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In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whis-

tler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to

construct the whistler wave model. The main purpose of the paper is to provide an estimate of the

critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more

important than particle scattering. To this aim, we derive an analytical expression describing the

particle scattering by large amplitude whistler waves and compare the corresponding effect with

the nonlinear particle acceleration due to trapping. The latter is much more rare but the correspond-

ing change of energy is substantially larger than energy jumps due to scattering. We show that for

reasonable wave amplitudes �10–100 mV/m of strong whistlers, the nonlinear effects are more

important than the linear and nonlinear scattering for electrons with energies �10–50 keV. We test

the dependencies of the critical wave amplitude on system parameters (background plasma density,

wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the

nonlinear wave amplification in radiation belts. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4897945]

I. INTRODUCTION

The resonant interaction of electrons with whistler-

mode waves plays an important role in electron scattering

and acceleration in many plasma systems: radiation

belts,26,50 solar wind,20,28 shock waves,56,58 and planetary

magnetotails.27,40 The general approach for the description

of such an interaction is based on the quasi-linear theory of

charged particle scattering by uncorrelated small amplitude

waves.18,25,55 The alternative approach corresponding to the

consideration of the wave-particle nonlinear interaction42,53

is generally applied for systems with high enough wave

amplitudes.1,11,14,35,39,48 This approach is based on the analy-

sis of nonlinear equations of the charged particle

motion.10,19,23,34 The dynamical system approach can also be

applied for analysis of such systems.38 Almost all the mod-

ern global three-dimensional models describing the evolution

of an ensemble of charged particles resonantly interacting

with whistler waves take into account only quasi-linear

effects of scattering and do not include any nonlinear effects

(see review in Ref. 45 and references therein).

Recently, spacecraft observations in the Earth radiation

belts,12,13,30 at the bow-shock,21,57 and in the magnetotail16,29

suggest that a significant part of the whistler wave population

actually consists of high-amplitude waves. The electron reso-

nant interaction with such waves can have a nonlinear charac-

ter, including effects of electron trapping. Thus, the possible

role of these nonlinear effects for large electron ensembles is

at this time an open and pressing question.3,54

The character of the wave-particle resonant interaction

is determined by the competition of two factors: wave inten-

sity and inhomogeneity of the background magnetic

field.24,34 For strong enough wave amplitude, the resonant

interaction is nonlinear with a possible particle trapping. The

threshold on the wave amplitude necessary for particle trap-

ping was found for several systems with various wave-

modes.1,9,37 However, the possibility of particle trapping and

its subsequent nonlinear acceleration does not necessary

means that this process plays an important role in realistic

systems. In fact, particle trapping is a probabilistic pro-

cess,4,22,43 i.e., only a small portion of resonant particles can

be trapped by a wave during the first resonant interaction,

while other resonant particles should be scattered. A proba-

bility of trapping (ratio of trapped particles to the total

amount of resonant particles) can be defined for each particu-

lar system. For relativistic electron interaction with oblique

whistler waves, the probability of trapping was calculated

and numerically tested for both Landau and cyclotron

resonances (see Refs. 5 and 6). Thus, these probabilities can

be used to estimate the relative impact of nonlinear trapping

in particle acceleration. This impact can be either small

(when particles are so rarely trapped that the much more fre-

quent scattering is globally more effective at changing parti-

cle energy) or large (when the change of particle energy due

to trapping is so large as compared to changes due to scatter-

ing that even a small probability of trapping results in a more

effective nonlinear acceleration). Moreover, in some particu-

lar situations a general balance could be reached between

scattering and trapping, with both processes playing compa-

rable roles in particle acceleration/deceleration. In the fol-

lowing, we address the preceding questions in the case of

a)Electronic mail: ante0226@gmail.com
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electron resonant interaction with oblique whistler-mode

waves. First, we derive the relevant equations describing

nonlinear electron scattering and trapping, which then allows

us to compare in details these two processes.

