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Abstract 26 

The unique achondrite NWA 7325 is an unusual olivine gabbro composed chiefly of calcic 27 

plagioclase (An85-93), diopsidic pyroxene (En50.1-54.0 Wo44.8-49.3 Fs0.6-1.3), and forsteritic olivine (Fo97). It 28 

is Al and Mg-rich and Fe and Na-poor and displays very low concentrations of incompatible trace 29 

elements, much below 0.3 x CI abundances for many of them. It is also characterized by huge Eu and 30 

Sr anomalies (Eu/Eu*=65, Srn/Cen=240). Although the O isotopic composition of NWA 7325 and 31 

some ureilites (those with olivine cores in the range Fo75 to Fo88) are similar, a genetic relationship 32 

between them is unlikely due to the Fe-poor composition of NWA 7325. It is almost certainly derived 33 

from a distinct planetesimal, not previously sampled by other achondrites. The low Na/Al, Ga/Al, 34 

Zn/Al ratios as well as the low K, Rb and Cs shown by NWA 7325, suggest a volatile-depleted parent 35 

body. This unique gabbro is demonstrably a cumulate, but the composition of its parental melt cannot 36 

be precisely assessed. However, the liquid from which NWA 7325 crystallized would have been very 37 

poor in incompatible trace elements (Yb in the range of 0.25 to 1.5 x CI abundance) with a very large 38 

positive Eu anomaly. Such a melt cannot be the product of the early magmatic activity on a small 39 

parent body. Instead, we propose that the parental melt to NWA 7325 formed as a consequence of the 40 

total melting of an ancient gabbroic lithology, possibly upon impact, in agreement with the systematics 41 

of 
26

Al-
26

Mg. Based on recent dating, the crustal material that was parental to NWA 7325 must have 42 

been older than 4562.8 Ma, and formed possibly ≈4566 Ma ago. If this scenario is correct, NWA 7325 43 

provides evidence of one of the earliest crusts on a differentiated body so far studied. 44 

 45 

 46 

 47 

 48 

 49 



1. Introduction 50 

 Achondrites are relatively rare extraterrestrial samples, which comprise only about 4 % of all 51 

the recovered meteorites (Meteoritical Bulletin database). Most of them originated from small 52 

differentiated bodies, while others were ejected from Mars, or the Moon, and so complement the 53 

sampling undertaken during the Apollo and Luna programs. As a result, achondrites have a high 54 

scientific value and, therefore, potentially can provide a unique insight into the processes that operated 55 

on a variety of differentiated bodies in the early solar system. 56 

 The number of parent bodies sampled by achondrites is the subject of ongoing debate. About 57 

95 % of these meteorites originated from only two bodies: 4-Vesta (the howardites, eucrites and 58 

diogenites, ca. 1500 meteorites, 75 % of all achondrites) and the now-disrupted ureilite parent body 59 

(ca. 400 meteorites, 20 % of all achondrites). Mars, the Moon and a handful of smaller bodies are the 60 

sources of the remaining achondrites. Some of them form distinct groups based on their petrographic 61 

and isotopic features, such as the aubrites, the angrites or the brachinites (see recent reviews by Keil, 62 

2010, 2012, 2014). Others, as exemplified by Northwest Africa 011 (NWA 011, Yamaguchi et al., 63 

2002), are ungrouped and consequently unique samples of unidentified differentiated bodies. While it 64 

is more likely that these unique achondrites originated from one of the many planetesimals that 65 

differentiated during the first few million years of solar system history, the possibility that we have in 66 

our collections an achondrite from Mercury (e.g., Love and Keil, 1995) cannot be wholly discounted. 67 

Such a rock would not only provide essential constraints for models of the differentiation of this 68 

planet, but for the chemical structure of the inner solar system too. 69 

 The recent discovery of Northwest Africa 7325 (NWA 7325) and its pairing (NWA 8014 and 70 

8486) was stimulating. Thirty seven fragments totaling ca. 600 g, of an unusual achondrite displaying 71 

a distinctive green fusion crust (Fig. 1a), were collected near Bir el Abbas, Morocco. Irving et al. 72 

(2013) were the first to study this meteorite and to show that it consists of a unique gabbroic lithology.  73 

They compared its major element composition to that of Mercury‟s surface, as determined by the 74 

MESSENGER spacecraft (Weider et al., 2012), and suggested that this meteorite could have 75 



originated from this planet. Subsequently, this rock has been extensively studied by different teams 76 

using a variety of techniques (Irving et al., 2013; Amelin et al., 2013; Bischoff et al., 2013; Sanborn et 77 

al., 2013; Dunlap et al., 2014; El Goresy et al., 2014; Goodrich et al., 2014; Jabeen et al., 2014; Kita et 78 

al., 2014; Sutton et al., 2014; Weber et al., 2014, 2015; Archer et al., 2015). Although a mercurian 79 

origin is not currently favored by most of these studies, this rock remains fascinating and scientifically 80 

important by virtue of its distinct petrographic and geochemical features. Here we report new 81 

chemical, mineralogical and stable isotope (oxygen, carbon and nitrogen) results that provide 82 

important evidence relevant to the origin of this unique meteorite. 83 

 84 

2. Samples and analytical techniques 85 

Two samples of NWA 7325 were available for bulk rock chemical analysis: a clean chip of the 86 

interior of the meteorite (600 mg, fragment of the same slice used for the thick section), and a sample 87 

of cutting dust recovered using distilled water during cutting of the stones by S. Ralew, the owner of 88 

the meteorite. In addition, two low-Ti gabbroic pebbles from Vaca Muerta were selected for 89 

comparison, from the mesosiderite samples studied previously by Greenwood et al. (2006). 90 

