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Fender, R., Grießmeier, J.-M., Hessels, J.W.T., Stappers, B.W., Stewart, A.J., Wijers,
R.A.M.J., Wijnands, R., Zarka, P., The LOFAR Transients Pipeline. Astronomy and
Computing (2015), http://dx.doi.org/10.1016/j.ascom.2015.03.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ascom.2015.03.002


The LOFAR Transients PipelineI

John D. Swinbanka,b, Tim D. Staleyc, Gijs J. Molenaarb,d, Evert Rolb, Antonia Rowlinsone, Bart Scheersf,b,
Hanno Spreeuwg, Martin E. Belle,h, Jess W. Broderickc,i, Dario Carboneb, Hugh Garsdenj, Alexander J. van der Horstb,
Casey J. Lawk, Michael Wisel, Rene P. Bretonm,i, Yvette Cendesb, Stéphane Corbelj,n, Jochen Eislöffelo, Heino Falckep,l,
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rLESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France

Abstract

Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy,
combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength
regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the
Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR’s key
science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for
rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or
TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and
variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis
by astronomers. Here, we discuss the scientific goals of the TraP and how it has been designed to meet them. We
describe its implementation, including both the algorithms adopted to maximize performance as well as the development
methodology used to ensure it is robust and reliable, particularly in the presence of artefacts typical of radio astronomy
imaging. Finally, we report on a series of tests of the pipeline carried out using simulated LOFAR observations with a
known population of transients.

Keywords: astronomical transients, time domain astrophysics, techniques: image processing, methods: data analysis,
astronomical databases

1. Introduction

1.1. Slow transients and variable sources
While most objects in the Universe are steady on human

timescales, there are classes of sources displaying variability
on timescales of years to days, seconds or fractions of a
second. This variability can occur regularly, at irregular
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intervals, or as a singular event from a given object. Search-
ing for these transients and variables requires observatories
with a large field of view, a capability which was up to
now reserved only for some optical telescopes and X- and
γ-ray satellites. The radio regime is now also entering this
area of time-domain astronomy, with several new facilities
being built that have large fields of view (several square de-
grees or larger) and transients as one of their key scientific
objectives (e.g., Taylor et al., 2012; Murphy et al., 2013;
Tingay et al., 2013; van Haarlem et al., 2013; Bell et al.,
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2014). A few of these observatories are probing the low
radio frequency regime, from tens to hundreds of MHz, a
range that has been largely unexplored so far.

Transients in the low-frequency radio sky can be divided
into roughly two classes, characterized by their emission
processes and the observing techniques used to study them:
coherent emitters, which display very fast variability, and
are found mostly in beamformed time series data, and
incoherent emitters, which display slow variability and are
usually detected by comparing multiple images of the same
field (Fender and Bell, 2011). Here, we take the dividing
line between slow and fast as ∼ 1 second, which is the
fastest time scale at which radio images are typically made
(but see e.g. Law et al., 2011). The most well known
examples of coherent emitters are pulsars and masers, but
coherent emission processes are also predicted, albeit not
yet discovered, for other sources like gamma-ray bursts
(Usov and Katz, 2000; Sagiv and Waxman, 2002) and
magnetar flares (Lyubarsky, 2014). This paper, however,
focuses on searching for incoherent transients and variable
sources in the image plane, on timescales from seconds to
years.

The main incoherent emission process at low radio
frequencies is synchrotron radiation, which arises when
relativistic electrons are accelerated in strong magnetic
fields. It is produced where a large amount of energy is in-
jected into the ambient medium in jet sources and explosive
events, such as X-ray binaries, active galactic nuclei, tidal
disruption events, gamma-ray bursts, supernovae, mag-
netars, and flare stars (e.g., Dent, 1965; Gregory et al.,
1972; Frail et al., 1997, 1999; Levan et al., 2011). While
many of these sources show short bursts of emission at X-
or γ-ray energies, their variability timescale at low radio
frequencies is much longer, because the radiative lifetimes
of the particles to synchrotron emission are very long, and
due to synchrotron self-absorption effects (van der Laan,
1966). Although the latter decreases the sources’ bright-
ness, making their detection more challenging, it has a
high pay-off scientifically since determining the evolution
of the spectrum at low radio frequencies provides important
information on the energetics involved in these events, the
acceleration of electrons up to relativistic velocities, the gen-
eration of magnetic fields, the production and collimation
of jets, and the feedback of these jets on their surround-
ings. Furthermore, sources with small angular scales on
the sky, like active galactic nuclei, show variability which
is not intrinsic but caused by scattering in the interstellar
medium (Rickett, 1990). Therefore these sources are not
only interesting for studying their physical properties, but
can also be used to probe the medium in between them and
us. In this context we note that some coherent events that
are intrinsically very short can be scattered and dispersed
in the interstellar medium, smearing out their signal to
timescales that are probed by image transient searches (see
e.g. Broderick et al., in prep.).

1.2. Detecting transients and variables
The transient sky has long been studied across the elec-

tromagnetic spectrum, but the scale of transient searches
has increased markedly recently, in particular in the optical
and radio regimes.

Searching for transients with large field-of-view X- and
γ-ray instruments has been common for a long time, and a
variety of techniques have been used for all-sky monitors
on board the Rossi X-ray Timing Explorer (Levine et al.,
1996), Compton Gamma Ray Observatory (Fishman, 1992),
Swift (Gehrels et al., 2004), and Fermi Gamma-ray Space
Telescope (Atwood et al., 2009; Meegan et al., 2009). The
most common way to find rapid transients at these energies
is by monitoring a large fraction of the sky, and triggering
on a sudden increase in the total X- or γ-ray flux. Alter-
native techniques are required for transients that evolve
more slowly: for instance, the Earth occultation method
described by Harmon et al. (2002).

Transient searches in the image domain over similarly
large fields-of-view are now planned—and, indeed, already
being carried out—at optical and radio frequencies. Here,
efficiently searching the extremely large data volumes pro-
duced is challenging. Optical telescopes optimized to search
for transients include the Catalina Real-Time Transient
Survey (Drake et al., 2009), Palomar Transient Factory
(Rau et al., 2009), Pan-STARRS (Denneau et al., 2013), and
the Las Cumbres Observatory Global Telescope Network
(Brown et al., 2013). Several radio telescopes have dedi-
cated transient programs as well, notably the Jansky Very
Large Array (JVLA), AMI (Staley et al., 2013), MeerKAT
(Karoo Array Telescope; Booth and Jonas, 2012), ATA
(Allen Telescope Array; Welch et al., 2009) ASKAP (the
Australian Square Kilometre Array Pathfinder; Murphy
et al., 2013), the MWA (Murchison Widefield Array; Tingay
et al., 2013; Bell et al., 2014), the LWA (Long Wavelength
Array; Taylor et al., 2012) and LOFAR (the Low Frequency
Array; van Haarlem et al., 2013). In the longer term, the
Large Synoptic Survey Telescope (LSST; Ivezić et al., 2014)
in the optical and Square Kilometre Array (SKA; Dewdney
et al., 2010) will produce a dramatic increase in the number
of transients which can be detected.

Broadly, there are two possible techniques which are
adopted by these searches: difference imaging (e.g. Alard
and Lupton, 1998; Law et al., 2009) or on a comparison of
a list of sources measured in a given image against a deep
reference catalogue (e.g. Drake et al., 2009).

