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Abstract 

Estuaries are coastal areas controlled by hydrodynamic factors such as sea-level changes, 

waves and tidal currents, and river discharge. This study focuses on the Vilaine Estuary which 
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is strongly impacted by human activity after construction of Arzal dam in 1970. The purpose 

of this research is to differentiate the role of natural from anthropogenic factors on 

sediment dynamics within the Vilaine Estuary. We are proposing a hypothetical model based 

on the hydrodynamic modification and morpho-sedimentary development by analyzing the 

natural estuarine evolution and the impact of human alteration to the natural system by 

utilizing datasets including river discharge, tidal currents, winds and wave activities to 

further combine with photographic, bathymetric, topographic and sedimentary surveys. 

Results show that waves carry sediment from the sea and rework local sediments. The river 

damming is reducing the tidal prims and leads to the fall of tidal currents. This new situation 

supports the sediment deposition and reduces at the same time the accommodation space 

which decrease tidal currents in feed-back. The Vilaine Estuary is therefore coming close to a 

bay-type functioning which leads to a channel narrowing, a drastic increase of the tidal flat 

zone, an acceleration of erosional processes affecting the main channel, salt marsh and all 

associated depositional systems. We propose a hypothetical model showing that this 

evolution took place in two steps and we show that the dam has an effect to accelerate a 

natural infilling of the estuary. 

 

 

Keywords: Estuaries; man-induced effects; estuarine dynamics; tidal flats; salt marshes; 

dams  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
27/06/2015, page 3/38 

 

I. Introduction 

 

Estuaries are remnants of ancient fluvial valleys that have succumbed to flooding due to 

eustatic variations. Estuarine environments are of profound interest to human population 

due to their intense biological (habitat, reproduction, nursery, migration path) and 

economical relevance (fishing, fish trade, tourism, harbour). Anthropological impacts 

strongly modify the natural (pre-human) balance of the environment in various ways (e.g. 

modification of river flow, degradation of the habitat, depletion of aquatic resources, 

pollution, etc.). Since 1960s, there has been a significant increase in research pertaining to 

estuaries (Guilcher, 1958; Cameron and Pritchard, 1963; Bowden, 1967; Caspert, 1967; 

Pritchard, 1967; Fairbridge, 1980; Pethick, 1984; Day et al., 1989; Bird, 1993; Geyer et al., 

2000; Woodruff et al. 2001; Guo and Levinson, 2007) with quite a few estuaries being 

thoroughly explored and utilized as references to elucidate hydrodynamics (Bilgili et al., 

2005; Ji et al., 2007; Levasseur et al., 2007), sedimentology (Dalrymple et al., 1992; Allen and 

Posamentier, 1993; Allen and Posamentier, 1994; Martinsen and Hellandhansen, 1994; 

Estournès et al., 2012) and ecological balance (Caspert, 1967; Azevedo et al., 2008). 

However, integrated studies taking into account the role of human activities within these 

environments are scarce (Ferrier and Anderson, 1997; Winterwerp et al., 2001; Tagliani et 

al., 2003). This form of studies are often difficult to generalize (Hart and Long, 1990; 

Wolanski et al., 2001; Kim et al., 2006) as observed in the main natural estuary 

classifications, which never take into account the influence of human developments on 

sediment budget (Bowden, 1967; Fairbridge, 1980; Dalrymple et al., 1992). 
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The Vilaine Estuary (Fig. 1), located on the French Atlantic coast, is a good example of a 

Holocene natural evolution strongly impacted by the human activity after construction of 

Arzal dam in 1970.The dam is situated at a distance of 8km from the river mouth. The dam is 

responsible for estuarine infilling and major changes to the surrounding environment.  

 

The aim of this study is to propose a hypothetical model based on the hydrodynamic 

modification and morpho-sedimentary development by analysing the natural estuarine 

evolution and the impact of human alteration to the natural system after 1970. To achieve 

this, we collected data on river discharge, tidal currents, and wind and wave activities to 

further combine with photographic, bathymetric, topographic and sedimentary surveys. The 

comparison of these data with annual resolution will enable a precise understanding of 

relationships linking each hydrodynamic parameter to each other and their effects on 

sedimentary processes during the last 50 years in the estuary. 

 

II. Geographical setting 

 

The Vilaine Estuary is located in a particularly well and unique sheltered position along the 

French Atlantic coast (Fig. 1). The estuary opens on the southern coast of Brittany at the 

back of Vilaine Bay. The bay is protected behind a belt of highs (trending N130°) consisting in 

the Quiberon peninsula, the Island Houat and Hoëdic, and the “Plateau du Four” rise, closed 

to the South by the headland of the Croisic (Fig. 1). The Vilaine Estuary drains a catchment of 

10.530 km² and collects 800 mm/yr rainfall (typical of a temperate oceanic climate regime). 

Its infilling is less than 10,000 years old (Traini et al., 2013) and developed at the same time 

as most estuaries around the world (Pritchard, 1967; Russell, 1967; Boyd et al., 1992) when 
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the last marine transgression slowed down ca. 6.000 years ago. Seawater flooded first the 

downstream part of the valley, which was rapidly filled up before the stabilization of the 

dynamic balance between river and marine inputs (Proust et al., 2001; Menier et al., 2010; 

Sorrel et al., 2010; Traini et al., 2013; Menier et al., 2014). Prior to the construction of the 

Arzal dam, tidal influence extended to a distance of 80 km onshore (Morzadec-Kerfourn, 

1974). 