II. MAIN EQUATIONS

We consider the interaction of relativistic electrons

(with rest mass me and charge—e) with a strong oblique

whistler wave described by the scalar potential U ¼ U0 sin /
with phase /. We focus on the Landau resonance and, as a

result, can assume the conservation of the magnetic moment

of particles (i.e., the corresponding wave phase does not

depend on the coordinate transverse to the background mag-

netic field). The model of the magnetic field8 is chosen

so that after averaging over electron gyrorotation, the mag-

netic field magnitude B(z) depends only on the coordinate z
along field lines (i.e., this magnetic field model does not

include any effect of curvature of field lines). In this case,

the Hamiltonian system describing the Landau resonant

interaction of an electron and quasi-electrostatic wave can be

written as

H ¼ c� eu0ðzÞ sin /;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ nbðzÞ;
q

/ ¼ /0 þ
ðz

kkðz0Þdz0 � xt:

(1)

In system (1), we use dimensionless variables: particle parallel

momentum pz is normalized on mec; the coordinate z is nor-

malized on R0 (here, R0¼REL is the scale of the background

magnetic field inhomogeneity, L denotes the L-shell, while RE

is the Earth radius); the background magnetic field is normal-

ized to its equatorial value b(z)¼B(z)/B0; the dimensionless

magnetic moment is n ¼ ðc2
0 � 1Þ sin2a0, where c0 and a0 are

initial electron gamma factor and equatorial pitch-angle;

wavenumber is normalized as ðkk; k?Þ ! ðkk; k?ÞR0; the nor-

malized wave frequency is x!xR0/c¼xmv, where

xm¼xmec/eB0 and v¼ eB0R0/mec
2; the wave amplitude is

normalized as eU0/mec
2¼ eu0(z), where u0(z)¼ u(z)J0(g) and

function u(z) � [0, 1] describes the distribution of the wave

amplitude along field lines (this distribution is derived from

the statistics of spacecraft observations, see details in Ref. 5),

while J0(g) is the Bessel function of the first order with the

argument g ¼ ðk?=vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n=bðzÞ

p
; and /0 is the initial wave

phase. In contrast to several previous studies,5,15,49 we con-

sider the wave-particle interaction for a coherent monochro-

matic wave occupying the entire flux tube with a given

amplitude profile. This simplification allows us to reduce a

number of free parameters. Effects of a finite-length of a

wave packet should be considered further.

The pair of conjugate variables in Eq. (1) is (z, pz).

Thus, the corresponding Hamiltonian equations have a

form

_pz ¼ �
1

2c
nb0 þ ekku0 cos /;

_z ¼ pz=c; (2)

where 0 ¼ d=dz. To consider the resonant wave-particle

interaction, we rewrite Eq. (2) in terms of wave-phase along

the particle trajectory

_/ ¼
kkpz

c
� x;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ nb

1� _/ þ x
� �2

=k2
k

vuut :
(3)

We take one additional derivative of the first equation from

system (3) to obtain the equation for €/,

€/ ¼
k0kpz

c
_z þ

kk _pz

c
�

kkpz

c2
_c: (4)

We substitute Eqs. (2) and (3) into Eq. (4) to get

€/

1� _/ þ x
� �2

=k2
k

¼ k0k
_/ þ x
� �2

k2
k

þ
kk
c

_pz

� 1

2

nb0 zð Þ
1þ nb zð Þ

_/ þ x
� �2

kk

þ
_/ þ x
� �2

=k2
k

1� _/ þ x
� �2

=k2
k

k0k
kk

_/ þ x
� �2

kk
; (5)

where _pz should be substituted from Eq. (2). Considering the

above equation in the vicinity of the Landau resonance
_/ ¼ 0 gives

€/
kk
¼

k0k
kk

v2
R �

nb0

2c2
þ

kkeu0

cc2
R

cos /; (6)

where vR(z)¼x/kk(z) and

cR ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

R

q
;

c ¼ cR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nb

p
: (7)

In Eq. (6), the phase / changes much faster than the position

on the z-axis: _/ � kk � 1. Thus, following to Ref. 23 we can

consider Eq. (6) as an equation for / with z as a slowly vary-

ing parameter. In this case, Eq. (6) can be rewritten in a form

_P ¼ � c2
R

2ckk
nb0 � 2c2

k0k
kk

v2
R

 !
þ eu0 cos /; (8)

where we introduce P ¼ cc2
R

_/=k2
k. It can be shown that P

and / are conjugate variables for the Hamiltonian H/ (see

Appendix A in Ref. 6)

H/ ¼
1

2

k2
k

c2
Rc

P2 þ D zð Þ/� eu0 sin /; (9)

where

D zð Þ ¼ c2
R

2ckk
nb0 � 2c2

k0k
kk

v2
R

 !
;

U/ zð Þ ¼ D zð Þ/� eu0 zð Þsin /: (10)
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The effective potential energy U/ of Hamiltonian (9) depends

via the z coordinate on both the wave intensity variation

along field line and the magnetic field inhomogeneity. Phase

portraits of Hamiltonian (9) for three cases D> eu0, D¼ eu0,

and D< eu0 are displayed in Fig. 1. The presence of a region

with closed trajectories in the case with D< eu0 corresponds

to a possible particle trapping.4 This effect is considered in

Sec. IV. However, trapping is a probabilistic process—i.e.,

each passage through resonance does not result in trapping. If

trapping is not realized, the particle is scattered at resonance

with the wave. Moreover, for the system with D> eu0, only

scattering is possible. We treat this effect in Sec. III.

