafic rocks. (b) Isolated pillow-like 

lobes of mafic enclaves define a preferred orientation in the syenite, note their darker 

and finer grained chilled margins. (c) Cuspate-concave contacts between syenite and 

mafic rock, suggesting magma mingling, note the faint flow banding in the mafic rock 

parallel to the contact. (d) Moderately eastward dipping ultra-mylonites developed in 

the syenite body (looking north). (e) NNW-plunging stringers of extended tourmaline 

crystals in a ductilely deformed granitic rock with a mylonitic quartz-feldspar fabric, 

Gonam Complex, Anmyeon Island. (f) Boudin of tourmaline granite truncates the 

axial plane foliation of an F2 fold, looking Northward down-plunge and parallel to the 

earlier stretching lineation. Note the crenulation of the earlier S1 shear fabric in the F2 

hinge zone, Gonam Complex, Anmyeon Island. 

 

Figure 12 a-c.  
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Step-heating age spectra of detrital muscovites from sandstones of the Gimpo Group 

in the Juksung area (Fig. 2) (a) JK52, (b) JK53, (c) JK56. Apparent age errors are 

plotted at the 1σ level and do not include the errors on the 
40

Ar*/
39

ArK ratio and age 

of the monitor and decay constant. 

 

Figure 13.  

Cartoon section of a possible post-collisional configuration in the Korean tectonic 

system in the Late Triassic, showing a mantle upwarping, and resulting collapse of the 

isotherms over the extended and thinned region that coincides with the Gyeonggi 

Massif. Pre-stretching thickness of the brittle upper crust is about 18 km. Isothermal 

surfaces in ˚C. The particle path (double line) shows early near-isothermal 

decompression followed by fast cooling that takes over the thermal regime close to 

the detachment fault; polygon and square: approximate positions of biotite and 

hornblende closure, respectively. The dotted line represents the solidus, implying that 

magmatic rocks may be ductilely deformed during advanced exhumation and 

thinning, as is demonstrated by a number of Late Triassic intrusions in Anmyeon 

Island (Fig. 11 d-f). Modified after Rey et al. (2009) and Whitney et al. (2013). 

 

Table 1.  

40
Ar /

39
Ar analytical data of laser step-heating of detrital muscovite single grains 

Gimpo Formation in the Juksung area (Fig. 2). 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 70 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 71 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 72 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 73 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 74 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 75 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 76 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 77 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 78 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 79 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 80 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 81 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 82 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 83 

Graphical abstract 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 84 

Table 1 

               

  

 

Title Nb of steps J parameter ± J λ (y-1) ± λ (y-1) Discrimination ± Discrimination  

     

  

 
12JK52 muscovite 15 6.03E-03 1.65E-05 5.53E-10 1.35E-12 1.008908 1.32E-03 

      

  

Step 40Ar ± 40Ar 39Ar ± 39Ar 38Ar ± 38Ar 37Ar ± 37Ar 36Ar ± 36Ar 40Ar*/39ArK ± 40Ar*/39ArK  age (Ma) ± Age  (Ma) % 39Ar  Atm. Cont. 

1 352.228068 0.420043 14.395539 0.104829 0.236583 0.037202 0.013257 0.037451 0.222533 0.018977 20.170229 0.414172 207.39 4.09 0.89 17.45 

2 933.944433 0.690084 40.61112 0.110663 0.571688 0.036055 0.016315 0.037457 0.068242 0.02294 22.686353 0.179078 231.67 1.90 2.51 1.22 

3 1659.632009 0.875613 72.356005 0.115035 0.894387 0.031453 0.024647 0.039093 0.082037 0.021418 22.783899 0.099246 232.61 1.26 4.47 0.53 

4 1521.4689 1.033914 67.0008 0.081508 0.7819 0.049358 0.000001 0.03526 0.0416 0.018069 22.700607 0.089909 231.81 1.19 4.14 0.00 

5 403.759684 0.292825 17.595465 0.088138 0.161049 0.029562 0.000001 0.014641 0.006988 0.015941 23.005698 0.289285 234.73 2.89 1.09 0.00 