 

This structural pattern of the Vilaine Estuary shows numerous areas of weakness promoting 

incision of depressions filled up by Quaternary sediments. The present day shape of the 

estuary correlates with three geomorphological parts tightly related to the geological 

heritage (Fig. 1).  

- The inner part, 500 m wide, between the dam of Arzal and the haven of Tréhiguier, is 

incised into the prehercynian micaschists and orthogneisses through the Cadomian 

and Hercynian fault network;  

- the central part, 2000 m wide, between the haven of Tréhiguier and the headlands of 

Penn-Lann (north) and Halguen (south), with resistant micaschists and amphibolites 

rocks to the North, affected by a set of faults parallel to the southern branch of the 

South Armorican Shear Zone (trending N110°-N130°), and covered by soft Tertiary 

and alterite sediments to the South;  

- and the outer part, 4000 m wide, delimited by Penn-Lann, Halguen and Kervoyal 

headlands, is fringed by 10 m high eroded cliffs made up of amphibolites hard rocks 

(Audren et al., 1975; Traini et al., 2013). 
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III. Data and method 

 

1. Bathymetry 

The French Regional Facilities Office and French Naval Hydrographic and Oceanographic 

Service (SHOM) provided information on twelve (12) bathymetric surveys. We worked with 

surveys from 1960, 1977, 1983, 1992-2008. High resolution bathymetric surveys have been 

conducted intermittently with single beam echo-sounder and depending on the echo-

sounder frequency; the sea-floor corresponds either to compact-mud (33 kHz) or fluid mud 

(200 or 210 kHz). 

2. Topography 

2.1 Digital Terrain Data- Very high-resolution LIDAR (LIght Detection And Ranging) data 

provided by Institution d'Aménagement de la Vilaine (IAV), acquired on September, 2001 

serve to extend bathymetric information to the upper part of the tidal-flat. The vertical and 

horizontal resolutions of the digital terrain model (DTM) are 10 cm and 50 cm respectively. A 

D-GPS was used for the topographic survey of the Branzais salt marsh in 2007. 

2.2 Aerial Photography- Five series of aerial photographs (1958, 1974, 1993, 2000 and 2004) 

provided by French National Geographic Institute (IGN), validated by field campaigns, aided 

the mapping of sedimentary environments (e.g. tidal-flats, salt-marshes, beach-barrier and 

cheniers). 

3. Water level and current patterns 

Information on sea-level was delivered by the French Naval Hydrographic and 

Oceanographic Service (SHOM) collecting tidal gauges data of Brest and Saint-Nazaire 

located respectively 175 and 30 km away from the Vilaine Estuary.  
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The French Naval Hydrographic and Oceanographic Service (SHOM) provided the model of 

tidal current distribution in the estuary and the French Meteorological service provided the 

data of wind speed and direction. 

The Vilaine Management Institute (Institution d'Aménagement de la Vilaine) calculated 

discharge and recorded tide information from a tidal gauge located close to Arzal dam and 

supplied time series of ship-transits from 1990 to 2008. 

Information on suspended load measured some tens of meters downstream the “Pointe du 

Scal” was found in Maillocheau (1980). 

All the datasets used in this research and their corresponding sources are summarised in 

table 1. 

 

IV. Distribution of the estuarine sedimentary facies in space and time 

 

This section describes the distribution of present day estuarine sedimentary facies and an 

insight of their migration in space and time from a period starting before the construction of 

the dam in 1960 to 2008. 

1. Tidal-flats 

 

Tidal-flats of the Vilaine Estuary are of economic importance being the place of seafood 

culture with mussel (Mytilusedulis), clams (Tapes sp.) and cockles (Cerastoderma sp.). They 

represent c. 80% of the estuary area i.e. a surface of about 200 ha in the inner estuary, 650 

ha in the central estuary (tidal-flats of Strado and Branzais) and 350 ha in the northern outer 

estuary (Fig. 2). The main channel, 60 to 920 m wide (from the inner to the outer parts), 
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incises the tidal-flat. The slopes of the tidal flats are very low from 0.11% in the southern 

central estuary to 0.14% in the northern central estuary.  

In order to show the clear distinction of tidal flats and main channel migration, we selected 

five (5) bathymetric survey results (Goubert & Menier, 2005) showing the most variations in 

patterns before and after the construction of the dam. 

In plan-view, the growth of tidal flats and the shape of the main channel are closely linked as 

shown by the time series of the five (5) surveys (Fig. 3 and 4A-B), the growth of the tidal flat 

drastically reducing the channel wet-section (Fig. 3). Between 1960 and 2007, the reduction 

of channel wet section in the inner estuary is twice the reduction in the central and mid 

estuary. The wet-section is reduced from 34.5% to 53.9% in the inner estuary (Section 6-13) 

and 14.5% to 25.7% (section 1-5) in the central and outer estuary. 

