
HAL Id: insu-01170445
https://insu.hal.science/insu-01170445

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probing Atmospheric Electric Fields in Thunderstorms
through Radio Emission from Cosmic-Ray-Induced Air

Showers
P. Schellart, T. n. g. Trinh, S. Buitink, A. Corstanje, J. e. Enriquez, H. Falcke,

J. r. Hörandel, A. Nelles, J. p. Rachen, L. Rossetto, et al.

To cite this version:
P. Schellart, T. n. g. Trinh, S. Buitink, A. Corstanje, J. e. Enriquez, et al.. Probing Atmospheric
Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.
Physical Review Letters, 2015, 114 (165001), 6 p. �10.1103/PhysRevLett.114.165001�. �insu-01170445�

https://insu.hal.science/insu-01170445
https://hal.archives-ouvertes.fr


Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission
from Cosmic-Ray-Induced Air Showers

P. Schellart,1,* T. N. G. Trinh,2 S. Buitink,3,1 A. Corstanje,1 J. E. Enriquez,1 H. Falcke,1,4,5,6 J. R. Hörandel,1,4 A. Nelles,1

J. P. Rachen,1 L. Rossetto,1 O. Scholten,2,7 S. ter Veen,1,5 S. Thoudam,1 U. Ebert,8,9 C. Koehn,8 C. Rutjes,8 A. Alexov,10

J. M. Anderson,11 I. M. Avruch,12,13 M. J. Bentum,5,14 G. Bernardi,15 P. Best,16 A. Bonafede,17 F. Breitling,18

J. W. Broderick,19,20 M. Brüggen,17 H. R. Butcher,21 B. Ciardi,22 E. de Geus,5,23 M. de Vos,5 S. Duscha,5 J. Eislöffel,24

R. A. Fallows,5 W. Frieswijk,5 M. A. Garrett,5,25 J. Grießmeier,26,27 A.W. Gunst,5 G. Heald,5,13 J. W. T. Hessels,5,28

M. Hoeft,24 H. A. Holties,5 E. Juette,29 V. I. Kondratiev,5,30 M. Kuniyoshi,31 G. Kuper,5 G. Mann,18 R. McFadden,5

D. McKay-Bukowski,32,33 J. P. McKean,5,13 M. Mevius,5,13 J. Moldon,5 M. J. Norden,5 E. Orru,5 H. Paas,34

M. Pandey-Pommier,35 R. Pizzo,5 A. G. Polatidis,5 W. Reich,6 H. Röttgering,25 A. M.M. Scaife,20 D. J. Schwarz,36

M. Serylak,19 O. Smirnov,37,38 M. Steinmetz,18 J. Swinbank,28 M. Tagger,26 C. Tasse,39 M. C. Toribio,5 R. J. van Weeren,15

R. Vermeulen,5 C. Vocks,18 M.W. Wise,5,28 O. Wucknitz,6 and P. Zarka39
1Department of Astrophysics/IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands

2University of Groningen, KVI Center for Advanced Radiation Technology, 9700 AB Groningen, The Netherlands
3Astrophysical Institute, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

4Nikhef, Science Park Amsterdam, 1098 XG Amsterdam, The Netherlands
5ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands

6Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
7Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium

8Center for Mathematics and Computer Science (CWI), PO Box 94079, 1090 GB Amsterdam, The Netherlands
9Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven, The Netherlands
10Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA

11Helmholtz-Zentrum Potsdam, DeutschesGeoForschungsZentrum GFZ, Department 1: Geodesy and Remote Sensing,
Telegrafenberg, A17, 14473 Potsdam, Germany

12SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV Groningen, The Netherlands
13Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands

14University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
15Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA

16Institute for Astronomy, University of Edinburgh, Royal Observatory of Edinburgh,
Blackford Hill, Edinburgh EH9 3HJ, United Kingdom

17University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
18Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

19Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
20School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

21Research School of Astronomy and Astrophysics, Australian National University, Mt. Stromlo Observatory,
via Cotter Road, Weston, Australian Capital Territory 2611, Australia

22Max Planck Institute for Astrophysics, Karl Schwarzschild Straße 1, 85741 Garching, Germany
23SmarterVision BV, Oostersingel 5, 9401 JX Assen, The Netherlands

24Thüringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany
25Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