Petrographic observations and quantitative chemical analyses of the main phases of the NWA 7325 91 

achondrite were made on a polished thick section (1 cm
2
) prepared from a slice obtained from S. 92 

Ralew. Cameca SX100 electron microprobe analyses at Service Commun “Microsonde Ouest” 93 

(Plouzané) were obtained at 15 kV accelerating voltage with a probe current of 12 nA. Minerals 94 

[wollastonite (Si, Ca), orthoclase (K), albite (Na), apatite (P)], oxide [MnTiO3 (Mn, Ti)], Al2O3 (Al), 95 

Fe2O3 (Fe), Cr2O3 (Cr)], and one sulfide [FeS2 (S)] were used for calibration. The raw data were 96 

corrected with the „PAP‟ software (Pouchou and Pichoir, 1985). 97 

 98 

The Vaca Muerta samples and the NWA 7325 chip were totally powdered using a boron 99 

carbide pestle and mortar. Major and trace element concentrations were determined respectively by 100 

ICP-AES (inductively coupled plasma-atomic emission spectrometry) and ICP-MS (inductively 101 



coupled plasma-mass spectrometry) at Université de Brest (IUEM, Plouzané) using the procedures 102 

described by Barrat et al. (2012, 2014). The accuracy of major and trace element concentrations is 103 

better than 5% (probably better than 3% for all the REEs) based on various standard and sample 104 

duplicates. 105 

Oxygen isotope analyses were carried out at the Open University using an infrared laser 106 

fluorination system following the methods and procedures of Miller et al. (1999). Analyses were 107 

undertaken using a powder prepared from the 600 mg internal sample of NWA 7325. Oxygen was 108 

released from 2 mg aliquots by heating in the presence of BrF5. After fluorination, the released oxygen 109 

gas was purified by passing it through two cryogenic nitrogen traps and over a bed of heated KBr. 110 

Oxygen gas was analysed using a MAT 253 dual inlet mass spectrometer. Interference at m/z=33 by 111 

the NF3 fragment ion NF
+
 was monitored by performing scans for NF2

+
 on all samples run in this 112 

study. In all cases NF2 was either negligible or absent.  Oxygen isotopic analyses are reported in 113 

standard δ notation, where 
18

O has been calculated relative to VSMOW (Vienna Standard Mean 114 

Ocean Water) as 
18

O = [(
18

O /
16

Osample)/(
18

O /
16

OVSMOW)-1] x 1000 (‰) and similarly for 
17

O using 115 

the 
17

O /
16

O ratio. 
17

O, which represents the deviation from the terrestrial fractionation line, has been 116 

calculated using a linearized format (Miller, 2002): 117 


17

O = 1000 ln(1+ 17
O/1000) – λ 1000 ln(1+ 18

O/1000) 118 

where λ = 0.5247, which was determined using 47 terrestrial whole-rock and mineral separate samples 119 

(Miller et al., 1999; Miller, 2002). Recent levels of precision obtained on the Open University system, 120 

as demonstrated by 39 analyses of our internal obsidian standard, were as follows: ±0.05‰ for δ
17

O; 121 

±0.09‰ for δ
18

O; ±0.02‰ for 
17

O (2). 122 

Carbon and nitrogen concentrations and isotopic analyses were obtained by the stepped 123 

combustion technique using the multi-element analyzer system “Finesse” (Verchovsky et al., 1998, 124 

2003). An aliquot (6.134 mg) of the internal sample of NWA 7325 was heated from 200 to 1400
o
C 125 

with 100
o
 increments. The released N and C in the form of N2 and CO2 were analyzed simultaneously 126 



from the same aliquot. The isotope results are expressed in standard  notation normalized to air for N 127 

and to PDB for C.  128 

 129 

3. Results and discussion 130 

3.1. Petrography 131 

 NWA 7325 has been extensively described in a series of abstracts (Irving et al., 2013; Bischoff 132 

et al., 2013; Goodrich et al., 2014; El Goresy et al., 2014). Our observations are in agreement with 133 

these earlier studies, and are summarized here. NWA 7325 is a fine to medium grained gabbroic rock 134 

with a grain size typically in the range of 0.5-1 mm (Fig. 1). It is unbrecciated, and consists of  ~25-30 135 

vol% diopsidic pyroxenes, ~15 vol% olivine grains surrounded or poikilitically enclosed by 136 

plagioclase (~55-60 vol%), with accessory iron sulfides (1 vol%), and sparse ferrochromite, metal 137 

grains and rare eskolaite associated with iron sulfide. El Goresy et al. (2014) report the occurrence of 138 

Ca sulfates that they interpret as totally weathered grains of oldhamite.  However, like the vast 139 

majority of Saharan finds, NWA 7325 contains cracks filled with secondary carbonates. Rather than 140 

being formed by the terrestrial alteration of oldhamite, we believe that the Ca sulfates in NWA 7325 141 

are more likely to represent normal hot desert weathering products. 142 

 Major element compositions of the main phases are reported in Table 1. Coarse-grained 143 

plagioclase is calcic (An85-93), and contains traces of MgO (=0.13-0.45 wt%). Ca-pyroxene is 144 

homogeneous and extremely magnesian (En50.1-54.0 Wo44.8-49.3 Fs0.6-1.3, Mg/(Fe+Mg)= 0.975-0.983, 145 

n=58). Olivine (Fo97-97.3, n=51) is in equilibrium with pyroxene (e.g., Perkins and Vielzeuf, 1992). Fe-146 

sulfide is Cr-rich (Cr = 2.2-6 wt%) and contains lamellas of daubréelite. 147 

Irving et al. (2013) noted that the plagioclase in NWA 7325 is finely mottled, and much less 148 

birefringent than normal. It contains clusters of tiny grains of troilite and metal. They suggested that 149 

the plagioclase has been totally melted, possibly as a result of shock, and reacted locally with olivine 150 

to generate secondary diopside. This view has been challenged by Bischoff et al. (2013). They 151 



observed plagioclase-rich veins and occasionally SiO2-normative mesostases around mafic minerals 152 

and within Ca-pyroxenes, which could have been formed upon shock. However, they pointed out that 153 

olivine is only very weakly shocked (stage S2), suggesting that the shock pressure suffered by NWA 154 