In detail, the growth of tidal flats exhibits a step-like evolution as shown by the evolution of 

the 0 m isobaths (Fig. 4). The inner estuary displays a two-step migration. Between 1960 and 

1992 the channel reduces its width (from 150-380 m to 100-210 m) and channel meanders 

migrating landward (Fig. 4A). After 1992 the channel width remains stable but meanders 

migrate seaward (Fig. 4A). Similarly, the Strado tidal flat has grown in a seaward direction in 

the central estuary between 1960 and 1992 (up to 470 m) (Fig. 4B), and sets then up 

seaward in the outer estuary from 1992 to 2007 (360 m). The Branzais tidal-flat was limited 

to the central estuary but stepped landward between 1960 and 1992 (up to 240 m), and 

then seaward between 1992 and 2007 (200 m).  

A similar landward then seaward evolution is observed when looking at sedimentation rates. 

From 1960 to 1983, up to 8 m of sediment accumulated in the inner estuary (c. 35 cm/year 

of sedimentation rate). The depocenter migrates upstream from 1983 to 1992 (arrow 1 in 

Fig. 4C) accumulating up to 5 m-thick sediments (c. 55 cm/year of sedimentation rate) and 
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then downstream from 1992 and 2007 (arrow 2 in Fig. 4C) piling up to 5m of sediment (c. 55 

cm/year of sedimentation rate) (Goubert & Menier, 2005). 

 

2. Salt-marshes 

 

Aerial photographs show 11 distinct salt-marshes in lowlands connected to the main fluvial 

valley (Fig. 2). They represent 17% of the estuarine surface and display a flat topography. 

Their altitude differs from place to place ranging from 1.9 to 3.1 m above mean sea-level. In 

the inner estuary, salt marshes are in contact with tidal-flats through a 0.50 m to 1 m-high 

micro-cliff. In the outer and central estuary, salt-marshes are located at the back of beach-

barriers. Some salt marshes are reclaimed for agriculture (Fig.2); others in connection with 

seawater are characterised by halophytic vegetation belts controlled by periodic tidal 

flooding.  

Analyses of time-series photographs reveal a landward retreat of the boundary between 

tidal-flat and salt marshes in the inner estuary between 1971 and 2004. However, the two 

riversides are asymmetrically affected by erosion. Salt marshes of the convex riverside 

retreated by 8 to 30 m whilst salts marshes of the concave riverside retreated by 5 to 20 m 

between 1971 and 2004. 

 

3. Beach-barriers 

 

Beach-barriers or cheniers represent about 3% of the estuarine surface namely. 17 km of 

discontinuous beaches or 60% of the estuarine coast, which is 28 km in total (Fig. 2). Beach 

barriers are only present in the southern and northern sections of the central estuary 
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(fringing the tidal flat of Branzais and of the Strado), and in the northern part of the outer 

estuary (closing salt marshes of Bétahon) (Fig. 2). These beaches display morphologies 

indicating active sediment transport. The northern beach of the outer-estuary ends with a 

sandy-hook at the outlet of a tidal creek and beaches of the outer estuary and of the 

southern central estuary display coalescent “crescent beaches”. This sandy material 

encroaches on salt marshes as storm wash-over fans or cheniers. 

The study of nautical chart (SHOM), aerial photographs and results of field campaigns shows 

fairly stable beaches except those located in the southern central estuary. This sector 

records particularly active long-shore (up to 15 m per year during the last decade) and cross-

shore movements of sedimentary bodies (Fig.5). The construction of the dike of Branzais has 

stopped the coastal retreat (100 m), which occurred before 1958 (Fig.5A).The topographic 

survey of 2007 compared with the nautical chart of 1820 and aerial photographs of 1958 and 

1993 shows that parts of the “Dunes of Ménard” sand ridges (Fig. 5B) are stabilised. 

However, since 2007, coastal retreat is very active in this area. 

 

V. Natural controls on the morpho-sedimentary evolution of the Vilaine Estuary 

 

River discharge, waves and tides are the three main hydrodynamic factors that control the 

shape and sediment distribution in estuaries (Boyd et al., 1992; Dalrymple et al., 1992). 

These parameters are influenced by the climate regime. The Vilaine Estuary is subject to a 

temperate oceanic climate regime. 

1. Tides 
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Tides are semi diurnal in the Vilaine Estuary. The mean amplitude oscillates between 4.75 m 

during mean spring tides and 2.25 m during mean neap tides. The maximal amplitude during 

exceptional spring tide reaches 6.39 meters. Estimates of the current intensities, which do 

not take into account the river discharge, are expressed along five points from the outer to 

the inner estuarine parts. Despite that the model does not show any amplitude distortion, 

the shape of the current-velocity, the current-time asymmetry as well as the estuarine 

funnel shape suggest an hyper synchronous behaviour of the estuary (Salomon and Allen, 

1983) where convergence effects encompasses friction damping. 

 

2. Wind and Waves 

 

The wind data-set (1951-1980) shows that winds come mainly from the West for 340 out of 

1,000 observations (Latteux, 2005). Between 1975 and 1997 wind strengths from West and 

South sectors increased respectively of 26.68±7,76 and 22.53±7,25 cm/s/yr (Pirazzoli et al., 

2004). 