Difference imaging has been demonstrated to be effec-
tive when applied to optical data, particularly in crowded
fields which would suffer from source-confusion in a catalogue-
based survey. However, the efficacy of difference imaging
in the optical is partly due to to the sources of noise being
relatively well characterised, with pixel-noise largely inde-
pendently distributed and occurring on a different spatial
scale to real sources (assuming a well-sampled point-spread
function), and the fact that optical survey point-spread
functions usually vary in a smooth fashion amenable to
model-fitting.
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In contrast, noise in radio-synthesis images is inher-
ently correlated on similar scales to the sources of interest.
Furthermore, effects such as radio frequency interference
(RFI) and interaction between faint beam-sidelobes and
bright out-of-field sources may cause artefacts which are
harder to characterise and correct for than those found in
optical data. As a result, higher signal-to-noise thresholds
are typically applied to ensure that most spurious detec-
tions are rejected (although this process remains fallible;
Frail et al., 2012). This degrades the sensitivity advantage
of the difference imaging technique, and so a cataloguing
survey provides equivalent results with the added benefit
of recording lightcurves for individual sources.

Many recent developments, including the precursors
of this work, focus on the latter approach: compiling
lightcurves, storing them in a database, and then search-
ing for transients with a variety of statistical techniques
(Spreeuw, 2010; Bannister et al., 2011; Bower et al., 2011;
Croft et al., 2011; Swinbank, 2011; Thyagarajan et al., 2011;
Banyer et al., 2012; Hancock et al., 2012; Williams et al.,
2013; Mooley et al., 2013; Bell et al., 2014). The same
strategy has been adopted in this work, which describes
the pipeline and methods developed for searching for tran-
sients with LOFAR. The system described here also has a
broader applicability to other instruments and is developed
with an eye to the long-term requirements of the SKA.

2. Transients with LOFAR

2.1. The International LOFAR Telescope
LOFAR is a recently-commissioned radio interferometer

based in the Netherlands and with stations across Europe1.
LOFAR operates in the low-frequency radio regime, observ-
ing in the frequency ranges 10–80 (low band) and 110–240
(high band) MHz, corresponding to wavelengths between 30
and 1.2 metres. The system pioneers the concept of a soft-
ware telescope, as signals received by simple crossed-dipole
antennas, which are sensitive to the whole sky, are digitized
as soon as possible and signal processing is done in software.
In the low band the voltages from each dipole are directly
digitized; in the high band, an analogue combination of
data from 16 antenna elements (a “tile”) is formed prior
to digitization.

In a typical imaging observation, each station acts as a
phased array: the digitized data from each of the antennas
in the station is coherently combined (“beamformed”) to
point the station in a particular direction. The field of view
of beams formed in this way depends on frequency and
station configuration, with the full width at half maximum
ranging from 19.55◦ for a core Dutch LOFAR station at
30 MHz to 1.29◦ for an international LOFAR station at
240 MHz2. This beamformed data is then transported to

1http://www.astron.nl/~heald/lofarStatusMap.html
2The various types of LOFAR stations together with their key pa-

rameters are listed at http://www.astron.nl/radio-observatory/

the central processing (CEP) facility at the University of
Groningen where it is correlated by a GPU-based system.

The software-based processing model provides for a
great deal of flexibility. After digitization, a polyphase filter
splits the data into 0.2 MHz wide subbands, the number
of subbands depending on the quantization of the data:
it is possible to trade off dynamic range for increased
subband number and hence bandwidth: in “16 bit mode”,
244 subbands are available; in “8 bit mode”, 488. These
subbands can be spread across frequency space, to give
a large observing bandwidth (48.8 MHz in 16 bit mode).
Alternatively, the beamformer can be configured to form
multiple beams with different selections of subbands in
different directions. In this latter mode, by trading off
against observing bandwidth, an extremely wide field of
view may be observed.

When operating in imaging mode, the correlator pro-
vides a dump time of 1 s, and it is this which provides
a lower-limit to the timescales which can be searched for
image plane transients. An alternative is to directly search
high time resolution beamformed data for fast transients,
as described by Stappers et al. (2011) and Coenen et al.
(2014). It is also possible to configure the telescope such
that beamformed and image data is recorded simultane-
ously, providing the greatest possible range of cadences in
a transient search; ultimately, continual monitoring in this
mode is an important goal.

2.2. The Transients Key Science Project and the Radio
Sky Monitor

LOFAR’s development and commissioning have been
driven by six science areas: the epoch of reionization, deep
extragalactic surveys, cosmic magnetism, solar physics and
space weather, cosmic rays, and transient and variable
sources. The last of these is the remit of the Transients
Key Science Project3 (TKSP; Fender et al., 2006). The
TKSP’s interests include transient and variable sources
on all timescales, from sub-second changes in beamformed
data (Stappers et al., 2011) to multi-year variability mon-
itored through long-term imaging programmes; see van
Haarlem et al. (2013) and references therein for a complete
discussion of the TKSP science case. It is upon detec-
tion and monitoring in the image plane which this work
concentrates.

A key programme for the TKSP is the “Radio Sky
Monitor”, or RSM (Fender et al., in prep.). In this mode,
multiple beams from LOFAR are used to tile out a large
area on the sky (Fig. 1). This field of view is then imaged
on a logarithmic range of timescales, from 1 to 10000 s, and
at a range of frequencies, and that image stream is searched
for transient and variable sources. The survey strategy is
flexible, but most plausible strategies will focus on the

astronomers/lofar-imaging-capabilities-sensitivity/

lofar-imaging-capabilities/lofa; see van Haarlem et al.
(2013) for detailed information on LOFAR’s configuration.

3http://www.transientskp.org/
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Figure 1: The Radio Sky Monitor concept. Multiple LOFAR station
beams tile out a large field of view, while other beams are available
for target observations.

galactic plane and the zenith, while taking advantage of
the large field of view to ensure that a large fraction of
the sky is regularly monitored. While this procedure is
ongoing, individual beams can be diverted from the ongoing
survey to monitor specific targets of interest or respond to
transient alerts in real time (although the latter is currently
not implemented).

There are two key data products which result from this
RSM: an archive of the lightcurves observed for all point
sources in the LOFAR sky, and low-latency alerts of tran-
sient events. It is the TKSP’s policy that, in general, these
products will both be made available to the community at
large.

While the RSM is running, a large volume of correlated
(visibility) and image data will be generated. It is regarded
as impractical to archive all of this data. Instead, an
averaged version of the visibility data may be stored with
reduced time and/or frequency resolution, and thumbnail
images of significant detections recorded.

Ultimately, LOFAR is designed to provide low-latency
“streaming” image data. When this is available, the tran-
sient search may be run, and alerts produced, in real time.
At time of writing, however, this capability is still in devel-
opment. Instead, visibility data is stored to disk for later
“offline” imaging. This non-real-time version of the system
has been deployed for LOFAR’s initial operational phase.
In this mode, visibility data collected by LOFAR undergoes
some initial post-processing at CEP before being delivered
to the TKSP. Project members then image this data on
local hardware, before running the images through a ver-
sion of the transients detection system which is optimized
for offline use. In this way, TKSP members are able to

develop our understanding of LOFAR’s imaging capabili-
ties and to test and commission the transients detection
and monitoring pipeline (or “TraP”) in advance of its full
deployment as part of a real-time LOFAR system.