III. SCATTERING

In this section, we consider the evolution of particle

energy in the vicinity of resonance in the case when a parti-

cle is not trapped by the wave. Particle momentum P is only

slightly changed by scattering at the resonance crossing.32,33

This change can be found from Eq. (8)

DP ¼
ðt�

�1
_Pdt ¼ 2eu0 zð Þ

ð/�

�1

cos /d/
_/

; (11)

where t� and /� are time moment and phase at resonance.

We use _/ ¼ Pk2
k=cc

2
R and Eq. (9) to rewrite Eq. (11) as

DP ¼ eu0

ffiffiffiffiffiffiffiffiffi
2cc2

R

k2
k

s ð/�

�1

cos /d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H/ � D/þ eu0 sin /

p : (12)

The resonant phase /� is defined from the equation _/ ¼ 0.

The particle Hamiltonian H/ can be written at resonance

(/ ¼ /�, P¼ 0). Thus, we can rewrite Eq. (12) in a form

DP ¼ eu0

ffiffiffiffiffiffiffiffiffi
2cc2

R

k2
k

s ð/�

�1

cos /d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D/� � eu0 sin /� � D/þ eu0 sin /

p
¼ eu0

ffiffiffiffiffiffiffiffiffi
2ccR

k2
kD

s ð/�

�1

cos /d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ph� /þ a sin /
p

¼ eu0

ffiffiffiffiffiffiffiffiffi
2ccR

k2
kD

s
f h; að Þ; (13)

where a ¼ eu0=D; h ¼ ð/� � a sin /�Þ=2p, and /� is defined

by the equation 2ph� /� þ a sin /� ¼ 0. The function

f(h, a) is shown in Fig. 2 for different values of a. One can

see that f is a periodic function of h. The value of h is deter-

mined by the exact value of the fast oscillating phase / at

resonance. Thus, h can be assumed to be a random variable

with uniform distribution over h � [0, 1] (see Refs. 4, 32,

and 33). In this case, we can consider the average value of

DP and the corresponding dispersion Var(DP) around this

average

hDPi ¼ eu0

ffiffiffiffiffiffiffiffiffi
2cc2

R

k2
kD

s
hf h; að Þih ¼ P0hf ih;

Var DPð Þ ¼ hDP2i � hDPi2 ¼ P2
0 hf 2ih � hf i

2
h

� �
: (14)

Both terms DP and Var(DP) are shown in Fig. 3 as functions

of a. For a< 1 we have hPi ¼ 0, while for a> 1 there is a fi-

nite regular drift of P (i.e., hPi 6¼ 0). Since P is a function of

c, the preceding expressions for hPi and Var(DP) can be

rewritten under the form of corresponding expressions for

FIG. 1. Phase portraits of system (9).

FIG. 2. Profiles of f(h, a) function for four values of a.

FIG. 3. DP and Var(DP) as functions of a.
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the mean and variance of the particle energy (c). To this aim,

we rewrite DP in a form

DP ¼ cc2
R

k2
k

D _/ ¼ cc2
R

k2
k

kkDpz

c
�

kkpz

c
Dc
c

� �
: (15)

We can use Dc¼ pzDpz/c and pz/c¼ vR to rewrite Eq. (15) as

Dc ¼ vRkkDP: (16)

Thus, we can substitute Eq. (16) into Eq. (14) to finally get

the relevant expressions for mean energy change and variance

hDci ¼ !0hf ih;

Var Dcð Þ ¼ !2
0 hf 2ih � hf i

2
h

� �
;

!0 ¼ vRkkP0 ¼
2vRcekku0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kknb0 � 2c2k0kv
2
R

q ;

(17)

where all variables (except for the dimensionless magnetic

moment n) must be calculated at the position of resonance

z¼ zR, so that !0 is a function of zR.

