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ABSTRACT 

Rock-Eval pyrolysis, a widely used petroleum screening technique developed primarily for 

ancient sedimentary rocks and kerogens, has now been increasingly applied to the 

characterization of recent lacustrine or marine sediments. However, as illustrated by 

previous results from various authors and by the analysis of recent sediments from various 

areas, the thermally labile character of recent organic matter (OM), the presence of poorly 

crystallized mineral (e.g. carbonate) and the eventual presence of salts (NaCl, sulfate) might 

perturb the detection of the pyrolysis effluent. The aim here was to outline the problems 

generated by such perturbation and to demonstrate that specific operating conditions 

needed for proper analysis o frecent marine sediments.  A modified Rock-Eval pyrolysis 

program, starting at lower temperature (180 °C) with a heating rate of 30 °C/min, is 

proposed as a standard mode for the analysis of recent OM in order to avoid misleading 

interpretation of Rock-Eval data and make possible the inter-comparison of results whatever 

the Rock-Eval device used. 
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1. Introduction 

Rock-Eval pyrolysis was developed primarily for ancient sedimentary rocks and kerogens and 

became a standard analytical technique in the petroleum industry (Espitalié et al., 1977, 

1985a,b, 1986; Peters, 1986; Lafargue et al., 1998; Behar et al., 2001), even for 

unconventional resources (Romero-Sarmiento et al., 2015). It has been increasingly applied 

to the characterization of organic matter (OM) in soils (Di Giovanni et al., 2000; Disnar et al., 

2003; Hetényi et al., 2005; Sebag et al., 2006; Graz et al., 2012; Saenger et al., 2013; Hétényi 

and Nyilas, 2014), the detection of black carbon (Copard et al., 2006; Poot et al., 2009) and 

even the analysis of pure organic products (Carrie et al., 2012). It has also been applied for 

several decades to the study of recent lacustrine sediments (Campy et al., 1994; Di Giovanni 

et al., 1998; Meyers and Lallier-Vergès, 1999; Ariztegui et al., 2001; Steinmann et al., 2003; 

Sanei et al., 2005; Jacob et al., 2004; Boussafir et al., 2012; Zocatelli et al., 2012; Lavrieux et 

al, 2013; Sebag et al., 2013, amongst others) or recent marine sediments (Peters and 

Simoneit, 1982; Hussain and Warren, 1991; Calvert et al., 1992; Combourieu et al., 1999; 

Ganeshram et al., 1999; Ozcelik and Altunsoy, 2000; Holtvoeth et al., 2001, 2003, 2005; 

Tamburini et al., 2003;Baudin et al., 2007, 2010; Kim et al., 2007; Marchand et al., 2008; 

Tribovillard et al., 2008, 2009; Biscara et al., 2011; Riboulleau et al., 2011; Hare et al., 2014; 

Hatcher et al., 2014, amongst others). 

However, the thermally labile character of recent OM might perturb the detection of 

pyrolysis effluents, especially when the analysis is performed using a mode devoted to 

ancient sediments. Indeed, the immaturity of recent sediments requires specific analytical 
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procedures which were not always employed in the above studies. Furthermore, the 

presence of salts (NaCl, sulfate) and poorly crystallized minerals (e.g. carbonate) might also 

perturb the detection of pyrolysis effluents from recent marine sediments. 

This study examines the above problems and provides guidelines for understanding and 

interpreting Rock-Eval pyrolysis data from recent marine sediments. 

 

2. Material and methods 

The samples were collected from different parts of the deep sea turbiditic system of the 

Congo River and from a hemipelagic succession in the Timor Sea. Sediments from the Congo 

deep sea fan are younger than 20 ka and those from the Timor Sea younger than 140 ka. The 

geological setting of the sites and the characterization of the sedimentary OM are given by 

Baudin et al. (2010) or Stetten et al. (submitted) for the Congo deep sea turbiditic system 

and by Moreno et al. (2008) or Liu et al. (2014) for the Timor Sea. 

Since the invention of the technique in the middle of the 1970s, various Rock-Eval devices 

were designed by the Institut Français du Pétrole (IFP) and marketed by different companies. 

The principles and basic operating conditions of the apparatus were described by Espitalié et 

al. (1977) for Rock-Eval 1, by Espitalié et al. (1985a, 1985b, 1986) or Espitalié and Bordenave 

(1993) for Rock-Eval 2 and 3 and finally by Lafargue et al. (1998) and Behar et al. (2001) for 

Rock-Eval 6. Rock-Eval 2 and Rock-Eval 3, the latter being also termed Oil Show Analyser 

(OSA), have been traded since the middle of 1990s and some are still operational. The Rock-

Eval 6, marketed by Vinci Technologies, is the most recent version and is widely used. 

Obviously, analysis and interpretation of Rock-Eval data should be considered by each 

interpreter depending on the particular device in use. 
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Briefly, the Rock-Eval 6 technique provides several measurements from the successive 

pyrolysis and oxidation of a sample. First, the splitting of the pyrolysis effluent (under N2) 

into two halves at the outlet of the pyrolysis oven, allows the simultaneous detection and 

quantitation of hydrocarbonaceous effluents with  flame ionization detection (FID) and CO 

and CO2 with infra red (IR) detection, respectively (Fig. 1). The S1 and S2 signals successively 

determined with FID , correspond first to the amount of free hydrocarbons (S1, gas and oil) 

volatilized for 3 min at 300 °C, the second peak (S2) representing the hydrocarbons 

generated from kerogen cracking between 300 and 650 °C, with a heating rate of 25 °C/min. 