Wave height simulations at N46°54'-W4°12' (85 km, southwest of Belle-Ile Island) from 1979 

to 2000 (Tessier, 2006) and at N46°52'30''-W3°20'00'' (50 km, south-southwest of Belle-Ile 

Island) from 1979 to 1998 (Latteux, 2005) show a strong attenuation of the oceanic waves in 

the Bay of Vilaine due to the sheltering highs. Waves are only 1 or 2 m-high in the bay of 

Vilaine when they are 4 to 5 m-high outside the bay (Tessier, 2006). Model produced by 

Latteux (2005) for maximum wind and wave conditions with a return period of 1% of the 

time indicates that residual waves reaching the river mouth are in average of 1.35 m for 

western storms and of 1.50 m for WSW storms. Fair weather waves rarely exceed 0.5 m in 

the bay due to the very limited fetch. 
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3. Suspended load 

 

The turbidity zone in estuaries is a typical feature controlled by both tidal currents and river 

discharge patterns. A modification of the suspended load often reflects a change in 

hydrodynamic parameters. Measurements of suspended load in the Vilaine Estuary were 

rare before the construction of the dam. The French Central Hydraulic Laboratory (LCHF) 

carried out some measurements by low river discharge (early 1960’s). Suspended particulate 

matter (SPM) concentration in the estuary varied from 50 mg/l, 15 km upstream of the 

present day position of the dam, to 5,000 mg/l, at the present day position of the dam, and 

above 100 mg/l at the river-mouth (Merceron, 1985).  

 

 

4. Sea-level change 

 

The Vilaine Estuary is located less than 200 km from Brest and Saint Nazaire tidal gauges. 

Sea-level records of the Brest gauge station display a rise of sea-level of c.100 mm between 

1970, when the dam started to operate, and 2009 (SHOM). Saint-Nazaire time series are 

shorter (1965-1988) but the annual mean sea-level rise is very close to the time series in 

Brest. So, sea-level rise, not monitored in the Vilaine Estuary, should be very likely similar to 

this of Brest. Several studies indicate that storm surges decreased these last years on the 

French Atlantic front (Pirazzoli, 2000; Pirazzoli et al., 2004). The effects of sea-level rise could 

therefore be felt even stronger. 
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VI. Dam effects on the morpho-sedimentary evolution of the Vilaine Estuary 

1. Tidal currents 

 

Table 2 shows current velocities measured before the construction of the dam when the 

tidal oscillation propagated 70 km in the upstream direction. Since the construction, 

oscillating water volume was reduced by 43% during spring tide (81.10
6
 m

3
 before, 46.10

6 
m

3
 

after construction) (Maillocheau, 1980; Merceron, 1985). The maximum ebb current 

velocities decreased up to 30% for medium tidal amplitude at four kilometres downstream 

the dam (Tréhiguier, Fig. 1) (Maillocheau, 1980) when maximum flood current amplitude 

decreased up to 36% to 66% (Table 2). The ebb and flood currents time ratio increased up to 

30% to 60%. Therefore the management of the dam seems responsible for a general 

decrease of tidal-currents energy reinforcing their asymmetry. However, these results are 

sensitive to the river flow, which varies during the measurement time period and have not 

been taken into account. 

 

2. River discharge 

 

River discharge has been managed since the construction of the dam, to promote the 

navigation on the upstream part of the river, to protect the marshes of Redon during 

conjunctions between river flood and spring tides, and to maintain a fair water level for 

drinking water production. The management of water discharge is run according to fresh 

water inputs, tide levels and human needs. The dam artificially releases water during falling 

or low tide, instead of high tide, to protect the fresh water reservoir against salt water.  
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When plotting together water-releases and tidal oscillations through time in diagrams 

selected for three different flow regimes, the impact of the dam management on the water 

flow at the back and at the front of the dam can be illustrated (Fig. 6).  

During river-flood regime (> 250 m
3
.s

-1
), freshwater is released by the dam with 

interruptions of 3 to 5 hours at high-tide. These important releases (from 0 to 800 m
3
.s

-1
) 

change the upstream flow-rate of about 100 m
3
.s

-1
 (at Rieux, Fig. 6). The tidal ebb-phase is 

particularly extended but the water level stays 3 m above the position of the lowest waters 

(Low tide Low Waters, LLW).  

During mean river-flow (100 to 250 m
3
.s

-1
), the fresh-water released close to the natural 

conditions still impacts the discharge upstream of the dam. The discharge is regulated by the 

gates until 4.5 m above LLW and by the flaps below 4.5 m LLW. The flood-phase is slightly 

longer than the ebb phase possibly because of sea wind activity. 

During slack river-flow (10 to 100 m
3
.s

-1
), the dam is closed at high tide. The small releases 

due to the technical functioning of the dam (lock, fish-way and salt-water pump) represent 

half of the “natural” discharge. River discharge at Rieux displays a strong oscillating rate, set 

between less than 10 m
3
.s

-1
 and 60 m

3
.s

-1
. The dam is closed below 10 m

3
.s

-1
. 

These three examples show that water-releases are irregular for any river flow or tidal 

conditions. They strongly impact the freshwater supply to the estuary and reinforce ebb tidal 

currents during river-flood period. 

