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DiscussionsParametric validations of analytical lifetime estimates for radiation
belt electron diffusion by whistler waves
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Abstract. The lifetimes of electrons trapped in Earth’s radi-
ation belts can be calculated from quasi-linear pitch-angle
diffusion by whistler-mode waves, provided that their fre-
quency spectrum is broad enough and/or their average am-
plitude is not too large. Extensive comparisons between im-
proved analytical lifetime estimates and full numerical calcu-
lations have been performed in a broad parameter range rep-
resentative of a large part of the magnetosphere fromL ∼ 2
to 6. The effects of observed very oblique whistler waves
are taken into account in both numerical and analytical cal-
culations. Analytical lifetimes (and pitch-angle diffusion co-
efficients) are found to be in good agreement with full nu-
merical calculations based on CRRES and Cluster hiss and
lightning-generated wave measurements inside the plasmas-
phere and Cluster lower-band chorus waves measurements in
the outer belt for electron energies ranging from 100 keV to
5 MeV. Comparisons with lifetimes recently obtained from
electron flux measurements on SAMPEX, SCATHA, SAC-C
and DEMETER also show reasonable agreement.

Keywords. Magnetospheric physics (Energetic particles,
precipitating; Energetic particles, trapped) – Space plasma
physics (Wave–particle interactions)

1 Introduction

Quantifying the lifetimes of electrons trapped in Earth’s ra-
diation belts has become an increasingly important goal as
scientists strive to predict high-energy particle fluxes, which
may damage spaceborne high-technology systems (Iucci
et al., 2005; Choi et al., 2011). However, observed flux vari-
ations related to the geomagnetic activity can reach orders
of magnitudes over timescales of minutes to days (e.g., see
Horne et al., 2005; Tu et al., 2010). The dynamics of the ra-
diation belts is defined by a number of competing processes
such as convection, radial diffusion driven by ultra-low fre-
quency (ULF) waves, pitch-angle, energy, and mixed diffu-
sion by whistler, magnetosonic and electromagnetic ion cy-
clotron (EMIC) waves as well as trapping by the most in-
tense waves (Thorne, 2010). While state-of-the-art numeri-
cal models of the belts attempt to treat all these phenomena
simultaneously (Barker et al., 2005; Varotsou et al., 2008;
Xiao et al., 2009; Fok et al., 2011; Subbotin et al., 2011;
Reeves et al., 2012) as required for space weather forecast-
ing, one difficulty consists in evaluating electron lifetimes by
computing quasi-linear diffusion coefficients (Lyons et al.,
1971, 1972; Lyons, 1974; Albert, 2005; Glauert and Horne,
2005; Summers, 2005; Summers et al., 2007; Albert, 2007).
Multidimensional simulations of radiation belt dynamics re-
quire computing bounce-averaged diffusion rate matrices for
a very wide variety of evolving geophysical conditions (i.e.,
for many different values ofL, MLT (magnetic local time),
Kp, as well as plasma density, wave parameters, and elec-
tron energy). The diffusion rate matrix can be efficiently and

Published by Copernicus Publications on behalf of the European Geosciences Union.



600 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

accurately computed in full diffusion codes such as the one at
UCLA, by performing dedicated MPI runs (Ni et al., 2008;
Shprits and Ni, 2009). Nevertheless, it still needs hours (at
least) to be calculated (Gu et al., 2012). Therefore, analytical
lifetime expressions can be useful substitutes to allow more
rapid global belt forecasting (Li et al., 2007; Kondrashov
et al., 2011; Reeves et al., 2012), parametric and sensitiv-
ity studies (Tu et al., 2009), as well as to facilitate attempts
at determining the relative weight of the different source,
transport, and loss processes in the Van Allen belt dynamics
(Varotsou et al., 2008; Kim et al., 2011). The analytical life-
times can also be compared with lifetimes obtained by differ-
ent data-assimilation methods (Tu et al., 2010; Kondrashov
et al., 2011), which do not provide by themselves any infor-
mation on the relative contribution of the various sources and
losses. Moreover, the rate of electron precipitation is also im-
portant to model accurately the magnetosphere–ionosphere
coupling (Gkioulidou et al., 2012). Among the different
types of wave–particle interactions that should be consid-
ered, the quasi-linear (stochastic) pitch-angle diffusion of
electrons over their bounce motion by ensembles of uncor-
related frequency-varying whistler waves of moderate aver-
aged amplitude (Tao et al., 2011) is known to play a promi-
nent role as one of the major loss mechanisms in the radiation
belts. Whistler mode waves scatter trapped electrons into the
loss cone, where they are quickly removed by collisions with
atmospheric particles (Kennel and Petschek, 1966; Trakht-
engerts, 1966). The corresponding analytical lifetime expres-
sions may be obtained either by fitting numerical calculations
(as it was done for moderately oblique chorus waves bySh-
prits et al., 2007; Gu et al., 2012) or from complicated, ap-
proximate analytical developments (as it was done for par-
allel to very oblique hiss and chorus waves byMourenas
and Ripoll, 2012; Mourenas et al., 2012b,a). While numer-
ical fits have their own advantages (a known accuracy over a
restricted parameter domain), they also suffer from the lim-
ited parameter range that is considered and the associated as-
sumptions on the wave and plasma conditions. On the other
hand, analytically derived formulas may be less accurate over
some domains while retaining physically (and quantitatively)
correct variations over a much broader parameter range. It
is precisely the main goal of the present paper to investi-
gate extensively the accuracy of the analytical lifetime model
introduced in earlier articles (Mourenas and Ripoll, 2012;
Mourenas et al., 2012b), by means of numerous comparisons
with full numerical calculations over a wide parameter do-
main representative of the whole inner magnetosphere. De-
termining these quasi-linear lifetimes is indeed a prerequisite
for a comprehensive radiation belt modeling in the magneto-
sphere of Earth as well as other planets (Shprits et al., 2012).

In this paper we obtain diffusion coefficients (and corre-
sponding estimates of lifetime) valid in a wide range ofL

shells (L > 2). Thus, a broad range of the various wave pa-
rameters (frequency, wave-normal angles, etc.) and plasma
density is considered. To this aim, the full Appleton–Hartree

Fig. 1. Distribution of lower-band chorus occurrences in theθ–
λ space (left panel) and wave amplitude distribution (right panel)
shown for the day sector and 4< L < 5 in the moderate to medium
geomagnetic activity range Kp< 3 (shaded regions indicate insuf-
ficient statistics). Black curves show Gendrin and resonance cone
angles for 3 kHz atL = 4.5.

whistler-mode dispersion relation is now used in our full nu-
merical calculations, allowing us to extend the domain of va-
lidity of the numerical calculations. Moreover, the new an-
alytical lifetime model presented here includes several sig-
nificative improvements over the previous model (Mourenas
and Ripoll, 2012; Mourenas et al., 2012a,b), which were all
needed to account for (1) multiple-Gaussians wave spectra
(especially inside the plasmasphere), (2) high-latitude Lan-
dau resonance at low energy and lowL < 3, and (3) high-
energy, high-density cyclotron resonance at largeL > 4 in
the presence of an upper latitude cutoff in the wave intensity
distribution.

In a first section, the typical frequency spectra, wave-
normal angle distribution and wave-power distribution with
latitude of whistler waves observed onboard Cluster are pre-
sented. They are later used in full numerical calculations. The
second section gives a rapid description of the complete, re-
fined analytical lifetime model. The next section is devoted
to the numerical code scheme used for calculating electron
lifetimes in the presence of oblique waves. The final sec-
tion will focus on an exhaustive comparison between the an-
alytical lifetime estimates and the full numerical solutions. It
will demonstrate that the analytical lifetime estimates remain
generally within a factor of 2 of the actual values in a very
wide parameter range.

2 Low frequency whistler waves in the magnetosphere:
a quick overview of recent statistical results

Chorus waves typically appear in two distinct frequency
bands. Lower band chorus waves appear in the range

Ann. Geophys., 31, 599–624, 2013 www.ann-geophys.net/31/599/2013/
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0.1–0.5�c0 and upper band chorus between 0.5�c0 and
�c0 where�c is the electron cyclotron frequency and�c0
is �c evaluated at the equator (Tsurutani and Smith, 1977;
Meredith et al., 2001). These waves are supposed to be ex-
cited by the anisotropy of the distribution of electrons in-
jected into the inner magnetosphere (Meredith et al., 2001).
They can be directly generated with large wave-normal an-
gles (Santoĺık et al., 2009; Haque et al., 2011) or experience
an increase of their wave-normal angle during their propa-
gation away from the source region located near the equator
(Lauben et al., 2002; Shklyar et al., 2004; Chum and San-
tolı́k, 2005; Bortnik et al., 2011a; Breuillard et al., 2012;
Nemec et al., 2012; Chen et al., 2013). Interestingly, re-
cent works have shown that chorus waves may also be the
source (or seed) of hiss-type waves inside the plasmasphere
(Boskova et al., 1990; Hattori et al., 1991; Bortnik et al.,
2011a).

The distribution ofθ angles between wave vector and the
background magnetic field as a function of latitudeλ can be
obtained from the data from the STAFF-SA experiment on
Cluster (Cornilleau-Wehrlin et al., 2003). Here we present
Cluster statistics collected in the rangeL = 4 to 5 for lower-
band chorus waves with mean frequencyωm ≈ 0.35�c0 in
the low to medium geomagnetic activity range (see details of
statistics inAgapitov et al., 2012a). The distribution of wave
occurrences for givenθ andλ is shown in Fig.1. For each
λ the total number of wave occurrences are normalized to
one. We also show the Gendrin angleθg(λ) (Gendrin, 1961)
and resonance cone angleθr(λ) as functions ofλ. It should
be noted that waves cannot be observed aboveθr in cold
plasma theory, although it may be possible in hot plasmas:
the corresponding points in this figure are most probably due
to uncertainties in the determination ofθr (calculated here
for L = 4.5; θr can also differ slightly from arccos(ωm/�c)

due to the effect of a finite ratio�c/�pe at high latitudes,
where�pe is the plasma frequency) or to errors in the deter-
mination ofθ (see discussion inAgapitov et al., 2012a). Fig-
ures1–2 show that, atL ∼ 4 to 5, lower-band chorus waves
are rather oblique above 5–10◦ of latitude, a large portion
of their distribution being located between the Gendrin and
resonance cone angles (especially forλ > 10◦). The mean
wave-normal angle, as well as the variance, increases with
latitude. In addition, one can mention a group of parallel
waves observed at high latitudes. This group results in an
increase of the variance of the total distribution ofθ angle,
g(θ), but does not change the overall tendency of growth
of the meanθ with λ. The distribution of wave amplitude
Bw(θ) and its rms value are also displayed in Fig.2 as a func-
tion of wave-normal angle in given latitude ranges. While
the maximum amplitudes are generally obtained for mod-
erately oblique waves (θ ∼ 20◦), similar levels can also be
found between the Gendrin and resonance cone angle on the
dayside. The wave power distribution as a function of lati-
tudeB2

w(λ) has already been provided and fitted byArtemyev
et al.(2012b) for dayside waves. Nightside chorus waves are

confined at latitudes lower than 20◦ but will not be consid-
ered here, because we are mostly interested in estimating the
actual loss rates of longitudinally drifting trapped electrons,
which are principally determined by dayside waves (Shprits
et al., 2007). The presented wave-normal distribution is actu-
ally representative of the dayside outer-belt regionL = 3.5 to
5.5 for Kp< 3. At largerL > 5.5, lower-band chorus waves
are less oblique, although a few percent of the wave power re-
mains at very oblique angles between 10◦ and 20◦ of latitude.
The difference betweenL < 5.5 andL > 5.5 cases is prob-
ably related to Landau damping by suprathermal electrons,
which has been shown to produce a stronger attenuation of
oblique waves at largeL > 5.5 and high latitudes (Bortnik
et al., 2006; Chen et al., 2013), although Landau damping is
presumably weaker on the dayside than on the nightside (Li
et al., 2011).

Plasmaspheric whistlers are mainly composed of hiss
waves between 100 Hz and 2 kHz and lightning-generated
whistlers between 2 and 5 kHz (Meredith et al., 2007), with
an occasional presence of waves from ground-based very
low frequency (VLF) transmitters near 20 kHz atL < 2.5
(Abel and Thorne, 1998). For plasmaspheric whistlers, we
make use of Cluster statistics atL = 2 to 2.5 to derive fits to
the wave-normal angle distributiong(θ). Figure3 shows the
measured wave power distribution as a function ofθ and lat-
itude. While the waves start as quasi-parallel at the equator,
they become more oblique at higher latitudes and the vari-
ance increases. These observations are in good agreement
with ray-tracing results fromBortnik et al.(2011b) (see their
Fig. 7), which also showed an increase of hiss wave-normal
angles during propagation to higher latitudes, as well as a
slight increase of the variance. Very oblique waves represent
a significant amount of the distribution forλ > 15◦. CRRES
measurements of amplitudes and spectra betweenL = 2 and
3.5 (Meredith et al., 2007, 2009) will be used for lifetime
calculations in Sect. 5. Polynomial fits to the average mean
and variance of the wave-normal angle obtained from Cluster
data will also be used (see Sect. 4). While wave-normal an-
gle satellite data may suffer from some uncertainty, it should
be noted that ray-tracing calculations of lightning-generated
whistlers have independently shown that their wave-normal
angle can be easily larger than 50◦ nearL = 2 (Thorne and
Horne, 1994).