It is on this TraP system which this manuscript focuses.
In §3 we provide an overview of its inputs, outputs and
overall design. In §4 we describe in detail the algorithms
employed by the key pipeline components, and in §5 de-
scribe the data products the pipeline delivers. Section 6
describes the pipeline implementation on a technical level.
Section 7 discusses the development approaches taken. In
§8 we describe testing carried out on the TraP with simu-
lated datasets. Finally, in §10, we describe enhancements
which are planned for future releases.

The TraP was developed with the aim of finding and
monitoring transients in RSM-like data. However, it is
worth emphasizing that it should be ultimately applicable
to a much wider range of instrumentation. For example, it
is planned to use the TraP to scan as much LOFAR imag-
ing data as possible, in a so-called “piggyback” mode. An
early version of the TraP has already been used in a study
of archival VLA data (Bell et al., 2011), while a variant
will also be deployed as the transient detection system for
AARTFAAC (the Amsterdam-ASTRON Radio Transients
Facility and Analysis Centre, an all-visible-sky monitor
operating commensally with LOFAR; Prasad and Wijn-
holds, 2012). Other developments target the Arcminute
Microkelvin Imager Large Array (AMI-LA; Staley et al.,
2013; Anderson et al., 2014), a 15 GHz aperture synthesis
aperture synthesis radio telescope near Cambridge in the
UK, and KAT-7/MeerKAT, SKA-precursor telescopes in
the Karoo Desert, South Africa. Further variants targeting
optical data are also under consideration.

The TraP is available as open source software; for more
details, refer to §10 and the code repository4.

3. Pipeline overview

The design goal of the TraP is to automatically and
rapidly identify transient and variable sources within a
time-series of image data. These sources may be identified
in two ways:

• New detections are sources which appear at a location
where, in previous epochs, no source was seen;

• Variables are sources which have been observed for
multiple epochs and show significant variability in
their lightcurves.

Such sources are identified automatically by the TraP,
based on no prior knowledge. It is also possible for the user
to specify the location of known sources for monitoring.
Variability metrics are retained for all sources, so that

4https://github.com/transientskp/tkp/
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decisions on what constitutes an ‘interesting source’ may
be made after data-processing (§5).

Since the TraP is ultimately designed to perform near
real-time processing of an image stream, we assume that
after an image has been processed it is no longer available
for further analysis (modulo the system described in §6.5).
Therefore, the TraP currently provides no capability to
look back at previously processed images in the light of
new data: it does not, for example, attempt to go back and
check earlier images of the same position after observing a
new transient. Although retaining the full image stream is
unlikely to be practical for projects which generate substan-
tial data volumes, future versions of the TraP may include
the capability to generate and store an average of the input
data, using this to increase the depth of the survey and
improve source characterization.

3.1. Inputs
The fundamental input to the trap is a time-series

of three-dimensional (two spatial, one frequency) image
“cubes”. These are generally assumed to be produced by the
LOFAR imaging pipeline (Heald et al., 2010, 2011, 2014;
van Haarlem et al., 2013), however, as described in §4.1,
the code is designed to be agnostic as to the format and
origin of the data being ingested.

In addition, the TraP may optionally be given a user-
defined list of monitoring positions. Measurements are
made and stored for each such position in each plane of
every image cube ingested, regardless of whether the auto-
matic source-finding routines regard it as significant.

3.2. Products
The TraP is designed to produce two key data products:

• Near real-time alerts to the community and/or tar-
geted at specific partners describing ongoing transient
celestial events;

• An archival database of lightcurves for all astronomi-
cal point sources detected during pipeline processing
together with information about their variability.

The pipeline system is flexible enough to provide alerts
in a variety of formats, and it is therefore able to interoper-
ate with whatever mechanisms other facilities have in place
for receiving notifications. For example, one can imagine
e-mail or SMS being convenient. However, development
has focused on the VOEvent system (Seaman et al., 2011)
and its association distribution networks (Williams et al.,
2012). These provide a flexible and convenient method for
widespread alert dissemination, which is described in detail
in §6.6.

In addition to these fundamental data products, the
TraP may optionally store a copy of all the image pixel
data processed for future reference. This is not required
for the analysis performed by the TraP, but we have found
it convenient to maintain an archive of some or all of
the images processed for display purposes (e.g. using the
interface described in §5.2.2).
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Figure 2: Transients Pipeline (“TraP”) overview, showing the flow of
data through the system as an image “cube” is processed, ultimately
producing an archival lightcurve database and (if appropriate) tran-
sient alert messages. The individual pipeline stages are described in
§3 and §4; their implementation, in terms of a mixture of Python
code and database routines, is discussed in §6. The dotted parts of
the diagram represent optional functionality: they are not required
for the core TraP functionality.

3.3. Methods
To map from the inputs to the products described above,

the following procedure is adopted. Each of these stages is
described in more detail in §4; their relationship is shown
graphically in Fig. 2.

1. The image cube is stored in main memory as a se-
ries of two-dimensional images, each representing a
particular frequency. The in-memory representation
of an image used by the TraP is independent of the
on-disk data storage format; see §4.1 for details.

2. Each image undergoes a quality-control procedure,
designed to identify and exclude from further pro-
cessing data of unacceptably poor quality. Note that
even when data is excluded by quality control it is
not completely disregarded, but rather its existence
and the reason for its rejection are recorded. For
details of the quality control checks and the way in
which they are applied see §4.2.

3. A source-finding and measurement process is ap-
plied independently to each plane of the image cube.
Sources which meet the relevant significance criteria
are parameterized by elliptical Gaussians. For more
details on the source finding procedure see §4.3.

4. An “association” procedure is carried out, in which
the new measurements are either identified as updates
to the lightcurves of previously known sources, or as

5



new, previously-undetected, sources. Details on the
algorithms used for source association may be found
in §4.4.

5. A list of sources which are expected to appear within
the image but were not detected by the source find-
ing procedure above is now constructed following the
procedure described in §4.5. The same source mea-
surement code is now used to fit and record source
parameters at each of these fixed positions, and the
relevant lightcurves updated accordingly.

6. The same source measurement code is used to fit and
record source parameters at each of the user-specified
monitoring positions, and the relevant lightcurves
updated accordingly. This procedure is described in
§4.6.

7. For each lightcurve in the database a series of aggre-
gate properties describing the astronomical source
are calculated. These include a weighted mean posi-
tion, flux density and a series of variability indices
which quantify the magnitude and significance of the
variability of the lightcurve. This is described in §4.7.

At this point, the core loop of the pipeline is complete:
the next (by time) image cube in the sequence may be
ingested and the process repeats. At the same time, the
results are immediately made available via a database, as
described in §5.

Further analysis may be performed by querying the
database for scientifically relevant phenomena and reacting
appropriately. For example, one could search for all bright
sources which do not have a previously-detected counter-
part, and thereby identify new transients. Alternatively,
a query could search for lightcurves which have reached
a particular threshold in the variability indices, or which
meet some other user-defined criteria.