 

3. Suspended load 

 

In all circumstances, measurements of suspended load had a maximum at the bottom, at 

low tide during spring tide (Maillocheau, 1980; Merceron, 1985). 
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Just after the construction there is two maximum values recorded by two different authors: 

a concentration of 497 mg/l is recorded close to the place of the 5,000 mg/l, in the inner 

estuary (Merceron 1985) and 1,473 mg/l at the western part of the central estuary 

(Maillocheau, 1980). Therefore the maximum turbidity, at low tide, migrated from the place 

of the Dam (before construction) to the central part (after construction), we estimated that 

the maximum turbidity decreased from 5,000 to 1,473 mg/l. 

For records performed all along the tidal cycles, SPM values decreased to 10% during neap 

tide, 20% in spring tide and 11% for medium tide period when compared to the pre-dam 

conditions (Maillocheau, 1980). During high tide, the upstream limit of the maximum 

turbidity zone is located either at the narrowing between the central and internal estuary 

(Maillocheau, 1980) or slightly landward, 2 km downstream the present position of the dam 

(Merceron, 1985). Thus, the construction of the dam reduced the extent and the 

concentration of the maximum turbidity zone (Latteux, 2005). 

 

4. Ship transits 

 

The information on ship transits is relevant for this study due to its potential erosional effect 

on river-banks caused by the generation of wake waves. Indeed, leisure and fishing activities 

drastically increased since the construction of the dam (unpublished data from the IAV). Two 

thirds of the ship transits occur during summer time and particularly during ebb slack waters 

(due to water releases management which prevent any salt water intrusion in the water 

reservoir). Leisure-, trade- and fishing-boats passing through the lock of the dam represent 

up to 16,000 transits per year. This number does not take into account boat-movements for 

fishing activity downstream the dam. This transit may have an effect on the surroundings. 
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VII. Discussion 

1. Controlling factors of the morpho-sedimentary evolution of the Vilaine Estuary 

 

Climatic changes and anthropogenic actions are the most important parameters steering the 

sedimentology of the Vilaine Estuary. Figure 7 summaries the effect of natural and human 

controls on the historical morphological evolution of the Vilaine Estuary, before and after 

the construction of the dam.  

Natural controls 

 

The morphology of estuaries controls accommodation space and determines wave and 

current pathways. River discharge, wind-waves and tides, modulated by climate change, are 

the three main hydrodynamic parameters acting in an estuary driving patterns and 

movements of sediment bodies (Short, 1999; Green and MacDonald, 2001; Masselink and 

Hughes, 2003). 

Associated with tidal-currents and sediment load, waves refracted on the headlands of 

Penn-Lann and Halguen win now the sediment on the tidal flat. Breaking-waves carry coarse 

particles in a landward direction in the swash zone while back-currents take back the finest 

part in a seaward direction, which is then deposited on the tidal flat during high-tide slack 

waters. This results in contiguous and synchronous deposition of cheniers and sand beaches 

with crescent figures on the top of salt-marshes and mudflat in the lower part of the tidal 

flats.  
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The altitude of the crests of the wave-generated sand-bodies fit to the high-tide levels (Fig. 

5B). In 1958, 1993 and 2007 these sand bodies showed characteristic erosion features 

followed by sedimentation pointing to an alternation of accretion/erosion phases (Fig. 5). At 

a larger scale, by comparing time series of the coastline morphology, a general net accretion 

is observed until the snapshot of 1974 (Fig. 5A). Since that time, local erosion and change in 

hydrodynamics shifted the sediment from the northwest (Dunes of Ménard) to the 

southeast. The origin of this sediment transfer can be explained by the increase of 

southerlies and westerlies between 1975 and 1997 (Pirazzoli et al., 2004). These two wind 

directions take advantage of a long fetch and generate the highest waves in the bay and at 

the entrance of the estuary (Fig. 1). Finally, this study shows that despite relatively sheltered 

conditions; wave, tide and sea-level rise control the position of beach-barriers and fine 

sediment transfer into the estuary. 

 

Interpreting the progradation and retrogradation of sand-ridges (Fig. 5B), the one dated 

around 1993 seems to be the last recent episode of a retrogradation of the shore line. This 

event involves relative stronger hydro-dynamic activity. Gathering information of two 

studies (Bouligand and Pirazzoli, 1999) and (Phillips and Crisp, 2010), 1993-1994 characterise 

pivotal years of high wave activity. The first study conducted at Brest (France) shows the 

frequency of extreme storm surges has increased during the period 1953-1994. The second 

study, conducted in the Bristol Channel and Severn Estuary (England), indicates decreasing 

trends of sea-level maximum and increasing trends of minimum sea-level between 1993 and 

2007 for extreme NAO index. Storm surge and sea-level maximum was recorded by these 

studies around 1993; therefore we infer that those last events (storm surge and sea-level 

maximum)  are thus possibly recorded in southern part of the central estuary with the 
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fossilised sand-ridge of 1993 marking the last recent episode of a retrogradation of the shore 

line (Fig. 5B). 

Coastal erosion of the southern central part of the estuary seems to be linked with 

parameters such as wave, storm surge and sea-level which are dependent of climate 

conditions.  

Human impact 

 

The construction of the dam is the main human impact on the morpho-sedimentary 

evolution of the Vilaine Estuary. The dam building increased coastal erosion, decreased the 

tidal prism and tidal current energy, and changed fresh water releases and wake waves due 

to the leisure-ship traffic. 