The amounts of CO2 and CO represent the S3 and S3 CO peaks, respectively. All these basic 

parameters are expressed either in mg of hydrocarbons or CO2/CO per gram of rock. The 

temperature at which the hydrocarbons maximum resulting from kerogen cracking occurs is 

called Tmax. 

The residual organic and inorganic carbon content (in wt %) of the pyrolyzed sample is 

obtained by combustion in air from 300 to 850 °C, with a heating rate of 20 °C/min. The CO2 

and CO resulting from this combustion are also detected with  an IR cell and correspond to 

peaks S4 and S5 for CO2 and peak S4 CO for CO (Fig. 1). From these basic parameters, the 

total organic carbon content (TOC, wt %) is calculated as the sum of pyrolyzed OC and 

residual OC. The hydrogen index (HI, mg HC/g TOC) corresponds to the quantity of 

pyrolyzable organic compounds (S2 peak) relative to TOC. The oxygen index (OI, mg CO2/g 

TOC) corresponds to the quantity of CO2 (S3 peak) relative to TOC. The Rock-Eval 6 device, 

which measures CO2 and CO separately, allows three OIs to be defined: one for CO2, one for 

CO and an additional one for CO2+CO, called OIRE6. The latter is expressed in mg O2/g TOC. 

Finally, the mineral carbon (MinC) is also calculated as S3’+S3’CO + S5 peaks (Fig. 1). Note 
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that only Rock-Eval 6 allows selective detection of residual OC and inorganic carbon. MinC is 

not a parameter provided by earlier Rock-Eval devices. 

The above procedure is called the ‘Bulk-rock/basic’ method/cycle on the Rock-Eval 6 device 

(Lafargue et al., 1998; Behar et al., 2001; Sarmiento-Romero et al., 2015) and is well suited 

for ancient sediments and sedimentary rocks. Another procedure exists for coal and pure 

OM (i.e. kerogen concentrates) where the final pyrolysis temperature is 800 °C instead of 

650 °C (Behar et al., 2001). This ‘pure OM’ method does not allow determination of the 

mineral carbon, which is virtually absent from such material.  

Some differences exist in the procedure depending of the Rock-Eval device used. The most 

important differences are listed in Table 1. In particular, the temperature of the splitter 

located at the outlet of the pyrolysis oven varies from 400 °C for the Rock-Eval 6 to 500 or 

550 °C for Rock-Eval 2 and Rock-Eval 3, respectively. 

No standard procedure has been agreed for recent sediments, although Rock-Eval pyrolysisis 

is widely used for the characterization of OM in such samples. Espitalié et al. (1985a) 

suggested using the ‘cycle 3’ mode on Rock-Eval 2 or 3, with a lower temperature at the 

beginning of the pyrolysis (180 °C), but few studies followed their advice. Disnar et al. (2003) 

and Hetényi et al. (2005) proposed a standard procedure for the Rock-Eval analysis of soils, 

with the pyrolysis starting at 200°C, but all subsequent studies did not follow their 

recommendation. Recently, Carrie et al. (2012) presented an interesting study showing the 

Rock-Eval signature of pure organic moieties but did not propose a standard procedure for 

the analysis of sediments and soil, in contrast to the title of their paper. In fact, they used 

the ‘bulk-rock/basic’ method/cycle, which is not appropriate for the Rock-Eval analysis of 

recent sediments and soils. 



  

6 
 

This study attempts to define a standard mode for the analysis of recent OM in order to 

avoid misleading interpretation of Rock-Eval data and to make possible the inter-comparison 

of results, whatever the Rock-Eval device used. 

To this end, and because of some differences in their working principles, three different 

Rock-Eval devices were used and compared: a Rock-Eval 2, an OSA and a Rock-Eval 6 Turbo. 

The main differences between them are summarized in Table 1. Another important 

difference is the inert gas flow used to transport the pyrolysis effluent. Rock-Eval 2 and OSA 

devices use He as inert gas, whereas Rock-Eval 6 uses N2. Behar et al. (2001) showed that 

using He  led to a slightly increase in the S2 value (5 to 10 relative wt %) for samples 

containing Type I kerogen or Type II kerogen. 

 

3. Experimental procedures for Rock-Eval pyrolysis of recent sediments 

3.1. A cycle devoted to ‘recent sediment’ 

As stated by Peters (1986), “an accurate interpretation of Rock-Eval data requires access to 

the FID (and IR) records”, the so-called pyrograms illustrated in Fig. 1. Indeed, pyrograms 

from very immature samples analyzed with the ‘bulk-rock/basic’ method/cycle show poorly 

separated S1 and S2 peaks with a trough between them well above the baseline (Fig 2). As 

the Rock-Eval 6 device allows ready modifying of the heating program, it is recommended 

that the pyrolysis be started at a lower temperature. For their study of soils, Disnar et al. 

(2003) started the pyrolysis at 200 °C and used a heating rate of 30 °C/min. However, with 

some RE devices (e.g. RE 6), it is practically possible to start with a temperature as low as 

100 °C, such a low temperature being well-suited for the study of soil contaminated with 

light hydrocarbons (Ducreux et al., 1997; Lafargue et al., 1998; Haeseler at al., 1999). To 

keep the duration of the pyrolysis step similar to that of the oxidation step and to be 
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consistent with the ‘cycle 3’ existing on Rock-Eval 2 and 3 devices, we chose to start at 180 

°C, with a heating rate of 30 °C/min, instead of the 25 °C/min for the ‘basic’ cycle.This slight 

modification of the ‘Bulk-rock/basic’ method/cycle is hereon termed the ‘bulk-rock/recent 

sediment’ method/cycle. This ‘recent sediment’ cycle does not require any change for the 

oxidation step compared with the ‘basic’ cycle.  