6 2266.876438 1.235198 100.6363 0.118514 1.239322 0.055441 0.000001 0.02603 0.029132 0.023421 22.612714 0.079586 230.97 1.12 6.22 0.00 

7 2877.81227 1.224469 128.10101 0.229333 1.558858 0.064502 0.000001 0.018332 0.025638 0.021005 22.57792 0.069889 230.63 1.06 7.92 0.00 

8 1863.826576 0.785475 82.514606 0.150469 1.017864 0.04731 0.000972 0.016557 0.058293 0.014385 22.554572 0.072679 230.41 1.07 5.10 0.01 

9 2080.39263 1.25273 92.383917 0.149588 1.104311 0.041271 0.017592 0.018981 0.041275 0.015506 22.561381 0.069353 230.48 1.05 5.71 0.00 

10 4810.34471 2.577919 213.17234 0.171377 2.68966 0.070926 0.037176 0.017632 0.066532 0.01388 22.647364 0.041799 231.30 0.91 13.18 0.00 

11 8118.77879 2.639896 360.08711 0.496376 4.463243 0.097525 0.096648 0.031685 0.059017 0.015604 22.671852 0.045674 231.53 0.93 22.26 0.00 

12 4293.131035 1.169017 190.4884 0.176628 2.357669 0.036603 0.036483 0.022771 0.006576 0.014538 22.69977 0.043136 231.80 0.92 11.77 0.00 

13 2605.916701 1.805128 115.42224 0.202905 1.465123 0.040606 0.000001 0.029466 0.020839 0.01494 22.69657 0.064441 231.77 1.03 7.13 0.00 

14 1454.839795 0.893405 64.526981 0.077177 0.803337 0.032227 0.000001 0.024672 0.021359 0.01841 22.621589 0.093276 231.05 1.21 3.99 0.00 

fusion 1316.942559 0.920609 58.469049 0.175597 0.690455 0.049888 0.045806 0.020672 0.018257 0.017356 22.607926 0.114845 230.92 1.37 3.61 0.00 

               

  

 

Title Nb of steps J parameter ± J λ (y-1) ± λ (y-1) Discrimination ± Discrimination  

     

  

 

12JK52 musc+biot 23 6.03E-03 1.65E-05 5.53E-10 1.35E-12 1.008908 1.32E-03 

      

  

Step 40Ar ± 40Ar 39Ar ± 39Ar 38Ar ± 38Ar 37Ar ± 37Ar 36Ar ± 36Ar 40Ar*/39ArK ± 40Ar*/39ArK  age (Ma) ± Age  (Ma) % 39Ar  Atm. Cont. 

1 1004.960636 0.606844 32.194278 0.105498 0.774998 0.034755 0.031016 0.027751 1.751745 0.023294 15.65999 0.24046 163.04 2.46 0.79 49.76 

2 169.706 0.26312 8.316269 0.052337 0.124889 0.025 0.026611 0.023589 0.09696 0.012991 17.191102 0.469295 178.22 4.68 0.20 15.65 

3 534.048329 0.648037 27.124616 0.089381 0.350525 0.029867 0.036988 0.021275 0.096686 0.0168 18.809608 0.194098 194.13 2.02 0.66 4.34 

4 851.008299 0.466541 40.389651 0.087886 0.543521 0.034456 0.031616 0.027344 0.141051 0.016888 20.219815 0.133524 207.88 1.49 0.99 3.91 

5 770.407295 0.535708 35.647834 0.142212 0.440546 0.036945 0.017813 0.026948 0.056956 0.020679 21.314267 0.191697 218.47 2.01 0.87 1.24 

6 334.32742 0.225519 14.540738 0.045954 0.158049 0.02991 0.020464 0.029246 0.052479 0.012899 22.125773 0.26972 226.29 2.71 0.35 3.64 

7 902.086538 0.321931 39.457953 0.103413 0.524609 0.035555 0.014746 0.03491 0.095468 0.025749 22.335086 0.201229 228.30 2.10 0.96 2.17 

8 1975.282669 1.255577 87.353959 0.103273 1.079779 0.033497 0.009481 0.02799 0.09367 0.019702 22.473413 0.078564 229.63 1.11 2.13 0.48 