It is important to emphasize that these queries can be
performed at any time. For example, the user could wait
until the complete pipeline run has been completed and
archived before searching the database; equally, however, a
real-time analysis system can query the database continu-
ously as new results are added, and thereby identify new
transients immediately.

As new measurements are appended to the database,
continuously-updated measures such as the variability in-
dices for a given lightcurve or the weighted mean position
of the associated astronomical source will change with time.
It is possible, therefore, that a particular source which was
identified as variable by the real-time analysis system at
some particular timestep will, in the fullness of time, be
shown to not, in fact, vary significantly. In order to ensure
reproducibility, the database records all the intermediate
values as well as the final, archival result. That is, the user
may query the archival database not just for the eventual
state of a particular source, but for its state as recorded
after the insertion of any particular image cube.

Finally, it should be noted that although it is possi-
ble to create LOFAR images with full polarization, and

notwithstanding the ultimate TraP design goals, the cur-
rent version of the TraP searches for transient and variable
sources only within total intensity (Stokes I) images, and
other polarization information is not used. In time, though,
polarization information will be essential for properly char-
acterizing the sources being identified: see §10 for more
information on future plans.

4. Key pipeline stages

In this section we describe the logical structure of the
TraP, focusing on the core stages of the pipeline and the
algorithms that they employ. Section 6 describes how
this logical structure is implemented in terms of deployed
software and hardware resources.

4.1. Data accessors
While the TraP has been developed with LOFAR in

mind, many of the core issues we are addressing are widely
applicable to much of the emerging field of transient astron-
omy. As such, we aim to make it easy to adapt the TraP
to ingest images from data sources other than LOFAR.
The pipeline is designed to be data-source agnostic: the
origin of the data is abstracted away from the scientific
logic. This has proven to be useful as internal LOFAR
data-storage standards have evolved.

Data source abstraction is achieved by defining a uni-
form interface which all routines in the pipeline use to access
and manipulate image data. Derived classes represent data
from specific sources, providing different routines for load-
ing the data, translating telescope-specific metadata, and
so on. Adding support for data from a new telescope is
generally straightforward: for most instruments, just a few
simple extensions to the predefined routines for working
with FITS5 or CASA6/casacore7 are required.

This system has enabled the TraP to be used in con-
junction with data not only from LOFAR but also from
the VLA and AMI-LA, as described in §2.2.

4.2. Quality control
During the imaging procedure and the future real-time

imaging pipeline, extremely large numbers of images will be
produced for processing by the TraP. Some of these images
will be of insufficient standard for transient searches: for
instance, high RFI or poor calibration solutions can lead
to increased noise in the image or artefacts that may be
mistaken as transients.

The quality control procedure identifies and rejects
those images which do not pass a range of tests. The sys-
tem is modular: new tests can easily be added as required.
Further, tests may be made specific to certain instrumenta-
tion by building upon the data accessor framework (§4.1).

5http://fits.gsfc.nasa.gov/
6http://casa.nrao.edu/
7http://casacore.googlecode.com/
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The standard checks supplied with the released version
of the TraP are all LOFAR specific. They are:

• Test that the measured noise in the image does not
significantly exceed the theoretically expected value
(§4.2.1);

• Test for appropriate sampling and shape of the restor-
ing beam parameters (§4.2.2);

• Test for proximity of the image pointing direction to
bright radio sources (§4.2.3).

An image which fails one or more of these tests is not
further processed. Details of the failure are logged for
future reference.

These tests are designed to provide a quick and simple
mitigation of common failures observed during develop-
ment and commissioning. As TraP moves into production
deployments, it will be possible to supplement them with
a range of more elaborate tests as and when required.

4.2.1. Check for noisy images
A clear signature of a poor quality image is when the

measured noise level significantly differs from the theoret-
ically expected value: measured values which are either
too low or too high are indicative of problems with the
observation or its calibration.

The theoretical noise in LOFAR images can be calcu-
lated using parameters extracted from the image metadata,
such as the array configuration and integration time used
(Nijboer et al., 2009; van Haarlem et al., 2013).

To measure the observed RMS in an image, we conduct
the following steps:

1. Select a square region congruent with the image cen-
tre and comprising 25 % of the total pixels in the
image;

2. Iteratively reject pixel values more than n standard
deviations from the median, where n is some user-
defined parameter (typically four), until no further
pixels are being rejected.

3. Using the remaining pixels, calculate the mean pixel
value and the RMS scatter around this mean value.

We then calculate a simple ratio between the measured
RMS noise and the theoretical noise. The image is rejected
when this ratio falls outside a user-specified range.

4.2.2. Check restoring beam parameters
The properties of the restoring beam (Högbom, 1974)

used to create the images used within the TraP also play a
significant role in assessing the image quality. The image
should be created such that the beam is appropriately
sampled, with around three pixels across its minor axis.
Incorrect sampling can cause increased noise, artefacts and
spurious source detections, as illustrated in Fig. 3. The
TraP aims to be robust against this, regardless of the origin
of the images.

(a) Correct sampling. (b) Inappropriate sampling.

Figure 3: The effects of inappropriately sampling the restoring beam
on image quality. These images are of the same field, centred on
3C 295, and they share the same physical and colour scales. At left,
the image is correctly sampled, with 3 pixels across the minor axis
of the restoring beam. To the right, only 1.3 pixels have been used:
this image is unsuitable for pipeline processing.

The shape of the beam is also considered. Beam shape
is influenced by a variety of factors, including the array
configuration, pointing direction, observing frequency and
integration time. A measured shape which is significantly
at variance with expectation is indicative of a failure in
imaging or calibration.

TraP users can predetermine image rejection thresholds
for over sampled and highly elliptical restoring beams as
these may be observation or telescope dependent. All
images with restoring beams which are under sampled (< 2
pixels across the FWHM) are automatically rejected by
the TraP.

4.2.3. Check for proximity to bright radio sources
Poor subtraction of bright sources close to the target,

during either ‘demixing’ (van der Tol et al., 2007) or subse-
quent calibration can lead to residual structures or elevated
noise levels in the resultant images. Problems are typically
observed close to the Sun, Jupiter and the so-called “A-
Team” of bright extragalactic radio sources (de Bruyn et al.,
2009): their extremely high fluxes may cause issues within
target fields up to several tens of degrees away, depending
on the observing configuration. To mitigate these effects,
the TraP rejects images where the angular separation be-
tween the target field and a bright source is less than a
user-specified threshold.

4.3. Source detection and measurement
The TraP uses a custom-developed source detection

and measurement system (“sourcefinder”). The algorithms
implemented are partially based on those used in SExtrac-
tor (Bertin and Arnouts, 1996), but have been extensively
re-worked and extended, most notably to provide least-
squares fitting of detected sources with elliptical Gaussians
and a rigorous handling of the correlated noise properties of
radio images. In addition, it provides an implementation of
a false detection rate algorithm (Benjamini and Hochberg,
1995; Hopkins et al., 2002).
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In brief, given an input image, the system performs the
following procedure:

1. Model and subtract a variable background across the
image;

2. Model the RMS noise across the image;
3. Identify islands of contiguous pixels which appear

above some multiple of the RMS;
4. Decompose multi-component islands into their con-

stituent parts;
5. Perform initial estimation of source parameters;
6. Fit each component with an elliptical Gaussian and

return the result.