The position of the dam constrains the present maximum turbidity to the central estuary. 

The reduction of the tidal prism and release of freshwater from the dam performed during 

ebb tide lead to a reduction of current velocity and an increase of ebb tide duration (table 2). 

This contributes to the observed decrease of the maximum turbidity from 5,000 mg/l before 

to 497 mg/l after the construction of the dam in the inner estuary at low tide during spring-

tide (Merceron, 1985). 

The general decrease of current velocities enhances also settling processes of fine particles 

on mudflats. The tidal flat extends leading to a reduction of the channel wet-cross-section 

(Fig. 3, 4 and 7).  

In the other hand, despite high sedimentation rates in the main channel and in the lower 

part of the tidal flat, salt-marsh edges are eroded out in the central and inner estuary. This 

erosion cannot be explained by the lack of sediment. The recent rise in sea-level together 

with the position of the dam close to the river mouth (8 km) stops the landward propagation 
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of the flood tidal-wave and generates an supplementary tidal surge, as observed for instance 

in the Keum Estuary (Kim et al., 2006) or in the Ems Estuary (max. 29 cm) (Krebs, 2010). Thus 

the elevation of the sea-level concomitant probably with wake waves resulting of the ship 

traffic weakens the marsh and causes its erosion. Therefore, the erosion recorded in the 

inner estuary is then more the consequence of the combined adaptation to a new water 

base level and wake-wave process than a lack of sediment. 

Due to its geology and structure, the Vilaine valley can be compared to a ria system (Traini et 

al., 2013). In such a context, the 100 mm of rise of sea-level since 1970 should have 

increased the current velocities in the estuary (Bird, 1993; Pethick, 1993). However, this is 

not the case because, at the same time, the tidal prism has been reduced up to 43% with the 

construction of the dam. The estuarine channel enlarged by increasing salt-marsh erosion 

and the channel sections did not deepen but have been filled up with sediment. 

 

2. A sediment circulation cell 

 

Along the study period, the “natural” evolution of the Vilaine Estuary sediment-cell shows, in 

the central and outer estuary, a landward alongshore sediment transport dominated by 

wave action. The northern coast of the outer and central estuary receives primary waves 

refracted by the tidal flat. The lateral shift of the sand spit of Bétahon, adjacent to the rocky 

headland of Penn-Lann, and the pocket beaches with superimposed eastward oriented sand 

waves point to a landward and eastward littoral drift. Similar observations are made for the 

southern coast of the central estuary. This coastal area, sheltered by headlands of Halguen, 

receives only refracted waves. The presence of a longshore sand drift up to 15 m/yr close to 

the Dunes of Ménard as well as crescent-shaped sand-bodies on the downstream side of the 
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southern beaches point to a perpendicular to oblique wave incidence (Fig. 5) (Short, 1999). 

Thus, the Vilaine Estuary traps sandy particles coming from two, southern and northern, 

littoral drifts (Fig. 7) which are either reworked or spread over the salt-marshes as shelly-

sand wash-over fans and/or cheniers.  

The southern and northern littoral drifts meet at the narrow of Tréhiguier which bounds the 

inner and the central estuary (Fig. 1 and 7). The lack of sand banks along the river-side of the 

inner estuary suggests that river discharge combined with tidal-currents blow the sand out 

of this inner part of the estuary. The finest particles settle during slack water of high tide in 

the inner estuary and contribute to the expansion of the mudflat. The expelled sandy 

material at ebb tides builds up sand-rich low angle subtidal lobes in the outer estuary (the 

“subaqueous delta” described by Guilcher in 1958). The sand from time to time is picked up 

by storm wave action and reintroduced in the Vilaine Estuary. Fine-grained particles 

originating from the bay or provided by salt-marshes erosion are reintroduced by flood tides 

and wave action in the system, settling on the middle and lower parts of the mudflat 

contributing to its expansion. Most eroded sediments participate to the sediment circulation 

in a closed loop. 

The Bay of Vilaine at the outlet of the estuary is a sheltered trap of sediment and an external 

source of fine-grained material for the estuary. The bay is largely fed by the Loire River 

estuary which releases 0.6 10
6
 t/yr of suspended load (the second largest of the French 

Atlantic coast) (Jouanneau et al., 1999), by strong south westerlies. This illustrates again that 

the increase of wave activity is a factor of further sediment accumulation in the Vilaine 

Estuary. 
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3. A two-step infilling scenario  

 

Since the beginning of the marine transgression in the estuary 10,500 years ago (Traini et al., 