3.2.  Results and discussion 

Using a heating program such as the one proposed above for the pyrolysis step (i.e. 

beginning at a temperature as low as 180 °C) offers a better determination of the S1  peak, 

without any hydrocarbonacous effluent arising from a beginning of pyrolysis of the OM (Fig. 

2). This is particularly important for immature samples in which thermally labile 

functionalized organic compounds (proteins, carbohydrates, hemicellulose, lipids …) 

constitute a significant part of the OM. The “fragility” of these compounds makes starting 

the pyrolysis at a low temperature an absolute necessity.  

Changes in the pyrolysis program induce changes in the FID response and consequently in 

the determination of the classical Rock-Eval parameters. With a start at a lower 

temperature, the S1 and S2 peaks are modified primarily as illustrated in Fig. 2, with a 

smaller S1 peak and its return to baseline before the onset of the S2 peak. Tmax  and 

pyrolyzable carbon (PC) must also be affected by the use of the ‘recent sediment’ cycle 

proposed here.  

For a better comparison, we analyzed the IFP 55000 and IFP 160000 standards –

recommended for calibration of the Rock-Eval apparatus – using both ‘basic’ and ‘recent 

sediment’ cycles. Due to the difference in heating rate, the S2 peak was narrower and taller 

using the ‘recent sediment’ cycle than for the ‘basic’ cycle(Fig. 2). Nevertheless, the surface 

of the S2 peak from IFP 55000 and 160000 standards was very similar, with only a small 
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increase of ± 0.20 mg/g using the ‘recent sediment’ cycle (Table 2). Such a difference is 

negligible as the accuracy for S2 of the IFP 160000 standard was ± 0.50 mg/g, and this had 

absolutely no impact on the PC content. The Tmax value for IFP 55000 and 160000 standards 

increased by 2-3 °C using the ‘recent sediment’ cycle, which is also in the range of fluctuation 

for this parameter (Table 2). The integration of S3CO and S3CO2was not affectedby the use 

of the ‘recent sediment’ cycle, so the OI value was not affected. 

As the S1 peak intensity was less important with the ‘recent sediment’ cycle than for the 

‘basic’ cycle in the analysis of recent sediments (Fig. 2), the S2 peak intensity increased 

proportionally but the sum of the S1 and S2 peaks was similar whatever the cycle used 

(Table 2). The HI value was, however, different using one or the other cycle, with an increase 

using the ‘recent sediment’ cycle (Fig. 2 and Table 2).This increase was expected as the S2 

value increased, whereas TOC was similar. Tmax  also showed a small difference with an 

increase of 3-4 °C using this cycle. This is probably due to the cracking kinetics of thermally 

“fragile” compounds, which are slightly different with a heating rate of 25 or 30 °C/min (see 

Braun and Burnham, 1987 for a further explanation). 

We also analyzed two samples of recent sediments using both cycles and different Rock-Eval 

devices (Table 2). As expected, when using the ‘recent sediment’ cycle instead of the ‘basic’ 

cycle, the decrease in S1 is much more important with the recent sediments because of their 

richness in a thermally labile fraction, compared to the IFP standards. The S2 value increases 

proportionally with the ‘recent sediment’ vs. ‘basic’ cycle and the sum of S1 and S2 peaks is 

similar whatever the cycle (Table 2). Tmax showed an increase of 5-6 °C using this cycle and,as 

expected, HI also increased. 
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To summarize, the ‘bulk-rock/recent sediment’ method/cycle proposed here simply needed 

a change in the pyrolysis heating program (without any change in the oxidation program). A 

start at 180 °C and a heating rate of 30 °C/min seems appropriate for the analysis of recent 

OM without any noticeable artifacts. This procedure displays TOC and OI values very similar 

to the classical ‘bulk-rock/basic’ method/cycle and both S2 and HI values are believed to be 

better determined using this cycle when applied to recent sediments. 

In addition to the temperature program described above, the analysis of recent sediments 

using Rock-Eval pyrolysis requires some attention as these sediments may contain thermally 

“fragile” minerals. As developed below, parasitic effects might also be particularly important 

when salts and/or poorly crystalized carbonate are present, as frequently occurs with recent 

sediments. 

 

4. Effect of salts during Rock-Eval pyrolysis of recent marine sediments 

4.1. An example of erroneous interpretation 

Holtvoeth et al. (2005) discussed the abundance and nature of the terrigenous OM supplied 

to the Atlantic Ocean by the Niger and Congo rivers. According to these authors, the 

sediments from the Congo deep sea fan contain a thermally stable organic fraction absent 

from the Niger delta. This unusual  fraction was revealed from Rock-Eval analysis, which 

displayed a bimodal S2 peak under programmed pyrolysis. The twin S2 peaks were 

respectively named S2lm and S2hm, after their order of appearance (Holtvoeth et al., 2001; 

Fig. 3). In contrast to the first peak that maximizes at a Tmax temperature ≤ 430 °C, as 

expected from recent immature sediments, the second usually maximizes at values that 

frequently approach 550 °C (Holtvoeth et al., 2001). The relative intensity of these two 

peaks, expressed through the so-called lm/hm index, was initially thought to reflect the 
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respective proportions of low maturity and high maturity OM in Congo deep sea fan 

sediments (Holtvoeth et al., 2001, 2003). Later, the presence of the apparently highly mature 

organic fraction in the Congo deep sea fan sediments and their absence from those off the 

Niger delta was assumed to arise from the nature of the soils in their watersheds, mostly 

oxisols in the case of the Congo and ultisols for the Niger (Holtvoeth et al., 2005). This 

assertion seemed to be consistent with the study of Disnar et al. (2003), who presented the 

results of an analytical survey of soils from various areas of the world, using Rock-Eval 

pyrolysis. These authors mentioned that ferralsols from tropical areas provide a high 

temperature signal that is absent from soils from temperate areas. 