To demonstrate the effect of charged particle scattering at

the resonance, we consider the particular case of a wave prop-

agating at the Gendrin angle: kk¼ k0/b(z); with k0¼ 2xpex,

and xpe is the ratio of plasma frequency and electron gyrofre-

quency at the equator (see details on this approximation for kk
in Ref. 6). For the Earth radiation belts xpe is a function of

L-shell.41 In this case, Eq. (17) takes a form

!0 ¼
1ffiffiffiffiffiffiffiffi
k0b0
p 2vRcu0k0effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nbþ 2c2v2
R

p ;

a ¼ eu0

D
¼ 1

c2
Rb0

2cu0k0e

nbþ 2c2v2
R

:

(18)

Here, factor k0e¼ eE0kR0/mec
2 is about one for high-

amplitude waves (E0k¼U0k0 is the electric field amplitude),

while factor �1=
ffiffiffiffiffi
k0

p
� 1 determines the smallness of the

energy change for a single passage through the resonance.

The position of the resonance zR is determined by the equa-

tion c0 ¼ cRðzRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nbðzRÞ

p
, where c0 is the initial particle

energy. Thus, the resonance location zR depends on c0 and

equatorial pitch-angle a0. For various initial energies (c0),

we have determined zR(a0) and plotted !0 as a function of a0

in Fig. 4, using the same wave and plasma parameters as in

Ref. 5. The decrease of the particle energy corresponds to a

shrinking range of a0 where !0 6¼ 0. The absolute value of

!0 is about k0e=
ffiffiffiffiffi
k0

p
. The mean energy change is

proportional to !0 � u0k0e=
ffiffiffiffiffi
k0

p
at small equatorial pitch-

angle a0< 45� where it becomes independent of a0. There it

increases with decreasing energy in Fig. 4, due to a general

increase of wave intensity u0(zR) as latitude of resonance is

reduced for a realistic latitudinal distribution of oblique

wave intensity based on satellite measurements (see Ref. 5).

To further examine the effect of scattering, we numeri-

cally integrate Eq. (2) for two trajectories. The first trajectory

corresponds to initial a0¼ 10�. In this case, the averaged

hDci is equal to zero and we should obtain only random

jumps of c with the average amplitude �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDcÞ

p
. This tra-

jectory is displayed in the top panels of Fig. 5. Particle oscil-

lations between mirror points correspond to a closed

trajectory in the (z, pz) plane. At the resonance zR� 0.625, the

particle experiences jumps in energy and scattering of z and

pz values. The corresponding energy jumps are randomly

negative or positive, with an average jump amplitude close to

the theoretical prediction (see the right top panel in Fig. 5).

The second trajectory (bottom panels in Fig. 5) is inte-

grated with an initial a0¼ 60�. In this case, the variance

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDcÞ

p
is substantially smaller than the mean hDci.

Thus, at each passage through resonance the scattering of the

particle should correspond to a decrease of its energy due to

hDci < 0. Indeed, one can see in the right bottom panel in

Fig. 5 this expected behavior (decrease) of c.

Although the integration of individual particle trajectories

already shows a good agreement between numerical results

and analytical estimates, a more comprehensive check of

Eq. (17) requires to consider a large particle ensemble. In this

case, random fluctuations can be averaged and mean values of

VarðDcÞ; hDci can be obtained numerically as functions of the

initial energy and pitch-angle. Results of such massive tests

are shown in Fig. 6 for three energies and two values of the

wave-amplitude. Each point (symbol) in Fig. 6 corresponds to

an averaged value obtained by integration of 104 particle tra-

jectories. One can see that all dependencies (resonant latitude

k corresponding to zR, Var(Dc), and hDci) on the initial particle

pitch-angle are well reproduced. It demonstrates that the ana-

lytical approximations given by Eq. (17) can be safely used to

describe the behavior of large particle ensembles.

IV. TRAPPING

Particle trapping by quasi-electrostatic whistler-mode

waves into the Landau resonance was described in details in

Refs. 5 and 6. Here, we reproduce the main results, to com-

pare the efficiency of trapping and scattering processes. An

example of particle trajectory with trapping of particle by the

FIG. 4. Resonant latitude, normalized

!0, and a as functions of a0 for three

values of electron energy.
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wave is shown in Fig. 7. This trajectory is obtained by nu-