9 804.014198 0.659645 34.987739 0.177903 0.404834 0.036235 0.000001 0.018521 0.078397 0.021299 22.503852 0.2139 229.92 2.21 0.85 1.94 

10 712.062549 0.692162 31.450531 0.094495 0.401388 0.021117 0.000001 0.030891 0.014014 0.021078 22.68344 0.209613 231.65 2.17 0.77 0.00 

11 2256.864094 0.941453 98.370254 0.247626 1.183053 0.040322 0.000001 0.024942 0.162084 0.018695 22.638454 0.086112 231.21 1.16 2.40 1.19 

12 2183.318032 1.201626 96.855897 0.26241 1.18573 0.033702 0.036705 0.026595 0.06194 0.015047 22.529316 0.082707 230.17 1.14 2.36 0.00 

13 10591.29951 2.54588 460.74773 0.529412 5.982881 0.114666 0.070499 0.026164 0.925239 0.017584 22.579616 0.043501 230.65 0.92 11.24 1.64 

14 2144.468332 1.413726 94.917297 0.095919 1.22053 0.033009 0.016705 0.028557 0.03224 0.017492 22.666965 0.067293 231.49 1.04 2.32 0.00 

15 3438.546216 1.734061 151.42581 0.221105 1.952881 0.060173 0.041608 0.026727 0.139488 0.017257 22.614247 0.057279 230.98 0.99 3.70 0.28 

16 9548.473198 2.388592 421.91429 0.20467 5.292636 0.045796 0.037631 0.016169 0.18115 0.008524 22.679054 0.03334 231.60 0.88 10.30 0.00 

17 3823.606279 1.780127 167.37698 0.098909 2.032298 0.039566 0.040882 0.020452 0.21652 0.024835 22.643323 0.056144 231.26 0.98 4.08 0.74 

18 10186.77531 2.199705 452.32125 0.317185 5.626084 0.071139 0.082018 0.019387 0.080265 0.012013 22.641492 0.035109 231.24 0.89 11.04 0.00 

19 7454.357299 2.050219 330.68314 0.497896 3.984237 0.069469 0.120903 0.023249 0.10003 0.013733 22.627377 0.047436 231.11 0.94 8.07 0.00 

20 2424.597379 0.832755 105.55298 0.447234 1.325998 0.060597 0.047182 0.027204 0.18302 0.015903 22.643603 0.11048 231.26 1.34 2.58 1.29 

21 5220.542451 1.80719 231.65284 0.234724 3.003635 0.075614 0.019712 0.02337 0.066526 0.015549 22.624282 0.043272 231.08 0.92 5.65 0.00 

22 22344.71437 7.053859 991.61214 0.835321 12.504033 0.178907 0.078514 0.020243 0.117511 0.015822 22.670832 0.036487 231.52 0.89 24.20 0.00 
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fusion 3227.932766 1.059705 142.47274 0.165617 1.754633 0.092484 0.062914 0.012295 0.056611 0.017157 22.71529 0.053832 231.95 0.97 3.48 0.00 

               

  

 

Title Nb of steps J parameter ± J λ (y-1) ± λ (y-1) Discrimination ± Discrimination  

     

  

 

12JK53 muscovite 16 6.04E-03 1.66E-05 5.53E-10 1.35E-12 1.008908 1.32E-03 

      

  

Step 40Ar ± 40Ar 39Ar ± 39Ar 38Ar ± 38Ar 37Ar ± 37Ar 36Ar ± 36Ar 40Ar*/39ArK ± 40Ar*/39ArK  age (Ma) ± Age  (Ma) % 39Ar  Atm. Cont. 