Nonetheless, the high temperature signal recorded for soil samples reported by Disnar et al. 

(2003) was only important for the deep soil horizons, the least eroded by runoff. In addition, 

most of the samples studied by Holtvoeth et al. displayed a Tmax of ca. 540 °C and still 

showed a notable HI value of ca. 200 or even higher (up to 400 mg HC/g TOC). Normally, a 

Tmax value of 540 °C or higher is indicative of a very high degree of maturity, corresponding to 

the beginning of the dry gas window for Type III kerogen (such high values are considered to 

be unrealistic for Type I and Type II kerogens; Espitalié et al., 1985b 1986). At such a high 

degree of maturity, coaly material can only have a residual oil potential, i.e. an HI ≤ 50 mg 

HC/g TOC, much lower than the 200-400 mg HC /g TOC reported by Holtvoeth et al.(2001, 

2003, 2005) for the Congo deep sea fan sediments. 

 

The reasons for the anomalous behavior of the S2 peak misinterpreted by Holtvoeth et al. 

(2001) related to (i) the presence of salts and (ii) the use of a Rock-Eval 2 device. As 

mentioned by Espitalié et al. (1985a) “in some type of rocks, a more or less appreciable rise 

in the FID signal may be observed, creating a second S2 peak in the record. This second peak 
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does not correspond to hydrocarbon compounds but is caused by the ionization of mineral 

salts (chlorides and sulfates) volatilized during the pyrolysis”. This parasitic effect is not only 

recorded by recent porous sediments enriched in salts precipitatedduring evaporationof 

interstitial water, but also by rocks from ancient evaporitic deposits. 

From a practical standpoint, a decrease in the temperature of the splitter at the exit of the 

pyrolysis oven considerably attenuates this phenomenon. This explains the great intensity of 

the second parasitic S2 peak recorded by Holtvoeth et al. (2001) since they used a Rock-Eval 

2 device with a temperature of the splitter of 500 °C (or even 550 °C in Rock-Eval 3 device), 

whereas this temperature is only 400 °C on the Rock-Eval 6 device (Table 1). The later 

temperature change was introduced precisely to reduce the parasitic ionization related to 

salts. 

More recently, we analyzed samples from the same Congo deep sea fan (Baudin et al., 2010; 

Stetten et al., submitted) using both Rock-Eval 3 (OSA) and Rock-Eval 6 apparatus. With the 

OSA, we obtained the same FID records as those reported by Holtvoeth et al. (2001), with a 

double S2 peak (Fig. 4). By contrast, the parasitic ionization due to salts decreases using 

Rock-Eval 6 device and most of the second S2 peak disappears (Fig. 4). Previous washing of 

rock with deionized water before Rock-Eval analysis may also attenuate this parasitic effect 

when chlorides are involved. Fig. 4 also shows the FID records obtained with OSA and Rock-

Eval 6 from the same sample rinsed with deionized water before re-analysis. 

To conclude, the high temperature signal observed by Holtvoeth et al.(2001, 2003, 2005) in 

Rock-Eval pyrograms of Congo deep sea fan sediments is obviously due to FID perturbation 

by salts. The effect can be easily eliminated by simply desalting the samples with deionized 

water prior to analysis. Note that such a treatment has no effect on the high temperature 

signal observed for some tropical soils (e.g. ferralsols) by Disnar et al.(2003). The discussion 
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by Holtvoeth et al. (2005) on the difference between soil OM in late Quaternary Niger delta 

and Congo deep sea fan sediments and between the soils of the corresponding watersheds 

is therefore irrelevant. The various hypotheses and conclusions inferred from the supposed 

existence of such a fraction in their previous studies (e.g. Holtvoeth et al., 2001, 2003) 

should also be scrutinized with care. 

 

4.2. Benefits and inconvenience of washing recent sediment prior to Rock-Eval analysis 

To remove salts, the most efficient approach is to shake the powdered sample in deionized 

water (1/10 v/v) for 5 min. Usually, only one rinsing is enough but the operation could be 

duplicated if needed (in the case of sediments deposited in evaporitic environments). After 

centrifugation and drying, the sample is ready for analysis. 

The first advantage of rinsing recent sediments is for the Rock-Eval apparatus itself. Indeed, 

the presence of salts (chlorides and sulfates) causes damage during the oxidation phase, in 

particular on the piston of the furnace, the thermocouple and the crucibles, which all 

become corroded. 

As stated above, the second benefit of desalting is to determine the real S2 peak. 

Consequently, the TOC proportion and HI value are correct, as is Tmax, as demonstrated by 

the following case study. A 9 m succession of turbiditic sediments from 4800 m water depth 

in the distal lobes of the Congo deep sea fan was analyzed with an OSA device using the 

‘recent sediment’ cycle. All the samples were analyzed as bulk sediment and rinsed after 

being washed with deionized water. A comparison of the vertical evolution of the S2, TOC, HI 

and Tmax parameters is shown in Fig. 5. It clearly appears that S2 from the bulk sediments is 

overestimated due to the parasite peak caused by salts. This overestimation tends to 

decrease with depth (Fig. 5), from ca.  80% at the top to ca. 40% at the base of the core, 
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where the porosity of the sediment decreases, reducing the amount of salty porewater. The 

effect on the TOC proportion (%) is less pronounced since the S2 peak contributes only 8.3% 

in the calculation of PC (Espitalié et al., 1977, 1985; Behar et al., 2001). In the present case, 

as the OM is very immature, the pyrolyzable fraction is much more important than the 

residual carbon. Accordingly, the TOC difference between the bulk and rinsed sediments is 