This process results in a list of measurements describing
the parameters of each source, including its position, flux
density and shape as well as the significance of the detection:
see Table 1 for details.

More detail on each of the sourcefinder stages is given
below. For a thorough treatment, the reader is referred to
Spreeuw (2010), while Carbone et al. (in prep.) presents
the results of extensive testing of the sourcefinder system.

4.3.1. Background and RMS estimation
The background and noise characteristics of radio as-

tronomy images are complex. In particular, noise across
the image is correlated due to the nature of the imaging
process. Since our source detection procedure relies on
identifying pixels above the RMS noise, careful modelling
of the background and noise maps is essential.

We start by dividing the image into a rectangular grid.
The dimensions of the grid cells are user-specified; they
should be chosen such that they are significantly larger
than extended sources visible in the image, but fine enough
to trace background variations.

We estimate the background and RMS in each grid cell
through a process of iterative clipping around the median
to reject source pixels. While doing this, it is important
not to bias the result by rejecting source-free pixels, and
to take account of the noise correlation scale.

On each iteration, we label the total number of pixels in
a given cell N . We then define the number of independent
pixels as Nindep = N/Ndep, where Ndep is the number of
pixels per synthesized beam. We assume that source-free
independent pixels follow a normal distribution, while pix-
els contaminated by sources do not. We therefore reject
all pixels that fall more than some threshold nσ from the
median, where σ is the standard deviation of the distribu-
tion. The value of n is chosen such that we will reject, on
average, one half of one normally distributed pixel. That
is,

Nindep × 2× (1− F (nσ)) = 0.5 (1)

where F (nσ) is the cumulative distribution function for

the assumed normal distribution over the range [−∞, nσ]:

F (nσ) = 0.5 + 0.5× erf
(
nσ

σ
√

2

)
(2)

= 0.5 + 0.5× erf
(
n√
2

)
(3)

= 0.5 + 0.5× 2√
π

∫ n

0

e−t
2
dt. (4)

Inverting this, the threshold for clipping is

nσ = σ
√

2× erfc−1

(
1

2Nindep

)
(5)

where erfc−1 is the complementary inverse error function
(Gautschi, 1972).

We estimate the sample variance based on this indepen-
dent pixel count8. That is,

σ2
meas =

Nindep

Nindep − 1

(
x2 − x2

)
(6)

where σ2
meas is the measured sample variance and x repre-

sents individual pixel values. However, note that measuring
the variance of a sample which has been clipped at some
threshold T causes us to underestimate the variance as
follows:

σ2
meas =

1
σ
√

2π

∫ T
−T x

2 exp
(
−x2

2σ2

)
dx

1
σ
√

2π

∫ T
−T exp

(−x2

2σ2

)
dx

. (7)

We invert this to estimate a corrected variance

σ2 = σ2
meas

√
2πerf

(
T/σ
√

2
)

√
2πerf

(
T/σ
√

2
)
− 2T exp (T 2/2σ2) /σ

(8)

Note that the ratio, T/σ, of the clipping limit to the under-
lying standard deviation is simply the value of n which was
derived following Eq. 1 in the previous iteration. Finally,
following Bolch (1968), we apply a further correction to
estimate the standard deviation, σ, as

σ = s× c4 = s×
(

1− 1
4Nindep

− 7
32N2

indep

)
. (9)

At this point, if any pixel values are more than the calcu-
lated nσ from the mean, they are removed from further
consideration and a new iteration is started. Otherwise,
the clipping process has completed.

After the pixel values have been clipped, if the field is
crowded (|mean−median|/(std. dev.) ≥ 0.3) we take the

8An alternative approach would be to calculate the pixel autocor-
relation function and the corresponding estimation bias correction
factor (Wolter, 1984); the practical difference is minimal for plausible
values of Nindep.

8



background as equal to the median; otherwise, we estimate
it as

background = 2.5×median− 1.5×mean (10)

following Bertin and Arnouts.
Background and RMS maps are then derived by bilinear

interpolation of the background and standard deviation
calculated in each grid cell.

4.3.2. Identification of significant pixel “islands”
The background map is subtracted from the input image.

The noise map is multiplied by a user-specified constant
(“n”) to provide a threshold for finding sources. Sources
are identified where the value of the background-subtracted
input data is larger than the detection threshold map.

Imposing an nσ threshold in this way implies that the
fraction of pixels falsely labelled as sources in the image
will be smaller than

erfc
(
n√
2

)
=

2√
π

∫ ∞

n/
√

2

exp
(
−t2

)
dt. (11)

It may be more convenient, however, to quantify the
number of false detections independently of the number of
pixels processed. It is possible to control the false discov-
ery rate using the algorithm described by Benjamini and
Hochberg (1995). This permits the user to specify a maxi-
mum number of “false positives” (noise peaks erroneously
identified as sources), and the algorithm automatically
chooses an appropriate threshold for identifying sources.

4.3.3. Deblending
After the peaks of pixel islands have been identified,

the islands are expanded to consist of all pixels which are
contiguous with the peak pixels and which are above a
further user-specified constant (“a”, with a ≤ n) times the
threshold map.

These expanded pixel islands may consist of a sin-
gle source, but may also include two or more sources in
close proximity. We separate out the components of these
composite sources in a process referred to as “deblending”
(Bertin and Arnouts, 1996; Spreeuw, 2010; Hancock et al.,
2012). In the deblending process, we define a number of
sub-thresholds exponentially spaced between the lowest and
highest pixel values in the islands. We iterate through the
thresholds from lowest to highest, at each threshold check-
ing if the island has split into two (or more) non-contiguous
components, each containing a significant fraction of the
integrated flux density, and each with a peak above the
detection threshold nσ. If these criteria are met, we split
the island and regard it as two separate sources. Both the
number of sub-thresholds and the fraction of the integrated
flux density required for a sub-island to be regarded as
significant are user-set parameters.

4.3.4. Estimating source parameters
The peak flux density, Pmax, can be approximated by

the value of the maximum pixel in the island. However,
the true source peak will not coincide with the centre of
the pixel. Therefore, we extend the method described by
Rengelink et al. (1997), based on the assumption that the
true peak lies at a random position within the pixel. This
results in a correction factor of
∫∫

e
ln(2)

[
(x cos(θ)+y sin(θ))2

m2 +
(y cos(θ)−x sin(θ))2

M2

]

dxdy (12)

where M , m and θ are respectively the major and minor
axes and the position angle of the synthesized beam and
the integral runs over the pixel. This correction factor is
multiplied by Pmax to produce the output peak flux density.

The total flux density, F , is simply the sum of the pixel
values

F =
∑

i∈S
Ii, (13)

where Ii is the value of the pixel at position xi, yi and i ∈ S
indicates all the pixels in a particular island.

The position of the centre of the island is given in pixel
coordinates as:

x, y =
∑
i∈S Iixi∑
i∈S Ii

,

∑
i∈S Iiyi∑
i∈S Ii

. (14)

The position angle of the semi-major axis, measured counter-
clockwise from the y-axis, is given by

tan(2θ) =
2xy

x2 − y2
. (15)

The semi-major (M) and semi-minor (m) axis lengths are
initially estimated as

{
M2

m2

}
=
x2 + y2

2

{
+
−

}
√√√√
(
x2 − y2

2

)2

+ xy2. (16)

These axis lengths are underestimated due to the aσ cut at
the edge of the island. They are corrected by multiplying
by a factor (1 + ln(T/Pmax)/(Pmax/T − 1))−0.5, where T
is the value of the RMS map times the analysis threshold
a at the pixel position of Pmax.