7325 was certainly not strong enough to melt it extensively. 155 

 156 

3.2. Geochemistry 157 

3.2.1. Major and trace element. 158 

 The major element composition of the cutting dust (Table 2) is very similar to the results 159 

obtained at University of Alberta on a distinct sample of cutting dust (Irving et al., 2013). NWA 7325 160 

is a basic rock, rich in MgO and Al2O3, and poor in Fe, Mn and alkalis (Na2O = 0.6 wt%). Using the 161 

average compositions of the main phases, it corresponds to an assemblage of about 55 wt% 162 

plagioclase, 32 wt% pyroxene, 10 wt% olivine and traces of sulfides and secondary calcite, in 163 

agreement with phase proportions estimated from the polished sections (see above). 164 

 Despite the similarity of their major element compositions, the trace element abundances of 165 

the two cutting dust samples (this study and Irving et al., 2013) are different, and display some 166 

significant discrepancies (Table 3 and Fig. 2 and 3). Both samples are poor in incompatible lithophile 167 

elements (REEs except Eu < 2 x CI), light REE enriched (Lan/Smn = 1.95 – 2.90) with striking positive 168 

Eu anomalies (Eu/Eu* = 16.1 – 35.2), but our sample contains respectively about 2x more light REEs, 169 

and half the Th content reported by Irving et al. (2013). Furthermore, the Irving et al. (2013) sample 170 

displays markedly high Nb and Hf abundances compared to our analysis. A number of possible 171 

explanations might account for these differences: i) contamination during the cutting of the meteorite 172 

by handling and by the saw blade, ii) different proportions of soil materials which were adhering to the 173 

surface of the stones (see Fig. 1a), and, iii) different contributions from secondary phases (Fe-oxides, 174 

carbonates and sulfates) along surfaces crossed by the saw blade. The low abundance of incompatible 175 

lithophile elements (e.g., the light REEs, Th, U, Rb and Cs) makes them extremely sensitive to 176 



terrestrial contamination, which could have taken place subsequent to its landing on the desert soil, 177 

and/or by handling during the recovery and sample preparation. The soil of the strewnfield has not 178 

been analyzed, but its Th and REE abundances are probably similar to those of the upper continental 179 

crust average. Such a soil [as illustrated by the soil of Tatahouine (Barrat et al., 1999)] can contain ca. 180 

100 times more La and Th than the cutting dust. A slight contamination by soil could be undetectable 181 

with major elements, but have a huge impact on the abundances of many trace elements.  182 

 It is clear from the preceding section that the trace element composition of NWA 7325 should 183 

be determined using material from clean interior chips. We prepared one such fraction using a 184 

fragment weighing 600 mg. Its major element abundances deviate just slightly from the cutting dust 185 

analyses, except for Fe which is three time less abundant in the chip than in the cutting dust. 186 

Furthermore, the cutting dust contains much more Ni, Cu, Zn W and Pb than the interior chips, which 187 

most likely result from contamination by the saw blade. We don‟t know exactly the composition of the 188 

saw blade which was used here, but saw blades typically have diamond grit in them that are 189 

electroplated to the steel blade with a Ni, Cu or Zn matrix. Therefore, most major element abundances 190 

determined using cutting dust would appear to be representative of the whole rock, contrary to the 191 

trace element contents which are not reliable and should be rejected (Tables 2 and 3). 192 

Despite our effort to select a fragment that was as fresh as possible, terrestrial weathering 193 

effects cannot be totally avoided. The mineralogical and chemical effects of hot desert weathering are 194 

now relatively well understood, and have been previously documented in a  range of meteorite types  195 

(e.g., Barrat et al., 1999; 2004, 2010; Stelzner et al., 1999; Crozaz et al., 2003). Our interior chip is no 196 

exception. As shown in Figures 2 and 3, it displays a high Ba abundance, a high U/Th ratio (= 1.1), 197 

and a positive Ce anomaly (Ce/Ce* = 1.25). Such features have been repeatedly observed in weathered 198 

Saharan finds, and it is not necessary to repeat here a discussion concerning their origin. Although 199 

Saharan finds display often high Sr abundances, the positive Sr anomaly exhibited by NWA 7325 is 200 

probably, like the Eu anomaly, a primary feature attributable to plagioclase. 201 

 202 



NWA 7325 contains low but significant amounts of Ni (= 57 µg/g) and Co (=23 µg/g), 203 

probably hosted by minute grains of metal (Table 3). It is poor in Zn, Cu and Pb. Its low lithophile 204 

element abundances are well illustrated by the CI- normalized trace element patterns (Fig. 2 and 3). 205 

Except for Sc, Ba, U, Sr and Eu, all the lithophile trace elements display concentration < 0.3 x CI. 206 