1 570.241714 0.759958 25.386178 0.09687 0.391354 0.026284 0.000001 0.024426 0.318058 0.018473 18.995821 0.229667 196.31 2.36 1.01 15.32 

2 371.943122 0.352409 16.632062 0.090151 0.258491 0.036763 0.000001 0.011732 0.077974 0.017898 21.171943 0.335338 217.50 3.34 0.66 5.20 

3 1077.940802 0.568127 46.975941 0.087668 0.540027 0.044597 0.000001 0.029751 0.137788 0.017874 22.269154 0.123364 228.09 1.44 1.87 2.82 

4 551.499632 0.264674 24.100123 0.084527 0.364803 0.036901 0.000001 0.017564 0.071883 0.01624 22.191721 0.213521 227.34 2.21 0.96 2.89 

5 1885.087767 1.227246 82.848497 0.189674 1.002293 0.031353 0.005527 0.017763 0.136791 0.018438 22.447086 0.089747 229.80 1.19 3.30 1.21 

6 510.560228 0.448448 22.383516 0.074557 0.255881 0.025557 0.000001 0.02032 0.04381 0.020482 22.414445 0.278612 229.49 2.80 0.89 1.60 

7 1466.361501 0.662189 65.192128 0.138315 0.794026 0.027981 0.000001 0.019791 0.04756 0.017761 22.451848 0.097781 229.85 1.24 2.60 0.04 

8 1388.6676 0.669279 62.6023 0.122891 0.71 0.040893 0.0005 0.021472 0.0152 0.024071 22.280198 0.123961 228.20 1.44 2.49 0.00 

9 4227.6862 1.706064 189.4152 0.117374 2.4144 0.077911 0.0189 0.034318 0.0517 0.019486 22.410389 0.045343 229.45 0.92 7.54 0.00 

10 7202.376874 3.357468 323.22078 0.51087 3.951606 0.0713 0.089913 0.022126 0.100667 0.023842 22.363132 0.051987 228.99 0.95 12.87 0.00 

11 5667.365922 3.061676 254.21458 0.184671 3.198001 0.028911 0.048626 0.014187 0.083326 0.02401 22.368563 0.045306 229.05 0.92 10.12 0.00 

12 8967.35105 2.945643 402.60183 0.328118 4.86981 0.066695 0.160929 0.025677 0.153028 0.022597 22.334051 0.039273 228.71 0.90 16.03 0.00 

13 6036.174463 2.137576 270.03588 0.34269 3.370151 0.073202 0.000761 0.01984 0.148048 0.019292 22.363658 0.046982 229.00 0.93 10.75 0.00 

14 3112.735879 1.335461 139.40827 0.257471 1.765444 0.081887 0.012861 0.023262 0.079268 0.023586 22.332984 0.071506 228.70 1.06 5.55 0.00 

15 9319.708326 3.345235 419.35236 0.305251 5.203462 0.081059 0.072903 0.018244 0.121119 0.020414 22.309645 0.037541 228.48 0.89 16.70 0.00 

fusion 3703.30349 3.291695 166.51849 0.142839 2.149861 0.059121 0.039823 0.018692 0.053923 0.020973 22.315516 0.054638 228.54 0.97 6.63 0.00 

               

  

 

Title Nb of steps J parameter ± J λ (y-1) ± λ (y-1) Discrimination ± Discrimination  

     

  

 

12JK53 musc+biot 22 6.04E-03 1.66E-05 5.53E-10 1.35E-12 1.008908 1.32E-03 

      

  

Step 40Ar ± 40Ar 39Ar ± 39Ar 38Ar ± 38Ar 37Ar ± 37Ar 36Ar ± 36Ar 40Ar*/39ArK ± 40Ar*/39ArK  age (Ma) ± Age  (Ma) % 39Ar  Atm. Cont. 

1 1138.686804 0.674705 24.247154 0.097171 0.812066 0.040595 0.011139 0.024899 2.857576 0.019774 13.104743 0.313461 137.68 3.21 0.59 72.06 

2 461.131169 0.377896 23.450881 0.09318 0.370797 0.034322 0.017168 0.021899 0.245512 0.010558 16.776783 0.15246 174.45 1.63 0.57 14.56 

3 571.564976 0.395097 30.350904 0.083772 0.403175 0.044383 0.000001 0.026437 0.18393 0.017994 17.214862 0.181893 178.79 1.91 0.74 8.46 

4 688.371071 0.587026 34.235065 0.102166 0.406469 0.037659 0.012587 0.023687 0.209882 0.019248 18.481085 0.176407 191.27 1.86 0.84 7.96 

