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Abstract The distribution of trapped energetic electrons inside the Earth’s radiation belts is the focus
of intense studies aiming at better describing the evolution of the space environment in the presence of
various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are
usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck
quasi-linear diffusion equation for the particle distribution function. Here we present for the first time
approximate but realistic analytical solutions for the electron distribution, which are shown to be in good
agreement with exact numerical solutions in situations where resonant scattering of energetic electrons
by whistler mode hiss, lightning-generated or chorus waves, is the dominant process. Quiet time
distributions are well recovered, as well as the evolution of energized relativistic electron distributions
during disturbed geomagnetic conditions. It is further shown that careful comparisons between the
analytical solutions and measured distributions may allow to infer important bounce- and drift-averaged
wave characteristics (such as wave amplitude). It could also help to improve the global understanding of
underlying physical phenomena.

1. Introduction

Satellites crossing repeatedly the Earth’s inner or outer radiation belts incur a risk of being damaged or
even lost by their prolonged exposure to the intense energetic electron fluxes which populate these
regions of the magnetosphere [Horne et al., 2013]. Such electron fluxes can vary dramatically during strong
magnetic storms or other disturbances driven by the solar wind [e.g., see Shprits et al., 2006, 2008; Turner
et al., 2013; Thorne et al., 2013, and references therein]. Inside the radiation belts (at L < 6), these variations
are due to a combination of (and competition between) radial diffusion, losses due to pitch angle scattering
by whistler mode waves (or ion cyclotron waves), and acceleration via energy diffusion by the same
waves [Kennel and Petschek, 1966; Trakhtengerts, 1966; Lyons et al., 1972; Lyons, 1974; Summers et al., 1998;
Brautigam and Albert, 2000; Meredith et al., 2009; Shprits et al., 2008; Thorne, 2010].

To be able to understand and forecast the Earth’s radiation belts evolution, it is therefore essential to better
assess the relative importance of these various processes. One way of doing this is to establish average
models of the different wave distributions based on satellite statistics [Horne et al., 2005; Agapitov et al.,
2013; Bunch et al., 2013; Li et al., 2013a; Mourenas et al., 2014]. Another way is to examine the measured in
situ electron distributions during given periods of time, to try to infer both the wave characteristics and
distribution during such events, and also to check which process was actually dominant at that time [e.g.,
see Li et al., 2013b; Thorne et al., 2013; Ni et al., 2014].

The detailed electron differential fluxes measured by the CRRES and SAMPEX satellites as a function of time
and L have allowed for significant advances in our understanding of the radiation belts [e.g., see Baker et al.,
1994; Brautigam and Albert, 2000; Horne et al., 2005; Meredith et al., 2009; Su et al., 2011]. Now even more
precise and detailed information are becoming available from the recent Van Allen Probes [e.g., Thorne
et al., 2013; Baker et al., 2014; O’Brien et al., 2014]. However, to gain new insights, satellite measurements
have to be compared with large-scale numerical simulations [Shprits et al., 2006; Thorne et al., 2013; Li et al.,
2014a] solving the Fokker-Planck equation describing the evolution of the trapped energetic electron
distribution due to quasi-linear scattering by whistler mode waves of limited amplitude (typically < 300 pT

MOURENAS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9962

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://dx.doi.org/10.1002/2014JA020443


Journal of Geophysical Research: Space Physics 10.1002/2014JA020443

for > 1 MeV electrons at L ≤ 6 for quasi-linear diffusion to prevail over nonlinear effects) [see Tao et al., 2012].
While Schulz and Lanzerotti [1974] have already derived interesting analytical solutions (eigenmodes) for the
particle distributions, they used arbitrarily prescribed (nonrealistic) formulations of the diffusion rates.

Here we derive for the first time realistic analytical expressions for the electron distribution, obtained by
solving the corresponding diffusion equations, making use of previously obtained approximate analytical
formulations of the pitch angle and energy diffusion coefficients, as well as of the characteristic lifetimes
of electrons in the case of quasi-parallel (or oblique) whistler mode waves [Mourenas and Ripoll, 2012;
Mourenas et al., 2012b; Artemyev et al., 2013b; Mourenas et al., 2014]. The derived analytical electron
distributions are compared with full numerical solutions, demonstrating a good agreement during quiet
as well as disturbed geomagnetic conditions, for hiss and lightning-generated waves at L ≤ 3 and chorus
waves at L ∼ 5.

Finally, we show that the obtained analytical expressions could be useful to infer some characteristics of the
dominant waves during selected events. In particular, we recover the average measured wave amplitude
by means of careful comparisons between measured electron distributions at different energies and times
with the analytical solutions. The latter should also help to better understand the occurring processes
by allowing quick and easy comparisons of observed distributions with the general behavior of the
analytical expressions.

2. Analytical Expressions of the Trapped Electron Distribution
2.1. Generalities
Following previous works [e.g., see Lyons et al., 1972; Albert, 1994; Albert and Shprits, 2009], we first assume
here that the electron distribution function f satisfies a one-dimensional Fokker-Planck pitch angle diffusion
equation in a dipolar geomagnetic field

𝜕f
𝜕t

= 1
Tb sin 2𝛼0

𝜕

𝜕𝛼0
(⟨D𝛼𝛼⟩Tb sin 2𝛼0

𝜕f
𝜕𝛼0

) (1)

where ⟨D𝛼𝛼⟩(𝛼0) is the bounce-averaged pitch angle diffusion coefficient (in s−1) and Tb is the bounce period
of electron oscillations between their mirror points. In this case, the electron distribution function evolves
mainly due to quasi-linear pitch angle scattering by whistler mode waves (with related losses into the
atmospheric loss cone). Further, assuming that the late-time asymptotic full distribution can be written as
a product of time-dependent and time-independent functions as f (𝛼0, t) ∼ g(𝛼0)F(t) with an exponentially
decaying F(t) = exp(−t∕𝜏L), one gets

𝜕

𝜕𝛼0
(⟨D𝛼𝛼⟩Tb sin 2𝛼0

𝜕g
𝜕𝛼0

) +
Tb sin 2𝛼0g

𝜏L
= 0 (2)

where 𝜏L is the characteristic lifetime of the considered electrons in the radiation belt [Schulz and Lanzerotti,
1974; Albert and Shprits, 2009].

2.2. Case 1: Quasi-Parallel Waves and High-Energy Electrons at Not-Too-Low L
First, we consider quasi-parallel whistler mode waves (such as high-amplitude chorus in the outer belt,
or hiss, lightning-generated, or VLF waves inside the plasmasphere at L > 1.5). Previously derived
approximate analytical expressions of ⟨D𝛼𝛼⟩ and 𝜏L for first-order cyclotron resonance can be used to
simplify equation (2).

Namely, it was found in previous works that 𝜏L = 𝜂∕(2⟨D𝛼𝛼(𝛼LC)⟩) (where 𝛼LC denotes the loss cone angle)
with 𝜂 ∼ 1, while ⟨D𝛼𝛼(𝛼0)⟩ ∼ ⟨D𝛼𝛼(𝛼LC)⟩∕ cos2(𝛼0) from 𝛼LC up to 𝛼0,M ∼ min(𝜋∕2 − 𝜃max, 𝛼0,i) where
cos 𝛼0,i = 1∕(p𝜖UC) [Mourenas et al., 2012b; Artemyev et al., 2013b]. Here 𝜃max < 45◦ is the upper bound
on the wave normal angle distribution of quasi-parallel waves, 𝜖UC =

√
𝜔UC∕Ωce0Ωpe0∕Ωce0 where 𝜔UC is

the upper limit of the wave frequency distribution and Ωpe0 and Ωce0 are the equatorial electron plasma
frequency and gyrofrequency, respectively (p being the electron momentum normalized to mec).