12% on average. The rinsing effect is well expressed in the evolution of HI (Fig. 5). HI values 

are overestimated by a factor of 3 at the top of the core. The overestimation decreases with 

depth, to reach values around 125 mg HC/g TOC, which seem characteristic of the OM in 

these sediments, as HI values fluctuate between 50 and 150 mg HC/g TOC for the rinsed 

sediments. Finally, the effect of rinsing is remarkable with respect to Tmax: while this 

parameter would imply very mature OM in the case of the bulk sediment (Tmax 488 °C on 

average, with values up to 600 °C) for rinsed sediment, the Tmax dramatically decreases to 

reach values (423 °C on average) consistent with the fresh OM contentof the turbiditic 

sediments of the Congo deep sea fan (Baudin et al., 2010; Stetten et al., submitted). With 

non-rinsed sediments, the parasitic effect due to salts disappears near the bottom of the 

core, as shown by the S2, TOC, HI and Tmax  parameters that tend to show similar values for 

bulk sediments and rinsed sediments (Fig. 5).  

 

If rinsing recent marine sediments provides the beneficial effects described above, it might 

have, however, the drawback of eliminating a water soluble (or even hydrolysable) portion 

of the OM. To test this, we analyzed with a Rock-Eval 6 device 84 samples of surficial 

sediments from the Congo deep sea fan using the ‘recent sediment’cycle, with both bulk and 

rinsed sediments. The dissolved OC (DOC, ppm) in water after rinsing was determined using 

an OI Analytical Aurora 1030 Bioritech apparatus for 34 of the samples. The accuracy of this 
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method is ± 2 ppm. The S2 peak from each analysis was deconvoluted as a sum of Gaussian 

functions using Fityk, free software for nonlinear fitting of analytical functions to data 

(Wojdyr, 2010 and http://fityk.nieto.pl/). We used the auto-add tool without any 

adjustment. This allows separating the S2 peak into three Gaussian curves as shown in Fig. 6. 

The first corresponds to labile OM which is partly hydrolysable. The second corresponds to 

the kerogen or proto-kerogen. Lastly, the third corresponds to the shoulder at the end of the 

S2 peak due to the parasitic ionization related to salts. The surface of each S2 sub-peakwas 

calculated using Fityk, which allowed determining the proportion (%) of each fraction 

constituting the entire S2 peak. By comparing the ratio of the different S2 sub-peaks for bulk 

and rinsed samples, it was possible to estimate on the FID response both the parasitic effect 

of salts and the hydrolysable effect on the OM. 

As shown in Fig.6, washing modified the shape of the S2 peak. The bulge at the end of the 

peak, due to the parasitic ionization of salts, strongly decreased but did not totally 

disappear, most probably because some sulfates may still have been present and 

additionally because thermally resistant organic compounds were also detected at the end 

of the pyrolysis. The surface of the third Gaussian curve represented between 0.9 and 11.7% 

(5.5% on average, n=84) of the entire S2 peak for the bulk samples whereas it varied 

between 0 and 4.3% (1.7% on average, n=84) for rinsed sediments. Another change on the 

shape of the S2 peak was the smoothing of the early peak, corresponding to the thermally 

labile OM fraction. The shoulder on this part of the S2 peak for bulk samples almost 

completely disappeared for rinsed samples. We calculate that this change, on average, 

represents only 3.7% of the surface of the S2 peak. We believe that the hydrolysable fraction 

of OM was responsible for this shoulder at the beginning of S2 peak. The DOC concentration 

measured on the washing water varied from 2.9 to 7.9 ppm or from 0.7 to 1.7 ppm relative 

http://fityk.nieto.pl/
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to OC (n= 34). On the basis of these data, we estimate that the hydrolysable fraction 

corresponded to 3 to 8 wt % of TOC, with an average of 4.2 wt % (n= 34). This value is in the 

same range as the decrease in the surficial proportion (%) of the S2 peak for rinsed 

sediments. 

This change on the shape of S2 peak had little effect on the TOC and HI values. However, the 

washing had a more important impact on Tmax  as the thermally labile fraction was removed. 

An average increase of ca. 5 °C in Tmax was obtained between the bulk and rinsed samples 

(Fig. 6). At the same time, the loss of hydrolysable fraction induced a small decrease in the 

OI values, as this fraction is usually oxygen-rich. 

 

5. Effect of poorly crystallized carbonate in recent sediments 

The amount of MinC is calculated with Rock-Eval 6 as the sum of the CO2 released during the 

pyrolysis phase, above 400 °C, and the CO2released by carbonate decomposition during the 

oxidation phase, between 650 °C and 850 °C [see Fig. 1 and refer to Behar et al. (2001) for 

further explanation]. Recently, Pillot et al. (2013) promoted the Rock-Eval analysis as a rapid 

method for determining the nature and amount of carbonate in sediments based on the CO2 

flux produced during the oxidation phase of the analysis. Depending on the type of 

carbonate mineral (azurite, malachite, siderite, rhodochrosite, magnesite, dolomite, 

aragonite or calcite), the thermal destabilization produced a peak characterized by both its 

shape and the temperature of maximum production of CO2. It is then possible to deduce the 

nature of the carbonate from its specific decomposition temperature. Pillot et al. (2013) 

mention, however, that the size of some carbonate minerals has an effect in terms of 

thermal destabilization. Although this phenomenon is moderate for most carbonates, small 

calcite minerals are destabilized more easily than large calcite minerals. For instance, chalk is 
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destabilized at a lower temperature than marble, but the difference is only 2 to 4 °C, with 

the destabilization temperature always ≥ 775 °C (see Table 1 in Pillot et al., 2013). It should 

be noted that these authors used pure carbonate fractions for their experiments and did not 

show curves for natural samples having a complex mineralogy. 