5 602.178315 0.538324 28.638373 0.057262 0.414716 0.039636 0.012315 0.038305 0.166929 0.019731 19.496088 0.207658 201.21 2.15 0.70 7.15 

6 1356.824588 0.808174 51.877713 0.081061 0.904284 0.033571 0.017312 0.027088 1.061894 0.014765 20.411477 0.107006 210.13 1.28 1.27 21.85 

7 1220.972729 1.111445 50.503388 0.141081 0.791785 0.036945 0.01875 0.031603 0.540842 0.016348 21.252023 0.12166 218.28 1.41 1.24 11.97 

8 771.37922 0.447981 33.924387 0.086704 0.416671 0.021973 0.02388 0.043242 0.144681 0.013514 21.675622 0.133714 222.37 1.51 0.83 4.54 

9 1487.150864 0.564298 64.617264 0.087467 0.779783 0.05031 0.028905 0.022842 0.269682 0.014542 21.979441 0.080438 225.30 1.11 1.58 4.37 

10 2122.885458 0.713589 93.206102 0.29786 1.15852 0.030493 0.000001 0.019125 0.211559 0.017621 22.289565 0.095931 228.29 1.23 2.28 2.00 

11 2062.695362 1.391312 91.337418 0.124511 1.149398 0.069431 0.054778 0.023172 0.147524 0.025771 22.28831 0.094196 228.27 1.22 2.24 1.17 

12 1177.202375 0.773533 52.312754 0.052451 0.610798 0.02346 0.032712 0.017015 0.072038 0.016663 22.276776 0.101268 228.16 1.27 1.28 0.87 

13 4098.3632 1.275572 181.3967 0.123451 2.2108 0.066306 0.0178 0.018883 0.191 0.017824 22.459078 0.045408 229.92 0.93 4.45 0.45 

14 5488.044081 3.330463 242.912 0.300407 3.073986 0.058432 0.065035 0.023719 0.217258 0.01452 22.505398 0.047097 230.36 0.93 5.95 0.25 

15 13889.8486 5.84663 615.3849 0.671538 7.6144 0.080471 0.1147 0.027321 0.4898 0.026881 22.51163 0.042414 230.42 0.91 15.09 0.12 

16 5646.1506 2.300193 250.6278 0.262752 3.1729 0.09575 0.0396 0.024067 0.1164 0.010823 22.564468 0.041462 230.93 0.91 6.14 0.00 

17 6067.335725 3.032971 269.90455 0.204594 3.283053 0.090692 0.086773 0.017922 0.106539 0.024578 22.536598 0.045029 230.66 0.93 6.62 0.00 

18 11208.91536 4.067303 498.61139 0.384155 6.309062 0.056299 0.111073 0.019973 0.228968 0.021664 22.518113 0.037956 230.48 0.90 12.22 0.00 

19 8978.93048 2.812478 399.58086 0.49249 4.943116 0.108052 0.110953 0.022993 0.133868 0.020693 22.544966 0.04417 230.74 0.92 9.80 0.00 

20 11769.0414 4.790629 525.23379 0.523018 6.398585 0.092997 0.077086 0.019698 0.094042 0.020928 22.52542 0.040112 230.55 0.90 12.88 0.00 

21 9954.057918 2.901399 443.4035 0.372649 5.379588 0.105757 0.066339 0.025932 0.0955 0.019273 22.557162 0.038156 230.86 0.90 10.87 0.00 

fusion 1658.631903 1.065643 73.622111 0.085527 0.893984 0.057892 0.007033 0.033031 0.033963 0.01424 22.565854 0.070536 230.94 1.06 1.80 0.00 
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Title Nb of steps J parameter ± J λ (y-1) ± λ (y-1) Discrimination ± Discrimination  

     

  

 

12JK56 muscovite 18 6.04E-03 1.64E-05 5.53E-10 1.35E-12 1.005943 1.31E-03 

      

  

Step 40Ar ± 40Ar 39Ar ± 39Ar 38Ar ± 38Ar 37Ar ± 37Ar 36Ar ± 36Ar 40Ar*/39ArK ± 40Ar*/39ArK  age (Ma) ± Age  (Ma) % 39Ar  Atm. Cont. 