It is further assumed at this stage that tan 𝛼0⟨D𝛼𝛼⟩ ≥ tan 𝛼LC⟨D𝛼𝛼(𝛼LC)⟩ for 𝛼0 ≥ 𝛼0,M, in which case the
lifetime of electrons is mainly determined by the low pitch angle part of the diffusion rate [e.g., see Albert
and Shprits, 2009; Artemyev et al., 2013b]. When only whistler mode waves are present, this corresponds to
typical profiles of ⟨D𝛼𝛼(𝛼0)⟩ for high-enough electron energy and/or Ωpe0∕Ωce0 and/or 𝜔UC∕Ωce0 such that
p𝜖UC ≥ 10. Nonetheless, when additional wave populations coexist with the considered low-to-medium
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Figure 1. Typical profiles of ⟨D𝛼𝛼⟩ as a function of 𝛼0 corresponding to Cases 1, 2, and 3. The typical shapes assumed
here are shown by solid lines, while examples of other shapes expected to yield similar lifetimes and electron
distributions are displayed with dashed lines. (left) Case 1 corresponds to high-energy electrons interacting with
low-frequency quasi-parallel whistler mode hiss and lightning-generated waves at L ∼ 3–5 [e.g., see right panel in middle
row of Figure 4 in the work by Meredith et al., 2009] or medium- to high-energy electrons interacting with quasi-parallel
chorus waves during periods of high geomagnetic activity at L > 4 (e.g., see Figure 3 in the work by Mourenas et al.
[2014]). (middle) Case 2 corresponds to not-too-high energy electrons interacting with low-frequency hiss parallel waves
at L ≤ 3 (e.g., see left panel in middle row of Figure 4 in the work by Meredith et al. [2009]). (right) Case 3 corresponds to
the presence of VLF (e.g., from terrestrial transmitters) waves becoming very oblique at high latitudes [see Agapitov et al.,
2014; Mourenas et al., 2014].

frequency whistlers, such as higher-frequency whistlers (e.g., upper band chorus or VLF waves) [see Meredith
et al., 2012; Agapitov et al., 2014] or very oblique fast magnetosonic waves [Mourenas et al., 2013], the trough
in scattering rate at large 𝛼0 can be filled enough to relax the above condition p𝜖UC ≥ 10 [Artemyev et al.,
2013b; Mourenas et al., 2013]. The typical profiles of ⟨D𝛼𝛼⟩ corresponding to Case 1 are displayed in Figure 1.

Moreover, Tb is known to vary weakly with 𝛼0. Accordingly, taking Tb ≈ cte in equation (2) and replacing⟨D𝛼𝛼⟩ and 𝜏L by their approximate analytical expressions (see Appendix A), one finally gets a simple
second-order differential equation for the asymptotic (in time) steady shape of g

𝜕2g

𝜕𝛼2
0

tan 𝛼0 +
𝜕g
𝜕𝛼0

sec2 𝛼0 + g
sin 2𝛼0

𝜂
= 0 (3)

The general analytical solution of the above equation can be expressed as a linear combination of modified
Bessel functions of the first kind (I0) and second kind (K0) [Abramowitz and Stegun, 1972] with real or
complex multipliers. Since we are looking here for a real-valued g, it is worth noting that
I(K0(y)) + i𝜋I0(y)∕2 = 0. As a result, g can be more simply cast as a sum of I0 and R(K0) functions as

g(𝛼0) = c1I0(i
√

2∕𝜂 sin 𝛼0) + c2R(K0(i
√

2∕𝜂 sin 𝛼0)) (4)

where c1 and c2 are real numerical coefficients and i =
√
−1.

We shall now proceed to demonstrate that existing additional constraints on the electron distribution will
fully determine the unknown coefficients c1 and c2. The function g must indeed be null at the loss cone edge
g(𝛼LC) = 0, while the relation 𝜕g∕𝜕𝛼0 = 0 must be satisfied at 𝛼0 = 𝜋∕2 [Lyons et al., 1972; Albert, 1994].
The latter condition is actually always fulfilled by the analytical solution (4) because of the intrinsic property
𝜕I0(i

√
2 sin 𝛼0)∕𝜕𝛼0 = 𝜕K0(i

√
2 sin 𝛼0)∕𝜕𝛼0 = 0 for 𝛼0 = 𝜋∕2. Finally, a proper normalization of g requires that

2 ∫ 𝜋∕2
𝛼LC

g sin 𝛼0d𝛼0 = 1. Thus, there are two conditions for two unknown variables, leading to one unique real
solution for g.

Using condition g(𝛼LC) = 0 in equation (4) leads straightforwardly to

c1

c2
=

−R(K0(i
√

2∕𝜂 sin 𝛼LC))

I0(i
√

2∕𝜂 sin 𝛼LC)
. (5)

The remaining unknown variable c2 is determined from the last condition ∫ 𝜋∕2
𝛼LC

2g sin 𝛼0d𝛼0 = 1 together
with equation (5). Incidentally, it can be noted that 𝜂 can be either a positive or a negative real number in
the above general solution (corresponding respectively to exponential decay or growth of F(t)).
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Figure 2. Profile of the asymptotic (final) electron distribution in
the case of 2 MeV electrons interacting with low-frequency whistler
mode waves at L∼ 3 during quiet conditions. The red squares
show the full numerical solution of Meredith et al. [2009], while the
blue dashed line shows the approximate analytical solution given
by (4)–(6).

Typically, for quasi-parallel whistler mode
waves interacting with high-energy
electrons, one has 𝜂 ∼1. Then, a useful
approximate formulation of (5), obtained
by series of expansions and correct to
within less than 8% for 1◦ ≤ 𝛼LC ≤ 30◦,
is c1∕c2 ∼ ln(

√
2 sin 𝛼LC)). There is no

simple analytical expression for c2.
Nevertheless, three approximate formulas
can be obtained in the small, medium, and
large 𝛼0 limits, which should suffice for most
practical purposes. One gets

c2 ≈ − sin3∕7 𝛼LC (𝛼LC < 20◦)
c2 ≈ −3 sin4∕3 𝛼LC (20◦ ≤ 𝛼LC ≤ 40◦)

c2 ≈ −4

5 sin3 𝛼LC

(𝛼LC > 40◦) (6)

where the discrepancy between the above
formulas and the exact solution is less than
a few percents in their respective domains
of validity.

To check the accuracy of our approximate analytical formulas for the electron distribution g, we have
considered a test case of E = 2 MeV electrons interacting with hiss and lightning-generated waves at L = 3
provided in Figure 6 (right) in the work by Meredith et al. [2009]. This case satisfies all our previously stated
assumptions. In Figure 2, we have plotted both our analytical formula (4) and the asymptotic (late-time)
numerical solution provided by Meredith et al. [2009] and obtained by solving numerically the full diffusion
equation. One can see that the approximate analytical solution exhibits a fairly good quantitative agreement
with the full numerical solution for the trapped electron distribution, with a mean error percentage smaller
than 10%.

2.3. Case 2: Low-Frequency Quasi-Parallel Waves and Relatively Low Energy Electrons at Low L
When the energy of the considered electrons is relatively low, or the plasma density is small, or the ratio
𝜔m∕Ωce0 is small (where 𝜔m is the mean frequency of the low-frequency high-amplitude waves and
subscript “m” means from now on that we use 𝜔 = 𝜔m), so that p𝜖UC < 10, a deep trough in scattering rate
may appear at 𝛼0 > 35◦ such that tan 𝛼0⟨D𝛼𝛼⟩ < tan 𝛼LC⟨D𝛼𝛼(𝛼LC)⟩ at least locally in the domain 𝛼0 > 𝛼0,M.
Note that we shall hereafter focus on low but not too low electron energies such that p𝜖UC < 10 and
p𝜖m > 1.1, to allow using previous analytical estimates developed in this range [Mourenas and Ripoll, 2012;
Mourenas et al., 2012b]. It corresponds roughly to E > 400 keV at L ∼ 2.5–3 in the slot region for electron
interaction with hiss and lightning-generated waves or E > 100 keV at L ∼ 4.5–5.5 for interaction with lower
band chorus waves. The typical profile of ⟨D𝛼𝛼⟩ corresponding to Case 2 is displayed in Figure 1 (middle).

Accordingly, when a very steep (almost vertical) increase of the diffusion rate ⟨D𝛼𝛼⟩ is encountered at 𝛼0,i

as 𝛼0 decreases, then the situation for the high pitch angle part of the electron distribution g is roughly
equivalent to the presence of a kind of loss cone at 𝛼0 ≤ 𝛼0,i . Electrons scattered toward smaller 𝛼0 should
be very quickly diffused toward still smaller 𝛼0 once they get close enough to 𝛼0,i , just like what happens
near the actual loss cone. Accordingly, we conjecture that g can then be split into two separate parts
g ≈ g<(𝛼0 ≤ 𝛼0,i) + g>(𝛼0 ≥ 𝛼0,i), with each part having its own loss cone (or equivalent loss cone) angle at
𝛼LC and 𝛼0,i, respectively.