merical integration of system (1) with the same parameters

as used for the trajectory shown in Fig. 5 (bottom panels),

but with a two times larger wave amplitude. Initially, the

particle oscillates between mirror points (bounce oscilla-

tions) and after a certain time, it becomes trapped by the

wave. The trapped particle moves with the wave to higher

latitude and is strongly accelerated. One trapping-escape

event results in an energy gain about 70 keV in accordance

with previous estimates.5,6,39

In contrast to scattering, the probability of particle trap-

ping is small: only some limited portion of particles passing

through the resonance becomes trapped.4,33 The ratio of the

number of trapped particles to the total number of particles

passed through the resonance can be called a probability of

trapping P. An analytical expression for P has been derived

in Ref. 6 and tested numerically in Ref. 7. Over a realistic

parameter range, P is defined by the expression

P ¼
ffiffi
e
p

4pxpekkD

@S

@z
; (19)

where the area S is shown by grey color in Fig. 1 and is

defined by the equation

S¼ 22=3cRb
ffiffiffiffiffiffiffi
u0c
p ð/m

/s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
/s�/ð Þ � sin/sþ sin/

r
d/; (20)

where /s ¼ �arccosð1=aÞ; /m is a root of the equation

ð/s � /Þ þ a sin /� a sin /s ¼ 0 different from /s (see

details in Appendix A of Ref. 6).

V. SCATTERING VS. TRAPPING

For given initial particle pitch-angle a0 and energy c0,

we can compare estimates of energy jumps due to scattering

DEscat and due to trapping DEtrap:

DEscat ¼ mec2ð1�PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDci2 þ VarðDcÞ

q
;

DEtrap ¼ mec2PDctrap;
(21)

where the expression for the energy jumps due to trap-

ping�Dctrap was derived in Ref. 6. The change Dctrap can

be defined as a difference of the particle gamma factors at

the point of the escape from the resonance and initial value

of c. The ratio DEtrap/DEscat is shown in Fig. 8 for different

particle energies and wave amplitudes. One can see that

DEtrap/DEscat profiles look similar with P profiles, i.e., the

main variation with a0 is provided by the probability varia-

tion with a0. For small energies �10 keV, almost all the a0-

range available for resonant interaction corresponds to a pre-

dominance of acceleration due to trapping. For larger elec-

tron energies, the available a0-range for resonance becomes

shorter and only half of this range corresponds to DEtrap/

DEscat> 1. However, an increase of wave amplitude results

FIG. 5. Two test trajectories with scattering: trajectories in (z, pz) plane, fragments of trajectories with scattering, and energy as a function of time.
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in a widening of the a0-range corresponding to DEtrap/

DEscat> 1. This effect is due to the increase of Dctrap with

wave amplitude e (see Ref. 6), while the ratio P/!0

decreases with e as P=!0 �
ffiffi
e
p
=e � 1=

ffiffi
e
p

.

For a given equatorial pitch-angle a0 and energy c0, one

can further determine the critical value of the wave ampli-

tude E�k0 such that changes in energy due to trapping exceed

scattering-induced changes, i.e., such that DEtrap>DEscat for

Ek0 > E�k0. For several values of energy, the profiles E�k0ða0Þ

are shown in Fig. 9. First, we note that for any electron

energy below 80 keV, there exists an a0-domain such that

the corresponding value of E�k0 is rather small (<25 mV/m).

Waves with substantially larger amplitudes have often

been observed in the radiation belts.1,12,13 However,

the pitch-angle range where E�k0 < 100 mV=m is really large

(with a domain 0	 a0	 45�) only for small particle energies

�10 keV. For larger energies, the range of a0 where

E�k0 < 100 mV=m is only about 5�–10�.

FIG. 6. Resonant latitudes, mean energy change, and variance of energy changes, as obtained from analytical expressions in Eq. (17) (curves) and by numerical

simulations (symbols).

FIG. 7. Test trajectory with trapping: trajectory in (z, pz) plane, fragments of trajectory with trapping, energy as a function of time.
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We can also infer from the above estimates that the

increase of L-shell value (i.e., the increase of R0 and xpe pa-

rameters) results in an increase of the critical wave ampli-

tude. Thus, at larger L, a higher wave intensity is necessary

for nonlinear acceleration to prevail. This is an interesting

and important result, because previous studies have shown

that the increase of the L-shell value should correspond to an

increase of the efficiency of nonlinear acceleration, i.e., an

increase of Dctrap (see Ref. 6). Fig. 9 clearly demonstrates

that this existing increase is nonetheless weaker than the

increase of the efficiency of scattering in energy. However, it

is worth noting too that the increase of L also results in a

widening of the a0-range where resonant interaction is possi-

ble.6 As a result, the a0-range such that E�k0 < 100 mV=m is

actually increased at larger L-shells.