Furthermore, the trace element patterns exhibit Cs, Rb, Zr, and Hf depletions. Contrary to the results 207 

for the cutting dust, the interior fragment is light-REE depleted (Lan/Smn = 0.70), and displays large 208 

positive Eu and Sr anomalies (Eu/Eu*= 65, Srn/Cen= 240).  209 

 210 

3.2.2. Oxygen isotopes. 211 

The bulk oxygen isotopic composition of NWA 7325 was determined in duplicate using the powder 212 

made with the interior fragment. The average of the two analyses was: δ
17

O =3.33 ± 0.09 ‰, δ
18

O = 213 

8.10 ± 0.18 ‰, Δ
17

O = −0.91 ± 0.01 ‰ (errors ± 1 Our new analysis of NWA 7325 plots on the 214 

CCAM line in Fig. 4, within the ureilite field. Three individual analyses of NWA 7325 by Irving et al. 215 

(2013) have somewhat divergent compositions, with one plotting close to the result reported here. 216 

Jabeen et al. (2014) give oxygen isotope analyses for plagioclase and pyroxene mineral separates from 217 

NWA 7325 that are displaced from one another by approximately 2 ‰ along a mass fractionation line 218 

(Fig. 4). The mean plagioclase analysis (n=4) of Jabeen et al. (2014) plots close to our bulk value for 219 

NWA 7325. However, in view of the significant proportion of pyroxene in NWA 7325 (20-30 %, 220 

section 3.1) the analyses of Jabeen suggest that, had they determined a bulk composition for the 221 

meteorite, this would probably have been shifted to somewhat lower δ
18

O values compared to our 222 

analysis.  223 

 224 

3.2.3. Carbon and nitrogen isotopes. 225 

The results for C and N are presented in table 4 and Figure. 5. Carbon displays a bimodal 226 

release with peaks in the range 200-400°C and 500-700°C. The low temperature peak is due to the 227 



terrestrial contamination associated with both weathering during the residence of the meteorite on the 228 

Earth‟s surface and laboratory handling and has a characteristic carbon isotopic composition (
13

C= -229 

27 to -29‰). The second peak seems to represent a terrestrial carbonate as indicated both by the 230 

release temperature corresponding to that for decomposition of CaCO3 and the isotopic composition 231 

with 
13

C = -1 to 3‰. This interpretation is consistent with the petrographic data (see section 3.1). 232 

Most of nitrogen is released at low T (200-700
°
C) and appears to predominantly reflect 233 

terrestrial contamination. Isotopically it is relatively heavy and has a comparatively high (~0.1) C/N 234 

ratio that also points to terrestrial organic contamination. The extension of the low T peak of nitrogen 235 

to 700°C suggests that a part of the nitrogen is associated with the secondary carbonate. 236 

 237 

3.3. NWA 7325, a unique achondrite. 238 

  239 

3.3.1. What is the parent body of NWA 7325? 240 

 As pointed out by Irving et al. (2013), various major element ratios (e.g., Al/Si and Mg/Si) 241 

determined from NWA 7325 are within the range of values measured on Mercury‟s surface by remote 242 

sensing observations (Weider et al., 2012). However, the suggestion that NWA 7325 may represent a 243 

sample of Mercury‟s crust (Irving et al., 2013) has been challenged on the basis of dating evidence. 244 

Amelin et al. (2013) obtained a Pb-isotopic age for NWA 7325 of 4562.5 ± 4.4 Ma. This very old age 245 

was subsequently confirmed by Dunlap et al. (2014), who obtained an Al-Mg age of 4562.8 ± 0.3 Ma. 246 

Both teams pointed out that NWA 7325 crystallized at the same time as angrites and some other 247 

achondrites, and seems too old to be a sample of the differentiated crust of a planetary-sized body. 248 

Therefore, a mercurian origin appears to be untenable, and instead it seems more likely that NWA 249 

7325 originated from one of the planetesimals that formed during the first millions of years after the 250 

formation of refractory inclusions. 251 

 252 

Achondrites display a wide range of mineralogical compositions (e.g., Mittlefehldt et al., 1998). 253 

Even if these rocks sampled a limited number of differentiated bodies, they formed under a variety of 254 



conditions, and illustrate, at least partially, the diversity of primitive materials and conditions present 255 

in the early Solar System (i.e., highly reduced conditions for aubrites, a volatile-depleted body and 256 

more oxidized conditions for angrites, C-rich body with ureilites…). Despite this large mineralogical 257 

variability, achondrites displaying highly magnesian silicates and calcic plagioclases are exceptional. 258 

Only a unique mm-sized troctolitic clast found in the polymict ureilite Dar al Gani 319 displays phase 259 

compositions similar to NWA 7325 (plagioclase An87-89, olivine Fo93, Ikeda et al., 2000; Kita et al., 260 

2004; Goodrich et al., 2014). Although the O-isotopic composition of NWA 7325 is in the range of the 261 

ureilites (Fig. 4), two important lines of evidence preclude these meteorites originating from the same 262 

body:  263 

(i) Olivine cores in ureilites display a wide range of compositions which are correlated with the O 264 

isotopic composition of the bulk rocks (Clayton and Mayeda, 1996). If NWA 7325 formed from an 265 

ureilitic source, the latter would necessarily be among the most Mg-rich ureilites, which display the 266 

lowest 
17

O values (< -2 ‰), inconsistent with the 
17

O value of NWA 7325 (Fig. 6). 267 

 268 

(ii) While ureilites display a restricted range of 
54

Cr values close to -0.9 (e.g., Yamakawa et al., 269 

2010), NWA 7325 has a distinct 
54

Cr value of -0.55 ± 0.08, precluding this meteorite originating from 270 

the ureilite parent body (Sanborn et al., 2013).  271 

 272 

Thus, NWA 7325 is a unique achondrite with distinctive geochemical and isotopic features. It 273 

certainly originated from a parent body unsampled by other achondrites. In Figure 7, we compare the 274 