3 Analytical estimates of quasi-linear electron lifetimes

3.1 Approximate diffusion coefficients

Oblique whistler waves (Burton and Holzer, 1974;
Hayakawa et al., 1990; Tsurutani et al., 2009; Haque
et al., 2010; Agapitov et al., 2011; Li et al., 2011; Agapitov
et al., 2012b) as well as nearly parallel ones are taken into
account in estimates of pitch-angle diffusion rates by consid-
ering a double distributiong(θ) = gs(θ)+gl(θ) containing a

www.ann-geophys.net/31/599/2013/ Ann. Geophys., 31, 599–624, 2013



602 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

Fig. 2. Distribution of lower-band chorus amplitudes at four ranges of magnetic latitude for 4< L < 5 on the dayside when Kp< 3. Black
curves show rms levels corresponding to average intensity.

Fig. 3. Distribution of hiss amplitudes in four ranges of magnetic latitude for 2< L < 2.5 on the dayside when Kp< 3. Black curves show
rms levels corresponding to average intensity.

non-Gaussian tail (see Fig. 1 fromMourenas et al., 2012b).
The small-θ part gs = exp(−(tanθ − tanθm)2/ tan21θ) is
assumed to be approximately Gaussian with a width of
1θ ≤ 45◦ and a maximum atθm ≈ 0 (corresponding in
practice toθm < 1θ ≤ 45◦), with lower and upper bounds

at θlc = 0 andθuc ∼ 1θ . The large-θ tail is taken as a step
functiongl(θ) equal to a constant between the Gendrin and
resonance cone angles, being zero otherwise. It can lead
to higher electron diffusion rates by allowing higher order
cyclotron resonances with whistler waves.

Ann. Geophys., 31, 599–624, 2013 www.ann-geophys.net/31/599/2013/
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The local pitch angle quasi-linear diffusion coefficientD

of Lyons (1974) (with dimensions of s−1) has been conve-
niently rewritten byAlbert (2005, 2007) in the form

D =
Dαα

p2
=

�c

γ 2

B2
w

B2

+∞∑
n=−∞

∑
ω

Dαα
n

Dαα
n =

θmax∫
θmin

sinθdθ1nGωGθ (1)

with

Gθ (ω,θ) =
g(θ)∫ θmax

θmin
dθ ′ sinθ ′0(θ ′,ω(θ))g(θ ′)

, (2)

whereGω(ω(θ),θ ′) ∼ B2
sp(ω)/

∫
B2

sp(ω)dω is a function of
the wave refractive index. One can find detailed descriptions
and analysis of properties ofGω as well as definitions of
1n and0 in the works byAlbert (2005, 2007). Here,B is
the local magnetic field (of equatorial valueB0), and the ar-
gumentx = (ωγ /�c + n) tanα tanθ of the Bessel functions
in 1n is approximated byx ∼ n tanα tanθ at low frequency
when ωγ/�c � 1 ≤ n, with γ the relativistic factor. The
wave spectral density is written asB2

sp(ω) = B2
w exp(−(ω −

ωm)2/1ω2), with 1ω ≈ ωm/2. In Eq. (1), Gθ (ω,θ) and
Dαα

n are both evaluated at the resonant frequencyω corre-
sponding to aθ , a harmonic numbern, and a pitch angleα
obtained from the cyclotron resonance condition

ω + n�c/γ = kv cosθ cosα, (3)

wherev denotes the electron velocity andk is the wavenum-
ber. Since there may exist several roots ofω, a sum overω
in Eq. (1) may be necessary. Finally, a bounce average over
latitudes has to be performed (Lyons et al., 1972).

For lower-band (ωm/�c < 1/2) chorus waves, hiss waves,
lightning-generated waves, or VLF waves from transmit-
ters, all of which are right-hand polarized oblique whistler-
mode waves, the Appleton–Hartree dispersion relation valid
for ω2

� ω2
LH (ωLH being the lower-hybrid frequency) can

be simplified to (ck)2
= �2

peω/(�ccosθ − ω) (Helliwell,

1965) provided that�2
pe/(�cω) � 1 (the high-density limit)

and sinθ(�c/�c0)(�c0/�pe) < (�ccosθ/ω)1/2 (through-
out this paper, the subscript “0” denotes equatorial values).
For moderately oblique, low frequency waves such thatθ ≤

45◦ and(ω/�c0) � �2
pe/(12�2

c0), the discrepancy between
the exact and approximate resonance frequencies should then
remain negligible up to latitudesλ ∼ 45◦. For�pe/�c0 > 4,
it is suitable for all moderately oblique whistler waves satis-
fying the conditionω/�c0 < 0.4, i.e., lower-band chorus (in
agreement with numerical results fromGlauert and Horne,
2005), hiss, lightning-generated and VLF transmitters. The
lower the frequency ratioω/�c0, the closer the approximate
dispersion is to the Appleton–Hartree one. Thus, the approx-
imate dispersion turns out to be almost exact for moderately

oblique plasmaspheric whistler waves (hiss and lightning-
generated waves).

For significantly oblique lower-band chorus (or any other
kind of low-frequency whistler waves) such thatθ > θg, (the
Gendrin angle such that cosθg ∼ 2ωm/�c), the maximum
latitude λMM for resonance over the whole large-θ range
(from the Gendrin up to nearly the resonance cone angle
given by cosθr ∼ ωm/�c) is reached at small equatorial pitch
angles. It has been estimated from the simplified dispersion
and resonance condition byMourenas et al.(2012b,a) as
λMM ≤ 35◦ for L = 4 to 6, implying that the approximate
dispersion can be used only for�pe/�c0 > 4 for θ ≥ θg.
The discrepancy between the approximate and exact disper-
sions becomes more important at the higher latitudes, close
to the loss-cone edge (α0 < 10◦). Nevertheless, the error in
the value of the resonance frequency merely corresponds to a
small downward shift from the actual latitude at which reso-
nance occurs at peak wave power, thanks to the rapid increase
of �c at high latitudes. Figure4 shows that this remains true
up to the highest latitudes for�pe/�c0 > 4, while it is still
roughly the case for�pe/�c0 = 2 at latitudes smaller than
20◦, corresponding to the highest latitude of resonance at
α0 > 20◦ (Mourenas et al., 2012b). After integration over lat-
itudes, this small shift can nevertheless produce large errors
in the bounce-averaged diffusion rate〈D〉B for α0 < 10◦, due
the significant increase with latitude of the integrated func-
tion 1nGθ in Eq. (1) in the large-θ range at high latitudes
λ > 20◦ (see Appendix A in the work byMourenas et al.,
2012a, and the numerical comparison of the simplified and
Appleton–Hartree dispersions in Sect. 5.1). Because peak
resonance occurs at higher latitude with the full dispersion,
〈D〉B ends up to be larger forα0 < 10◦ than with the simpli-
fied dispersion. In the simplified analytical model developed
by Mourenas et al.(2012b), however,〈D〉B is only calculated
for α0 > 15◦ and it is simply assumed to continue increas-
ing at least like 1/sinα0 towards the loss cone forα0 < 10◦

as actually observed in the full numerical simulations (see
Sect. 5.1). Since we are principally interested in lifetime es-
timates, the large-〈D〉B part at smallα0 < 10◦ can then be
safely neglected in Eq. (7) below. An error concerning this
part should indeed lead to a much smaller relative error in the
lifetime estimate. It is this model of〈D〉B (Mourenas et al.,
2012b) that will be used throughout the present paper.

As the full expression of the diffusion rate involves four
successive integrations of rather complex functions, fur-
ther approximations have to be made to enable an analyti-
cal estimation of the bounce-averaged diffusion rates. The
weighted-average reformulation of the local quasi-linear dif-
fusion coefficient introduced byAlbert (2007) in his Eq. (7)
is first used to simplify the calculations. Such a reformu-
lation is justified by (1) the nearly constant resonantω up
to θ ∼ 60–70◦ for low-frequency whistler waves using the
full dispersion relation (Albert, 2007) and (2) the narrow
width 1ω ≤ ωm/2 of the wave spectrum, which implies
that significant contributions to diffusion come principally

www.ann-geophys.net/31/599/2013/ Ann. Geophys., 31, 599–624, 2013



604 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

Fig. 4.Resonance cone angle as a function of latitude. The approx-
imate valueθr = arccos(ωm/�c) from the simplified dispersion re-
lation (solid black line) is compared with exact solutions obtained
with the Appleton–Hartree dispersion for different ratios�pe/�c0.

from frequencies close toωm. It is then acceptable to re-
placeG(ω(θ ′),θ) by G(ω(θ),θ) in Eq. (2), hence allowing
the very convenient weighted-average reformulation. Con-
trary to the mean value approximation proposed byAlbert
(2007), however, the variation of the averaged function with
θ is taken into account in our analytical calculations, where
Bessel functions are replaced by their classic series expan-
sions on both sides of their first maxima (for more details, see
Mourenas and Ripoll, 2012; Mourenas et al., 2012b,a). As
concerns bounce-averaging, the latitudinal range1λ where
resonance occurs is evaluated from Eq. (3) and adiabatic in-
variance forω varying betweenωm−1ω andωm+1ω. This
latitudinal range being narrow and the latitudinal variation of
the integrand in the bounce integral remaining weak (see Ap-
pendix D and A fromMourenas et al., 2012b,a), the diffusion
rate integrated over1λ can be further approximated by this
integrand taken at〈λ〉 andω = ωm, multiplied by1λ and by
〈B2

sp〉ω/B2
sp(ωm) (Mourenas et al., 2012b). Finally, it is as-

sumed that the plasma density does not vary strongly with
latitude for latitudes smaller than about 40◦, in agreement
with observations betweenL ∼ 2 and 7 (Denton et al., 2006;
Ozhogin et al., 2012).

For the small-θ part (θ < θ s
Max < max(π/4,θg)) of the

wave-normal angle distribution, the first cyclotron reso-
nancen = −1 provides the main contribution to the diffu-
sion rate near the loss-cone edge for distributions such that
gs(θg) � gs(0) and/orE ≤ 1 MeV. This contribution is es-
sentially equivalent to the parallel propagation approxima-
tion (PPA) formulated bySummers(2005). At higher equa-
torial pitch angles, the Landau resonancen = 0 and higher-
order cyclotron resonances may also contribute. Forθ < 45◦,
the maximum number of significant resonances isN s

max ∼

pεm0sin(θ s
Max) (Mourenas and Ripoll, 2012; Mourenas et al.,

2012b) with εm0 = �pe/�c0
√

ωm/�c0 and p the electron
momentum normalized onmec. For θ > max(π/4,θg) and
at the equator,θ may take any value from the Gendrin an-
gle up to nearly the resonance angle for resonances|n| ≤ Nr
with averageNr ≈ 2cosα0pεm0

√
ωm/�c0 (Mourenas et al.,

2012b,a). As the electron leaves the equator and moves to-
wards its mirror point along a magnetic field line, pitch angle
increases due to adiabatic invariance, allowing resonance to
be recovered at higher latitudes. The total effective number
of (positive and negative) contributing resonances is roughly
4Nr. Diffusion at large wave-normal angles may increase
strongly (partly off the equator) at moderate equatorial pitch
angles due to the large number of contributing resonances
and owing to the fact that their contributions are roughly in-
dependent ofn.