In such a situation, the global electron lifetime will be increased as compared to Case 1, due to the much
slower diffusion at high pitch angles in Case 2. Now the question that must be answered is how does it
modify the shape of g? First, it can be easily shown that when the global lifetime 𝜏L is increased by a factor
𝜂 > 1 as compared to its value for Case 1 in the high-energy range (where 𝜏L ∼ 1∕(2⟨D𝛼𝛼(𝛼LC)⟩), the
positive slope of the analytical solution (4) for g(𝛼0) increases significantly between 𝛼0 ∼ 30◦ and 𝛼0 ∼ 90◦

when 𝜂 ≥ 1 increases, which actually corresponds to the observed increase of the slope of the full numerical
solution of g as the global electron lifetime 𝜏L increases [e.g., see Meredith et al., 2009].
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In agreement with the shape of the most general analytical solutions (4) and (5), the two parts g>

and g< of g can be roughly approximated by flat-top distributions ⟨g>⟩ and ⟨g<⟩ over 𝛼0 ≥ 𝛼0,i and
𝛼LC < 𝛼0 < 𝛼0,i, respectively. Furthermore, we make the important conjecture that upon reaching the
asymptotic shape-preserving stage for the distribution g, conservation of particle flux in phase space should
determine the ratio ⟨g>⟩∕⟨g<⟩ of the levels of the two parts so that it can remain constant. Specifically, the
outgoing (into the loss cone) electron flux from the 𝛼LC < 𝛼0 < 𝛼0,i region must be balanced by the
incoming flux from the region 𝛼0 ≥ 𝛼0,i. Such an equilibrium between the two (incoming and outgoing)
fluxes can be written as

∫
𝛼0,i

𝛼LC

⟨g<⟩ sin 𝛼0d𝛼0

𝜏L<
= ∫

𝜋∕2

𝛼0,i

⟨g>⟩ sin 𝛼0d𝛼0

𝜏L>
(7)

where 𝜏L< and 𝜏L> = 𝜏LL represent the characteristic loss timescales in the two respective domains. In
the high pitch angle range 𝛼0 > 𝛼0,i corresponding to Landau resonance with quasi-parallel whistler
mode waves, the scattering rate varies like ⟨D𝛼𝛼⟩ ∼ cos3 𝛼0,i∕ cos3 𝛼0 [Mourenas and Ripoll, 2012;
Mourenas et al., 2012b]. Although such a variation is slightly different from the 1∕ cos2 𝛼0 variation for
cyclotron resonance in the low pitch angle range, solving numerically the corresponding second-order
differential equation for g> (which does not seem to have analytical solutions) shows that g>(𝛼0) has
nevertheless a very similar shape in the vicinity of 𝛼0 = 𝜋∕2. Consequently, we chose here to employ the
approximation ⟨D𝛼𝛼⟩ ∼ cos2 𝛼0,i∕ cos2 𝛼0 for the sake of simplicity while simultaneously using for the lifetime
the appropriate analytical estimate 𝜏LL explicitly given in Appendix A [see also Artemyev et al., 2013b] when
the contribution from the minimum in Landau resonance scattering determines the global lifetime (i.e.,
when 𝜏L ∼ 𝜏LL ≥ 𝜏L< as assumed for Case 2). An analytical expression for 𝜏L< is also provided in Appendix A.

As a result, an approximate analytical solution for the full electron distribution g can be written under
the form

g(𝛼0) = g<(𝛼0 < 𝛼0,i) + g>(𝛼0 ≥ 𝛼0,i) (8)

g>

c3
=

R(K0(iy sin 𝛼0,i))I0(iy sin 𝛼0)
I0(iy sin 𝛼0,i)

−R(K0(iy sin 𝛼0))

g<

c4
=

R(K0(iy sin 𝛼LC))I0(iy sin 𝛼0)
I0(iy sin 𝛼LC)

−R(K0(iy sin 𝛼0))

with

y−2 = ⟨D𝛼𝛼(𝛼LC)⟩𝜏LL

c3

c4
=
(cos 𝛼LC − cos 𝛼0,i)𝜏LL

cos 𝛼0,i𝜏L<

∫
𝜋∕2

𝛼LC

2 g sin(𝛼0)d𝛼0 = 1 (9)

where c3 and c4 are uniquely determined by the last two equations.

We have considered in Figure 3 a test case from Meredith et al. [2009] in which 2 MeV electrons are scattered
in pitch angle by hiss waves at L = 2 during quiet time. The realistic hiss spectrum with Bw ∼ 20 pT is
composed of two Gaussians such that the most intense and lowest-frequency one has 𝜔m∕Ωce0 ∼ 0.0032,
Δ𝜔∕𝜔m ∼ 1, Δ𝜃 = 20◦, p𝜖m ∼ 1.56, while the upper frequency cutoff of the second Gaussian is fixed at 2 kHz,
giving p𝜖UC ∼ 3.8 [Artemyev et al., 2013b; Meredith et al., 2009]. Using the latter values, we recover
approximately with analytical formulas in Appendix A the computed diffusion rates and lifetime values
displayed by Meredith et al. [2009] in their Figure 4. Moreover, we get c3∕c4 ≈ 185 and y ≈ 0.3.

The approximate analytical solution (8) is in good agreement with the full numerical solution for the trapped
electron distribution over the whole pitch angle domain in Figure 3, in spite of the very large variation of g
with 𝛼0 and although our approximations do not take into account the fine details of the actual wave power
spectrum. The mean relative error over 𝛼0 = 20◦–90◦ is about a factor of 2. In particular, the boundary 𝛼0,i

between the two regions is well recovered, as well as the ratio ⟨g>⟩∕⟨g<⟩ (within a factor of 2 for an actual
increase of ∼ 400), lending further credibility to the above simplified analytical solutions.
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Figure 3. Profile of the (unnormalized) asymptotic (final) electron
distribution in the case of 2 MeV electrons interacting with
low-frequency whistler mode waves at L∼ 2 during quiet
conditions. The red line shows the full numerical solution of
Meredith et al. [2009], while the blue dashed line shows the
approximate analytical solution given by equations (8) and (9).

2.4. Case 3: Nearly Constant ⟨D
𝜶𝜶
(𝜶0)⟩

Other analytical solutions can be derived in
the case of a constant ⟨D𝛼𝛼(𝛼0)⟩ profile (see
Figure 1 (right)). It can correspond either to
a situation where oblique waves near the
resonance cone are present at medium to
high latitudes or when the wave power
increases strongly with latitude (or both)
[Agapitov et al., 2013; Artemyev et al., 2013a;
Mourenas et al., 2014; Li et al., 2014b].

Ray tracing studies have shown that
the wave normal angle of chorus waves
increases rapidly as the waves propagate
from their generation region near the
equator to higher latitudes, due to their
refraction in the presence of an increasing
geomagnetic field magnitude [Breuillard
et al., 2012; Chen et al., 2013]. Such very
oblique chorus waves have been observed

on board various satellites [Hayakawa et al., 1984; Li et al., 2013a; Agapitov et al., 2013]. During quiet or
moderately disturbed geomagnetic conditions such that hot electrons do not damp oblique waves too
strongly, pitch angle scattering by these waves can become dominant [Mourenas et al., 2014; Li et al., 2014b].
Moreover, their presence could lead to a growing total wave power from the equator up to latitudes 𝜆 ∼ 35◦

on the dayside [Mourenas et al., 2014]. Inside the plasmasphere, VLF (∼ 5–25 kHz) whistler mode waves
generated by lightning discharges and naval transmitters often propagate at very oblique angles after
having propagated past the equator along magnetic field lines [e.g., see Abel and Thorne, 1998; Inan et al.,
2010; Agapitov et al., 2014, and references therein].