4.3.5. Gaussian fitting
An elliptical Gaussian is fitted to each island by min-

imizing the error function using a modified Levenberg-
Marquardt algorithm (Moré, 1977). By default, the es-
timated source parameters calculated above are used as
initial values for fitting, and all parameters are allowed to
vary. However, the user may optionally choose to hold one
or more parameters to a fixed, user-specified value. Typi-
cally, this is used to constrain the fitted shape of point-like
sources to that of the restoring beam.

Uncertainties on the parameters x0, y0 (the fitted pixel
position), α, δ (the position in celestial coordinates), θM , θm
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(the lengths of the major and minor fitted axes), C (the
fitted peak flux density), I (the integrated flux density)
and φ (the position angle) are calculated following Condon
(1997), Condon et al. (1998) and Hopkins et al. (2003). We
start by defining a generalized “signal-to-noise ratio” as

ρ2 =
θMθm
4θBθb

[
1 +

θ2
B

θ2
M

]αM [
1 +

θ2
b

θ2
m

]αm C2

σ2
(17)

where σ is the RMS noise at the location of the source
and αM , αm = (1.5, 1.5) for amplitude errors, (2.5, 0.5) for
errors on x and θm and (0.5, 2.5) for errors on y, θM and
φ (Condon, 1997).

Given the above definitions, we apply the relationships
described by Condon (1997) and Hopkins et al. (2003) to
obtain

2
ρ2

=
σ2
C

C2
(18)

= 8 ln 2
σ2
y0

θ2
M

= 8 ln 2
σ2
x0

θ2
m

(19)

=
σ2
θM

θ2
M

=
σ2
θm

θ2
m

(20)

=
σ2
φ

2
(θ2
M − θ2

m)2

θ2
Mθ

2
m

(21)

σ2
α = σ2

x0
sin2 φ+ σ2

y0 cos2 φ (22)

σ2
δ = σ2

x0
cos2 φ+ σ2

y0 sin2 φ. (23)

Note that, for simplicity, the above assumes that the fitted
major axis of the source aligns with the y axis of the pixel
grid. If this is not the case, a further rotation is required.
Finally, the integrated flux density and its variance are
given by

I = C
θMθm
θBθb

(24)

σ2
I

I2
=
σ2
C

C2
+

θBθb
θMθm

[
σ2
θM

θ2
M

+
σ2
θm

θ2
m

]
. (25)

After fitting, the Gaussian restoring beam is decon-
volved from the resultant source parameters using an algo-
rithm derived from that provided by AIPS (Greisen, 2003),
so that the deconvolved shape parameters ϑM , ϑm and ϕ
are given by

β2 = (θ2
M − θ2

m) + (θ2
B − θ2

b ) (26)

− 2(θ2
M = θ2

m)(θ2
B − θ2

b ) cos 2(φ− Φ) (27)

2ϑ2
M = (θ2

M + θ2
m)− (θ2

B + θ2
b ) + β (28)

2ϑ2
m = (θ2

M + θ2
m)− (θ2

B + θ2
b )− β (29)

ϕ =
1
2

atan
(θ2
M − θ2

m) sin 2(φ− Φ)
(θ2
M − θ2

m) cos 2(φ− Φ)− (θ2
B − θ2

b )
+ Φ.

(30)

Following this procedure, the parameters described in
Table 1 are returned by the sourcefinder and are ready for
insertion into the pipeline database.

Name Units Notes

Right ascension (α) J2000 deg.
Declination (δ) J2000 deg.
Peak flux density Jy/beam
Integrated flux density Jy
Significance - Peak/RMS
Lengths of semi-axes arcsec
Position angle deg. North through east
Error radius arcsec Absolute error on

source centroid

Table 1: Parameters returned by the sourcefinder routines.

4.4. Source association
Each individual astronomical source detected in a given

set of images is assigned a unique identification in the
form of an entry in the “running catalogue”. The running
catalogue ties together a series of measurements made in
individual images with aggregated information about the
source derived from those measurements (its position, vari-
ability information, etc; see §4.7). The complete set of
measurements associated with a particular running cata-
logue entry comprise its lightcurve.

4.4.1. Association procedure
The association procedure adopted is based on de Ruiter

et al. (1977), Sutherland and Saunders (1992) and Rutledge
et al. (2000), and is described in detail in Scheers (2011).
For each measurement, the source association procedure
searches for counterparts in the running catalogue. The al-
gorithm relies on the de Ruiter radius, the angular distance
on the sky between source i and its potential association
counterpart j normalized by the positional error of both
sources. The de Ruiter radius is defined as

ri,j =

√
(αi − αj)2 cos2 ((δi + δj)/2)

σ2
αi + σ2

αj

+
(δi − δj)2

σ2
δi

+ σ2
δj

(31)

where αn is the right ascension of source n, δn is its decli-
nation, and σq represents the error on the quantity q.

If sources i and j are genuinely associated, their posi-
tional differences will be due to measurement errors, and
hence follow a Rayleigh distribution (e.g. de Ruiter et al.,
1977). The probability of source association at r ≥ ρ is
then

pr(r ≥ ρ) =
∫ ∞

r=ρ

r exp(−r2/2)dr = exp(−ρ2/2). (32)

This may be used for determining the search radius, rs,
of the area that will be scanned for possible counterparts:
a search radius of rs ≤ 3.71, will miss a factor of 10−3 of
the possible association counterparts, while rs ≤ 5.68 will
miss a factor of 10−7.

Given the above definition, the source association proce-
dure regards a particular measurement as being associated
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with a given running catalogue source if their positions are
no further apart than the semi-major axis of the restoring
beam and the de Ruiter radius is less than a user-specified
threshold. Note that the calculations above only consider
repeat measurements of a single, isolated source. If the
TraP is to be used in processing observations of crowded or
extremely transient-rich fields of view, this will require fur-
ther consideration of the trade-off in search radius between
missed self-associations, and spurious associations between
distinct sources. Making an optimal choice of search radius
for a crowded field will depend on the precise spatial clus-
tering of sources, an issue which is not investigated further
here.

4.4.2. Association types
The procedure described above does not guarantee a

unique association between each source measurement and a
single running catalogue source. Instead, there are various
possible association topologies, as illustrated in Fig. 4 and
discussed below.

Note that the association is based upon the positions
and associated uncertainties of a particular measurement
and the equivalent aggregated quantities for running cat-
alogue sources; no reference is made to time or frequency
in assessing whether a particular pair is associated. The
discussion below refers to “time”, but the same consider-
ations apply to association along a frequency axis. This
has the consequence that the order in which data is asso-
ciated affects the result, and hence the reproducibility of
a particular analysis. This is discussed in more detail in
§4.7.3.

No association. The source measurement cannot be asso-
ciated with any previously catalogued sources. We regard
this as a newly detected source, and create a catalogue
entry for it.

One-to-one. The flux density measurement is unambigu-
ously associated with a single running catalogue entry, as
shown in Fig. 4a. The average flux density of the source
L1 is f1···4.