The full diffusion coefficient is obtained after integration
over the bounce motion (Lyons et al., 1972). For the small-θ
part, it yields near the loss-cone (LC) edge withα0 ∼ αLC:〈
Dsmallα0

〉s
B ≈

πB2
w�c0 ωm

4γB2
01ω(pεm0)13/9 T (αLC)cos2αLC

×

×
1λR,N(1+ 3sin2λR)7/12(1− $)∣∣γ$ − 2γ$ 2 + 1

∣∣ |1− γ$ |
4/9

, (4)

where$ = ωm/�c and the bounce period isT (α0) ≈ 1.38–
0.64sin3/4α0 (Davidson, 1976). The latitude of resonanceλR
for ω ≈ ωm can be written as

λ2
R ∼

3

2
−

3

2

√√√√1−
16

9

(
1−

(
|1− γ$ |

pεm0
√

cos1θ

)1/9
)

(5)

where Eq. (5), which is obtained through a second-order ex-
pansion of cosine and sine terms, is sensibly more accu-
rate than the first-order Eq. (C7) in the work byMourenas
and Ripoll (2012) at large density, frequency and en-
ergy (i.e., at high latitudes).1θ denotes the width of
the Gaussian distributiongs(θ). In Eq. (4), the latitudi-
nal range of resonance corresponding to1ω is 1λR ∼

2(

√
λ2

R + 21ω/(27ωm)/(pεm0)1/9 − λR) when waves are
present up to the highest latitudes (Mourenas et al., 2012b).
The actual latitudinal range of resonance can be written as
1λR,N ∼ max(min(λ+,λR+1λR/2)−λR+1λR/2,0) to ac-
count for the possible confinement of waves below a certain
latitudeλ+, as in the case of chorus (Shprits et al., 2006; Li
et al., 2011; Artemyev et al., 2012b). Forωm/�c0 < 0.5, one
can also safely use�c/�c0 ≈ (pεm0)

2/3 in the two above
equations (Mourenas et al., 2012b), except in the case when
pεm0 < 1: then, one must simply takeλR = 0 and�c = �c0.
The small-θ Landau resonance coefficient has been evaluated
by Mourenas and Ripoll(2012) for hiss waves and extended
to arbitrary ratiosωm/�c0 < 0.5 byMourenas et al.(2012b).
The lifetime contribution of this Landau term is given explic-
itly below.
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Albert and Shprits(2009) have shown that lifetimes are
determined by the minima of the total diffusion coefficient
multiplied by tanα0. As a result, the small-θ diffusion coef-
ficient is usually the smallest either near the loss-cone angle
αLC or, at large pitch angles, between the Landau and first
cyclotron resonance peaks (Shprits et al., 2006, 2007; Albert
and Shprits, 2009; Mourenas and Ripoll, 2012). Since our
goal is to provide lifetime estimates, we can safely neglect
in the small-θ part all the resonances except for the first cy-
clotron one at small pitch angles and the Landau and first
cyclotron resonances at large pitch angles. The latter indeed
define the depth of the minimum in〈D〉B at large pitch angles
(see next section).

For the more complicated large-θ part of g(θ), such that
θ ≥ max(π/4,θg), lifetimes are mainly determined by the
moderate to large pitch-angle region where diffusion is weak-
est. Then, many resonancesn contribute to diffusion. The de-
tails of the derivation ofD at pitch angles larger than 20◦ are
given inMourenas et al.(2012b). With θ bounds taken asθg
andθr and1ω/ωm ∼ 0.5, one gets

〈D〉
l
B =

(
1+

ω2
m

�2
c0

)
B2

w�c0
√

8Nr

9γB2
0(pεm0)2cosα0sinα0

(6)

where the maximum latitude of resonance is generally
smaller than 35◦ (Mourenas et al., 2012b,a), i.e., smaller
than the latitude upper bound on intense oblique wavesλ+

∼

40◦ in the dayside outer belt atL < 5.5 (see Sect. 2). On
the nightside or at largeL > 5.5, the presence of oblique
chorus is limited atλ < λObl ∼ 20◦ due to strong Landau
damping by suprathermals (Bortnik et al., 2006; Li et al.,
2011). From Eqs. (7)–(8) fromMourenas et al.(2012a) with
1λ ≈ λMax/2 ≈ λObl/3, 〈D〉

l
B becomes much smaller than

the value (Eq.6) for sinα0 < (ωm/�c0)(�c0/�c(λObl))
3/2.

It leads to a threshold atα0 < αObl = ωm/�c0 (see also Ap-
pendix B fromMourenas et al., 2012b) where〈D(n)〉lB de-
creases fast like(sinα0/sinαObl)

2|n|−1 until it becomes even
smaller than〈D〉

s
B near the loss-cone edge forL > 4.

3.2 Lifetime expressions for multiple wave modes

We make use of the approximate reformulation of the elec-
tron lifetime by Albert and Shprits(2009), which reads as

τ ≈ σ

π/2∫
αLC

cosα0

2〈D〉B sinα0
dα0. (7)

The numerical coefficientσ ≈ 1 allows recovering precisely
numerical simulations: one can takeσ ∼ 1/2 when the min-
imum of 〈D〉B is near the loss cone or else when a mini-
mum occurs at large pitch angles but remains moderately
deep (see AppendixA), while σ ∼ 1 is more appropriate
for the Landau part at high pitch angles (Albert and Shprits,

2009; Mourenas and Ripoll, 2012). A reasonable way to de-
rive an analytical estimate of the lifetimes consists in neglect-
ing the pitch-angle domain wherein〈D〉B tanα0 is large. Ac-
cordingly, the large-θ part 〈D〉

l
B can be integrated analyti-

cally between aboutπ/12 andπ/2, while the small-θ part
〈Dsmallα0〉

s
B can be integrated analytically (withT (α0) ∼

T (αLC) ∼ 1.3) from the loss-cone angleαLC up to an angle
α+ ≈ max(2.2αLC,min(7αLC,π/2−θ s

Max)) (the angleπ/2−

θ s
Max represents the smallestα0 for resonance at the equator

– see details inMourenas and Ripoll, 2012; Mourenas et al.,
2012b). At low energy orL, however, a deep minimum of
〈D〉B may occur between the peaks of first cyclotron and
Landau resonances, which can strongly increase lifetimes.
Its effect can be easily evaluated by integrating in Eq. (7)
the Landau diffusion coefficient〈Dn=0〉

s
B between the Lan-

dau peak and the upper limit of the first cyclotron resonance
diffusion coefficient〈Dn=−1〉

s
B.

For the sake of generality, we hereafter extend our pre-
vious model (Mourenas and Ripoll, 2012; Mourenas et al.,
2012b) to consider a spectrum consisting of two or three
Gaussians of peak frequenciesωm,i and upper cutoffs
ωUC,i < ωm,i + 21ωm,i , corresponding to different kinds of
whistler waves. Thei = 1 index is also assumed to corre-
spond to the highest intensity waves, which are moreover
supposed to have the smallest mean and upper cutoff fre-
quencies. Such a situation is actually representative of typ-
ical whistler spectra inside the plasmasphere as well as in the
outer belt. Inside the plasmasphere, thei = 1 index would
correspond to hiss waves (Meredith et al., 2007, 2009). For
simplicity, the remaining whistler modes (e.g., lightning-
generated and VLF) are also classified in the same way, such
that a larger indexi corresponds to a smaller intensity and
higher (mean and upper cutoff) frequencies.

Then, the different cyclotron and Landau diffusion co-
efficients (corresponding to different indicesi) take on a
shape shown schematically in Fig.5 for L < 3.5. Cyclotron
diffusion by lower-frequency, higher-intensity waves (i.e.,
hiss with i = 1) dominates at smallα0 < αUC, 1, followed
at higherα0 by cyclotron diffusion by lightning-generated
waves (i = 2), and so on. Finally, cyclotron diffusion drops
down atα0 > max(αUC, i), and Landau diffusion then takes
over. As can be seen in Fig.5, the total diffusion coefficient
can then be approximated over each successiveα0-range
by one dominant individual diffusion coefficient correspond-
ing to the relevant wave indexi, allowing the integration in
Eq. (7) to be performed by parts (see below).

While actual fits to the measured spectra contain some-
times Gaussians that do not follow the above-assumed clas-
sification (Meredith et al., 2007), it is always possible to
replace them by Gaussians that do comply, even if the cor-
responding approximation to the actual spectrum is slightly
less accurate. In the expression forα+, one has thenθ s

Max =

θ s
Max,i=1 corresponding toi = 1 waves. All the small-θ

waves are assumed to have a Gaussian wave-normal distri-
butiongs,i(θ) = exp(− tan2θ/ tan21θi), where1θi < 45◦ is
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Fig. 5. Schematic representation of the cyclotron and Landau dif-
fusion coefficients for wavesi = 1 (hiss, solid black line) andi = 2
(lightning-generated, solid blue line) atL < 3.5, as a function of
equatorial pitch angle. The corresponding approximate analytical
diffusion coefficients are also displayed (dotted lines).

the characteristic width of the distribution. Further assuming
that cosα0i = (pεm0,i)

−1 < sin1θi , Eq. (30) in the work by
Mourenas and Ripoll(2012) giving the cyclotron diffusion
rate at large equatorial pitch angles simplifies to

〈
Dn=−1, i, largeα0

〉s
B =

B2
w, i �c0

√
3γB2

0 pεm0, i sinα0i tan1θi

. (8)

Posing cosαUC, i = min((pεUC0,i)
−1,1) (with εUC0,i =

εm0,i
√

ωUC,i/ωm,i), the small-θ -waves-only lifetime can be
written as

τs ≈ τLandau+
ln(sinα+/sinαLC)

4
〈
Dsmallα0, i=1

〉s
B

+

∑
i=2,3

1τi, (9)

where

τLandau≈
B2

0|1− ωm,1/�c0|
−3/2 Fhl

3γB2
w,1�c0

(
p�pe

�c0

)4 tan1θi=1

sin3αM0,1

×

π
2 − αMax

0 −
2
3 sin(2αMax

0 ) −
1
12 sin(4αMax

0 )

gs(θM0,1) + min
(
C3

i=1/11,C−1
i=1

) , (10)

where Ci=1 = pεm0,1tan1θi=1 and αMax
0 =

max(αUC, i, αLC) are the highest equatorial pitch
angles where (first) cyclotron resonance exists.
tanθM0,1 ≈ 1.84/pεm0,i=1 is the wave-normal an-
gle at peak equatorial Landau resonance, and
cosαM0,1 ≈ |1− ωm,1/�c0|

1/2γωm,1/(�c0pεm0,1) cor-
responds to the position of the Landau peak. The multiplica-
tive termFhl ≈ max(102(π/4− αMax

0 ), 1) with Heaviside
function2(. . .) is such thatFhl = 1, except when cyclotron
resonance becomes unavailable at moderate equatorial pitch
angles for lowL inside the plasmasphere, as discussed in
Appendix B. It is also assumed here that the indexi = 1
corresponds to the highest value ofB2

w,i multiplied by

gs(θM0,i) + min
(
C3

i /11,C−1
i

)
so that thei = 1 waves dom-

inate in the Landau part ofτs . This condition is generally
satisfied for typical plasmaspheric whistler spectra (e.g., see
Fig. 2 fromMeredith et al., 2007). The filling of the trough
in pitch-angle diffusion rate between the Landau and first
cyclotron peaks from thei = 1 waves, which is provided by
thei = 2 and 3 waves, can be written from Eqs. (7)–(8) as

1τi ∼

αUC,i∫
αUC,i−1

(1/ tanα0)

2
〈
Dn=−1, i, largeα0

〉s
B

dα0

≈
(sinαUC,i − sinαUC,i−1)

2
〈
Dn=−1, i, largeα0

〉s
B (π/2)

.

(11)

Note that in a case wherepεUC0,i < 21/4, such as for hiss
waves atL < 2.5 and low energy electrons, things become a
little bit more complicated. Then, thei = 1 index must be
given to the first Gaussian such that this inequality is re-
versed, except for the Landau term in Eq. (9).

Concerning the case of small- and large-θ distributions,
typical of outer belt chorus spectra, theD contributions in
Eq. (6) from different large-θ Gaussian frequency spectra
are roughly independent ofωm,i and therefore add up into
one single term〈D〉

l
B, with B2

w =
∑

B2
w, i with ωm taken

as the intensity-weighted mean ofωm,i . Assume that the
large-θ part of the wave distribution represents between 5 %
and 50 % of the total wave power, as chorus observations at
L = 4 to 5.5 suggest (Burton and Holzer, 1974; Agapitov
et al., 2012b). Then, the relative weights of small- and large-θ

parts inD are made roughly similar by their weighting fac-
tors g(tanθ)

√
1+ tan2θ tanθ , so thatDtotal ≈ (Ds

+ Dl)/2
(Mourenas et al., 2012b). Finally, one gets the following from
Eqs. (4)–(6) for the totalg(θ) distribution:

τs+l ≈ 2τLandau+
0.5

〈D〉
l
B (π/4) +

〈
Dsmallα0,i=1

〉s
B

(12)

where one has now sinαMax
0 = max(sinαUC, i ,

(2ωm,1/�c0),sinαsp) in the expression in Eq. (10) for
τLandauwith Fhl ∼ 1 and

cosαsp =

√
�c0

4ωUC,1

∣∣∣∣∣ max(0,1−
γωUC,1

�c0
)

pεm0,i=1
√

ωUC,1/ωm,1

∣∣∣∣∣ . (13)

In a regime of interaction with weakly oblique low-frequency
whistler waves, electron lifetimes given by Eq. (9) scale
roughly as

τs ∼
110

B2
w

p3/2γω
7/9
m,1�

14/9
pe

�
12/9
c0

ln

(
sinα+

sinαLC

)
(14)

at high enough energy and/or density such thatpεm0 > 21/4

for cyclotron resonance to prevail (see Appendix B and
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Mourenas et al., 2012b). Note that expression in Eq. (14)
should be multiplied by a factor of∼ 2/3 for ωm/�c0 <

0.05. Hereτs is given in seconds and the average (rms) wave
amplitudeBw in pT. With a ratioωm,1/�c0 fixed, lifetimes
due to interaction with lower-band chorus then vary roughly
like E2/L at high energiesE and/orL. It is worth noting that
lifetimesτs in Eq. (9) are independent of1ω and1θ , varying
like tan1θ(ωm,1/ωUC,1)

5/2 only at very low energies when a
deep minimum in diffusion shows up beside the Landau peak
where cyclotron resonance is not available anymore.