26LPC2E, Universíte d’Orleans/CNRS, 45071 Orleans Cedex 2, France
27Station de Radioastronomie de Nancay, Observatoire de Paris, CNRS/INSU, USR 704, Universíte Orleans,

OSUC, Route de Souesmes, 18330 Nancay, France
28Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands
29Astronomisches Institut der Ruhr-Universität Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
30Astro Space Center of the Lebedev Physical Institute, Profsoyuznaya Street 84/32, Moscow 117997, Russia

31National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
32Sodankylä Geophysical Observatory, University of Oulu, Tähteläntie 62, 99600 Sodankylä, Finland

33STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
34Center for Information Technology (CIT), University of Groningen, PO Box 72, 9700 AB Groningen, The Netherlands

35Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 Avenue Charles André, 69561 Saint Genis Laval Cedex, France
36Fakultät für Physik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

37Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
38SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands 7405, South Africa

39LESIA, UMR CNRS 8109, Observatoire de Paris, 92195 Meudon, France
(Received 23 January 2015; published 24 April 2015)

PRL 114, 165001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

24 APRIL 2015

0031-9007=15=114(16)=165001(5) 165001-1 © 2015 American Physical Society



We present measurements of radio emission from cosmic ray air showers that took place during
thunderstorms. The intensity and polarization patterns of these air showers are radically different from
those measured during fair-weather conditions. With the use of a simple two-layer model for the
atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This
in turn provides a novel way to study atmospheric electric fields.

DOI: 10.1103/PhysRevLett.114.165001 PACS numbers: 92.60.Pw, 95.85.Ry, 96.50.sd

One of the important open questions in atmospheric
physics concerns the physical mechanism that initiates
lightning in thunderclouds [1]. Crucial to the answer is
knowledge of atmospheric electric fields. Existing in situ
measurements, from balloons or airplanes, are limited due
to the violent nature of thunderstorms. Furthermore, they
are limited to balloon trajectories or perturbed by the
presence of the aircraft. Here, we present a new method
to probe atmospheric electric fields through their influence
on the pattern of polarized radio emission emitted by
cosmic-ray-induced extensive air showers.
The main mechanism for driving radio-wave emission

from air showers is that the relativistic electrons and
positrons in the electromagnetic part of the shower are
accelerated in opposite directions by the Lorentz force
exerted by Earth’s magnetic field. This produces a short,
nanosecond time scale, coherent pulse of radio emission
mostly at megahertz frequencies. The emission generated
by this geomagnetic mechanism is unidirectionally polar-
ized in the êv×B direction. Here, v is the propagation
velocity vector of the shower and B represents Earth’s
magnetic field [2–4].
A secondary emission mechanism, contributing between

∼3%–20% to the signal amplitude depending on distance
to the shower axis and the arrival direction of the shower
[5,6], results from a negative charge excess in the shower
front. This consists of electrons knocked out of air
molecules by the air shower. This also produces a short
radio pulse but now polarized radially with respect to the
shower symmetry axis.
The emission from both processes is strongly beamed in

the forward direction, due to the relativistic velocities of the
particles. Additionally, the nonunity refractive index of the
air causes relativistic time-compression effects leading to
enhanced emission from parts of the shower seen at the
Cherenkov angle [7,8]. Interference between the differently
polarized emission from both components leads to a
complex and highly asymmetric intensity pattern [9]. In
contrast, time-compression effects do not alter the direction
of the polarization vector of the emission. The polarization
pattern of the radio emission thus points predominantly in
the êv×B direction with a minor radial deviation. Strong
atmospheric electric fields will influence the motions of the
electrons and positrons in air showers. This is expected to
be visible in the polarization patterns of the recorded
emission [10]. Therefore, we analyze air showers recorded
during thunderstorms.