 

Our own experience in analyzing sedimentary rocks using Rock-Eval pyrolysis led us to 

modulate the extrapolation made by Pillot et al. (2013). In most sedimentary rocks, the 

natural mixture of carbonate minerals of different origin does not display the simple and 

unequivocal series of thermal destabilization obtained with pure products. This is 

particularly apparent for recent sediments in which the carbonate minerals are usually 

poorly crystallized and may then show thermal destabilization at a temperature lower than 

demonstrated by Pillot et al. (2013). 

We compared the CaCO3fraction (%) of a recent hemipelagic succession from the Timor Sea, 

determined using a carbonate bomb (Liu et al., 2014) with values determined using Rock-

Eval, assuming that all the MinC was in the form of pure calcite or aragonite. This hypothesis 

was confirmed by means of X-ray diffraction. This technique provides an easy way of 

distinguishing between the two polymorphs of CaCO3. The two have their highest intensity 

peak at different positions, and the general aspect of the two patterns is different. Aragonite 

has its greatest peak (111) at relatively small °2Θ and has several lesser peaks, whereas 

calcite has a booming 104 peak slightly to the right of the large aragonite peak, and few and 

comparatively small other peaks. In the hemipelagic recent sediments from the Timor Sea, 

most of the CaCO3 is in the form of calcite, but the width of the 104 peak suggests a poorly 

crystallized form. 
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It appears that the determination of MinC using Rock-Eval is overestimated when compared 

with the % CaCO3 determined with the bomb technique (Fig. 7). Conversely, TOC is 

underestimated, as confirmed via C elemental analysis of a decarbonated sample of this 

hemipelagic succession (Liu, 2011). The discrepancy is due to the simultaneous generation of 

CO2 fromOM and poorly crystalized CaCO3 during the oxidation phase of Rock-Eval pyrolysis 

as shown by the records of the S4CO2 and S5 peaks (Fig. 8). Samples from the Timor Sea 

were analyzed both as bulk sediment and as decarbonated samples, after prior acid 

treatment (HCl, 2N). For bulk sediment, the thermal decomposition of carbonate (S5 peak) 

occurs at a low temperature, with the maximum in CO2 generation near 680 °C instead of 

780 °C for pure well crystallized calcite (Pillot et al., 2013). If we apply a splitting between 

S4CO2 and S5 in the middle of the trough between the two peaks, as recommended by Behar 

et al. (2001), TOC is underestimated by 50%. In any case, the partition between the two 

peaks automatically made with the Rock-Eval software is here obviously inaccurate. 

Bycontrast, the oxidation of decarbonated samples shows that CO2–and CO–from OM are 

generated until 680 °C (Fig. 8). Consequently, with bulk samples, it is not possible to 

distinguish the CO2 concomitantly produced by the oxidation of OM and the thermal 

decomposition of poorly crystallized calcite. We forced the software to split the S4CO2 peak 

from the S5 peak near 578 °C, a temperature corresponding to the intersection of the curves 

obtained from bulk and decarbonated samples (Fig. 8). Even with such a correction, the TOC 

% was a little underestimated compared with C-elemental analysis (Liu, 2011) and, more 

importantly, the OI values were overestimated, with values as high as 750 mg CO2/g TOC 

(Fig. 9). In a modified van Krevelen diagram (HI-OI), the position of recent sediments 

containing poorly crystallized calcite is clearly out of the area of classical OM types. Despite 

the fact that recent OM contains a high amount of oxygen compounds, the extremely high 
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OI values reported for the bulk sediments from the Timor Sea are irrelevant. Consequently, 

determination of the type of OM using HI and OI values from these bulk samples is 

unreliable. Only Rock-Eval results from the kerogen concentrates isolated from the same 

samples allow OM typing (Fig. 9).  

 

6. Miscalculation due to high amount of oxygen compounds in recent marine sediments 

Lastly, the richness in oxygen compounds in recent OM may also alter the determination of 

some Rock-Eval parameters. According to Behar et al. (2001), the total CO signal obtained 

during pyrolysis is split into two peaks (S3CO and S3’CO; Fig. 1). S3CO corresponds to the 

release of functionalities linked to OM and the signal is integrated into the calculation of 

TOC.  S3’CO is due to the reaction of CO2 (released during the thermal decomposition of 

carbonate) with OM according to the so-called Boudouard reaction. From one mole of CO2, 

this thermal reaction produces two moles of CO, one with carbon of organic origin 

(integrated into the calculation of TOC), and the other with carbon normally of mineral origin 

(integrated as CO2 into the calculation of MinC). In the same way, the CO2 produced during 

the pyrolysis phase is split into S3, which corresponds to CO2 with an organic origin (released 

from the beginning of the S1 peak up to 400 °C) and S3’, which is believed to have a mineral 

origin (recorded between 400 °C and the end of the pyrolysis phase; Fig. 1). 

We analyzed recent diatomaceous ooze from the Antarctic Ocean, devoid of any carbonate, 

using the ‘recent sediment’ cycler ecommended here. The resulting pyrograms (Fig.10) show 

a nice S2 peak as well as S3, S3’, S3CO and S3’CO peaks. The splitting between S3CO and 

S3’CO falls at 522 °C, near the 550 °C limit defined by Behar et al. (2001). More intriguing 

were the S3 and S3’ peaks, which showed a behavior similar to the CO release. We thus 

postulate that the S3’ and S3’CO peaks recorded here are generated only from OM as no 
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carbonate was present in the sample. Consequently, the surface of these two peaks should 

be integrated into the calculation of TOC as part of the pyrolyzable carbon (PC). For the 

diatomaceous ooze, the increase in TOC was 15% and accordingly the HI and OI values 

decreased slightly (Fig. 10). 