When large-θ whistler waves are present up to high lati-
tudes and at high enough energy to getτs+l � τs , Eq. (12)
yields

τs+l ∼
35

B2
w

γp�pe

1+
γ�c0
2p�pe

, (15)

whereτs+l is given in seconds,Bw in pT, and the additional
term at the denominator stems from a slightly more accu-
rate expression ofNr at very low energy and density given in
Eq. (7) fromMourenas et al.(2012b).

Comparing Eqs. (15) and (14), one finds thatτs+l/τs < 1
to � 1. The eventual reduction of lifetimes brought forth
by the presence of very oblique whistler waves turns out
to be more important for higher values of�pe/�c0, i.e., at
larger L and higher energy whereτs+l ∼ γp�pe. This re-
duction of lifetimes stems from the related increase of the
number of large-θ cyclotron resonancesNr at high energy. In
the night sector of the outer belt or atL > 5.5, a neat lati-
tude confinement of very oblique waves occurs due to strong
Landau damping (Bortnik et al., 2006; Li et al., 2011) with
λ ≤ λObl ∼ 20◦. The actual lifetime in Eq. (7) is then roughly
determined by small-θ diffusion between the loss-cone an-
gleαLC andα+,Obl ∼ ωm/2�c0 = αObl/2 where large-θ dif-
fusion steeply increases (see the discussion below Eq.6).
Replacingα+ by α+,Obl in Eq. (9) with null Landau terms
gives an estimate of the lifetime for oblique lower-band cho-
rus waves strictly confined to low latitudes; corresponding
lifetimes are typically two times smaller than the small-θ -
only lifetime in Eq. (14).

4 Numerical scheme of calculation of the diffusion coef-
ficients and lifetimes

To calculate diffusion coefficients and estimate lifetimes, we
use the approach proposed byAlbert (2005) andGlauert and
Horne(2005) with modifications corresponding to the depen-
dence ofg(θ) distribution onλ (seeArtemyev et al., 2012a)
and the dependence of the wave amplitudeBw onλ (seeArte-
myev et al., 2012b). However, in contrast to our previous cal-
culations, we use here the Appleton–Hartree dispersion rela-
tion (Helliwell, 1965) valid for arbitrary values of the ratio

�pe/�c:

(kc/ω)2
= 1−

X(1− X)

1− X −
1
2ϒ sin2θ ±

√
D

(16)

D =

(
1
2ϒ sin2θ

)2
+ (1− X)2ϒ cos2θ

ϒ = �2
c/ω

2, X = �2
pe/ω

2.

For X → ∞ one can obtain the simplified dispersion relation
(kc/ω)2

= 1−X/(1±
√

ϒ cosθ). Solving the system consist-
ing of dispersion relation in Eq. (17) and resonant condition
in Eq. (3) gives resonant frequencies and wavenumbers.

4.1 Outer-belt lower-band chorus waves

We use a distribution functiong(X) with X = tanθ of wave
occurrences depending onλ: g(X) = exp(−(X−Xm)2/X2

w),
whereXm,w = Xm,w(λ) are determined from Cluster obser-
vations and approximated by polynomial functions (seeArte-
myev et al., 2012a). The recent corrections to Cluster STAFF
data (seeAgapitov et al., 2012b) slightly change the approx-
imations for Xm,w(λ) in comparison withAgapitov et al.
(2011) for L = 3.5 to 5.5:

Xm = 0.33+ 0.36l − 0.23l2 + 0.086l3

Xw =
√

2
(
0.43+ 0.79l − 0.52l2 + 0.14l3

)
,

(17)

wherel = λ/10◦ and a latitude upper bound on the presence
of intense chorus wavesλ < λ+

= 40◦ is postulated in rough
agreement with observations (Bunch et al., 2012; Artemyev
et al., 2012b). This latitude upper cutoff presents the addi-
tional advantage that the conditionω > ωLH is satisfied ev-
erywhere as required. A comparison of the approximation in
Eq. (17) with the previous one (Artemyev et al., 2012a) is
shown in Fig.6. The increase of the mean valueXm with
latitude corresponds to very oblique wave propagation and
results in intensification of higher order cyclotron harmonic
interaction (see, e.g.,Shklyar and Matsumoto, 2009) yielding
an increase of pitch-angle diffusion (Shprits and Ni, 2009; Ni
et al., 2011; Artemyev et al., 2012a). At higherL > 5.5, the
chorus wave-normal angle distribution is less oblique, so that
the actual electron lifetimes should be comprised between
the values obtained with the above-given oblique distribu-
tion valid for L < 5.5 and with a quasi-parallel distribution.
Therefore, we shall also provide below lifetimes calculated
for a quasi-parallel distribution of lower-band chorus waves.

We perform most calculations for a constant mean ampli-
tudeBw = 100 pT of the waves. However, the increase of the
wave-normal angleθ with λ results in a progressive trans-
formation of whistler waves from an electromagnetic mode
near the equator to a quasi-electrostatic mode at very high lat-
itudes (see, e.g.,Ginzburg and Rukhadze, 1975; Sazhin and
Horne, 1990). As a result,Bw should depend onλ. We take
into account this dependence by using Cluster observations
of the distribution of wave amplitudes for eachλ. As a result,
we calculate diffusion coefficients and estimate lifetimes for
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Fig. 6. Mean valueXm and varianceXw from Eq. (17) are shown
by black color, while approximations fromArtemyev et al.(2012a)
are shown by grey color.

various probability levels ofBw distribution depending on
λ (see details inArtemyev et al., 2012b). Besides, the mag-
netic amplitude of very oblique waves becomes smaller than
the amplitude of quasi-parallel waves in Cluster statistics at
high latitudes (see Sect. 2). To quantify this effect, some
lifetime calculations will also be performed taking into ac-
count the measured variation ofBw(θ) in the day sector for
3.5 < L < 5.5: the wave power atλ > 20◦ is then simply di-
vided by 2 to 4 forθ > 60◦.

Although the effects of a non-dipolar magnetic field could
be important in the nightside region for largeL ≥ 6 (see, e.g.,
Orlova and Shprits, 2010; Ni et al., 2011; Ma et al., 2012; Ni
et al., 2012; Orlova et al., 2012), we restrict our considera-
tions to a dipole fieldB = B0

√
1+ 3sin2λ/cos6λ for aver-

aging diffusion coefficients over electron bounce oscillations
(Lyons et al., 1972). To estimate lifetimes, we use the expres-
sion in Eq. (7). For numerical calculations of diffusion coef-
ficients for chorus waves observed inL ∼ 4 to 5.5, we use
ωm = 0.35�c0, a variance1ω = 0.15�c0, and a maximum
frequency variation of 1.51ω.

4.2 Plasmaspheric hiss and lightning-generated waves
(2 ≤ L ≤ 3)

We shall consider two cases atL = 2 and 2.5 in quiet con-
ditions, as provided byMeredith et al.(2007). For L = 2
and 2.5, one has�pe/�c0 = 5.6 and 7.3, respectively. The
Gω functions are obtained by roughly fitting the correspond-
ing CRRES average spectra, and they will be compared with
the different fits given byMeredith et al.(2007) in Sect. 5.6.
Here we use two Gaussians for hiss and lightning-generated
waves inGω. In addition, these Gaussians are required to be
not-too-wide in order for related analytical estimates to be
valid. Approximating CRRES data atL = 2, one getsωm,1 ∼

Table 1.Wave-normal angle models for the different wave modes.

Wave mode Wave-normal model

Hiss, lightning Eq. (18) for realistic distribution
Xm = 0 andXw = 1 for quasi-parallel waves

Chorus Eq. (17) for realistic distribution
Xm = 0 andXw = 1 for quasi-parallel waves

(2π)350 and1ωm,1 = (2π)350 (in rads s−1) and ωm,2 ∼

(2π)2000 and1ωm,2 = (2π)2000 (in rads s−1) (with cutoffs
at ωm ± 21ω in numerical calculations) for 23 pT hiss and
3 pT lightning waves. AtL = 2.5, one getsωm,1 ∼ (2π)350
and 1ωm,1 = (2π)300 (in rads s−1) and ωm,2 ∼ (2π)2000
and 1ωm,2 = (2π)1700 (in rads s−1) for 38 pT hiss and
5.5 pT lightning-generated waves. It is clear from our pre-
ceding analytical estimates (Mourenas et al., 2012b) that
very low frequency hiss wave-normal angles reach the Gen-
drin angle only aboveθ ∼ 88◦. On the other hand, lightning-
generated and magnetospherically reflected whistlers have a
much higher frequency than hiss (about 3 kHz), allowing the
Gendrin angle to be reached above 85◦. A sensible portion
of their power is believed to propagate at such oblique angles
(Meredith et al., 2007), as it is also the case for VLF transmit-
ters waves near 20 kHz, which may already reach the Gendrin
angle atθ > 45◦. Since the validity of our numerical and an-
alytical models requires thatω > ωLH , the upper bound on
latitude integration is limited accordingly, depending on the
mean frequency of the waves considered. VLF waves may
travel up toλ ∼ 40◦ before their reflection, while hiss waves
are considered up toλ ∼ 30◦ only. Here, the relevant calcu-
lations are performed for a constant mean amplitude of the
waves, corresponding to the average spectral intensities mea-
sured by CRRES betweenλ = 5◦ and 35◦ (Meredith et al.,
2007). Actually, the meanB2

w was found to vary weakly with
λ for λ < 20◦ in Cluster observations atL = 2–2.5. However,
we make use of the functiong(θ) derived from fitting Cluster
data at 0.89 to 3.5 kHz (alternatively, we treat also the case
of quasi-parallel waves).

To model theg(X) distribution, we approximate Cluster
statistics (seeAgapitov et al., 2012a) near 1 kHz by a poly-
nomial dependence on latitude:

Xm = 0.22− 0.012l + 0.5l2 − 0.266l3 + 0.054l4

Xw =
√

2
(
0.19− 0.19l + 0.51l2 − 0.24l3 + 0.044l4

)
.

(18)

The same approximations ofXm,w(λ) have been checked to
be valid for waves in the range 0.9–3.6 kHz atL ∈ [2,2.5].
A comparison of these approximations with the actual values
of Xm,w(λ) obtained from Cluster observations is shown in
Fig. 7.

Table 1 gives a quick overview of the different wave-
normal angle distributions that will be used for the different
wave modes in the full numerical calculations.
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Fig. 7. Mean valueXm and varianceXw from Eq. (18) are shown
by black color, while spacecraft observations are shown by circles.