Ga/Al, Zn/Al and Na/Al ratios in NWA 7325 (analyses from the interior chip, not the cutting dust 275 

samples) with other well-characterized achondrites. Unlike the martian achondrites, the ureilitic 276 

(ALM-A) and brachinitic (GRA-06) melts, NWA 7325 displays low Na/Al, Ga/Al and Zn/Al and plots 277 

near or in the fields of rocks from the Moon and Vesta, suggesting a volatile-depleted parent body. 278 

This inference is strengthened by the very low K, Rb and Cs abundances shown by the NWA 7325 279 

chip (Table 3). 280 

 281 



3.3.2. Petrology of NWA 7325 282 

 Discussing the petrology of a gabbroic rock that is the sole sample we have at present from an 283 

unknown parent body is a challenging task. The huge positive Eu anomaly displayed by NWA 7325 is 284 

unambiguously related to its abundant plagioclases and points to reduced conditions (e.g., Drake and 285 

Weill, 1975), in agreement with the occurrence of traces of metal, Cr-rich sulfides. Indeed, the 286 

valences of Cr, Ti, V in olivine and pyroxene determined by XANES spectroscopy suggest 287 

crystallization conditions close to the Cr-CrO buffer (i.e. fO2 close to IW-4, Sutton et al., 2014). 288 

 289 

 Gabbroic rocks displaying positive Eu anomalies are widely considered as cumulates. NWA 290 

7325 is no exception (e.g., Irving et al., 2013), but we emphasize that this interpretation is not unique. 291 

Significant positive Eu anomalies can be generated in non-cumulative basaltic rocks by partial 292 

melting, for example during short duration reheating events (Yamaguchi et al., 2009; 2013). Larger 293 

degrees of melting of a basaltic or gabbroic lithology can produce gabbroic restites displaying very 294 

low incompatible trace element abundances and huge positive anomalies. Previous studies have 295 

emphasized the complex thermal history of NWA 7325, and shown that its texture could be explained 296 

by remelting (e.g., Bischoff et al., 2013). Thus, the possibility that NWA 7325 could be a restite merits 297 

further consideration.  298 

 299 

Partial melting has been previously proposed to explain the very low REE abundances and 300 

very large Eu anomalies displayed by some gabbroic pebbles found in mesosiderites (e.g., Rubin and 301 

Mittlefehldt, 1992). We analyzed for comparison two such pebbles from Vaca Muerta (Table 2 and 302 

Figures 2 and 3). These meteorites are finds from the Atacama Desert. They display some anomalies 303 

that are certainly the result of terrestrial weathering, and that do not require further consideration here, 304 

i.e. positive Ce anomalies, sometimes high U/Th ratios and high Pb abundances, etc… Interestingly, 305 

these two pebbles  display at first glance the same level of incompatible trace element concentrations 306 

and the same large Sr and Eu anomalies as NWA 7325. However, their REE patterns display marked 307 

heavy-REE enrichments (Gdn/Lun = 0.14-0.43) which are well explained by the loss of a partial melt 308 

(e.g., Yamaguchi et al., 2009). The REE pattern of the NWA 7325 chip does not exhibit such an 309 



enrichment (Gdn/Lun = 2.92). We conclude that NWA 7325 is probably not restitic, although we note 310 

that this inference is model dependent (i.e., composition of the melted lithology). 311 

 312 

If NWA 7325 is a cumulate, what can we infer about the composition of its parental melt 313 

based on its petrography and major and trace element abundances? It was certainly “basaltic”, not 314 

SiO2-saturated (crystallization of olivine), and Ca-rich (diopsidic pyroxene and calcic plagioclase). It 315 

was certainly Na-poor (calcic plagioclase) and of course displayed a very low FeO/MgO in order to 316 

explain the very high Mg/(Fe+Mg) ratios of the olivines and pyroxenes. Moreover, NWA 7325 317 

displays very low abundances of incompatible trace elements. Its parental melt was certainly very poor 318 

in these elements. While it is not possible to precisely constrain its trace element abundances, some 319 

very simple assumptions allow us to qualitatively evaluate some of its features. Partition coefficients 320 

for Yb or Lu in diopside are about 10 times larger than those for plagioclase or olivine (e.g., McKay et 321 

al., 1989; Schosnig and Hoffer, 1998). Consequently, in a cumulate like NWA 7325, made essentially 322 

of plagioclase, diopsidic pyroxene and olivine, the pyroxene controls the budget of heavy REEs. 323 

Assuming that the NWA 7325 chip contained about 33 wt% pyroxene, the Yb or Lu concentrations in 324 

this mineral are probably ≈ 0.15 x CI abundances. Partition coefficients of Yb for diopside at low 325 

pressure range from 0.1 and 0.6 (Schosnig and Hoffer, 1998, and references therein) suggesting Yb or 326 

Lu abundances in the range of 0.25 to 1.5 x CI abundances only in the parental melt. Furthermore, the 327 

shape of its REE pattern was probably not chondritic. Again, since clinopyroxene controls the heavy 328 

REE abundances in NWA 7325, the Gd-Lu part of the REE pattern is chiefly controlled by its partition 329 

coefficients and the (Gd/Lu)n of the parental melt. Because (DGd/DLu)cpx is ≈ 1 (e.g., Schosnig and 330 

Hoffer, 1998), (Gd/Lu)n ratios close to 1 are expected for pure cumulates formed from a chondritic 331 

melt. This inference remains valid even if the cumulates contain some trapped melt. As a consequence, 332 

the high (Gd/Lu)n ratio (=2.92) displayed by the NWA 7325 chip is inconsistent with a parental melt 333 

displaying a flat REE pattern. The parental melt to NWA 7325 must therefore have had a fractionated 334 

REE pattern with (Gd/Lu)n ratio > 1, and probably ≈ 3. Similar lines of reasoning are possible for Eu. 335 