2013) sediments onlap the basement in a landward direction. The large wet cross-section of 

the main channel allowed the dominance of flood tidal currents leading to a landward 

sediment deposition. After the construction of the dam until the early 1990, the channel 

wet-cross-section reduced rapidly due to the fall of tidal currents and related accumulation 

of fine particles on mudflats. During this lap time of 20 years, sediment accumulation was 

still oriented in an upstream direction like before the construction of the dam. Since 1990’s, 

the wet-cross-section reached critical dimensions, which have the twofold effect of 

hindering flood tidal-currents and accelerating ebb tidal-currents. The channel is now 

strongly meandering transporting sediment in a seaward direction out of the overfilled 

accommodation space of the inner and central estuary. In the later, maximum 

sedimentation rates grew up from 8.5-17 cm/year before 1960 to 54 cm/yr between 1960 

and 1994, and declined to 1.7-8.7 cm/yr between 1994 and 2007. These sedimentation rates 

are 20 to 135 times larger than the sedimentation rates of 0.4 cm/yr recorded in the central 

estuary during the last 2,600 years (Bouysse et al., 1974) and contribute to the infilling of the 

estuary. These sedimentation rates are significantly higher than sedimentation rates 

observed in the Seine River estuary (0.5 mm/yr) (Delsinne, 2005) and the Loire River 

estuaries (0.4 to 4.2 cm/yr) (Ciffroy et al., 2003). They encompass also the 1.9 times rise in 

sedimentation rates of the Keum estuary (South Korea) after the construction of a dam (Kim 

et al., 2006). These differences may be explained by a particularly sheltered position linked 

with the proximity of an important source of sediment that represents the Loire Estuary. 
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Thus, this evolution points to a general landward filling of the estuary from 1960 to 1992, 

followed by a seaward filling from 1992 to 2007. The estuarine infilling of inner parts after 

the construction of the dam took only c.20 years (from 1970 to 1992) to be completed. This 

is a relatively short period of time compared for example to the estuary of the Ord River 

(Australia) which took 100 years to reach a new equilibrium (Wolanski et al., 2001). These 

two steps, a retrogradation and progradation scenario, are mentioned in the Outardes River 

estuary (Hart and Long, 1990); after a drastic reduction of water discharge for 18 months 

(1,800 – 2,800 m³s
-1

 to 50 m³s
-1

) and a landward sediment stepping, the water discharge 

decreased and the sediment stepped seaward. The Keum Estuary  seems to be in an earlier 

stage because residual sedimentation is still oriented in a landward direction (Kim et al., 

2006). Therefore, a fall of river discharges enhances in a first step landward sedimentation 

and when the section is sufficiently reduced, sediments settle in a seaward direction. 

4. Some particular characteristics 

A constant fluvial sediment supply 

 

In most cases, the damming of rivers is at the origin of erosion of river sides or adjacent 

coastal areas (Chen, 2005) because the reservoirs at the back of dams trap sediment 

particles and limit the replenishment of adjacent coastal areas with fluvial sediment. In the 

case of the Vilaine Estuary, due to its lithology and historical geology, the catchment is small 

and old with very limited erosion. The catchment mostly provides SPM to the surrounding 

coastal areas and the bay at the reduced rate of 0.1 10
6
 t/yr (Jouanneau et al., 1999). The 

freshwater reservoir is almost clear of sediment as well as the river rocky bed (Crave et al., 

2007). The dam is therefore not responsible for massive sediment retention. While 

suspended load in the bay is assumed stable, sea-level rise combined with wave activity 
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cause salt-marshes erosion and generate further suspended load. Since the dam 

construction, the suspended load is now restricted to settle in the last 8 km section of the 

estuary (70 km before dam construction). Therefore, the estuary behaviour closely 

resembles the infilling of a tidal bay where most of the sediment is provided by the sea and 

salt marshes erosion, especially during summer when river discharge resumes. The inner 

part of the estuary being mostly filled, lower inter-tidal parts experience higher 

sedimentation rates sheltered of the wave activity. 

An accelerated reduction of salt marshes 

 

The increase in the frequency of flooding events enhances the erosion of salt marshes by 

degrading physical ground-properties. The tidal surges resulting from sea-level rise and the 

construction of the dam flood even more the salt marsh at each tide. The landward oriented 

winds, as well as the sea-level rise of about 100 mm since the construction of the dam, 

certainly enhanced the flood surge (Fig. 7). The three phenomena (tidal surge, wind surge 

and sea-level rise) accumulate to enhance the lateral erosion of the saltmarshes in the 

estuary. Despite a context of strong accumulation of sediment on the lower part of the tidal 

flat, upper parts undergo erosion. This situation illustrates an adaptation to the new water-

base level due to sea-level rise and not a consequence of the damming of the river. 

VIII. Conclusion 

 

The impacts of natural hydrodynamic factors such as waves and tides have been affected by 

human developments leading to evolution of new morphodynamic patterns as seen in the 

proposed hypothetical model (Fig. 7). 
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Climatic conditions stayed fairly stable before and after the dam construction although the 

wave activity could have fluctuated through the time and sea-level rose about 100 mm since 

1970. These hydrodynamic parameters without a link with the dam lead to: 

- The generation of two littoral drifts of sandy material feeding the estuary 

- The erosion of salt marshes related to the onshore migration of the cheniers 

 

Since 1970 the dam construction had a decisive role on the vertical and lateral extension of 

the lower tidal flat. Its direct impact is the increase of sedimentation rates due to: 

- The reduction of the tidal prism leading to the fall of the tidal currents 

- The reduction of the accommodation space 

- The regulated fresh water discharge 

The functioning of the Vilaine Estuary appeared to be closer to a bay-type environment 

(especially during summer). 

 

Interplay of these parameters leading to the infill of the estuary was also observed: 

- Erosion generated by wave activity and sea-level rise are kept within the estuary due 

to the particular sheltered position of the estuary and the new hydrodynamic 

conditions generated by the dam. 