5 Parametric comparisons with full numerical simula-
tions

5.1 Electron diffusion coefficients for interaction with
lower-band chorus waves in the outer belt

In this section we present pitch-angle diffusion coefficients
〈D〉B averaged over the bounce oscillations of resonant elec-
trons in a dipolar magnetic field (see details of the calculation
scheme inGlauert and Horne, 2005; Artemyev et al., 2012b).
We consider oblique lower-band chorus waves (ωm/�c0 =

0.35) dominant in the outer belt forL ∈ [3.5−5.5]. For these
calculations, we use the functiong(X) given in Eq. (17) and
displayed in Fig.6. For comparison, we also calculate〈D〉B
for nearly parallel waves (Xm = 0) with Xw = 0.577, which
should be somewhat closer to the actual wave-normal an-
gle distribution of chorus at largeL > 6 (these parameters
were also used byGlauert and Horne, 2005; Horne et al.,
2005). We use here a constant mean amplitudeBw = 100 pT
corresponding to dayside active conditions Kp∼ 3 (Shprits
et al., 2007), and the equatorial magnetic field is calculated
for L = 4.5. Averaging over latitude is performed over the
region |λ| < λ+

= 40◦. For the main calculations, the full
Appleton–Hartree dispersion in Eq. (17) is used. However,
we also perform calculations of〈D〉B with the simplified dis-
persion relationω = �ccosθ/(1+ (�pe/kc)2) to investigate
the role of the ratio�pe/�c0 (these results are marked as
simplified DR, dispersion relation). Additionally, we show
〈D〉B calculated with a hybrid scheme where the Appleton–
Hartree dispersion is used everywhere (i.e., for the calcula-
tion of ∂ω/∂k‖ and∂ω/∂k for the normalization ofg(X)),
but the resonant roots(ωi,n,ki,n) are found from the simpli-
fied dispersion relation (these results are marked as simpli-

fied DR∗). Although the variation of the plasma frequency
�pe along field lines can be taken into account (see, e.g.,
Summers and Ni, 2008), the present analysis is restricted
to the simpler case of a constant�pe (believed to remain
roughly valid up to nearlyλ+

= 40◦).
Figure8 shows〈D〉B for given harmonic numbersn calcu-

lated for three energies and four values of the ratio�pe/�c0.
Here, we perform a sum over|n| ≤ 60 harmonics at low en-
ergy E ≤ 1 MeV where the analytical estimate of the num-
ber of contributing (negative or positive) resonances 2Nr <

60 (see Sect.3.1). At high energyE = 5 MeV, however,
the number of contributing resonances 2Nr reaches 160 at
�pe/�c0 = 10; then a sum over|n| ≤ 160 harmonics is per-
formed. Typically,〈D〉B increases strongly at small equato-
rial pitch anglesα0 for oblique waves as compared to nearly
parallel ones (compare black and grey solid curves). This
increase is produced by the growth of almost all the indi-
vidual rates in the vicinity of the loss cone, while only the
first resonance is available for parallel waves alone (Shkl-
yar and Matsumoto, 2009; Mourenas et al., 2012b). For large
values of�pe/�c0 > 2, we also show〈D〉B calculated with
the simplified DR and simplified DR∗ (black dashed and
thin solid curves). One can see that〈D〉B calculated with
the simplified DR∗ almost coincides with〈D〉B obtained
with the Appleton–Hartree dispersion forα0 > 15◦. Elec-
trons withα0 < 10◦ can reach high latitudes, since their mir-
ror points are located at|λ| > 50◦. However, the latitude up-
per bound in our calculations is taken at|λ| = λ+

= 40◦,
where�c0/�c ≈ 1/7 and(�pe/�c)

2
≈ (1/50)(�pe/�c0)

2.
This gives(�pe/�c)

2 < 2 for �pe/�c0 < 10. Only there,
in the close vicinity of the loss cone, can a substantial dif-
ference appear between the two calculations of〈D〉B due
to corrections to resonant roots(ωi,n,ki,n) induced by the
modification of the dispersion relation. As a result, the lati-
tude of resonance at peak wave power decreases (see Fig.4)
and diffusion decreases too with the simplified dispersion,
because1nGθ in Eq. (1) increases with latitude (Mourenas
et al., 2012a). Moreover, in the presence of an oblique wave
distributiong(X) with a large varianceXw, the normaliza-
tion of g(X) in Eq. (2) can also modify〈D〉B by up to a
factor of 2 when using the simplified dispersion relation at
medium to large pitch angles 30◦ < α0 < 75◦. In agreement
with Glauert and Horne(2005), there is no substantial dif-
ference between〈D〉B calculated with the Appleton–Hartree
dispersion and with the simplified DR in the case of nearly
parallel waves atE ≥ 100 keV (not shown here).

The analytical estimate in Eq. (6) of 〈D〉B for oblique
waves agrees fairly well with the full numerical solutions
in Fig. 8 in the range�pe/�c0 > 4 andα0 > 10◦ where the
simplified roots are approximately correct. In particular, it is
worth noting that the 1/sinα0 decrease of analytical diffu-
sion rates with pitch angle coincides with the actual drop-off
of the numerical diffusion rates. As explained in Sect. 3, al-
though the discrepancy between analytical and numerical re-
sults near the loss-cone edge may be important, it will prove
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610 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

Fig. 8. 〈Dαα〉 for three values of electron energy and four values of the ratio�pe/�c0, for quasi-parallel and oblique chorus waves. Full
numerical solutions as well as the corresponding analytical estimates in Eqs. (4) and (6) are displayed.

negligible in lifetime calculations where 1/(tanα0〈D〉B) is
integrated over the whole pitch-angle domain (see Eq.7).
In the lowest density case�pe/�c0 = 2, analytical estimates
still roughly match the full numerical rates forα0 > 30◦ and
E ≥ 1 MeV. Numerical rates〈D〉B are then much larger than
the estimates at lower pitch angles, which should not lead to
large errors in analytical lifetimes. At the lowest density and
for E = 100 keV, however, the analytical estimate in Eq. (6)
significantly underestimates diffusion atα0 < 60◦, because
the corresponding estimated number of contributing reso-
nancesNr ∼ 0.9 is very small with the simplified dispersion,
while many more harmonics actually contribute with the full
dispersion (see Fig.8). It shows that the analytical estimate
in Eq. (6) is valid at least between 100 keV and 5 MeV for
�pe/�c0 > 4, while an additional conditionNr > 2 is re-
quired for �pe/�c0 < 4, leading to a global validity limit
given approximately byE(MeV)> max(0.1,�3

c0/(�
2
peωm)).

Finally, in the case of a quasi-parallel wave distribution (θ <

45◦), the analytical estimate in Eq. (4) of 〈D〉B near the loss
cone can be seen in Fig.8 to correspond rather well to the
full numerical solution at all densities�pe/�c0 > 2 and en-
ergiesE = 100 keV to 2 MeV. It is only plotted forα0 < 40◦,
because the analytical 1/cos2α0 variation in Eq. (4) is not ex-
pected to hold at larger pitch angles (Mourenas and Ripoll,
2012). Nevertheless, it is this low-α0, low-〈Dαα〉 range that

actually determines the lifetime value in this case (Albert and
Shprits, 2009; Mourenas and Ripoll, 2012).

For E = 5 MeV and at high density, the analytical esti-
mates of the small-θ cyclotron diffusion rates are null, simply
because the analytical estimate in Eq. (5) of λR is then such
that, analytically, resonance occurs only above the latitude
upper boundλ+

= 40◦, where wave intensity was assumed
to vanish. The latitudinal range of resonance is very narrow,
and the mean latitude of resonance is then very slightly over-
estimated by the approximate Eq. (5), leading to an under-
estimation of the cyclotron diffusion rates at 5 MeV. Without
such an upper boundλ < λ+, however, we have checked that
the analytical estimate in Eq. (4) of 〈D〉B remains accurate
even at high energy. Anyway, this discrepancy occurs only
for very low diffusion rates, corresponding to very large life-
times (see below). It is therefore not really important for most
practical applications such as lifetime estimates in months-
long numerical simulations of the radiation belts.

To explain the difference between the results obtained for
oblique waves (withg(X) from Fig.6) and for nearly paral-
lel waves (Xm = 0, X < 1), we plot the functionĜ(θ,λ) =∑

ω GωGθ for particular values of particle energy, equato-
rial pitch angle and harmonic number (see Fig.9). Note
that diffusion rates are proportional to∼

∫
Ĝ(θ,λ)dλdθ . For

nearly parallel waves, the maximum of̂G corresponds to
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Fig. 9.FunctionĜ(θ,λ) for two n and particle energies (see text for details). Here�pe/�c0 = 4.5.

θ < 40◦ for all energies, pitch angles, and harmonics. Thisθ

range corresponds roughly toα0 > 60◦ (since the maximum
of Bessel functions occurs forα ≈ π/2− θ ; see Mourenas
and Ripoll, 2012, and explanations above). It implies that
pitch-angle diffusion by parallel waves will be important
mainly for α0 > 60◦, as seen in Fig.8. For oblique waves,
conversely, the maximum value of̂G depends onλ due to
Xm,w = Xm,w(λ). Then, the functionĜ has finite values up
to at leastθ = 80◦ and varies weakly withθ (seen = −1
harmonic for 100 keV particles andn = −10 harmonic for
1 MeV particles). In particular,̂G attains now finite values in
theθ domain comprised between the Gendrin and resonance
cone angles, falling sharply whenθ gets close toθr(ω) as ex-
plained byMourenas et al.(2012b) andAlbert (2012). As a
result, all particles withα0 > 20◦ may be scattered with ap-
proximately the same rate (one can find a peak of〈D〉B at in-
termediate values ofα0 in Fig.8). At high latitudes, cyclotron
resonance becomes available only between the Gendrin and
resonance cone angles. The increase of〈D〉B for α0 < 10◦

corresponds to the sum of factors1n over 4Nr harmonics.
Note that the nonzero value ofĜ(θ,λ) for θ > θr(ωm) is ex-
plained by the finite range1ω of ω variation in the calcula-
tion of Ĝ(θ,λ); i.e.,ω < ωm + 1ω while θr is calculated for
ω = ωm.

To better understand the behavior of〈D〉B, it is useful
to plot the localDαα(θ,λ) diffusion coefficient for given
values ofα0 andE (〈D〉B =

∫
DααdXdλ). Figures10 and

11 show these local pitch-angle diffusion coefficients for
�pe/�c0 = 4.5 and 7.5, respectively, calculated with the
Appleton–Hartree DR and with the simplified DR∗. The
left-hand panels correspond to small equatorial pitch angle
α0 = 5◦ and the right-hand panels toα0 = 45◦. From top
to bottom, one considersE = 100 keV electrons forn = −1
and−5, thenE = 1 MeV electrons forn = −1,−5, and−10
in both figures. The average values ofθg(λ) andθr(λ) calcu-

lated at the frequencyω = ωm of peak wave power are also
indicated for convenience (solid black and dotted black lines,
respectively). It has been established theoretically (Mourenas
and Ripoll, 2012; Mourenas et al., 2012b) that the con-
tributing resonances for quasi-parallel waves alone are such
that 1≤ |n| ≤ N s

max (see also Sect.3.1). For�pe/�c0 = 4.5–
7.5, one findsN s

max ∼ 1.5–2.3 and 5–8 forE = 100 keV and
1 MeV, respectively. It is plain to see in Figs.10 and 11
that, for low-order resonances such that 1≤ |n| ≤ N s

max, the
most important contribution to diffusion indeed comes from
the rangeθ < 45◦, while, for higher-order resonances such
that |n| > N s

max, diffusion is significant only forθg ≤ θ < θr
as expected from other analytical considerations (Mourenas
et al., 2012b). The proposed approximation (Mourenas et al.,
2012b) of the wave-normal angle distribution by two distri-
butions atθ < 45◦ and θ > max(45◦,θg) appears therefore
vindicated. Oscillations in the magnitude ofD can be seen
in this large-θ range for fixedn and increasing latitudeλ or
wave-normal angleθ . These oscillations are due to modu-
lations of the Bessel functionsJn(x) with x ∼ n tanθ tanα

as the resonant pitch-angle valueα grows withλ up to the
mirror point (where the latitude of mirror points isλb ∼√

2/(3tanα0) from adiabatic invariance (Mourenas et al.,
2012b)) or λ+, or asθ increases up toθr at a given latitude.
It is also worth noting in Figs.10and11the close agreement
between the localD calculated with the Appleton–Hartree
DR and with the simplified DR∗ for α0 = 45◦, demonstrat-
ing that the approximate roots are correct in the medium to
large pitch-angle range. As expected, the agreement between
the full DRD and the simplified one becomes better at higher
density for both values ofα0.

Now, let us focus on the large-θ domain. Significantly
contributing resonances are then expected to be such that
Nr/3 ≤ |n| ≤ 3Nr, with D(n) decreasing roughly like 1/n2

for |n| � Nr (Mourenas et al., 2012b). For the cases in
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612 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

Fig. 10. Local diffusion coefficientDαα for variousn, particle energies and equatorial pitch angles (see text for details). The black solid
curve shows the position of resonance cone angleθr. Black dashed curves show the position of the Gendrin angleθg. Here�pe/�c0 = 4.5.

Figs. 10 and 11, one findsNr ∼ 2 to 3 for E = 100 keV,
while for E = 1 MeV one gets for�pe/�c0 = 4.5(7.5) that
Nr ∼ 6 (10) at α0 = 45◦ andNr ∼ 9 (15) at α0 = 5◦. Larger
values ofD are found for|n| ∼ Nr as predicted, for example
in Fig. 10at 1 MeV forn ∼ −5 atα0 = 45◦ and forn ∼ −10
at α0 = 5◦. At higher |n|, a clear decrease can also be seen
for n = −10∼ −1.7Nr as compared ton = −5 for α0 = 45◦

in the same figure. In Figs.10 and 11, D goes down to
zero forn = −1 at 1 MeV, which corresponds to the range
|n| < Nr/3. For |n| < Nr, resonance occurs farther and far-
ther away from the equator (Mourenas et al., 2012b). The up-
per latitude of diffusion obtained in both figures corresponds
to the estimateλb for α0 > 20◦, reachingλ+

= 40◦ at smaller
pitch angles. Forα0 = 5◦ (a value typical of the rangeα0 <

10◦), D attains significant values only at high latitudes such
that λ > (2(ωm/[�c0sinα0])

2/27
− 2)1/2 (Mourenas et al.,

2012a). With the roots from the simplified dispersion rela-
tion, the maximum latitude whereD is important agrees well
with the analytical estimateλMM ∼ 35◦ (Mourenas et al.,
2012a). With the full Appleton–Hartree DR, however,D re-
mains high up toλ+

= 40◦. With the simplified DR∗, reso-
nance in the vicinity of the loss cone is therefore shifted to
lower latitudes, and this shift results in a decrease of diffu-

sion. However, this difference between the two DRs is only
important near the loss cone at the highest latitudes.