Many-to-one. Many-to-one associations exist when two or
more running catalogue sources satisfy the association crite-
ria for a given measurement. We record this in the database
as multiple separate one-to-one associations. This is illus-
trated in Fig. 4b: at times t1 and t2 distinct lightcurves, L1

and L2 are being tracked. However, at t3 a single source
is detected which can be associated with both of these
lightcurves. This could happen, for example, if the third
observation was made at a lower angular resolution.

Note that the single flux density measurements f5 and
f6 are now independently included in two separate sources:
L1 has average flux density f1,3,5,6 and L2 has average flux
density f2,4,5,6. The total brightness reached by summing
all catalogued source flux densities has been artificially
increased. Since all individual measurements are stored,

f1 f2 f3 f4 L1

t1 t2 t3 t4

(a) One-to-one.

f5 f6
L2

t1 t2 t3 t4

L1

f2 f4

f1 f3

(b) Many-to-one.

f1 f2
f4 f6 L2

t1 t2 t3 t4

L1f3 f5

(c) One-to-many.

f1 f3

f2 f4

f5

f6

f7

f8

L1

L3

L5

L7

L2

L4

L6

L8

t1 t2 t3 t4

(d) Many-to-many.

f1 f3

f2 f4

f5

f6

f7

f8

L1

L2

L3

t1 t2 t3 t4

(e) Reduced many-to-many.

Figure 4: Types of source association, corresponding to those de-
scribed in §4.4.2. Flux density measurements taken at a particu-
lar position at time ta are labelled fb. The association procedure
knits flux density measurements together between timesteps to form
lightcurves which are identified with particular running catalogue
entries identified as Lc.
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it is possible for users to correct for this in their analysis
according to their particular requirements. Future versions
of the TraP may support the division of flux density from
a single measurement among multiple sources (§10).

One-to-many. In the reverse of the previous case, a sin-
gle running catalogue source can be associated with more
than one source measurement from a given image. This is
handled by splitting the catalogue source into two indepen-
dent sources, L1 with average flux density f1,2,3,5 and L2

with average flux density f1,2,4,6 as shown in Fig. 4c. As
in the many-to-one case, some source measurements are
included in multiple lightcurves, artificially increasing the
total brightness of the catalogue.

Many-to-many. A many-to-many association occurs when
more than one running catalogue source can be associated
with more than one extracted source. If the procedures
described above were applied, every possible combination
of catalogue sources and new measurements would result in
a new lightcurve: the database complexity would increase
quadratically, and the situation rapidly becomes untenable.
This is illustrated in Fig. 4d. To prevent this, many-to-
many associations are reduced to one-to-one or one-to-
many associations by choosing only the source pairs with
the smallest de Ruiter radii. By applying this procedure,
the association topology is reduced to a simpler case such
as that shown in Fig. 4e: rather than the eight separate
lightcurves produced by “pure” many-to-many association,
we are left with just three.

4.5. Null-detection handling
We use the term “null-detection” to describe a source

which was expected to be observed in some particular
image—it had been observed in previous images of the
same field with a flux density above our detection threshold
for this image—but which was not detected by the source
finding procedure (§4.3).

After the association step (§4.4), we build a list of all
sources which:

• Exist in the list running catalogue of known sources,
having been observed (in any frequency band) at an
earlier timestep;

• Were not associated with any source detected in the
current image.

For each of these null detections, we use a modification
of the sourcefinding procedure: the same techniques are
employed for background and noise estimation and source
measurement as previously described, but, rather than
being based on islands of pixels above some threshold,
the peak of measurement is constrained to be fixed to
the catalogued position of the null detection. No other
additional constraints are placed on the measurement.

After the measurement has been made, it is stored
as a one-to-one association with the appropriate running

catalogue entry; the measurement is marked as being due
to the null detection procedure.

In the current release of the TraP, once a running cata-
logue entry has been created, forced fitting at that location
will always be attempted in the absence of a matched
blind-detection. Ultimately, an accumulation of marginal
single-epoch false detections due to noise will cause a very
large number of irrelevant forced fits to be performed and
stored. This may be mitigated by expiring these marginal
detections from the list of positions to be measured if they
are not re-observed after a certain period of time or num-
ber of revisits. Automatic expiry according to user-defined
criteria will be included in a later release of TraP.

4.6. Monitoring list sources
We anticipate that there may be some sources which

are important to particular science cases which may not
always be detected by the default sourcefinding procedures
employed by the TraP. It is therefore possible for the end-
user to supply a “monitoring list” of positions at which a
measurement will always be made, regardless of the results
of the sourcefinding step. The current version of the TraP
assumes that input images have been correctly registered
when making these measurements: it makes no attempt to
correct for astrometric shift.

For each image which covers the location of a position on
the monitoring list, a measurement is taken at its location.
The same procedure is used as for null detections (§4.5): a
modified version of the algorithms described in §4.3 which
hold the position of the measurement constant.

For each monitored position, a running catalogue source
is generated which contains only a chain of one-to-one
associations of measurements at the user-specified position.
Sources monitored in this way are not included in the
general association procedure described in §4.4.1.

4.7. Aggregate source properties
For each entry in the running catalogue, we now have at

least one individual measurement (corresponding to the cur-
rent image) and potentially others corresponding to other
images (presumably representing observations at different
times or frequencies). We combine these measurements to
estimate the true source properties as follows.

4.7.1. Mean values
For each property of a given source we store both the

arithmetic mean and a weighted mean. For a series of
measurements of property x, we denote the arithmetic
mean of x as x. We define the weight of a measurement of
property x as

wx = 1/σ2
x (33)

where σx is the uncertainty on that measurement. The
weighted mean of N such measurements is then

ξx =
∑N
i=1 wxixi∑N
i=1 wxi

. (34)
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Using these definitions, for each source we calculate
both the arithmetic and weighted means of:

• The source right ascension (J2000 degrees);

• The source declination (J2000 degrees).

For each frequency band for each source, we calculate
both the arithmetic and weighted means of:

• The peak flux density of the source in this band
(Jy/beam);

• The integrated flux density of the source in this band
(Jy).

4.7.2. Variability metrics
After source association, each running catalogue entry

corresponds to a multi-frequency lightcurve of a particular
source. We search for transient and variable sources by
examining the properties of these lightcurves.

For each source, we label a measurement of its flux
density at a particular frequency, ν, as Iν with uncertainty
σν . Based on these quantities, and using the same notation
as above, we define the flux density coefficient of variation9

over N measurements as the ratio of the mean flux density
to the sample standard deviation s, thus:

Vν =
s

Iν
=

1
Iν

√
N

N − 1

(
Iν

2 − Iν
2
)
. (35)

Using the same definition of weight wν = 1/σ2
ν as above,

we can also express the significance of the flux density vari-
ability. We make use of the familiar reduced-χ2 expression
in conjunction with the weighted mean flux density, ξIν :

ην =
1

N − 1

N∑

i=1

(Iν,i − ξIν )2

σ2
ν,i

. (36)

For a given ην , the probability that we can reject the
null hypothesis—that the source under consideration is not
variable—is given by

Pvariable = 1−
∫ ∞

ην ′=ην

p (ην ′, N − 1) dην ′. (37)

where p(x, n) is the χ2 probability density function for x
over n degrees of freedom (see, for example, Kesteven et al.,
1977).