Partition coefficients for Eu in plagioclase are much larger than those in pyroxene or olivine (e.g., 336 

McKay et al., 1989; Schosnig and Hoffer, 1998). Therefore, the budget of Eu in the rock is strongly 337 



controlled by plagioclase. Assuming that the NWA 7325 chip contained about 53 wt% plagioclase, the 338 

Eu concentration in this phase is ≈ 16 x CI abundance. Partition coefficients for Eu in plagioclase are 339 

not only dependent on the composition of the melt but are also strongly sensitive to the oxygen 340 

fugacity (e.g., McKay, 1989). For the purpose of calculation, partition coefficients for Eu in calcic 341 

plagioclase at low fO2 for a basaltic melt are assumed to range from 0.7 to 1.1 as suggested by McKay 342 

(1989), and in agreement with the recent experimental results obtained by Rapp et al. (2015). The Eu 343 

concentration of the parental melt was probably in the range of 14 to 23 x CI abundances. Even if we 344 

take into account the enrichment in middle REEs of the parental melt (i.e., the (Gd/Yb)n or the 345 

(Gd/Lu)n ratios), its level of concentration of Eu is very high compared to the heavy-REEs. It comes as 346 

an unavoidable conclusion that the parental melt of NWA 7325 certainly displayed a very large 347 

positive Eu anomaly (Eun/Ybn > 10, probably Eun/Gdn > 3) that is difficult to estimate accurately. 348 

 A melt with such a large positive Eu is very unlikely to be the direct product of the early 349 

magmatic activity on a planetesimal. On the other hand, gabbros formed in reduced conditions can 350 

display low incompatible trace element abundances and large positive Eu, as exemplified by the 351 

cumulate eucrites. Total melting of such rocks could produce melts with these features. It is tempting 352 

to propose that NWA 7325 is a cumulate derived from the crystallization of such a melt, with the 353 

melting of its protolith possibly produced by an energetic impact.  354 

 355 

Recent data for NWA 7325 allow us to further evaluate this hypothesis. Highly Siderophile 356 

Elements (HSEs) are sensitive tracers of chondritic contributions in impact melts and impactites. Two 357 

samples were analyzed by Archer et al. (2015). Their abundances differ from one another by almost 358 

one order of magnitude, and demonstrate that the HSE carriers are heterogeneously distributed in the 359 

bulk rock. The sample displaying the highest abundances shows a chondritic distribution of HFEs, in 360 

agreement with a possible projectile contribution (it contains about 0.9 ng/g Ir, suggesting the addition 361 

of ≈0.2 wt% of chondritic material). Archer et al. (2015) suggested that this chondritic signature was 362 

introduced into the rock after crystallization during late-stage impacts. Because NWA 7325 is 363 

unbrecciated, this explanation is unlikely. Alternatively, a chondritic component could have been 364 

introduced into the NWA 7325 parental melt during its crystallization. One possibility is that NWA 365 



7325 became contaminated through interaction with regolith material. The parental melt could have 366 

inefficiently assimilated regolith containing chondritic debris. However, as pointed out by Archer et al. 367 

(2015), an assimilation process that only partially affected the rock, is difficult to envisage. Instead, a 368 

heterogeneously distributed chondritic signature in NWA 7325 is best explained if this meteorite was 369 

derived from the crystallization of an impact melt.  370 

Moreover, the systematics of 
26

Al-
26

Mg further strengthens the hypothesis that NWA 7325 371 

formed by impact-melting of gabbroic material. The Al-Mg internal isochron obtained previously by 372 

Dunlap et al. (2014) for NWA 7325 has a well-resolved positive intercept (
26

Mg0*) of 0.095 ± 0.011 373 

‰, and lies well above the bulk chondritic value (Al/Mg ≈ 0.1 and 
26

Mg* ≈ 0 ‰). As noted by 374 

Dunlap et al. (2014), this high 
26

Mg0* could imply a non-chondritic initial composition for the 375 

parental body. Alternatively, the source material for this achondrite may have evolved with a highly 376 

superchondritic Al/Mg ratio early in the history of the solar system prior to the heating event that 377 

formed the melt that was parental to NWA 7325. Gabbros and plagioclase-rich cumulates are Al-rich 378 

compared to chondrites, and exhibit highly superchondritic Al/Mg ratios. The impact-melting 379 

hypothesis of this kind of rock offers a straightforward explanation for the distinctly high 
26

Mg0* of 380 

NWA 7325 (Fig. 8). Moreover, assuming that the parental melt of NWA 7325 formed by impact 381 

melting of a gabbroic target 4.5628 Ga ago, we can place some constraints on the formation age of its 382 

protolith. Unfortunately, the 
27

Al/
24

Mg ratio of the parental melt of NWA 7325 is not known. Because 383 

NWA 7325 is a plagioclase rich cumulate, its parental melt displayed probably a lower Al abundance 384 

than the whole rock, but it is not possible to assess neither its Mg concentration nor its Al/Mg ratio. In 385 

the case of eucrites, the Al/Mg ratios of cumulate and basaltic eucrites are similar. Although these 386 

rocks are probably not perfect analogs of NWA 7325, we can reasonably propose that the situation 387 

was comparable for NWA 7325 and its parental melt. For the purpose of calculation, we used the 388 

whole rock 
27

Al/
24

Mg ratio (= 1.56) and we obtained an intercept with the solar system growth curve at 389 

about 4566 Ma. A lower Al/Mg ratio would point to an older model age, and conversely younger 390 

model ages are obtained with higher Al/Mg ratios, but variations of 25 % around the Al/Mg ratio of 391 

the whole rock do not alter this estimation (Fig. 9). Although only indicative, our calculations show 392 



that remelting of a very old gabbroic lithology can perfectly explain the high 
26