Accordingly, let us assume here a constant ⟨D𝛼𝛼(𝛼0)⟩, giving approximately 𝜏L ≈ 1∕(2⟨D𝛼𝛼(𝛼LC)⟩). Then, the
one-dimensional pitch angle diffusion equation for the electron distribution reads as

𝜕2g

2𝜕𝛼2
0

sin 2𝛼0 +
𝜕g
𝜕𝛼0

cos 2𝛼0 + g sin 2𝛼0 = 0 (10)

The general analytical solution to equation (10) can be written as a combination of hypergeometric F and
Meijer G functions [Abramowitz and Stegun, 1972] as

g(𝛼0) = c5G2,0
2,2

⎛⎜⎜⎜⎝cos2 𝛼0 |
(

1 −
√

3
)
∕2,

(
1 +

√
3
)
∕2

0, 0

⎞⎟⎟⎟⎠
+ c6 2F1

((
1 −

√
3
)
∕2,

(
1 +

√
3
)
∕2, 1, cos2 𝛼0

)
(11)

where the coefficients c5 and c6 can be determined the same way as before.

Figure 4 displays a comparison between electron distribution profiles obtained analytically, respectively, for
parallel VLF waves and oblique VLF waves (i.e., for a constant ⟨D𝛼𝛼(𝛼0)⟩) interacting with 2 MeV electrons at
L ∼ 2 (similar results would be obtained for chorus waves at L ∼ 5). An increase of the phase-space-density
gradient downward from 𝛼0 ∼ 70◦ can be noticed when oblique waves are present as compared to the
case of parallel waves alone, which may increase the growth rate of waves due to the distribution anisotropy
[e.g., see Kennel and Petschek, 1966; Johnstone et al., 1993; Mourenas et al., 2014]. At 𝛼0 > 70◦, conversely, the
slope of g is very similar in both cases because very oblique waves are assumed to be mostly present away
from the equatorial region. The induced change in the phase-space-density profile is too weak, however, to
allow inferring the presence or not of very oblique waves from the sole analysis of measured profiles of the
electron distribution.
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Figure 4. Profile of the (unnormalized) asymptotic (final) electron
distribution in the case of 2 MeV electrons interacting with VLF
waves at L ∼ 2. The dashed blue line shows the approximate
analytical solution given by equations (4) and (5) for parallel
waves only, while the red curve shows the analytical solution (11)
corresponding to a constant ⟨D𝛼𝛼(𝛼0)⟩ (with waves more oblique
at higher latitudes and/or increasing wave power with latitude).

2.5. Analytical Electron Distributions
When Taking Into Account Energization
Neglecting mixed diffusion (which can
be important too) [see Albert, 2009] and
assuming an initially cold distribution
without high-energy electrons (for instance,
just after dropouts) [e.g., see Turner et al.,
2013, and references therein], the energy
broadening of the electron distribution
F(E, t) in the presence of quasi-linear energy
diffusion by quasi-parallel whistler mode
waves is given approximately by [Horne
et al., 2005; Balikhin et al., 2012]

𝜕F
𝜕t

= 𝜕

𝜕E
(A(E)⟨DEE⟩𝜕(F∕A(E))

𝜕E
) − F

𝜏L
(12)

where A(E) ∼ (E + 0.511)
√

E(E + 1) with E in
MeV.

The solution is [Balikhin et al., 2012;
Mourenas et al., 2014]

F(t) ∝ E−4(1−𝛽)t−𝛽 exp

(
− E2

4⟨DEE⟩ t
− t

𝜏L

)
, (13)

with 𝛽 ∼ 5∕4 for E < 0.5 MeV and 𝛽 ∼ 3∕2 for E > 1 MeV. Approximate analytical expressions for
the bounce-averaged energy diffusion rate ⟨DEE⟩ of electrons by quasi-parallel whistler mode waves have
already been obtained [Mourenas et al., 2012a, 2014]. Since the energization of the electron distribution by
parallel waves mainly occurs at medium to high pitch angles [Horne et al., 2005; Mourenas et al., 2014], one
can roughly take it into account by using the formula of ⟨DEE⟩ given by equation (A6) in Appendix A, which
generally remains approximately correct as long as 𝛼0 > 15◦ [Mourenas et al., 2012a].

The electron distribution F at high energy first increases quickly with time then reaches a maximum at a
time tmax given by

tmax ≈
𝜏L

2

(
−𝛽 +

√
𝛽2 + E2⟨DEE⟩ 𝜏L

)
. (14)

and later on decreases with the usual loss timescale 𝜏L.

However, a more complete diffusion equation must take into account both pitch angle and energy diffusion
coefficients [Glauert and Horne, 2005; Albert, 2009], giving for the full electron distribution f :

𝜕f
𝜕t

= 𝜕

𝜕E
(A(E)⟨DEE⟩𝜕(f∕A(E))

𝜕E
)

+ 1
Tb sin 2𝛼0

𝜕

𝜕𝛼0
(⟨D𝛼𝛼⟩Tb sin 2𝛼0

𝜕f
𝜕𝛼0

) (15)

In order to obtain approximate but useful and insightful analytical solutions to the complex
two-dimensional differential equation (15), some important simplifications must be made. Namely, we
consider the case of an initially cold distribution (without high-energy electrons) scattered by quasi-parallel
waves. In order to roughly evaluate the temporal variation of the phase space density f , we further assume
in a first step that one can roughly separate energy and pitch angle variations and replace f (E, t, 𝛼0) by
∼ F(E, t, 𝛼0 = 90◦)g(𝛼0) in equation (15), since the energization-related increase of f is mainly determined
by the stronger rate ⟨DEE⟩ at higher pitch angles [Mourenas et al., 2012a, 2014]. Then, the slowest pitch angle
scattering near the loss cone generally determines the loss rate for parallel chorus waves [Mourenas et al.,
2014; Albert and Shprits, 2009] and the energy diffusion term on the right-hand side of (15) should dominate
during strong energization periods, yielding the approximate analytical solution (13) for F(E, t).
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Next, to evaluate the pitch angle shape of f , it is essential to take into account the slower energization at
smaller 𝛼0, i.e., the variation of ⟨DEE⟩ ∼ sin 𝛼0 in F(t) (e.g., see equation (A6) in Appendix A) [Mourenas et al.,
2012a] and to replace now f (E, t, 𝛼0) by ∼ F(E, t, 𝛼0)g(𝛼0) in (15), with F given by (13). A close inspection
of the various resulting terms shows that for E2∕(4⟨DEE(𝛼0 ∼ 𝜋∕2)⟩t) > 1 during significant energization
periods (i.e., for t < tmax when ⟨DEE(𝜋∕2)∕E2⟩𝜏L < 1 and for t <𝛽tmax when ⟨DEE(𝜋∕2)∕E2⟩𝜏L ≥ 1), the terms
coming from 𝜕F∕𝜕𝛼0 should prevail in the equation for g(𝛼0). Considering 𝛼0 = 30◦ − 45◦, t ∼ tmax, and
nearly constant pitch angle diffusion, it leads roughly to

4t

⟨
DEE(𝜋∕2)

E2

⟩
sin 𝛼0 tan 𝛼0

𝜕2g

𝜕𝛼2
0

+ 2
𝜕g
𝜕𝛼0

−
g

tan 𝛼0
= 0

or 2(𝜕g∕𝜕𝛼0) ≈ g∕ tan 𝛼0 and an approximate form g ≈
√

sin 𝛼0 very weakly varying with 𝛼0.

Actually, this shape of the g part of the full solution is very close to the steady state solution (4) for g
obtained in a situation without energization. Nevertheless, its variation at very small 𝛼0 is smoother,
leading us to keep this last formulation. One important caveat of the present simplified analytical model is
the assumption that fluxes at high energy are produced only through energy broadening of an initially cold
distribution so that f (t = 0, E) = 0 at high E [e.g., Balikhin et al., 2012]. In practice, however, the initial
electron distribution f (t = 0, E) is never null even at high energy. Thus, we must add the value of f0(t = 0, E)
initially present (in simulations or observations) at high energy to the analytical distribution f (t, E) given
by equations (13) and (4). It leads finally to an approximate analytical solution to the full two-dimensional
differential equation (15):

f (E, t, 𝛼0) ∼ f0(E, t = 0, 𝛼0) + F(E, t, 𝛼0 = 𝜋∕2) (16)

×
√

sin 𝛼0 exp(
E2(𝜂(𝛼0) − 1)

4𝜂(𝛼0)⟨DEE(𝜋∕2)⟩t
)

where F is given by equations (13), 𝜂 =min(1, sin 𝛼0∕ sin 𝛼0,m), and 𝛼0,m =min
(

sin−1
√

0.9Ωce0∕(𝛾𝜔m), 𝜋∕4
)

.
As a result, one finds that the global shape of the pitch angle distribution should be mainly determined
by energization at early times t ≤ tmax due to the strong variation of the source F with 𝛼0 < 40◦ in (13) via⟨DEE(𝛼0)⟩. The above solution (16) is rather different from the late-time steady state solution g, due to the
strong effect of energization included through F.