Data for this analysis were recorded with the low-band,
10–90 MHz, dual-polarized crossed dipole antennas
located in the inner, ∼2 km radius, core of the the LOw-
Frequency ARray (LOFAR) radio telescope [11]. These
antennas are grouped into circular stations that act as dishes
for standard interferometric astronomical observations. For
the purpose of air shower measurements, all antennas are
equipped with ring buffers that can store up to 5 s of raw
voltage data sampled every 5 ns. A dedicated scintillator
array, the LOfar Radboud air shower Array (LORA), is
located at the center of LOFAR to provide an independent
trigger whenever an air shower with an estimated primary
energy of ≥2 × 1016 eV is detected [12]. When a trigger is
received, 2 ms of raw voltage data around the trigger time
are stored for every active antenna.
These data are processed in an off-line analysis [13]

from which a number of physical parameters are extracted
and stored. These include the estimated energy of the air
shower (as reconstructed from the particle detector data),
the arrival direction of the air shower (as reconstructed
from the arrival times of the radio pulses in all antennas),
and for each antenna polarization information in the form
of the Stokes parameters: I (intensity), Q, U, and V. The
orientation of the polarization vector is reconstructed from
Stokes Q and U [6].
Over the period between June 2011 and September 2014,

LOFAR recorded a total of 762 air showers. The complex
radio intensity pattern on the ground of almost all measured
showers can be well reproduced by state-of-the-art air
shower simulation codes [14]. These codes augment well-
tested Monte Carlo air shower simulations with radio
emission calculated from first principles at the microscopic
level [15,16]. In this analysis, we use the COREAS plug in of
CORSIKA [17] with QGSJETII [18] and FLUKA [19] as the
hadronic interaction models. It was previously found that the
exact shape of the intensity pattern depends on the atmos-
pheric depth where the number of shower particles is largest,
Xmax, and that the absolute field strength of the radio
emission scales with the energy of the primary particle.
The radio footprints of 58 of the 762 air showers are very

different from those predicted by simulations. Of these, 27
air showers have a measured signal-to-noise ratio below 10
in amplitude—too low to get a reliable reconstruction. The
polarization patterns of the other 31 showers differ signifi-
cantly from those of “normal” fair-weather air showers.
This can be seen in the middle and bottom panels of Fig. 1
where the polarization direction is clearly coherent
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(i.e., nonrandom) over all antennas but no longer in the
expected êv×B direction. In addition, for some of these
showers the intensity of the radio signal at low 10–90 MHz
frequencies is strongest on a ring around the shower axis
with a radius of approximately 100 m (see also Fig. 2). This
“ring structure” in the intensity pattern is not present in
normal fair-weather air showers that all lack rotational
symmetry in the intensity pattern and instead show a single
maximum that is displaced in the êv×B direction from the
shower axis [14,20]. Twenty of these 31 showers occur
within 2 h of lightning strikes recorded within ∼150 km
distance from LOFAR by the Royal Dutch Meteorological
Institute. Given the similarity of the polarization patterns of
the remaining showers where no lightning strikes were

FIG. 1. Polarization as measured with individual LOFAR
antennas (arrows) in the shower plane for three measured air
showers. LOFAR antennas are grouped into circular stations, of
which seven are depicted. The expected polarization direction for
fair-weather air showers is indicated with “normal.” The position
of the shower axis, orthogonal to the shower plane, is indicated by
the intersection of the dashed lines.

FIG. 2 (color online). Radio intensity pattern during a thunder-
storm. Top: the circles represent antenna positions. Their color
reflects measured pulse power. The best-fitting COREAS simu-
lation is shown in color scale in the background. Where the colors
of the circles match the background, a good fit is achieved.
Bottom: measured (circles) and simulated pulse power (squares)
as a function of distance to the shower axis.
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measured, it is plausible that at these times the atmospheric
electric field was also strong albeit not strong enough to
initiate lightning. An electric field meter has since been
installed at LOFAR that will provide independent verifi-
cation for future measurements.
For the shower in the middle panel of Fig. 1, recorded

during thunderstorm conditions, the pattern is unidirec-
tional for the entire footprint. A second more complicated
type is depicted in the bottom panel. Here, the pattern is
more “wavy.” The analysis presented here focusses on an
air shower of the first type where also a ring structure is
visible and a strong signal is measured by the LORA
particle detectors. All air showers of this type can be
reconstructed with similar accuracy. For showers of the
wavy type, a more complex analysis is currently being
developed.
We propose that the influence of atmospheric electric

fields on air shower radio emission can be understood in the
following way.
The electric field, in the region of the cloud traversed

by the air shower, can be decomposed into components
perpendicular E⊥ and parallel E∥ to the shower symmetry
axis. The perpendicular component of the field changes the
net transverse force acting on the particles