Mg*0 of NWA 7325. 393 

Thus, NWA 7325 provides evidence of one of the earliest crusts on a differentiated body so far 394 

studied. We note that the NWA 7325 protolith could be practically contemporaneous to Asuka 395 

881394, which formed 4566.5 ± 0.2 Ma ago on a distinct parent body (Wadhwa et al., 2009). 396 

 397 

4. Conclusions 398 

 Two important conclusions emerge from this study. The first one is methodological. While it 399 

is often very difficult to obtain representative samples of rare meteorites, the use of cutting dust should 400 

be avoided, at least for the trace element analyses. Secondly, our data confirm that NWA 7325 is a 401 

new type of achondrite that originated from a parent body not previously sampled by the other 402 

meteorites. Despite their similar oxygen isotope compositions, a number of lines of evidence preclude 403 

a relationship between NWA 7325 and the ureilites. NWA 7325 is a gabbroic rock that displays 404 

distinct phase compositions, notably highly magnesian pyroxenes and olivine. Its chemical 405 

composition suggests that it formed from an unusual melt characterized by very low incompatible 406 

trace element abundances and a very large positive Eu anomaly. We propose that this melt formed by 407 

the remelting of an ancient gabbroic lithology, possibly upon impact, in agreement with the HSE 408 

abundances, and the systematics of 
26

Al-
26

Mg. Based on recent dating, the crustal material that was 409 

parental to NWA 7325 must have been older than 4562.8 Ma. Thus, NWA 7325 provides evidence of 410 

one of the earliest crusts on a differentiated body so far studied and indicates how such materials were 411 

rapidly recycled.  412 
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 600 
 601 
 602 
 603 
 604 

Table 1. Average compositions of main phases in NWA 7325 (in wt%). 605 

  n SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total endmembers 

              
plagio. 71 45.25 < 0.03 34.14 < 0.03 0.07 < 0.03 0.29 18.11 1.18 < 0.03 99.07 An89.4 Ab10.5 

pyrox. 58 52.68 0.04 2.93 1.03 0.73 0.05 18.88 22.54 0.16 < 0.03 99.04 En53.2 Wo45.6 Fs1.2 

olivine 51 42.25 < 0.03 0.04 0.37 2.81 0.07 54.38 0.35 < 0.03 < 0.03 100.25 Fo97.2 

              
    Si Ti Al Cr Fe Mn Mg Ca Na S Total 

 

              
sulfide 13 0.04 < 0.03 < 0.03 3.57 59.62 < 0.03 0.01 0.15 < 0.03 37.64 101.19   

 606 

           

           
 607 

 608 

Table 2. Major element compositions of NWA 7325 and two low-Ti Vaca Muerta pebbles (in wt%, *: 609 

SiO2 calculated by difference). Data given by Irving et al. (2013) obtained at University of 610 

Alberta, are shown for comparison. 611 

 612 

    NWA 7325     Vaca Muerta 

 

cutting  dust chip 

 

VM3 VM4 

Lab. U. Alberta Brest Brest 

 

Brest Brest 

       SiO2 47.09 48.04 (46.4*) 

 

(50.0*) (46.0*) 

TiO2 0.01 0.05 0.03 

 

0.04 0.06 

Al2O3 18.6 18.91 17.83 

 

9.65 13.14 

Cr2O3 0.40 0.44 0.54 

 

0.36 0.35 

FeO 1.57 1.87 0.57 

 

19.72 19.74 

MnO 0.03 0.04 0.03 

 

0.60 0.58 

MgO 12.13 12.18 13.84 

 

10.84 9.69 

CaO 17.94 18.37 20.15 

 

8.30 10.05 

Na2O 0.60 0.65 0.63 

 

0.17 0.27 

K2O 0.01 0.03 <0.01 

 

0.03 0.02 

P2O5 0.02 0.03 0.04 

 

0.30 0.12 

total 98.40 100.61 100.00*   100.00* 100.00* 
 613 

614 



Table 3. Trace element abundances in NWA 7325 and in two low-Ti Vaca Muerta pebbles (in µg/g). 615 

    NWA 7325     Vaca Muerta 

 

cutting  dust chip 

 

VM3 VM4 

Lab. U. Alberta Brest Brest 

 

Brest Brest 

       Li 0.53 0.93 0.32 

 

3.86 4.22 

Be 

 

0.028 0.002 

 

0.010 0.021 

P2O5 wt% 0.02 0.043 0.024 

   K 83 281 23 

   Sc 

 

19.64 24.18 

 

29.38 25.41 

Ti 

 

239 106 

 

215 361 

V 

 

190 249 

 

83.8 85.3 

Mn 230 260 254 

 

4246 4097 

Co 

 

21.7 23.5 

 

53.1 38.0 

Ni 78 164 57 

 

1278 716 

Cu 

 

264 6.76 

 

13.6 14.2 

Zn 

 

330 5.23 

 

1.97 1.01 

Ga 

 

8.32 8.65 

 

1.36 1.58 

Rb 0.37 0.86 0.055 

 

0.14 0.18 

Sr 198 195 189 

 

37.0 54.9 

Y 

 

0.566 0.152 

 

0.064 0.210 

Zr 1.3 1.68 0.080 

 

0.98 0.18 

Nb 2.5 0.208 0.026 

 

0.12 0.12 

Cs 

 

0.043 0.004 

 

0.010 0.009 

Ba 61 67.92 14.92 

 

2.48 1.59 

La 0.15 0.421 0.0188 

 

0.0585 0.101 

Ce 0.34 0.927 0.0612 

 