However, due to the presence of a denser core population injected already at 0.1–0.5 MeV initially (at t = 0),
the above approximate formulation (16), based on the assumption of progressive energy broadening of a
cold population, can only be used (i) at high-enough energies E ≥ Emin ≥ 1 MeV far away from the initial
core population temperature, (ii) when strong energization occurs at E > Emin, and (iii) over a restricted
time frame Δt < 𝜏max(Emin) before energization vanishes at E ≤ Emin in the simplified model. The reason for
the latter condition is that contrary to the simplified model’s assumption, in real situations the energization
does not stop, in general, at t ≥ 𝜏max(Emin) on the lower energy side (E ≤ Emin) of the population, due to the
remaining presence of a much denser peak of electrons at lower energies, coming from the initially injected
hot population and which can still be further accelerated (e.g., see next section). As a result, the above
simplified model of energy broadening can only be used for high-enough energy E > max(Emin, 1 MeV) with
Emin given by condition (iii) with equations (13) and (14):

Emin[MeV] ∼
t1∕2 ⟨B2

w⟩1∕2 Ω3∕4
ce0 𝜔

1∕4
m

8[pT ⋅ s∕rad1∕2]Ω3∕2
pe0 tan1∕2 Δ𝜃

. (17)

where the wave amplitude Bw is in pT, angular frequencies in rad/s, and t = Δt in seconds is the elapsed
time since the start of strong energization. Therefore, expression (16) is only (approximately) valid inside
a restricted parameter domain (i.e., mainly at high-enough energy), and great care must be exerted when
using it to describe storm time energization of electrons.

2.6. Validations of Analytical Distributions During Strong Energization Periods
Let us assume a situation of strong acceleration of relativistic (> 2 MeV) electrons by intense parallel chorus
waves at L ∼ 5, such that ⟨DEE∕E2⟩𝜏L ≥ 1. Such a situation actually corresponds to two storms (of 9 October
2012 and 17 March 2013) recently simulated by Thorne et al. [2013] and Li et al. [2014a]. A comprehensive
study of these two storms has shown that quasi-linear diffusion by measured intense parallel chorus waves
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was primarily controlling highly energetic (> 100 keV) electron acceleration in the region where the peak in
electron phase space density was observed in both cases [Thorne et al., 2013; Li et al., 2014a].

To validate the proposed analytical model of distribution, we have compared the evolution of f obtained
from equation (16) with the results of numerical simulations from Thorne et al. [2013] and Li et al. [2014a]
for these two storms. The latter authors have split the magnetic local time (MLT) and UT time into different
sectors, corresponding to different values of (measured) wave intensity B2

w , latitudinal range of wave
presence, Ωpe0∕Ωce0 and 𝜔m∕Ωce0 ratios, and plasma density values. To simplify calculations of analytical
distributions and to demonstrate the capabilities of the proposed method, we chose to use values averaged
over MLT and UT. This average was, however, performed in such a way that the average energy diffusion rate⟨DEE⟩∕E2 given by equation (A6) be correct. To this aim, we first calculated the exact average values of the
normalized energy diffusion rate ⟨Dn⟩ = ⟨⟨B2

w⟩UTΩ
3∕2
ce0𝜔

1∕2
m ∕Ω3

pe0⟩MLT from Table 1 in Thorne et al. [2013] at
L ∼ 5 and from Table 1 in Li et al. [2014a] at L ∼ 4.25. Then, using simple averages over MLT sectors of the
weakly varying parameters Ωpe0∕Ωce0 and 𝜔m∕Ωce0, we adjusted the remaining parameters (plasma density
Ne and B2

w) to recover the exact average value of ⟨Dn⟩.

This gave us the following initial conditions for the storms of 9 October 2012 (17 March 2013):

Ωpe0∕Ωce0 ∼ 3(3.3), 𝜔m∕Ωce0 ∼ 0.23(0.22), Ne ∼ 4.4(12) cm−3, and
√⟨B2

w⟩ ∼ 85(113) pT. Besides, the behavior
of f (t) should be better modeled in the vicinity of its maximum at t ∼ tmax(E) given by equation (14), where
temporal variations are weaker. Thus, we have normalized f to its value in the Fokker-Planck simulations
near the time tmax(E) where f reaches its maximum, choosing a not-too-high energy E = Enorm > Emin,
1 MeV (far enough from the temperature of the initial distribution) for which strong energization occurs.
The calculation time in f (t) is the elapsed time since the beginning of the simulation, and we normalize
F(E, t, 𝛼0) = F(E, t, 𝛼0)fsim(tmax,sim(Enorm), Enorm)∕F(tmax, Enorm) at 𝛼0 = 90◦, where fsim(tmax,sim(Enorm), Enorm) is
taken from the simulations. Here we consider Enorm = 2.3 MeV, giving tmax,sim(Enorm) ∼ 12 UT (f ∼ 9 ⋅ 10−6) on
9 October 2012 and tmax,sim(Enorm) ∼ 24 UT (f ∼ 2.5⋅10−6) on 17 March 2013.

To estimate lifetimes 𝜏L, which vary with the parameter Ωpe0∕Ωce0 slightly differently than 1∕⟨D⟩ [see
Mourenas et al., 2012b, Appendix A and equation (19)], we must only consider in Table 1 from Thorne
et al. [2013] or Li et al. [2014a] the latitude range 𝜆 > 25◦ where resonance with > 2 MeV electrons
occurs. Keeping the other average parameters unchanged, it leads to MLT-averaged values for the storms of

9 October 2012 (17 March 2013) of
√⟨B2

w⟩ ∼ 48(57) pT. One can check that ⟨DEE∕E2⟩𝜏L ≥ 1 in both cases.
Then, a limited error on the magnitude of lifetimes should not affect analytical estimates of f , because
particle acceleration occurs much faster than losses.

Figure 5 shows that the analytical estimates of the distributions from equation (16) are in reasonable
agreement with the full numerical simulations from E ∼ 2 MeV to E ∼ 6–7 MeV for both geomagnetic
storms, in spite of the different parameters. While f (E, t) varies over 6 orders of magnitude, the global mean
relative error between analytical estimates and simulation results at 𝛼0 > 45◦ remains only a factor of ∼ 2
and a factor ∼ 2.5 over 𝛼0 = 20◦–90◦. Here one gets tmax ∼ 0.75(2.5) days for 2.3(4.5) MeV for the October
2012 storm and tmax ∼ 0.8(4.8) days for 2.3(5.6) MeV for the storm in March 2013. The end time of the
simulations is therefore close to tmax(2.3 MeV) where a saturation of energization should occur at
E ∼ 2.3 MeV. However, electron energization is still building up at higher energies. An increasing discrepancy
between simulations and estimates can be noticed as 𝛼0 decreases below 20◦. It is probably related to the
limiting condition 𝜕f∕𝜕𝛼0 = 0 for 𝛼0 = 0 used in the simulations Li et al. [2014a], whereas the part (13) of the
analytical solution tends toward zero at 𝛼0 = 0. Some differences could also stem from mixed (pitch angle
and energy) diffusion which is neglected in estimates and from the consequences of a nonnull f (E, t = 0) in
the simulations.