The above-discussed variation of individual bounce-
averaged diffusion coefficients〈Dn

〉B as a function ofn
for quasi-parallel or oblique chorus waves is emphasized in
Fig.12. The main result in Fig.12is the very large increase of
the number of contributing resonances with oblique whistler
waves (|n| ∼ 2Nr) as compared to nearly parallel waves
(|n| < N s

Max < Nr). It explains the higher diffusion rates pre-
sented in Fig.8 for oblique waves. In general, diffusion by
nearly parallel waves occurs only for|n| ≤ N s

Max, while dif-
fusion by oblique waves occurs principally forNr/3 ≤ |n| ≤

2Nr, with a progressive but steep decrease aboveNr as well
as belowNr/3 as expected (Mourenas et al., 2012b). Near the
loss-cone edge (forα0 < 10◦), however, more intense high-
order resonances become available for diffusion by oblique
waves when the density decreases with the full Appleton–
Hartree DR than from the simple estimate< 2Nr obtained
with the simplified DR. At such small equatorial pitch angles
α0 < π/2−1θ , only the first cyclotron resonance contributes
in the case of quasi-parallel waves (see the grey curve in the
left panels of Fig.12), while at larger pitch angles, all the
|n| < N s

Max resonances can then be important (see right pan-
els in Fig.12and discussion inMourenas and Ripoll, 2012).
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Fig. 11. Local diffusion coefficientDαα for variousn, particle energies and equatorial pitch angles (see text for details). The black solid
curve shows the position of resonance cone angleθr. Black dashed curves show the position of the Gendrin angleθg. Here�pe/�c0 = 7.5.

5.2 Electron lifetimes in the outer belt and scaling laws

The analytical lifetime estimates provided in Eq. (9) for
quasi-parallel waves and in Eq. (12) for oblique waves are
compared with the numerically calculated electron lifetimes
in Figs.13, 14 over a broad parameter range representative
of the outer belt (similar to Fig.8). Equation (9) for quasi-
parallel waves reproduces rather accurately the full numer-
ical lifetimes over the whole parameter range. The discrep-
ancy is most often smaller than a factor of 1.5. At the highest
energies (and at higher energy for smaller density), a sud-
den increase of the lifetimes can be noticed: it is due to the
reduction of the latitudinal range of cyclotron resonance, as
resonance occurs at higher and higher latitude correspond-
ing to�c(λ)/�c0 ≈ (pεm0)

2/3 (Mourenas and Ripoll, 2012;
Mourenas et al., 2012b). When cyclotron resonance is not
anymore available below the assumed latitude upper bound
λ+

= 40◦ of wave presence, only Landau resonance remains
and the corresponding lifetimes are much larger (Horne et al.,
2005). The energy threshold for this steep increase of lifetime
is rather accurately predicted by the analytical second-order
estimate in Eq. (5) of the latitude of resonance (within 15 %
of the actual value). From Eqs. (4)–(5), the increase of life-

times should occur at a nearly constant value ofpεm0, i.e., at
energies such thatp ∝ �c0/�pe for fixed chorus frequency,
which is exactly what is observed in Fig.13. This situation
corresponds to very large lifetimes near or above 100 days
for high-amplitude 100 pT waves (lifetimes would be even
larger for smaller amplitudes). Moreover, we have checked
that if we remove this assumed upper latitude cutoff atλ+,
analytical lifetimes remain correct even at higher energies.

As concerns oblique waves, the analytical lifetime es-
timate in Eq. (12) is also found to be in good agree-
ment with the full numerical calculations over most of
the considered parameter domain, i.e., forE (MeV)>
max(0.1,�3

c0/(�
2
peωm)). This corresponds to the whole den-

sity (or L shell) outer-belt domain forE ≥ 1 MeV and to
�pe/�c0 > 4 for E > 100 keV. In this domain, the discrep-
ancy between analytical estimates and the numerical life-
times remains smaller than a factor of 2. This is much smaller
than the uncertainties associated with outer-belt density mod-
els (Sheeley et al., 2001; Denton et al., 2006; Ozhogin et al.,
2012) and chorus intensity models (Meredith et al., 2001;
Shprits et al., 2007; Li et al., 2011; Artemyev et al., 2012b).
Therefore, the proposed analytical lifetimes could prove use-
ful for performing extensive numerical simulations of the
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614 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

radiation belts or to investigate in detail the sensibility of
global belt simulations to various parameters. As noted be-
fore, the simplified dispersion used in the analytical calcula-
tions is more accurate at higher density. The agreement of an-
alytical lifetimes with full numerical results is thus expected
to improve steadily as�pe/�c0 increases. It is exactly the
behavior that is observed in Figs.13and14. In the latter fig-
ure, lifetimes are seen to vary asymptotically likeτs ∝ �

14/9
pe

and τs+l ∝ �pe at high density, as predicted in Eqs. (14)–
(15). Finally, Fig. 15 shows that lifetimes (both analytical
and numerical) are weakly dependent on the mean lower-
band chorus frequency for typical valuesωm/�c0 = 0.15 to
0.4 (Horne et al., 2005; Shprits et al., 2007), especially at
high energy. Forωm/�c0 > 0.45, a significant portion of the
wave power lies inside the upper-band chorus range, not cov-
ered by the present analytical estimates. Actually, the ap-
proximation γω/�c � |n| used to simplify the argument
of the Bessel functions in Eq. (1) becomes less reliable for
ω = ωm+1ω > 0.5�c0. An application of our analytical es-
timates for upper-band chorus must therefore be ruled out. It
is probably the explanation for the steeper increase of life-
times in full numerical solutions than in the analytical es-
timates atωm/�c0 > 0.45 for oblique waves. Lifetimes are
generally one order of magnitude smaller with very oblique
waves included than with quasi-parallel waves alone. Such
a strong reduction of timescales might actually contribute to
explain the large and rapid trapped electron density dropouts
observed in the outer radiation belt during high geomagnetic
activity periods atL = 4 to 5 (Tu et al., 2010; Kim et al.,
2011).

5.3 Role of very oblique waves

Still, the preceding lifetimes were evaluated for constant
wave amplitudes. For more realistic calculations, the wave
power distributionB2

w(θ) as a function ofθ should also be
taken into account. It leads to a reduced amount of wave
power at large wave-normal angles as compared toθ < 45◦

(see Fig.2). Therefore, the effect of oblique waves in life-
times should be reduced. The bounce-averaged diffusion co-
efficient calculated by multiplying theθ distributiong(θ) by
a functionB2

w(θ) is displayed in Fig.16 for the same oblique
wave distributiong(θ) as before andE = 1 MeV (similar re-
sults are obtained forE = 0.1 to 5 MeV, not shown here).
The wave intensityB2

w at λ > 20◦ is divided (viag(θ)) by
factors 1.5, 2, 5, 20 and 100 forθ > 60◦ to demonstrate
this effect. The corresponding reduction of pitch-angle dif-
fusion occurs forα0 < ωm/�c0 (i.e.,α0 < 20◦) only, as pre-
dicted in Sect. 3. Moreover, when oblique wave amplitudes
at λ > 20◦ are reduced by less than a factor of 2, the diffu-
sion rate is almost unaffected. Actual lifetimes atL ∼ 4 to
5.5 can therefore be calculated without any reduction factor,
like in Fig.13, and they are well estimated by Eqs. (12)–(15).
At largerL > 5.5, they should be comprised between 30 and

Fig. 12.Individual bounce-averaged diffusion coefficient〈Dn
〉 as a

function ofn. The black solid and black dashed vertical lines show
the values ofN s

Max andNr, respectively. HereE = 1 MeV andα0 =

5◦, 45◦.

60 % of the quasi-parallel-wave lifetime (Eqs.9–14) (see the
end of Sect. 3).

5.4 Role of mean amplitudeBw variation with λ

The preceding comparisons have been achieved for a (mean)
wave intensity independent of latitude. It is important to
check if full numerical lifetimes obtained with a realistic
latitude-varying wave intensityB2

w(λ) (seeArtemyev et al.,
2012b) can also be recovered with the approximate analyti-
cal model by means of using only an average intensity. Fig-
ure17 shows the full numerical〈D〉B calculated for Kp< 3
for different values of energy and plasma density. We use the
same parameter range as before and a distributiong(X), with
Bw(θ) kept fixed in order to demonstrate each effect sepa-
rately. One can see that the approximation of a constant rms
amplitudeBw = 6 pT (corresponding to Fig.2) gives diffu-
sion rates very similar to the diffusion rates calculated with
a realistic distributionB2

w(λ). However, due to a significant
minimum in wave powerB2

w(λ) in the vicinity of the equa-
tor on the dayside in Cluster statistics (see, e.g.,Artemyev
et al., 2012b; Agapitov et al., 2012a), the realistic diffusion
rate is significantly smaller than〈D〉B calculated with a fixed
Bw at very large pitch anglesα0 > 80◦, especially for low
energyE ∼ 100 keV. The corresponding lifetimes are almost
identical to numerical lifetimes evaluated with a constantBw
for medium to high energy electrons (as forE = 1 MeV), but
sensibly increased at low energyE ∼ 100 keV (by a factor
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Fig. 13.Electron lifetimes for four values of the ratio�pe/�c0, for
quasi-parallel and oblique chorus waves. Full numerical solutions
as well as the corresponding analytical estimates in Eqs. (9) and
(12) are displayed.

of 5 to 10). Nonetheless, it is worth emphasizing that Cluster
statistics are probably slightly biased near the equator due to
poorer orbital coverage there (Agapitov et al., 2011). It could
easily lead to a factor of 2 underestimation of wave ampli-

Fig. 14. Electron lifetimes for two values of particle energy, for
quasi-parallel and oblique chorus waves. Full numerical solutions
as well as the corresponding analytical estimates in Eqs. (9) and
(12) are displayed as a function of�pe.

tudes there, so that actual lifetimes may be expected to re-
main within a factor of 2 of the ones obtained for a constant
Bw even at low energyE ∼ 100 keV (moreover, nightside
chorus is generally slightly more intense near the equator in
Cluster data than the dayside chorus considered here, which
dominates at higher latitudes; seeArtemyev et al., 2012b).
Since analytical lifetimes are slightly larger than full numer-
ical values for constantBw(λ) and low to medium energy
electrons, they should represent good estimates of the actual
lifetimes.

5.5 Comparison with a numerical parameterization of
lifetimes in the outer belt

The analytical estimate in Eq. (9) of electron lifetimes for
smallθ -waves is compared with parameterized lifetimes re-
cently obtained by fitting numerical calculations for an inter-
action with lower-band chorus waves dominant in the outer
radiation belt. We use the same initial conditions asShprits
et al.(2007) andGu et al.(2012): 100 pT storm-time chorus
waves, dayside plasma trough densityNe ∼ 100(3/L)4 cm−3

for L > 3 from Sheeley et al.(2001), andθ < π/4. More-
over, chorus waves are assumed here to be uniformly present
up to λ+

≈ 40◦, while in reality intensity peaks between
λ ≈ 15◦ andλ ≈ 30◦ on the dayside (Gu et al., 2012). While
upper-band chorus is also assumed to be present in the
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Fig. 15. Electron lifetimes for two values of ratio�pe/�c0, for
quasi-parallel (diamonds) and oblique (red crosses) chorus waves.
Full numerical solutions as well as the corresponding analytical es-
timates in Eqs. (9) and (12) are displayed as a function of mean
frequencyωm.

Fig. 16.Comparison of bounce-averaged pitch-angle diffusion co-
efficients for�pe/�c0 = 4.5 and 1 MeV electrons, obtained for dif-
ferent reduced levels of oblique chorus wave intensity atλ > 20◦.