In their study of pure biochemical products using Rock-Eval pyrolysis, Carrie et al. (2012) also 

noted that the S3’, S3’CO and even the S5 peaks were detected and they converted them 

into an OC contribution since their samples did not contain carbonate. Since peaks were 

observed after the temperature cutoff for MinC, they also manually integrated the IR signals 

in order to determine the total amount of oxygen-bearing OM and TOC. 

 

7. Conclusions 

The Rock-Eval technique, originally designed for the analysis of ancient sediments and 

kerogens, is now frequently used to characterize recent sediments and soils. However the 

thermally labile character of recent OM and poorly crystallized minerals (e.g. carbonates) 

and the eventual presence of inorganic salts (NaCl, sulfates…), that might perturb detection 

of pyrolysis effluents, requires specific operating conditions. First, starting the pyrolysis at 

180 °C or 200 °C (instead of 300°C as for ancient organic material), is of absolute necessity to 

avoid serious decomposition of the most labile components of the OM with the following 

main consequences: an erroneously high S1 signal (supposed to account for “free 

hydrocarbons”) and a lowering of S2 and HI, accounting for the hydrogenated part of the 

OM. In contrast, poorly crystallized carbonate, that might also begin to decompose at lower 

temperature than expected, might increase S3 and OI, thus providing an indication for 

anerroneously high oxygen content for the OM. Finally, if not eliminated by way of prior 

washing, the presence of salts such as NaCl and sulfates, common in the porewater of recent 
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marine sediments, directly perturbs the FID signal, thereby giving rise, at high pyrolysis 

temperature, to a second S2 signal that might imprudently be interpreted as due to a 

mature organic fraction. 

As illustrated by various examples mentioned here, some authors still ignore these problems 

and the way of overcoming them, thereby obtaining data under inadequate conditions and 

which cannot therefore be compared with other data, or even more important, interpret 

parasite signals as resulting from particular organic components and from this build a 

misleading interpretation. 

The proposed ‘recent sediment’ cycle does not require any change for the oxidation step 

compared with the ‘bulk-rock/basic’ method/cycle and just needs a change in the pyrolysis 

heating program. Starting the pyrolysis phase at 180 °C with a heating rate of 30 °C/min 

seems appropriate. This cycle displays TOC and OI values very similar to the classical ‘basic’ 

cycle and both S2 and HI values are believed to be better determined using the cycle when it 

is applied to recent sediments. Accurate conclusions require access to the pyrograms and an 

understanding of the pitfalls in the interpretation of Rock-Eval data. For critical samples, 

interpretation should be verified via other mineralogical or geochemical analyses. 
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Caption of Tables and Figures 

 

Table 1 

Differences in operating mode and parameters using different Rock-Eval devices. 

 

Table 2 

Comparison of selected parameters with different Rock-Eval devices operating with ‘basic’ or 

‘recent sediment’ cycle on selected samples. IFP 55000 and 160000 standards are ancient 

sedimentary rocks, whereas samples appearing in the grey-shaded zone of the table 

correspond to recent marine sediments. Each sample was analyzed at least 10x and some 

standard deviation values for IFP standards correspond to 100 analyses. 

 

Fig. 1. Analytical procedure and records for the ‘basic’ cycleon the Rock-Eval 6 device. The 

straight lines refer to the temperature evolution through time. The surfaces of the different 

peaks are integrated for the calculation of TOC and MinC. Modified from Behar et al. (2001). 

 

Fig. 2. Comparison of the FID responses (S1+S2 peaks) for a recent marine sediment and for 

IFP standard 160000 recorded via Rock-Eval 6 using the ‘basic’ cycle (solid line) and the 

‘recent sediment’ cycle(dotted line). See text for the description of each cycle. The ‘recent 

sediment’ cycle allows better determination of the S1and S2peaks without any change in 

Tpeak/Tmax for recent marine sediment. The straight lines refer to the temperature evolution 

through time (AU, arbitrary unit).  
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Fig. 3. Rock-Eval pyrograms of organic-rich (top) and organic-poor (bottom) samples of 

recent sediments showing distinct fluctuation in the bimodal character of the S2 peak (lm, 

low maturity; hm, high maturity; redrawn from Fig. 7 in Holtvoeth et al., 2001). 

 

Fig. 4. Comparison of FID response (S1+ S2 peaks) obtained using both OSA (top) and Rock-

Eval 6 (bottom) for analysis of a sample of recent marine sediment from the terminal lobes 

of the Congo deep sea fan, without or after previous rinsing. The straight lines refer to the 

temperature evolution through time. The second S2 peak (AU, arbitrary unit) during analysis 

of bulk sediment is a parasitic ionization due to salts that disappears after washing (dotted 

lines). The parasitic ionization is less important with Rock-Eval 6 because of the lower 

temperature of the splitter. The Rock-Eval parameters are obviously inaccurate when salts 

are present.

 

Fig. 5. Vertical evolution of Rock-Eval parameters (TOC, S2, HI and Tmax) along a 9 m core of 

turbiditic sediments from the terminal lobes of the Congo deep sea fan. The data were 

acquired on bulk (solid line) and rinsed sediments (dotted line) using an OSA device. Note 

the parasitic effect due to salts, which perturbs all parameters down to 8.5 m. 