The evolution of the full electron energy spectrum is also displayed in Figure 5 (right) as a function of time
for the March 2013 storm, at two different L shells. At L = 3.5, we made use again of wave and plasma
parameters obtained as a function of time and MLT from POES satellites and the Van Allen Probes [Li et al.,
2014a] to derive the average parameters needed for the model. We found Ωpe0∕Ωce0 ∼ 2.6, 𝜔m∕Ωce0 ∼ 0.22,

Ne ∼ 32 cm−3, and
√⟨B2

w⟩ ∼ 97 pT. We are still in a situation such that ⟨DEE∕E2⟩𝜏L ≥ 1. It can be clearly seen
that due to the dense core population (the first gray slope in Figure 5, right) already present at 0.3–0.6 MeV
initially (at t = 0 in simulations, corresponding to 12 UT on 17 March 2013), the simplified model of energy
broadening of an initially cold population can be used only at high-enough energies E > Emin ∼ 1.5–2 MeV.

MOURENAS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9970



Journal of Geophysical Research: Space Physics 10.1002/2014JA020443

Figure 5. Profiles of the electron distribution f (E, t, 𝛼0) in the case of high-energy electrons interacting with lower band chorus waves (left) at L ∼ 5 during the
storm of 9 October 2012 [Thorne et al., 2013] and (middle) at L ∼ 4.25 during the storm of 17 March 2013 [Li et al., 2014a]. Analytical solutions from equation (16),
normalized at 𝛼0 = 𝜋∕2 to the simulation’s value at the end time for E = 2.3 MeV, are plotted for end times t = 12 UT (universal time) on 9 October 2012 and
t = 24 UT on 17 March 2013 (large solid lines). Analytical solutions are also displayed for t = 8 UT on 9 October 2012 and t = 20 UT on 17 March 2013 (dashed
lines). Simulations and analytical calculations start at t = 20 UT on 8 October 2012 and at t = 12 UT on 17 March 2013. Open (filled) symbols show values of the
corresponding numerical simulations from Thorne et al. [2013] for t = 12(8) UT on 9 October 2012 and from Li et al. [2014a] for t = 24(20) UT on 17 March 2013.
(right) The evolution of the electron energy spectra (at 𝛼0 = 90◦) as a function of time during the storm of 17 March 2013 at L ∼ 4.25 and 3.5: simulation results
(black and blue symbols), analytical solutions (black and blue lines), and initial energy spectrum (fitted to Van Allen Probes measurements, gray line).

Nevertheless, the temporal evolution of this high-energy shoulder of the electron distribution, far away
from the bulk of the initial distribution, appears to be roughly reproduced by the model (16) from 2 MeV to
6 MeV (see Figure 5, right). As usual, higher-energy fluxes start to increase later than lower energy fluxes.
But the electron energy spectrum over E ∼ 2–5 MeV quickly takes a shape which does not depend on the
much smaller initial flux levels in this range. During this March 2013 storm, energization also turns out to be
significantly stronger at L= 4.25 than at L= 3.5, coinciding with the highest chorus wave intensities
[Li et al., 2014a].

2.7. Using Analytical Distributions During Strong Energization Periods to Estimate
Average Chorus Intensity
To demonstrate the potential usefulness of the above approximate analytical solutions, we shall try here
to infer the value of the average parallel chorus wave intensity from an analysis of the measured energized
electron distribution (from its important variations with time and energy) performed with the help of
equation (16). Assuming a strong storm in the region 3.5 ≤ L ≤ 5.5 accompanied by chorus-induced
energization such that ⟨DEE∕E2⟩𝜏L ≥ 1 and ⟨DEE∕E2⟩t ≪ 1 as above, one gets the following relationship for
two energies E1 and E2 > E1 and 𝛼0 > 45◦ at a given time t after the start of the strong energization period:

E2
2⟨DEE(E2)⟩ −

E2
1⟨DEE(E1)⟩ ∼ −4t ln(

f (E2)E2
1

f (E1)E2
2

) (18)

leading finally to

⟨B2
w⟩Ω3∕2

ce0𝜔
1∕2
m

100[pT2 ⋅ s2∕rad]Ω3
pe0 tanΔ𝜃

∼ −1
2t

(19)

×

(
E3∕2

2 (1 + 2E2)√
1 + E2

−
E3∕2

1 (1 + 2E1)√
1 + E1

)
∕ ln

(
f (E2)E2

1

f (E1)E2
2

)
with E1 and E2 in MeV, the average amplitude Bw in pT, angular frequencies in rad/s, and t in seconds is the
elapsed time since the beginning of strong energization (for instance, since the start of the storm recovery
phase). Equation (19) shows that if the ratio f (E2)∕f (E1) has been measured by a satellite and if in addition
one can use some reasonably good estimates (or even better, in situ measurements) of the average values
of 𝜔m∕Ωce0, Ωce0, Δ𝜃, and Ωpe0, it is possible in principle to derive an estimate of the averaged (over latitude
and MLT) chorus wave intensity at latitudes 𝜆 < 20◦ during the considered storm. Note that one needs
only a ratio of fluxes at different energies at a same time, which should get us rid of at least part of the
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Figure 6. Estimates of the RMS chorus wave amplitude
√⟨B2

w⟩ during two geomagnetic storms (9 October 2012 and 17 March 2013) on the basis of ratios of
electron fluxes measured by the Van Allen Probes [Thorne et al., 2013; Li et al., 2014a] at different times and for different energies, making use of equations
(19) and (20). The ratio of the left- and right-hand parts of equation (19) or (20) is plotted so that the estimated amplitude is given by the intersection of the
curves with the horizontal dashed line at 1. We use either the plasma trough density model of Sheeley et al. [2001] (dashed lines) or the more precise average
density obtained from the Van Allen Probes (solid lines). The RMS chorus wave amplitudes directly measured by the Van Allen Probes or inferred from POES
measurements [Thorne et al., 2013; Li et al., 2014a] are indicated by vertical dashed lines.

uncertainties related to flux measurements. Moreover, the resulting estimate of ⟨B2
w⟩ varies only like

the logarithm of this flux ratio, mitigating the uncertainties related to the use of approximate analytical
formulas for f . ⟨B2

w⟩ varies with other parameters like ∼ N3∕2
e ∕(tΩ3∕2

ce0 ). The magnitude of the geomagnetic
field can deviate from its dipolar value due to field line stretching in the midnight sector during strongly
disturbed periods. Nevertheless, the MLT-averaged deviation generally remains smaller than 30% even
during strong storms [Thorne et al., 2013; Li et al., 2014a] in the considered region 3.5 ≤ L ≤ 5.5. Apart from
the flux ratio, the most important parameter is therefore the average plasma density Ne, which can depart
very significantly from its average statistical value [Sicard-Piet et al., 2014].

Alternatively, one can consider a given energy E and use the measured ratio f (t2, E)∕f (t1, E) at two different
times during the same period. It gives ⟨B2

w⟩Ω3∕2
ce0𝜔

1∕2
m

100[pT2 ⋅ s2∕rad]Ω3
pe0 tanΔ𝜃

∼
(t2 − t1)

2t1t2

×

(
E3∕2(1 + 2E)√

1 + E

)
∕ ln

(
f (t2)t

3∕2
2

f (t1)t
3∕2
1

)
(20)

where this estimate of ⟨B2
w⟩ varies like the logarithm of the flux ratio and with other parameters like

∼ N3∕2
e ∕(t1t2Ω

3∕2
ce0 ). Thus, it depends much more than the previous estimate on a precise determination of

the starting time of strong energization.

To assess the reliability of the proposed method, we have applied it to the same two geomagnetic storms
(of 9 October 2012 and 17 March 2013) as before. Now, however, we are using the levels of electron phase
space density measured by the Van Allen Probes during each storm at different energies and at different
times [Thorne et al., 2013; Li et al., 2014a] to infer various estimates of ⟨B2

w⟩. To this aim, we simply use
average statistical values 𝜔m∕Ωce0 ≃ 0.25, Δ𝜃 = 30◦, Ωce0 from a dipolar geomagnetic field, and either
the average plasma trough density model Ne ≃ 100(3∕L)4 cm−3 from Sheeley et al. [2001] or the 2–3 times
smaller average measured value of the plasma density given above.