0.179 0.279 

Pr 

 

0.109 0.00755 

 

0.0201 0.0328 

Nd 0.16 0.430 0.0413 

 

0.0801 0.127 

Sm 0.05 0.0944 0.0175 

 

0.0165 0.0185 

Eu 0.58 0.532 0.499 

 

0.176 0.286 

Gd 0.05 0.107 0.0308 

 

0.0124 0.0145 

Tb 

 

0.0165 0.00484 

 

0.00192 0.00286 

Dy 

 

0.0978 0.0302 

 

0.0117 0.0243 

Ho 

 

0.0191 0.00573 

 

0.00272 0.00764 

Er 

 

0.0521 0.0133 

 

0.00855 0.0315 

Yb 

 

0.0452 0.00985 

 

0.0174 0.0658 

Lu 

 

0.00635 0.00126 

 

0.00348 0.0125 

Hf 0.44 0.049 0.00340 

 

0.0165 0.0035 

Ta 

 

0.0170 0.0009 

 

0.011 0.009 

W 

 

0.112 <0.001 

 

0.020 <0.001 

Pb 

 

3.91 0.027 

 

2.64 0.19 

Th 0.27 0.112 0.00901 

 

0.00661 0.0107 

U   0.0409 0.00987   0.00591 0.00295 

 616 



Table 4. Nitrogen and Carbon isotope results. The sample weight was 6.143 mg. 617 
 618 
 619 

T (°C) C (ng) 
13

C (‰) ± N (ng) 
15

N (‰) ± 

200 151 -28.8 0.1 1.82 -4.7 1.4 

300 1081 -28.7 0.2 117.7 10.6 0.2 

400 533 -27.5 0.2 28.31 4.8 0.2 

500 479 -22.2 0.2 23.63 5.5 0.3 

600 2241 1.2 0.2 15.53 2.6 0.3 

700 2542 3.0 0.2 13.84 3.0 0.4 

800 71 -12.6 0.1 3.35 1.1 0.9 

900 18 -14.4 0.2 2.17 11.9 1.3 

1000 43 -13.1 0.5 0.86 16.5 2.1 

1100 8 -16.9 0.2 0.52 -3.1 3.5 

1200 15 -22.7 0.2 0.53 11.0 4.1 

1300 9 -23.9 0.1 0.42 11.3 5.2 

1400 39 -24.9 0.2 0.89 42.5 2.4 

  7237 -7.4   210.6 8.0   

 620 
 621 

622 



 623 

 624 

 625 

Figure 1. a: one of the largest NWA 7325 stones; notice the distinctive green fusion crust and the soil 626 

materials adhering to the stone; the size of the cube is 1 cm; b: slice of NWA 7325 showing its 627 



unbrecciated structure; c: crossed polarized light image of a thin section showing the gabbroic texture. 628 

(Pictures a and b, courtesy of Stefan Ralew, picture c, courtesy of John Kashuba).  629 
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 632 

Figure 2. REE patterns of NWA 7325 and two low-Ti gabbros from the Vaca Muerta mesosiderite. 633 

The reference CI chondrite is from Barrat et al. (2012). 634 

635 
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Figure 3. CI normalized multi-element patterns for NWA 7325 and two low-Ti gabbros from the Vaca 639 

Muerta mesosiderite. The reference CI chondrite is from Barrat et al. (2012). 640 

  641 
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Figure 4. Oxygen isotope composition of NWA 7325 (Irving et al., 2013; Jabeen et al., 2014 and this 645 
work) compared with ureilites (Clayton and Mayeda, 1996) and other achondrites (Greenwood et al. 646 
2012, 2014 and references therein). MGP, main-group pallasites; HEDs, howardites, eucrites, 647 
diogenites; TFL, terrestrial fractionation line; CCAM, the carbonaceous chondrite anhydrous mineral 648 
line (Clayton and Mayeda, 1999); Px, pyroxene; Pl, plagioclase.  649 
 650 
 651 
 652 
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 654 

 655 

Figure 5. a: Carbon stepwise combustion results for NWA 7325; b: Nitrogen stepwise combustion results 656 
for NWA 7325. 657 
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Figure 6. Plot of 
17

O in the bulk rocks vs. olivine core compositions for ureilites (data from Clayton and 659 
Mayeda (1996), Downes et al. (2008), Singletary and Grove (2003), Goodrich et al. (2006, 2014) and references 660 
therein) and NWA 7425 (Irving et al., 2013 and this work, same symbols as Fig. 3).  661 
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 662 

Figure 7. Ga/Al, and Zn/Al vs. Na/Al plots comparing NWA 7325 (chip) and the two Vaca Muerta 663 
Pebbles (VM) with main types of achondrites (fields and data from Warren et al. (2013), Yamaguchi 664 
et al. (2002), Day et al. (2012) and Bischoff et al. (2014)). APB, angrite parent body.  665 
 666 
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 668 

Figure 8. The Mg isotopic composition of NWA 7325 (Dunlap et al., 2014) compared to the 669 

theoretical evolution of the Mg isotopic composition of the solar system (calculated for a chondritic 670 
27

Al/
24

Mg ratio of 0.101, a (
26

Al/
27

Al)0 of 5.23 x 10
-5

, and a 
26

Mg*0 of -0.034 ‰ (Jacobsen et al., 671 

2008)).  672 

673 
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 676 

Figure 9. Model age of the protolith of NWA 7325 vs. 
27

Al/
24

Mg of its parental melt. Assuming that 677 

the parental melt and the whole rock have the same Al/Mg ratios (
27

Al/
24

Mg= 1.56), an intercept with 678 

the solar system growth curve at about 4566 Ma is obtained.  679 
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