Fig. 17. Diffusion coefficients calculated with realistic root-mean-
square wave amplitudesBw(λ) for L = 4 to 5 for Kp< 3 are shown
by red curves. Black and grey curves show〈D〉B calculated with
a constant rmsBw = 6 pT with a realisticg(θ) and with 〈θ〉 ∼ 0,
respectively.

numerical simulations byGu et al.(2012), its effect on life-
times consists mainly in the suppression of the deep gap in
diffusion between the Landau and first cyclotron resonance
peaks. In such a case, Landau resonance is unimportant in
lifetimes for moderately oblique waves atE > 100 keV, as
noted byGu et al.(2012). Upper-band chorus actually plays
the same role in the outer belt as lightning-generated waves in
the plasmasphere (which fill the trough in diffusion between
Landau and cyclotron peaks of hiss waves; seeMeredith
et al., 2007). For analytical estimates, only the cyclotron part
of the lifetime in Eq. (9) is therefore considered here.

The numerically parameterized lifetime (Gu et al., 2012)
(of 50 % accuracy) is fairly recovered by the analytical es-
timate in Eq. (9)–(14) in Fig. 18, in spite of our very rough
approximation of initial conditions. Moreover, the variations
with density andL shell given byGu et al.(2012) have also
been checked to be similar (or identical as concernsB0 de-
pendency) to the variations of our analytical lifetimes. Note
that part of the discrepancy may also originate in the assump-
tion made byGu et al.(2012) that lifetimes can be calculated
asτ ≈ 1/〈D〉(αLC). While the latter formula is generally ac-
curate in the considered cases, it can lead to some differences
with Eq. (7), which is used in our analytical and numerical
calculations and is thought to be more consistently accurate
(Albert and Shprits, 2009).
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Fig. 18.Comparison of analytical lifetime with parameterized life-
times obtained by fitting numerical simulations for�pe/�c0 = 4.5
at L = 4.5 as a function of energy on the dayside. The analytical
estimate in Eq. (9) is plotted (blue line for 100 pT average intensity
lower-band chorus withωm/�c0 ∼ 0.3) as well as the parameter-
ized lifetime (solid black circles) for moderately oblique waves.

5.6 Interaction with plasmaspheric hiss and lightning-
generated waves

Meredith et al.(2007) have shown that theGω distribution
of whistler waves in the slot region (L ∈ [2,3]) can be ap-
proximated by a sum of three Gaussians with different mean
values and variances. Here we compare diffusion coefficients
calculated with this approximation and with an approxima-
tion of Gω by a sum of two Gaussians (see description in
Sect.4.2). We consider ag(θ) distribution obtained from
Cluster data (see Eq.18) and the simplified approximation
from Meredith et al.(2007) with 〈θ〉 = 0 andXw = 0.36.
All calculations in Fig.19 are performed forL = 2.0. We
can conclude that approximatingGω by a sum of two Gaus-
sians gives almost the same diffusion coefficients as for three
Gaussians (Meredith et al., 2007). Moreover, including the
oblique waves observed by Cluster does not change〈D〉B
substantially (compare left and right columns in Fig.19).
Therefore, one can safely use a quasi-parallel approxima-
tion of wave propagation for the calculation of analytical
lifetimes. The effect of oblique waves is less important here
than in the case of chorus atL ∼ 4 (see Sect. 5), because the
portion of wave power inside the large-θ range (above the
Gendrin angle) is much smaller for lower-frequency hiss and
lightning-generated waves.

Analytical and full numerical lifetimes in the slot region
atL = 2 and 2.5 under quiet geomagnetic conditions are dis-
played in Fig.20 as a function of energy (with plasma/wave
parameters given in Sect.4.2; seeMeredith et al., 2007).
CRRES spectra were fitted by two Gaussians correspond-
ing respectively to hiss and lightning-generated waves (see
Sect. 4). Here we useg(θ) determined by Eq. (18) from
Cluster statistics. However, comparisons with numerical life-
times obtained byMeredith et al.(2007, 2009) show also a

Fig. 19. 〈D〉B for three values of electron energy (L = 2.0,
�pe/�c0 = 5.6). Approximation ofGω by three and two exponents
are used (see text for details). Left column show data obtained with
approximation ofg(θ) distribution in Eq. (18). Right column shows
data for parallel wave propagation.

good agreement. Analytical lifetimes reproduce rather pre-
cisely the full numerical solutions at medium to high energy
where both cyclotron and Landau resonance are present. At
lower energy where the Landau resonance contributes alone,
actual lifetimes are less accurately estimated by the analyti-
cal formulas (as explained in Appendix B). But this occurs
only for very long lifetimes (which are therefore practically
useless).

To sum up the results of our numerous comparisons with
numerical simulations, Table2 provides a brief overview of
the parameter ranges where analytical lifetime estimates can
be considered as good approximations of the full numerical
calculations in the plasmasphere as well as in the outer belt.
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Fig. 20. Analytical lifetimes atL = 2 and 2.5 given by Eq. (9)
(dashed blue curve) are compared with those obtained by the numer-
ical scheme: black diamonds show results obtained with a realistic
θ distribution and|n| ≤ 25 (Nr < 10). Electron energy varies be-
tween 100 keV and 5 MeV. Hiss and lightning-generated whistlers
are considered.

5.7 Global analytical lifetimes compared to recent mea-
surements atE ∼ 300 keV and 2 MeV

It is interesting to compare the analytical lifetime estimates
discussed above with recent statistics of lifetimes obtained
from SAC-C and DEMETER satellites forL < 5 (Benck
et al., 2010) and from the SCATHA/SC3 satellite atL > 5
(Su et al., 2012) for 300 keV electrons, and with SAM-
PEX lifetimes for E ∼ 2 MeV (Meredith et al., 2009; Tu
et al., 2010). To this aim, the root-mean-square amplitudes
of lower-band chorus measured by Cluster in the dayside
outer belt (L > 4) during moderate geomagnetic activity pe-
riods (Kp∼ 1.5 to 2) have been fitted by a formulaBw ∼

20pT· exp(−|L − 7|/2), showing a maximum of wave in-
tensity atL ∼ 7 and yielding the same values as in Fig.2
for L ∼ 4.5. For L > 4, the outer-belt density modelNe ∼

100(3/L)4 cm−3 from Sheeley et al.(2001) is used. To bet-
ter model a smooth transition between oblique chorus and
more quasi-parallel chorus fromL = 5 to 6, Eq. (15) is used
to estimate lifetimes forL = 4 to 5, while forL > 5 we use
a rough approximationτ ∼ τs+l + (τs/2)min(L−5,1) from
Eqs. (14)–(15). This way,τ ∼ τs/2 � τs+l for L > 5.5. In-
side the plasmasphere (L < 3.5), we consider the quiet-time
hiss and lightning-generated whistler spectra (and plasma
densities) supplied byMeredith et al.(2007) from CRRES
observations and lifetime estimates in Eqs. (9) and (14) for
weakly oblique waves.

The quiet-time lifetimes measured in the outer belt are rea-
sonably well recovered by the analytical estimates in Fig.21.
Analytical estimates of the lifetimes of 300 keV electrons re-
main within a factor of 2 of the actual lifetimes forL = 4 to 8
and roughly reproduce their overall decline toward higherL

shells (Su et al., 2012; Benck et al., 2010). For 2 MeV elec-
trons, we only took lifetimes estimated from optimum model
fitting to SAMPEX data during two pre-storm periods shown

Table 2.Parameter domains where analytical lifetime estimates are
a good approximation for the full numerical simulations.

Spatial region Validity range of analytical estimates

2 ≤ L < 3 (plasmasphere) 0.25< E (MeV)≤ 5
with only hiss and lightning-generated waves (100 Hz to 6 kHz)

4 ≤ L < 7 (outer belt) ωm/�c0 = 0.1 to 0.5
�pe/�c0 = 2 to 10

Oblique chorus max(0.1,�3
c0/(�

2
peωm)) < E (MeV)< 5

Quasi-parallel chorus 0.1 ≤ E (MeV)≤ 5

in Figs. 5 and 7 in the work byTu et al.(2010), corresponding
to low geomagnetic activity. Although experimental lifetimes
may then vary by a factor of 5 (Borovsky and Denton, 2009),
analytical lifetime estimates remain within a factor of 2 of
the average values inferred from model fitting to measure-
ments in these two cases. The increase of analytical lifetimes
with energy in the region 4< L < 6.6 is also in qualitative
agreement with observations (Su et al., 2012; Meredith et al.,
2007).

ForL = 2 to 3, Fig.22 shows that analytical lifetime esti-
mates derived for hiss and lightning-generated waves such
that 1θ = 30◦ and θ s

Max = 45◦ (Meredith et al., 2007) are
again in reasonable agreement with the measured lifetimes
for E = 2 MeV, although the fitting of the actual spectra that
is used (only two Gaussians; see Sect. 4.2) may be too rough
and the (quiet-time) wave intensities used slightly too small.
It is also clear from Eqs. (9) and (11) that small lifetimes at
L < 2.5 obtain only for small1θ < 45◦ at α0 > 70◦, in or-
der for the minimum of diffusion between the cyclotron peak
and the Landau peak to be not too deep. The presence of a
multiplicative factor tan1θ at the numerator of Eq. (11) in
analytical lifetimes, which comes from Eq. (8), actually ex-
plains the larger lifetimes obtained byMeredith et al.(2009)
in numerical simulations when considering high-frequency
waves with1θ > 45◦. Moreover, cyclotron resonance for
α0 > 70◦ occurs only atλ < 10◦ (from adiabatic invariance).
The small lifetimes measured atL = 2 to 3 therefore require
high-frequency whistlers such that1θ < 30◦ at λ < 10◦. It
is precisely what was observed onboard CRRES and Cluster
(see Fig. 3). In fact, lightning-induced whistlers do not need
to be guided atλ > 10◦ to yield small lifetimes; they must
only be quasi-parallel near the equator. For high energies
E > 1 MeV, the Landau termτLandau in Eq. (9) is actually
negligible atL > 2, and hiss and lightning-generated waves
seem to be sufficient to explain quiet-time electron losses
in the slot region (Meredith et al., 2007, 2009; Kim et al.,
2011). At lower energiesE < 1 MeV, it is not true anymore if
one considers only hiss and lightning-generated waves such
that f < 6 kHz as in CRRES spectra fromMeredith et al.
(2007). Nevertheless, VLF waves from ground transmitters
are also important atL < 3 (Abel and Thorne, 1998; Starks
et al., 2008; Breneman et al., 2011; Cohen et al., 2012), as
well as magnetosonic waves atL > 2 (Meredith et al., 2009).
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Fig. 21.Analytical lifetime estimates fromL = 4 to 8 (blue curves)
are compared with actual lifetimes measured by SAC-C, DEME-
TER, and SCATHA (Benck et al., 2010; Su et al., 2012) for 300 keV
electrons and with lifetimes obtained during two pre-storm periods
by model fitting to SAMPEX data (Tu et al., 2010) for 2 MeV elec-
trons. Lifetimes are estimated for lower-band chorus wave average
amplitudes obtained from Cluster for moderate geomagnetic activ-
ity (Kp ∼ 2).

Both these kinds of waves play essentially the same role as
lightning-generated whistler waves in filling the gap in dif-
fusion rate between the Landau and cyclotron peaks cor-
responding to hiss waves, but at higher pitch angles (near
α0 = 90◦) or in the same range of pitch angles at smaller
energy. Although the exact level of these waves is not well
known (highly variable), we simply assume here that it is
sufficient to getτLandau� τs in Eq. (9). This corresponds
to additional wave amplitudes around 3–5 pT typically. In
Fig. 22, analytical lifetime estimates forE = 300 keV are
therefore plotted assuming that this termτLandau is negligi-
ble in Eq. (9). With this assumption, the increase of mea-
sured lifetimes as energy decreases forL < 2.6 can be un-
derstood from analytical estimates. The decrease withE

of the maximum equatorial pitch angle (cosαUC,1 ∝ 1/p)
where cyclotron resonance can occur for the low-frequency
part of the spectrum (hiss waves) first leads to an increase
of the important1τi term (from lightning-generated waves)
in Eqs. (11) and (9), because(1− sinαUC,1) increases faster
than 1/p. At still smaller energies (300 keV), cyclotron reso-
nance is not available anymore for hiss waves: the cyclotron
term in Eq. (9) from hiss waves is replaced by the same term
from higher-frequency and much smaller intensity lightning-
generated waves, leading to an even greater increase of life-
times.