One can see in Figure 6 that the chorus waves RMS amplitudes deduced from analytical estimates (19) and
(20) are in very good agreement with average measured amplitudes during both storms when using the
measured plasma density value. In such a case, one obtains a mean error percentage smaller than ∼ 20%
between RMS amplitudes calculated with (19) and (20) and RMS amplitudes directly measured by the Van
Allen Probes or inferred from Polar-orbiting Operational Environmental Satellites (POES) measurements
[Thorne et al., 2013; Li et al., 2013b, 2014a; Ni et al., 2014]. Moreover, the maximum deviation from the
measured average amplitude remains smaller than a factor ∼ 1.5. However, when using a statistical average
of the density [Sheeley et al., 2001], wave amplitudes can be overestimated by a mean factor ∼ 2. This is due
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to the lower than average plasma density measured during both storms. Using statistically averaged values

for the other parameters does not affect significantly the estimated wave amplitudes.

In principle, the analytical solutions could therefore be used to infer RMS chorus wave amplitudes from

energetic electron flux measurements during storms, provided that the plasma density can be determined

accurately enough. This method could be employed, for instance, during periods when directly measured

or POES-inferred wave amplitudes are not available or too uncertain or to supplement the existing wave

databases. However, even if the above results are promising, they should mainly be considered as means

of double checking the validity of the analytical solutions (i.e., the validity of the underlying assumptions

and approximations) in two clean case studies where chorus-induced electron energization was known to

prevail. Deriving wave amplitudes from real observations in a lot of different cases will probably prove to

be a more difficult task. In reality, electron acceleration by chorus waves can mingle with various other

processes, like acceleration by magnetosonic waves, radial diffusion [e.g., see Li et al., 2014a], or enhanced

pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves, making it harder to evaluate the exact

role played by chorus waves.

Nevertheless, occurrence rates of intense EMIC waves are very low, near 2.6% over 4 < L < 7 during active

periods, with an average Ωpe0∕Ωce0 ratio generally larger than 10 and time-averaged intensities smaller than

0.3 nT [Meredith et al., 2014]. Moreover, EMIC waves have been shown to scatter only moderate pitch angle

particles at 𝛼0 < 45◦–60◦ [Usanova et al., 2014], not affecting the bulk of the energized population at higher

pitch angles that we are interested in here. Intense fast magnetosonic waves may also efficiently accelerate

electrons of a few MeV in the outer radiation belt [Horne et al., 2007]. However, the corresponding energy

diffusion rate generally peaks at energies such that 𝛾 ≈ 6Ωce0∕Ωpe0 and decreases at higher energy like

1∕𝛾3 ∼ 1∕E3 [Mourenas et al., 2013], while for chorus waves the energy diffusion rate decreases continuously

but less quickly than 1∕E2. Furthermore, energy diffusion by magnetosonic waves should be mainly

important for large Ωpe0∕Ωce0 > 7 and then mainly limited to some narrow pitch angle domain [Mourenas

et al., 2013]. Thus, an energization dominated by fast magnetosonic waves should lead to some peak of

energization at a moderate-energy value and a progressively smaller influence than chorus waves as E

increases. In principle, identifying the presence of such a maximum in measured electron fluxes might be

feasible and could help to remove the corresponding energy range from consideration when estimating

chorus wave intensity by the above proposed method. Moreover, very high RMS amplitudes of

magnetosonic waves, larger than about 4 times the chorus waves RMS amplitudes, would be needed to

have a strong effect [e.g., see Mourenas et al., 2013, Figure 11]. During disturbed periods of enhanced

chorus activity, magnetosonic waves should consequently not strongly affect, in general, the mean value

of the inferred chorus wave amplitudes.

The pitch angle profile of the analytical distributions can also be compared with the measured profiles at

different energies and times. Analytical fits to f (t, E) at 𝛼0 > 45◦ already provide estimates of the RMS wave

amplitude which are only weakly dependent on 𝜔m∕Ωce0. However, the steep decrease of f (𝛼0) toward low

𝛼0 is mainly determined by sin 𝛼0,m ≈
√
Ωce0∕𝜔m𝛾 . In this case, one can obtain best analytical fits to the

measured f (E, t, 𝛼0) by minimizing the global standard deviation over 𝛼0 = 20◦–90◦ at different energies

and times, looking now for an optimum couple of values (𝜔m, ⟨B2
w⟩). For the storm of October 2012, we

found accordingly 𝜔m∕Ωce0 ∼ 0.20 and
√⟨B2

w⟩ ∼ 92 pT, close to the average measured values. Provided
that strong EMIC waves are not simultaneously present, it might be possible to estimate this way both the

average frequency and amplitude of the chorus waves from electron flux measurements. It would be

especially useful for storms during which no direct wave measurements (and no other alternative

techniques) are available, but it could also complement other existing techniques. Conversely, in cases

where wave intensity, wave frequency, and geomagnetic field values are already known, the same

formulas (19) and (20) could be used to infer the unknown average plasma density. The proposed method

could therefore help to build event-specific as well as global wave and plasma models required to drive

large-scale radiation belt codes during disturbed periods. Before that, however, the general applicability of

this method needs to be tested statistically in a variety of real (sometimes complex) situations, which is left

for a further dedicated study.
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3. Discussion and Conclusions

As briefly discussed above, one potentially useful application of the preceding analytical solutions could be
to provide a new method to estimate the MLT-averaged and latitude-averaged wave characteristics from
only few measurements of the electron distribution in different energy ranges. This opportunity can be
important because a substantial part of satellite measurements of wave parameters corresponds to the
near-equatorial region, while wave characteristics strongly vary along field lines [e.g., see Mourenas et al.,
2014]. In contrast, electron velocity distributions measured in the vicinity of the equator have been modified
by resonant interactions with waves over a large range of latitudes, and as a result, the structure of these
distributions remembers the properties of waves in the unmeasurable regions.

At low L< 3.5 during quiet times, when quasi-parallel hiss whistler mode waves are interacting with
not-too-high energy electrons, the obtained pitch angle distributions are peaked at 90◦ (see Figure 3). The
measured location of a sudden drop of g(𝛼0) near 70◦–80◦ would then give directly 𝛼0,i and therefore the
upper frequency cutoff of the hiss spectrum. The slopes of the different parts of g depend directly through
(9) on the wave parameters 𝜔m∕Ωce0 and Δ𝜃. Thus, using precise measurements of g at various energies
could allow to determine these parameters. Finally, using these determined parameters and comparing
the measured global lifetimes with their analytical counterparts could help to provide an estimate of the
bounce-averaged and azimuthal drift-averaged wave power. The latter would be a valuable complement to
localized wave measurements on board satellites.

During very disturbed geomagnetic conditions when mainly parallel chorus waves are controlling the
strong energization of relativistic electrons in the outer belt [Chen et al., 2013; Thorne et al., 2013; Li et al.,
2014a; Mourenas et al., 2014], the variations of f (E, t, 𝛼0 > 45◦) can be compared with the corresponding
analytical solutions to gain some indirect knowledge of the MLT-averaged wave power at latitudes 𝜆 < 20◦,
provided that the intensity of fast magnetosonic waves is not too high and radial diffusion is not too strong
near the L location of the maximum of energization (see previous section).

During weaker (and slower) energization periods in the outer belt, such that ⟨DEE(𝜋∕2)∕E2⟩𝜏L ≪ 1,
comparisons of analytical solutions with measured electron fluxes could allow to estimate the value of
tmax ∼ 𝜏L∕

√
4𝜏L⟨DEE(𝜋∕2)∕E2⟩ at various electron energies E. It would give the ratio of ⟨DEE(𝜋∕2)⟩

(proportional to B2
w near the equator) to ⟨D𝛼𝛼(𝛼LC)⟩ (proportional to B2

w at increasing latitudes for increasing
E; see Appendix A), therefore providing the variation of the MLT-averaged wave power with latitude. In
this case, however, one needs to assume that EMIC waves and radial diffusion have a smaller effect on the
flux decay than chorus waves. During more quiet times outside of the plasmasphere, the existence of an
exponential decay of measured fluxes could also be used to deduce the averaged (over latitude and MLT)
chorus wave intensity by means of comparisons of observed lifetimes of electrons with analytical estimates
of lifetimes at various energies (see Appendix A) [Mourenas et al., 2012b; Artemyev et al., 2013b; Mourenas
et al., 2014; Li et al., 2014b]. However, the observed decay timescales can also be influenced by electron
injections at low energy and by EMIC waves or outward radial diffusion at high energy, especially at high
L ∼ 6 [Boynton et al., 2014], requiring a very cautious approach. Indeed, discrepancies between the
simplified analytical solutions and numerical solutions or observations are expected to increase as the
situation becomes more complex (as already seen from Figures 2–5). Therefore, more numerous validations
of the methods outlined above by comparisons with measured average wave amplitudes are definitely
required but left for future work.