- The natural estuarine infill linked to the sea-level rise has been accelerated with the 

dam construction and developed in two steps: a landward trend before 1992 and a 

seaward trend after 1992.Therefore it only took c.20 years from 1970 to 1992 to 

complete estuarine inner-parts infill. 

A more detailed and precise physical model could be constructed in the future depending on 

the availability of regularly acquired datasets by concerned organizations. 
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Figure captions 

 

Fig. 1: Location map of the Vilaine Estuary. 

The figure shows the Vilaine Estuary location and its regional (A and B), geomorphological (C) 

and geological (D) contexts. 

 

Fig. 2: Spatial distribution of sedimentary environments in the Vilaine Estuary. 

The figure displays the spatial distribution of sedimentary environments making up the 

present estuary above the mean sea-level. Mudflats represent the main feature (80%) of the 
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estuary. Salt-marshes and beach-barriers complete the landscape with 17% and 3% of the 

estuarine surface respectively. Note that beach-barriers are absent in the inner estuary. 

 

Fig. 3: Reduction rate of channel wet-sections between 1960 and 2007. 

The diagram indicates the reduction rate of each wet cross-section for the time interval 

comprised between 1960 and 2007. Wet cross-sections are numerated and reported on the 

map. Reduction rates of wet cross-section are expressed as percentages. 

 

Fig. 4: Spatial and temporal migration of the 0 m isobaths in the inner, central and outer 

estuary. 

Bathymetric surveys carried in 1960, 1977, 1983, 1992 and 2007 have been interpreted to 

display the time evolution of the 0 m isobaths in the inner, central and extern estuary (A and 

B). These 0 m isobaths of each time period are displayed with continuous or different types 

of dashed lines. Time intervals are emphasized with different shades of grey. C1-3 display 

the distribution of the sediment accumulation for different time intervals based on 

bathymetric surveys of 1960, 1983, 1992 and 2007 in the inner estuary. Black arrows 

indicate a general landward movement of the sedimentation within the main channel (time 

period 1960 – 1992). White arrows indicate a seaward orientation of the sediment 

accumulation for the time period 1992 – 2007. 

 

Fig. 5: Historical evolution of the coast line at Ménard between 1820 and 2007 (See 

location on Fig. 2). 

The compilation of the nautical chart of Beautemps-Beaupré (1820) and several aerial 

photographs (1958, 1974, 1993, 2000, 2004 and 2007) allowed illustrating the time-
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evolution of the sand barrier located in the southern part of the central estuary (A). Long-

shore movement (black arrows) of sediment structures has been identified and display 

migration rate up to 15m/year (curved arrows) landward. The sediment by-pass (dashed 

arrow) due to the breaking waves on the dike of Branzais. Long-shore sediment circulation is 

then interrupted by the “Pointe du Scal” and the sediment is recycled in the main channel of 

the Vilaine Estuary (Black arrows). The close up view (B) highlights active (2007) and inactive 

sand-dunes fossilised in the salt-marsh of Ménard (southern part of the central estuary) 

according to the DTM. The interpretative site map gives matching positions of dunes 

according the documents collected. The cross-section of the dune-field, related to the 

characteristic tidal levels, indicates a sediment accumulation under the combined action of 

tides and waves.  

 

Fig. 6: Water release management for three different flow river-regimes A) flood, B) 

moderate flood and C) low discharge. 

The natural fresh-water discharge is arbitrary divided into three levels. For each of them a 

specific management of fresh-water releases is applied in order to control the water level 

upstream the dam and to avoid the salt intrusion in the fresh-water reservoir. Water 

releases are operated through the different parts of the dam (gates and flaps). Flaps release 

the fresh-water over the gates when they are closed. This management affects the water 

discharge measured upstream displayed as dashed lines (Station located at Rieux). During a 

drought, the dam activity is limited to the lock, fish way and salt water pump. Gates and 

flaps are closed. 
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Fig. 7: Summary scheme of the Vilaine Estuary before and after the construction of the 

Arzal Dam. 

The figure shows two estuarine times-states (1960 and 2007) in horizontal and cross-

sectional views. The thickness of the arrows expresses the intensity of controlling factors 

(tide, waves). On the cross sections, tidal-flat altitude, sand-barrier movements and channel 

position are expressed in grey for 1960 and in black for 2007. Bars displaying shade of greys 

indicate the intensity of five factors controlling the morpho-sedimentary evolution (between 

1960 and 2007) according to the three main geomorphological parts of the Vilaine Estuary. 

The dam reduces current velocities by limiting the tidal prism and by controlling waters 

discharge. Exceptions are during flood events where strong artificial discharges drive the 

sediment away on only few hundreds of meters. The positon of the dam close to the river-

mouth increase the tidal amplitude since the tidal wave has less length to diffuse. Sea-level 

rise and increase of wave activity are parameters taking part of the hydro sedimentary 

functioning of the estuary and are correlated to the climate change. 

 

Table 1: Summary of datasets used in the study. 

 

Table 2: Evolution of current velocities at flood and ebb tide before and after the dam 

construction (modified after Maillocheau, 1980). 
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Table 1: Summary of datasets used in the study.
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Table 2: Evolution of current velocities at flood and ebb tide before and after the dam 

construction (modified after Maillocheau, 1980).
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