F ¼ qðE⊥ þ v × BÞ: ð1Þ

This changes both the magnitude and the polarization of the
radiation that follow F.
During shower development, the air shower particles

lose energy. The parallel component of the atmospheric
electric field partially compensates this energy loss.
Therefore, the total number of particles within a given
energy range in the shower increases. Because the frac-
tional gain of energy is greatest for lower energy particles,
these are the most affected. However, low-energy particles
do not contribute much to the total radio emission because
they lag behind the shower front and their emission is not
coherent for frequencies above 10 MHz. Thus, it is the
perpendicular component of the electric field that deter-
mines the measured intensity and polarization direction.
In order to test these hypotheses, atmospheric electric

fields were inserted into COREAS air shower simulations. By
the comparison of fields acting purely parallel and purely
perpendicular to the shower axis it was found that the effect
of E⊥ on the radio emission is indeed much stronger and
will dominate in most shower configurations where both
components are present. This will be discussed in greater
detail in a forthcoming publication.
Having understood the basic effects of atmospheric

electric fields on air shower radio emission, we proceed
with a full reconstruction of LOFAR measurements. We
follow the method developed by Buitink et al. [14] to fit
COREAS simulations to LOFAR measurements. An atmos-
pheric electric field is inserted into the simulations with the

perpendicular component chosen such that the net force is
in the measured average polarization direction (as indicated
in the middle panel of Fig. 1). The parallel component is set
to zero since its influence on the received radiation intensity
and polarization pattern is negligible.
The simplest electric field configuration that can repro-

duce the main features in both the measured intensity and
polarization patterns is composed of two electric field
layers. The upper layer, with strength jEUj, starts at a
height hU above the ground and extends down to a height
hL at which the lower layer starts, the direction of the net
force changes by 180°, and the field strength decreases to
jELj. Two layers are needed because with one layer the ring
structure seen in the measurements is not reproducible.
In Fig. 2 the reconstruction is shown for the air

shower for which the polarization pattern is depicted in
the middle panel of Fig. 1. The reconstruction is optimal
for hU¼8 km, hL ¼ 2.9 km, jEUj ¼ 50 kVm−1, and
jELj=jEUj ¼ 0.53. For these values χ2=ndf ¼ 3.2 as
obtained for a joined fit to both the radio and particle
data. A perfect fit of χ2=ndf ≈ 1, as is often found for fair-
weather showers, is likely not attainable with a simplified
electric field model. However, all the main features of the
intensity and polarization pattern (namely the overall
polarization direction and ring structure) are already
correctly reproduced.
The fit quality is sensitive to changes in the relative field

strength and hL as well as Xmax. This can be seen in Fig. 3,
where each parameter is varied while keeping the others
fixed at their optimum values. This fixing is not possible for
Xmax in the CORSIKA software, because it is an outcome of
the simulation rather than an input parameter. Therefore,
simulations were selected where Xmax differs by no more
than 20 g cm−2. The fit quality reaches its optimum value
for hU ¼ 8 km and is not sensitive to a further increase.
This is expected because above this altitude the air shower
is not yet fully developed and there are relatively few
particles contributing to the emission.
For fair-weather air showers, the measured radio intensity

is related to the simulated values through a constant scaling
factor [14] given the energy of the primary particle. This
energy is derived from the particle density on the ground, as
measured with LORA, combined with the information on
Xmax, as determined from the radio fit. For the air shower
measured during thunderstorm conditions, the measured
intensity is higher than the normally expected value, as
the absolute electric field strength influences the radio
intensity. However, the simulated intensity increases only
until the atmospheric electric field strength reaches
jEUj ≥ 50 kVm−1. When the field strength is increased
further, the radio intensity stays constant. This saturation of
the radio intensity appears to be related to the coherent nature
of the emission but is still under investigation.
Measuring radio emission from extensive air showers

during thunderstorm conditions thus provides a unique new
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tool to probe the atmospheric electric fields present in
thunderclouds. Unlimited by violent wind conditions and
sensitive to a large fraction of the cloud, this technique may
help answer the long-standing question “how is lighting
initiated in thunderclouds?” It has been suggested by
Gurevich et al. [21,22] that cosmic-ray-induced air showers
in combination with runaway breakdown may initiate
lightning. If this is indeed true then LOFAR with its
combination of particle detectors and radio antennas is
well positioned to measure it.
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