In summary, we have derived here general analytical expressions for the energy and pitch angle distribution
of trapped electrons in the radiation belts. The analytical distributions are approximate solutions to the
exact two-dimensional Fokker-Planck equation governing the distribution function when quasi-linear
diffusion of high-energy (> 1 MeV) electrons in pitch angle and energy by limited amplitude (< 300 pT)
whistler mode waves is the dominant process. The analytical solutions have been successfully compared
with full numerical results. Used in combination with measured electron distributions provided by the
Van Allen Probes, they allowed us to recover the measured average amplitude of chorus waves during
two storms. The satisfactory agreement with both observations and full simulations opens the door to
future investigations of observed trapped particle distributions performed with the help of the presented
analytical formulations. Such comparisons could help to improve our global understanding of the active
processes and provide useful estimates of the wave’s characteristic features.
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Appendix A: Analytical Expressions for Lifetimes and Diffusion Rates

An approximate analytical formulation of the electron lifetime at relatively low energy (for 1.1
< p𝜖m < p𝜖UC < 10) due to Landau resonance pitch angle diffusion by whistler mode waves has already been
derived by Mourenas and Ripoll [2012] and Artemyev et al. [2013b] for a quasi-parallel wave normal angle
distribution G(𝜃) = exp(− tan2 𝜃∕ tan2 Δ𝜃) where Δ𝜃 < 45◦ is the characteristic width of the distribution. It
reads as

𝜏LL ≈
B2

0|1 − 𝜔m∕Ωce0|−3∕2

3𝛾B2
wΩce0

(pΩpe0

Ωce0

)4
tanΔ𝜃

sin3 𝛼M0

×
𝜋

2
− 𝛼0,i −

2
3

sin 2𝛼0,i −
1

12
sin 4𝛼0,i

G(𝜃M0) + min (C3∕11,C−1)
(A1)

Here B0 is the equatorial geomagnetic field magnitude, C = p𝜀m tanΔ𝜃, 𝜔m is the mean frequency
of the wave (at peak power B2

w), 𝛼0,i = 1∕(p𝜖UC) is the highest equatorial pitch angle where cyclotron
resonance exists, 𝜃M0 ≈ tan−1(1.84∕p𝜀m) is the wave normal angle at peak equatorial Landau resonance,
and cos 𝛼M0 ≈ |1 − 𝜔m∕Ωce0|1∕2𝛾𝜔m∕(Ωce0p𝜀m) gives the location of the Landau resonance scattering
peak. The waves which dominate in the Landau part of the lifetime and which must therefore be considered
here are such that they have the highest value of wave power B2

w multiplied by G(𝜃M0) + min(C3∕11,C−1). It
corresponds to hiss or VLF waves (the latter at very low L) in the plasmasphere and lower band chorus in the
outer belt. Nevertheless, 𝜔UC as well as 𝜖UC and 𝛼0,i are always determined by the upper frequency cutoff of
the highest-frequency quasi-parallel waves.

The minimum in pitch angle scattering occurring at 𝛼0 ∼ 𝛼0,i is given by the Landau resonance diffusion rate
at this location. It can be written approximately as [Mourenas and Ripoll, 2012; Artemyev et al., 2013b]

⟨
D𝛼𝛼(𝛼0,i)

⟩
≈

𝛾B2
wΩ

5
ce0 sin3 𝛼M0

2p4B2
0Ω

5
pe0 tanΔ𝜃

||1 − 𝜔m∕Ωce0
||3∕2

cos3 𝛼0,i sin 𝛼0,i
(A2)

×
(

G(𝜃M0) + min
(

C3∕11,C−1
))

The diffusion coefficient for first-order cyclotron resonance is obtained after integration over bounce motion
[Lyons et al., 1972], considering the smallest-frequency and highest-intensity parallel waves (hiss or lower
band chorus). Near the loss cone edge, one finds [Mourenas and Ripoll, 2012; Artemyev et al., 2013b]

⟨D𝛼𝛼(𝛼LC)⟩ ≈ 𝜋B2
wΩce0 𝜔m

4𝛾B2
0Δ𝜔(p𝜀m)13∕9 Tb(𝛼LC) cos2 𝛼LC

×

×
Δ𝜆R,N(1 + 3 sin2 𝜆R)7∕12(1 −𝜛)|𝛾𝜛 − 2𝛾𝜛2 + 1| |1 − 𝛾𝜛|4∕9

(A3)

where 𝜛 = 𝜔m∕(Ωce0(p𝜀m)2∕3), Tb(𝛼LC) ≈ 1, and the latitude of resonance 𝜆R for 𝜔 ≈ 𝜔m can be written as

𝜆2
R ∼ 3

2
− 3

2

√√√√√1 − 16
9

⎛⎜⎜⎝1 −

( |1 − 𝛾𝜛|
p𝜀m

√
cosΔ𝜃

)1∕9⎞⎟⎟⎠ (A4)

The latitudinal range of resonance corresponding to Δ𝜔 is Δ𝜆R ∼ 2(
√

𝜆2
R + 2Δ𝜔∕(27𝜔m)∕(p𝜀m)1∕9 − 𝜆R)

when the waves exist up to the highest latitudes [Mourenas et al., 2012b]. But when the waves are confined
to 𝜆 < 𝜆+, the actual latitudinal range of resonance becomes Δ𝜆R,N ∼ max(min(𝜆+, 𝜆R + Δ𝜆R∕2) − 𝜆R +
Δ𝜆R∕2, 0) [Artemyev et al., 2013b].

The loss timescale 𝜏L< corresponding to the sole region 𝛼LC < 𝛼0 < 𝛼0,i is given by the integral of
1∕(4⟨D𝛼𝛼⟩ tan 𝛼0) over the same domain for cyclotron-resonance wave-particle interaction [Mourenas and
Ripoll, 2012]:

𝜏L< ∼
2 ln(sin 𝛼0,i∕ sin 𝛼LC) + cos2 𝛼0,i − cos2 𝛼LC

8 ⟨D𝛼𝛼(𝛼LC)⟩ (A5)
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Finally, an approximate analytical expression of the bounce-averaged quasi-linear energy diffusion
coefficient of electrons interacting with fixed-amplitude parallel waves can be derived [Mourenas et al.,
2012a, 2014]. Refined estimates for p𝜖m > 6 yield a variation with 𝛼0 weaker than sin 𝛼0 at 𝛼0 > 45◦ as
in simulations and show that ⟨DEE⟩∕E2 decreases approximately by a factor sin 𝛼0 more quickly below
𝛼0,m ∼ min(sin−1

√
0.9Ωce0∕(𝛾𝜔m), 𝜋∕4) than at 𝛼0 > 45◦ (see equations (10), (12), and (17) in Mourenas et al.

[2012a] and equation (10) in Mourenas et al. [2012b]), in agreement with numerical simulations [Mourenas
et al., 2012a, Figure 1]. Taking the latter dependencies into account , we get

⟨DEE⟩
E2

[1
s

]
≈

B2
w Ω3∕2

ce0𝜔
1∕2
m

100[pT2 ⋅ s2∕rad]

(𝛾 + 1)1∕2𝜂(𝛼0)Ω−3
pe0

tanΔ𝜃𝛾(𝛾 − 1)3∕2
(A6)

where 𝜂 = min(1, sin 𝛼0∕ sin 𝛼0,m). The above formula has been checked to remain roughly correct down to
𝛼0 ∼ 15◦. Note that in equations (A1), (A2), and (A6), B2

w denotes the average wave power from mainly low
latitudes (between 𝜆 = 0◦ and 𝜆 ∼ 20◦), while it represents in equation (A3) the average power between
𝜆R − Δ𝜆R,N∕2 and 𝜆R + Δ𝜆R,N∕2 (i.e., at higher 𝜆 for higher E).
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