A comparison of the right and left panels in Fig. 9 shows

that the value of the normalized wave frequency does not

influence significantly the relationship between nonlinear

acceleration and scattering levels. This (absence of) effect

can be explained by the fact that the wave phase velocity

vR¼x/kk is independent of the wave frequency for waves

propagating at (or near to) the Gendrin angle (kk�x). For

much more oblique waves propagating close to the

resonance-cone angle (kk�x2, see Ref. 1), we expect a

stronger dependence of all system parameters (including

E�k0) on the wave frequency.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we consider electron resonant interaction

with high-amplitude oblique whistler waves propagating in an

inhomogeneous magnetic field. More specifically, we compare

two different effects of wave-particle interaction: scattering

and nonlinear trapping. The latter one can lead to a very strong

acceleration of individual particles, but the corresponding

probability of trapping is small. As a result, a weak energy

scattering of particles by the waves may be more effective

than acceleration due to trapping even for high-amplitude

waves. Thus, the presence of high amplitude waves does not

necessarily imply a nondiffusive character of wave-particle

interactions. Previous estimates usually give threshold values

for the wave amplitude such that trapping becomes possi-

ble1,9,42 but as we have shown, even for high amplitude waves,

only over certain energy and pitch-angle ranges does nonlinear

acceleration by trapping really become more effective than

scattering. In case of whistler-mode waves with amplitudes

�50–100 mV/m and propagation in the quasi-electrostatic

mode for energies � [30, 100] keV, the a0-range of preva-

lence of nonlinear acceleration is rather narrow �5�–10�. This

range is much wider for small energy electrons �10 keV.

It is interesting to note that the amplitude of regular

energy jumps hDci � !0 and the probability of trapping P
depend similarly on the small parameter 1/k0. Thus, the ratio

of energy gained by particles due to trapping

DEgain�PDctrap and lost by particles due to scattering

DElost � ð1�PÞhDci are of the same order: for 1/k0 � 1

the ratio DElost/DEgain depends on k0 only through the combi-

nation ek0� 1. Such a relationship between lost and gained

energies was shown before in Ref. 44.

In this paper, we show that for high-amplitude oblique

waves, the process of particle scattering is substantially modi-

fied in comparison with particle interaction with low-

amplitude oblique waves in the quasi-linear regime. Even if

the probability of trapping is small (or even zero, e.g., for @S/

@z< 0) the evolution of the particle energy due to scattering

does not keep a diffusive character. There is a nonzero aver-

age value of the energy jumps hDci 6¼ 0. For long term dy-

namics, such jumps can be more important than diffusion due

to Var(Dc). They are responsible for a particle drift in energy

space17 with a velocity _c � hDci=Tbounce, where Tbounce is the

bounce period. For 100 keV particles with a0� 45� and

50 mV/m wave amplitude, we can estimate this velocity as

_c � �2keV=s. This effect can be important for electron

deceleration and related wave amplification (see discussion in

FIG. 8. Probability of trapping and ratio DEtrap/DEscat> 1 for two energies

and two wave amplitudes.
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Ref. 31). The problem of nonlinear wave generation and

amplification36,46,51 is very important for the planetary radia-

tion belts, because purely linear instabilities seem to be unable

to generate the observed high-amplitude waves.47,52

For �100 keV electrons at L� 5, this effect has the same

magnitude for 50 mV/m oblique whistler-mode waves as

deceleration by phase bunching due to cyclotron-resonant

interaction with high-amplitude (�60 pT) parallel whistler-

mode waves,2 but it should become stronger at lower energies,

where it affects electrons with smaller equatorial pitch-angles

a0< 45�. Since it acts against electron precipitation in the loss-

cone (at very low a0), its coexistence at low electron energy

with trapping acceleration could allow multiple (successive)

accelerations before actual precipitation eventually occurs.5

In conclusion, we have investigated the nonlinear scat-

tering in energy of electrons resonantly interacting with

high-amplitude oblique whistler-mode waves. A comparison

of the efficiency of energy scattering and nonlinear accelera-

tion by trapping shows that for reasonable wave amplitudes

and electron energies <100 keV, there is always some range

of equatorial pitch-angles where nonlinear trapping prevails.

This range is rather wide for small energy electrons �10 keV

but it shrinks as energy increases. We have derived analyti-

cal equations for the energy jumps due to nonlinear scatter-

ing. These expressions are valid for any system with

inhomogeneous magnetic field and quasi-electrostatic waves.
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