6 Conclusions

In this paper, analytical estimates of energetic electron life-
times in the radiation belts have been compared extensively
with full numerical simulations. We consider low-frequency
(�ci � ω < �c/2, ω�c � �2

pe) nearly parallel as well as
oblique whistler waves, such as those observed in the inner

Fig. 22.Analytical lifetime estimates from Eq. (9) for L = 2 to 3 are
compared with actual lifetimes measured by SAC-C and DEME-
TER (Benck et al., 2010) for 300 keV electrons and by SAMPEX
(Meredith et al., 2007) for 2 MeV electrons. Lifetimes are esti-
mated for interaction with quiet-time hiss and lightning-generated
whistlers, with an additional contribution from higher-frequency
whistler waves or magnetosonic waves required at low energy (see
text). Blue color is for 2 MeV and red color for 300 keV, with
squares indicating measured values. The dashed line shows the life-
times from Eq. (14) alone.

belt by CRRES (Meredith et al., 2007) and in the outer belt
by Cluster and THEMIS (Agapitov et al., 2012b; Li et al.,
2011). The considered wave-normal distribution, frequency
spectra, and wave power latitudinal distribution have been
obtained from statistics of various satellite measurements.
The analytical model relies mainly on the possibility of rep-
resenting the spectra as a sum of relatively narrow Gaus-
sians such that1ω ∼ ωm/2, on the approximation of Bessel
functions by their series expansions around their first max-
ima, and on the use of a simplified dispersion relation (which
should remain valid for wave-normal angles not too close to
the resonance cone angle at very high latitudes). The refined
analytical model described here captures many features of
the full numerical solution in a wide parameter range. The
main results of the present study are summarized below:

1. Inside the plasmasphere, the analytical model repro-
duces accurately numerical lifetime variations over a
few decades as a function of energy (0.1 < E (MeV)≤
5) andL ∼ 2 to 3 (corresponding to�pe/�c0 ∼ 5 to
8), when considering a realistic spectrum composed of
hiss (ω/�c0 ∼ 0.005 to 0.02) and lightning-generated
(ω/�c0 ∼ 0.01 to 0.1) whistler-mode waves of realistic
latitude-varying obliqueness (obtained from Cluster and
CRRES statistics during relatively quiet periods).

2. In the outer belt atL ∼ 4 to 5.5, the analytical model
recovers rather accurately lifetime variations over a few
decades as a function of energy (E = 0.1 to 5 MeV),
density (�pe/�c0 ∼ 2 to 10), and mean frequency
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ω/�c0 = 0.1 to 0.5, when considering realistic oblique
chorus waves obtained from Cluster statistics during
moderately disturbed periods.

3. When considering quasi-parallel chorus waves corre-
sponding to quiet-time Cluster statistics atL ∼ 5.5 to
7, the analytical lifetime estimates are very accurate in
general in the same ranges of energy, density, and fre-
quency as above.

4. Numerical as well as analytical calculations show that
timescales are strongly reduced atL = 4 to 5.5 when
chorus waves reach large wave-normal angles, between
the Gendrin and resonance angles. Such very oblique
whistler waves are often present at moderate to high lat-
itudes, where they represent from 10 % to 50 % of re-
ported chorus occurrences (Burton and Holzer, 1974;
Hayakawa et al., 1990; Santoĺık et al., 2009; Agapitov
et al., 2012b; Haque et al., 2010, 2011). The damping
of oblique chorus waves by suprathermals is much more
efficient on the nightside and atL > 5.5 than atL < 5.5
on the dayside (Chen et al., 2013), which probably ex-
plains why their intensity remains similar to the inten-
sity of quasi-parallel waves in the latter case for Kp< 3
in the Cluster statistics presented here.

5. At L = 4 to 7, lifetime estimates obtained for average
chorus intensities and wave-normal distributions are in
reasonable agreement with lifetimes measured during
relatively quiet periods, for both 300 keV and 2 MeV
electrons.

6. With very oblique chorus waves, the strong diffusion
regime can be reached easily in the dayside outer belt
at times of high geomagnetic activity. This could corre-
spond to some of the very rapid drop-outs in trapped
electron density atL = 4 to 5.5 observed by various
satellites during disturbed periods.

7. Inside the plasmasphere (2< L < 3), the small life-
times measured by satellites require high-frequency
whistler waves (lightning-induced and VLF) that have
to remain very moderately oblique at latitudes within
10◦ of the equator, as actually observed by Cluster.
Measured lifetimes are in good agreement with ana-
lytical estimates for 2 MeV electrons when considering
only hiss and lightning-generated waves. For 300 keV
electrons atL ≤ 2.5, higher-frequency VLF waves must
be added to hiss and lightning-generated waves to re-
cover the observed lifetimes.

Space weather forecasting and nowcasting capabilities are
very much in demand today to help safeguard important
satellite assets from strong particle flux hazards linked to
solar activity. In this context, the proposed analytical esti-
mates may prove useful for quickly evaluating the sensi-
tivity of global radiation belt codes results to insufficiently

known wave and plasma parameters, for thorough investiga-
tions of different processes, as well as more simply to speed
up the calculations. Although analytical estimates cannot be
expected to be as accurate as full numerical calculations,
analytical lifetimes have been demonstrated here to remain
within a factor of 2 of the exact solutions over a very wide
parameter range. Such a discrepancy is much smaller than
the uncertainties associated with wave and plasma models.
Since the analytical lifetime model provides estimates as a
function of all the different wave and plasma parameters, it
can be used with any plasma density profile and with any
average wave intensity distribution (as a function of MLT,
L, and geomagnetic conditions). Parameterized wave ampli-
tudes inferred from CRRES observations as a function of ge-
omagnetic activity (Kp) have already been supplied bySh-
prits et al.(2007) in their Eq. (6) for dayside chorus. De-
pending on the actual MLT repartition of chorus waves, the
resulting lifetimes should be multiplied in addition by a fac-
tor of 2 to 4. Inside the plasmasphere, typical wave spectra
and intensities can be found in the work byMeredith et al.
(2007) for L = 2 to 3.

The proposed estimates could also help to fully take ad-
vantage of future space weather satellite measurements, al-
lowing immediate evaluation of diffusion coefficients and
lifetimes directly inside global radiation belt forecasting
codes as a function of time-varying (with geomagnetic ac-
tivity) wave spectra and wave-normal distributions as soon
as they become available. Nevertheless, magnetosonic and
EMIC waves may also play an important role in the dynamics
of the radiation belts (Summers et al., 2007; Li et al., 2007;
Meredith et al., 2009). It would be interesting to derive simi-
lar analytical models for these waves in a future work.

Appendix A

On the evaluation of lifetimes from diffusion coefficients

Albert and Shprits(2009) have derived a simplified and very
useful formula for calculating the lifetime of electrons via
the simple integration of the inverse of the bounce-averaged
pitch-angle diffusion coefficient multiplied by tanα0. How-
ever, for typical cases of interest, their expression in Eq. (11)
is only valid to within a factor of 2, since their own fully nu-
merical lifetimes are generally roughly 2 times smaller when
the minimum of 〈D〉B tanα0 occurs at small to moderate
pitch angles. Hence the multiplying factorσ ∼ 1/2 is used
in Mourenas et al.(2012b) as well as here in Eqs. (7)–(12). It
is worth noting that, for oblique lower-band chorus–electron
interaction, a simplified form of the bounce-averaged cy-
clotron diffusion coefficient can be derived, such that〈D〉B ∼

〈D(π/4)〉B(sin(π/4)/sin(α0))
P , with P = 1 to 2 from ana-

lytical calculations inMourenas et al.(2012b,a). In this case,
it is actually possible to estimate rather accurately the life-
time as the inverse of the lowest eigenvalue of the diffusion
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operator (see details inSchulz, 1991). With the new vari-
abley = sinα0, one gets〈Dzz〉B = (1−y2)(yT (y))2

〈D〉B ∝

(1−y2) = z (compare with Eqs. (190) to (197) fromSchulz,
1991). One then finds the following (analytically forP = 2
as well as numerically forP = 1) from Eqs. (194) and (197)
in the work bySchulz(1991):

τ ∼

 1∫
sinαMin

4 dy/(3π)√
(1− y2) 〈D〉B


2

∼
32 cos2αMin

9π2 〈D〉B (π/4)
,

where cosαMin ∼ 0.96 for L > 3.5 for a lower bound of in-
tegrationαMin ≤ π/12 (Mourenas et al., 2012b) and 3π/4 is
the first zero of the Bessel functionJ0. From Eqs. (3), (15),
and (16) fromMourenas et al.(2012b), one obtains a new es-
timate of the multiplying factorσ ≈ 64cos2(π/12)/(9π2) ≈

2/3. Nevertheless, exact numerical calculation of the life-
times yields generally slightly smaller lifetimes than the in-
verse of the lowest eigenvalue, as can be seen in Fig. 1 in
the work byAlbert and Shprits(2009) for a model diffu-
sion coefficient corresponding precisely to such an eigen-
function decomposition. In fact, one may expect the actual
lifetime to be slightly smaller because of the effect of the
other, higher eigenvalues. The numerical lifetime plotted in
Fig. 1 in the work byAlbert and Shprits(2009) is actually
0.8 times smaller than the theoretical one, yielding finally
σ ≈ 5/9, which is very close to our assumed valueσ ≈ 1/2
for the cyclotron terms related to oblique chorus waves. Turn-
ing now to nearly parallel hiss waves near the loss cone at
L < 3.5, one gets nowD ∝ D(αLC)/cos2α0 from Eq. (33)
in the work byMourenas and Ripoll(2012), leading to a mul-
tiplying factorσ ≈ 0.8(8/π2) ≈ 1/2 again for the cyclotron
part.

Appendix B

Rough evaluation of high-latitude Landau resonance ef-
fects at lowL

It is worth noting that the analytical model of Landau reso-
nance lifetime provided in Eq. (9) with Fhl = 1 (equivalent
to Eq. 36 in the work byMourenas and Ripoll, 2012) is cor-
rect only when Landau resonance occurs not too far from
the equator. Since the resonant value of pitch angleαR from
the combination of Eq. (3) and simplified dispersion relation
with n = 0 is given by tanαR ≈ sinα0�c0pεm0/(γωm) (see
Mourenas et al., 2012b), resonance occurs off the equator
(sinαR > sinα0) when cosα0 > γωm/(�c0pεm0). Further-
more, taking into account the inequalitiesp < γ andωm �

�c0 for hiss, lightning-generated waves, and lower-band
chorus, together with the resonance condition, implies that
tanαR � sinα0 and therefore sinαR ∼ 1 in general. Now,
D(n = 0,λ) varies roughly like(�c/�c0)

1/2 for pεm0 >

1.84/ tan1θ and like (�c0/�c)
4 for pεm0 < 1.84/ tan1θ

(where one must take also1θ ≤ 45◦ for these formulas to
be valid; seeMourenas and Ripoll, 2012). Consequently, a
significant effect from off-equatorial resonance can occur
only for small values ofpεm0 < 1.84 (i.e., small energy, den-
sity and frequency). The magnitude of〈D〉(n = 0) will be
noticeably modified when�c/�c0 ≥ 1.5 to 2. Using adia-
batic invariance with sinαR ∼ 1, this last condition is equiv-
alent toα0 < 45–55◦. However, if cyclotron resonance is ef-
fective enough (with a significant diffusion rate such that
D(n < 0) > D(n = 0)) for α0 > 45◦

− 55◦, there will be no
consequence on the lifetime estimate. This means that life-
time estimates in Eqs. (9)–(12) remain roughly correct as
long as max(pεm0, i) > 21/4, in order for cyclotron resonance
to be important enough at moderate pitch angles. In the oppo-
site limit, Eq. (10) for the Landau part withFhl = 1 leads to
very long lifetimes (typically> 100 days inside the plasmas-
phere), which can nevertheless be sometimes strongly under-
estimated. Equations (34)–(36) in the work byMourenas and
Ripoll (2012) have indeed been derived under the assump-
tion that the Landau resonance part ofD makes a signifi-
cant contribution in lifetimes only at not too high latitudes.
When this assumption is violated at moderateα0 and low
L inside the plasmasphere, one must integrate in the life-
time Eq. (7) a term 1/(〈D〉B tanα0) ∝ cos4α0/sin8α0 (in-
stead of cos4α0) coming from the last term of Eq. (25) in
the work byMourenas and Ripoll(2012) (wheregs ∼ 0 and
�c(λmin)/�c0 ≈ 1/sin2α0). This leads to a lifetime multi-
plicative factor≈ 1/(10sin7αMax

0 ) varying between 10 and
5000 for a lower bound of integrationαMax

0 = αLC ∼ 9◦

to 30◦ at L ∼ 1.5 to 3.5. But radiation belt simulations
are rarely run over more than one-year duration (Subbotin
et al., 2011). Thus, using an approximate multiplicative fac-
tor Fhl ≈ max(102(π/4−αMax

0 ), 1) (with 2 the Heaviside
function, such that2(x) = 0 for x < 0 and 2 = 1 other-
wise) should be sufficient in general for calculations over
less than one year. Moreover, higher-frequency waves (such
as lightning-generated whistlers or VLF; seeMeredith et al.,
2009) should most often prevent lifetimes from becoming
too large, in agreement with recent satellite measurements
of electron lifetimes (see Sect. 5.7).
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