1 4347.980187 1.336916 36.336569 0.059271 0.563993 0.035568 0.044032 0.034821 0.277916 0.018855 118.034 0.297887 972.95 3.67 1.82 1.27 

2 9891.788045 4.163374 51.467371 0.103959 0.623516 0.030765 0.052435 0.026112 0.084362 0.016244 192.70476 0.479984 1395.49 4.95 2.58 0.00 

3 65350.24608 69.450403 259.74283 0.366432 3.465309 0.065641 0.142825 0.030706 0.136105 0.017368 252.73664 0.55489 1675.56 5.59 13.02 0.00 

4 5791.794364 10.111665 24.195094 0.074361 0.338228 0.030097 0.027691 0.022868 0.02425 0.014318 240.31833 0.921752 1621.08 6.40 1.21 0.00 

5 21389.19798 9.452733 83.355485 0.117298 1.126536 0.046758 0.030572 0.020058 0.06735 0.015578 257.68471 0.5101 1696.82 5.56 4.18 0.00 

6 40342.43248 53.532806 150.12259 0.242577 1.870536 0.127554 0.104572 0.021625 0.06835 0.019119 269.97919 0.665895 1748.59 5.93 7.53 0.00 

7 76917.21293 62.523818 278.40541 0.349266 3.679938 0.046283 0.090586 0.037856 0.067918 0.030732 277.62549 0.550915 1780.05 5.78 13.96 0.00 

8 53568.82783 15.096987 201.44121 0.262921 2.580738 0.068821 0.099086 0.041887 0.086318 0.011344 267.16881 0.49831 1736.89 5.61 10.10 0.00 

9 44273.28833 44.939964 165.82591 0.389349 2.161538 0.067346 0.171586 0.035934 0.107518 0.015952 268.17028 0.770004 1741.07 6.13 8.31 0.00 

10 19227.80853 6.501632 72.888614 0.071219 0.958738 0.040629 0.126386 0.034993 0.073518 0.006503 264.86113 0.441696 1727.22 5.51 3.65 0.00 

11 36444.73031 41.522027 135.48463 0.291184 1.770007 0.037945 0.05127 0.04228 0.061688 0.014548 270.24369 0.745957 1749.69 6.09 6.79 0.00 

12 51121.92121 38.74685 186.18803 0.172527 2.304407 0.068894 0.05537 0.027263 0.047488 0.012789 275.90683 0.48808 1773.03 5.67 9.33 0.00 

13 27115.14751 30.50535 98.120132 0.195029 1.336207 0.020886 0.08317 0.022695 0.029488 0.016566 277.67948 0.731259 1780.28 6.10 4.92 0.00 

14 19059.72761 8.407532 68.988032 0.134947 0.875207 0.042968 0.07437 0.023097 0.043188 0.013448 277.51385 0.665717 1779.60 5.98 3.46 0.00 

15 26530.33241 9.028445 95.143932 0.100817 1.157807 0.050539 0.07817 0.031807 0.065788 0.011834 280.07525 0.481214 1790.02 5.70 4.77 0.00 

16 8611.071446 8.064173 31.082739 0.066737 0.486251 0.041695 0.064363 0.029029 0.057712 0.017221 277.92175 0.763106 1781.26 6.17 1.56 0.00 

17 3896.159157 2.244025 14.36344 0.04301 0.195062 0.021403 0.028266 0.023378 0.007598 0.016589 272.49878 0.964332 1759.02 6.61 0.72 0.00 

fusion 11819.29949 7.190231 41.528158 0.131525 0.61936 0.032678 0.041353 0.032944 0.083151 0.025758 285.4865 1.009644 1811.84 6.75 2.08 0.00 
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Research highlights 
 

 Large parts of Korea have been affected by a thermal pulse in the late Triassic 
 This is manifest by magmatism, and metamorphism, and isotopc ages generally between 235-228 Ma 
 Ar/Ar ages 231-228 Ma on a regional scale, in low- and high-grade rocks, and sediments are due to this event 
 Ar/Ar ages point to very fast cooling 100-150°C/Ma, probably during core complex like exhumation 
 This evolution maybe due to slab detachment/delamination 