 

Fig. 6. Example of deconvolution of S2 peak from bulk (top) and rinsed (bottom) sediment 

from the terminal lobes of the Congo deep sea fan (AU, arbitrary unit). The three Gaussian 

curves obtained using the Fityk software (Wojdyr, 2010) are the best fit of analytical 

functions to data. The first corresponds to labile OM, the second to the (proto)kerogen and 

the third is partly due to the parasitic ionization by salts. After washing (bottom) the third 

curve strongly decreases but does not totally disappear as some sulfate may be still present 
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and because thermally resistant organic compounds are generally detected at the end of the 

S2 peak. 

 

Fig. 7. Comparison of MinC (%) determined from Rock-Eval pyrolysis and CaCO3 (%) 

determined with a carbonate bomb technique for a selection of recent sediment samples 

from the Timor Sea. MinC is overestimated due to the simultaneous generation of CO2 by 

OM and poorly crystalized CaCO3 during the oxidation phase of Rock-Eval pyrolysis. 

 

Fig. 8. Infra-red cell response (S4CO2 and S5 peaks) from two hemipelagic recent sediment 

samples from the Timor Sea analyzed using a Rock-Eval 6 device. Each sample was analyzed 

before and after decarbonation by acid treatment. The thermal decomposition of carbonate 

(S5 peak) occurs at low temperature because the carbonate fraction is made up of poorly 

crystalized calcite. The automatic cutoff between S4CO2 and S5 peaks usually made by the 

Rock-Eval software is inaccurate here. The straight lines refer to the temperature evolution 

through time.

 

Fig. 9. Comparison of OM typing using a modified van Krevelen diagram (HI-OI) for bulk 

samples and kerogen concentrates of recent hemipelagic sediments from the Timor Sea. The 

extremely high OI values for bulk sediments are an artefact due to the cracking at low 

temperature of poorly crystalized CaCO3 that interferes with the determination of organic 

derived CO2. Consequently, determination of the type of OM is unreliable. Note that the OI 

axis on the modified van Krevelen diagram usually does not exceed 200 mg CO2/g TOC. 

 

Fig. 10. Records of the different peaks generated by pyrolysis of a recent diatomaceous ooze 
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from the Antarctic Ocean. The straight line refers to the temperature evolution through 

time. The cutoff between peaks automatically made by the Rock-Eval software provides the 

parameters (TOC, MinC, HI and, OI) on the first line of the table. As this sample did not 

contain any CaCO3, the S3’ and S3’CO peaks should here be considered within the organic 

carbon fraction. Accordingly, the Rock-Eval parameters are modified as shown on the second 

line of the table. 
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Device 
Inert 
gas  

Splitter 
temperature 

Final pyrolysis 
temperature 

Oxidation 
temperature  

RE parameters 

Rock-Eval 2 He 500 or 550 °C 600 °C 600 °C S1, S2, S3 (< 400 °C), S4, PC, RC, TOC, Tmax, HI, OI 

Rock-Eval 3 (OSA) He 500 or 550 °C 600 °C 600 °C S1, S2, S4, PC, RC, TOC, Tmax, HI 

Rock-Eval 6 N2 400 °C 650 °C 300 to 850 °C S1, S2, S3, S4, S5, PC, RC, TOC, Tmax, HI, OI, OICO, OIRE6, MinC 
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Sample Device 

n S1 (mg/g) S2 (mg/g) Tmax (°C) TOC (wt%) HI (mg/g TOC) 

Basic 
Rec. 

sed. Basic 

Recent 

sed. Basic Recent sed. Basic 

Recent 

sed. Basic 

Recent 

sed. Basic 

Recent 

sed. 

IFP 55000 RE2/OSA 95 50 0.10 ± 0.05 0.02 ± 0.00 8.62 ± 0.22 8.82 ± 0.20 423 ± 3 425± 2 2.79 ± 0.07 2.82 ± 0.11 309 ± 6 312 ± 10 

IFP 55000a RE6 43 25 nd 0.01 ± 0.01 8.70 ± 0.20 8.78 ± 0.18 422 ± 1 424± 1 2.80 ± 0.04 2.93 ± 0.10 308 ± 6 310 ± 12 

IFP 160000bb RE6 600 25 0.14 ± 0.07 0.04 ± 0.04 12.43 ± 0.50 12.64 ± 0.48 416 ± 2 418 ± 2 3.28 ± 0.14 3.30 ± 0.13 379 ± 14 383 ± 15 

Timor Sea-230 OSA 10 10 0.21 ± 0.10 0.01 ± 0.01 1.11 ± 0.11 1.35 ± 0.12 412 ± 2 417 ± 3 0.83 ± 0.04 0.81 ± 0.03 132 ± 8 166 ± 6 

Timor Sea-230 RE6 10 10 0.23± 0.09 0.01 ± 0.02 1.06 ± 0.08 1.31 ± 0.13 413 ± 2 418 ± 2 0.80 ± 0.05 0.81 ± 0.04 133 ± 5 162 ± 6 

Congo DSF-MTB06 RE6 8 12 0.52± 0.04 0.03 ± 0.01 4.25 ± 0.05 5.40 ± 0.25 412 ± 2 409 ± 3 4.00 ± 0.04 3.71 ± 0.04 106 ±7 145 ± 4 

a Data from Table 7 in Behar et al. (2001); b data provided by G. Letort (IFPEN; personal communication).       
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                                                                    Highlights 

 Several artefacts may occur during Rock-Eval pyrolysis of recent marine sediments.  

 A simple standard method is proposed for the analysis ofrecent organic matter. 

 Guidelines are provided for interpreting Rock-Eval data from recent sediments. 

 

 