Vν and ην are calculated and stored for every lightcurve
whenever a new source measurement is added. Since vari-
ability metrics are stored per association, we can track how

9This quantity is occasionally referred to as the ‘modulation index’
in astronomical literature (e.g. Narayan, 1992; Gaensler and Hunstead,
2000; Jenet and Gil, 2003; Bell et al., 2014). The present authors
prefer ‘coefficient of variation’ due to its more widespread use (McKay,
1932; Hendricks and Robey, 1936; Lande, 1977; Freund and Williams,
2010) and because it avoids any possible confusion with other fields
(e.g. Whitaker, 1996).

the variability parameters of a source have changed with
time. This is particularly useful in the case of those sources
which have shown evolution in their behaviour over time.

It is worth noting that it would be relatively straight-
forward to extend the TraP to support the calculation
and storage of other variability metrics beyond the two
described above. It is expected that extended testing and
experience in processing data from various sources will
guide future development in this area.

4.7.3. Reproducibility of results
Reproducibility of pipeline results is of paramount im-

portance: the end user should be confident that repeatedly
running the TraP on a given dataset with the same config-
uration should always produce the same results. This has
important consequences for the association and aggregation
procedures. For example, consider a particular running
catalogue source R and two source measurements, M1 and
M2, taken from different images. If M1 is inserted first,
it is associated with R. On association, a new aggregate
position for R is calculated (which may or may not be
consistent with association with M2). On the other hand,
if M2 is inserted first, the resulting aggregate position for
R is not consistent with association with M1. In short,
the order in which the images are processed influences the
association procedure, and hence changes the outputs.

In order to mitigate this effect, the TraP only guar-
antees reproducibility of output if the input is in mono-
tonically increasing order of time. If two or more images
with different frequency or Stokes parameters but the same
timestamp are processed, the TraP will automatically sort
them along these axes before processing. This is not, in
general, possible along the time axis, which is potentially
unbounded.

5. Data products

After all the stages described in §4 have been completed
for a given image cube, the core pipeline loop is complete.
The complete running catalogue, together with ancillary
data describing the images which have been processed,
pipeline configuration and other metadata, is now stored
in a database, the structure of which is described in detail
in §6.4. At this point, the pipeline may start processing
the next image cube. Simultaneously, the contents of that
database may be used to support scientific analysis and
alert generation.

5.1. Identifying transient events
As described in §3, we distinguish between newly de-

tected and variable sources. Both are scientifically signifi-
cant and may form the basis for a “new transient” alert.
Depending on context and science goal, these alerts may
simply result in a particular source being brought to the at-
tention of the pipeline end user, or they may be distributed
more widely to the community. The technical mechanism
used for alert dissemination is described in §6.6.
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5.1.1. New detections
As described in §4.4.2, a measurement which cannot be

associated with a previously catalogued source is regarded
as a new detection. Such a new detection might correspond
to a new transient source appearing, but it could also
simply mean that this area of sky had not previously been
surveyed to a depth adequate to detect this source.

In order to distinguish between these possibilities, the
TraP keeps track of the fields-of-view and sensitivities of
all images it processes. When a new source is detected, its
flux density is compared against the recorded sensitivities
of images covering the same area to see if it could have
been detected previously. If so, it may be regarded as a
new transient.

In practice, and as described in §4.3.1, noise (and hence
sensitivity) is not constant across any given image. It is
possible that a particular source could have been detected
if it fell in a low-noise area of a previous image, but not if
it fell in a high-noise area. We therefore record both the
highest and lowest RMS values recorded in each previous
image (σmax,i,ν and σmin,i,ν in image i at frequency ν) as
well as the detection threshold (ni,ν) used when processing
that image. For a flux density measurement Ii,ν , we regard
it as a marginal transient candidate if

σmax,j,ν × (nj,ν +M) > Ii,ν ≥ σmin,j,ν × (nj,ν +M). (38)

where M is some user specified margin, applied to prevent
stable sources with flux densities approximately equal to the
detection threshold from being misidentified as transients.
This marginal category would include both genuine but
faint transients, and steady state sources which change in
significance as noise varies between images. In the case
that

Ii,ν ≥ σmax,j,ν × (nj,ν +M) ∀j < i (39)

we regard the source as likely to be a new transient.

5.1.2. Variable sources
As per §4.7.2, three separate variability metrics—the

flux density coefficient of variation Vν , the significance
of the variability ην , and the probability of variability
Pvariable—are stored whenever a new source association is
made. We can therefore search the catalogue for sources
which meet the following criteria:

• Vν is above a user-specified threshold;

• ην is above a user-specified threshold;

• Pvariable is above a user-specified threshold;

• The number of source measurements in the lightcurve
is above a user-specified threshold.

Choosing appropriate values for these thresholds is
a matter of user configuration and will depend on the
details of the science case as well as the particular dataset
under investigation. Section 8 gives an overview of possible

considerations, while Rowlinson et al. (in prep.) presents
a detailed consideration of how optimal parameters might
be chosen.

5.2. Database interface
While automatic routines may be used to scan the

database for transients as it is constructed using the meth-
ods described in §5.1, it is likely that many scientific dis-
coveries will be based on expert analysis of the database
contents. Here, we describe the systems by which this is
made available to end users.

5.2.1. Direct database queries
The core database engine is one of various off-the-shelf

database management systems, as discussed in detail in
§6.4. Given appropriate permissions10, the database may be
queried directly using SQL11. Expert users may write SQL
scripts or use the command line interface to the database
system to manually construct complex queries selecting
exactly the information they require.

5.2.2. Web interface
While the ability to query the database for arbitrary

information which answers a specific science question is
undeniably powerful, it requires a significant investment
of time on the part of the end user to become fluent in
the relevant technologies. Further, it is often convenient
to have an at-a-glance summary of the contents of the
database and the important results. For this reason, the
TKSP has developed Banana, a web-based interface to the
database. Banana enables the user to conveniently examine
the contents of the database, viewing details (including cut-
out images) of all source measurements, plotting lightcurves
of all sources in the running catalogue, selecting potential
transients based on their variability metrics, and so on.

Banana is open-source (it is released under a Modi-
fied BSD license12) and is developed and released by the
TKSP independently of the TraP. It is freely available for
download13.

5.2.3. High volume archival data-mining
For modest input dataset sizes (thousands of images,

tens or hundreds of sources per image), the total volume of
data stored is modest: on the order of, perhaps, gigabytes.
However, as per §2.2, the TraP ultimately aims to support
long term operation of the LOFAR RSM, which will be
capable of producing thousands of images per hour. It is
also a stated aim of the project to make the lightcurve

10Database permissions are controlled by the administrators of
a particular TraP installation; it is possible for them to grant per-
missions to both query and modify the data to arbitrary users if
required.

11Structured Query Language, the de-facto standard for interacting
with relational database systems.

12http://opensource.org/licenses/BSD-3-Clause
13https://github.com/transientskp/banana
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archive available to the community as a legacy resource.
Efforts are currently underway to both develop database
systems capable of handling this volume of data (Scheers,
2011; Scheers et al., in prep.), and a batch query system
akin, for example, to CasJobs (O’Mullane et al., 2005) is
under consideration. Ultimately, we also hope to make
data available using a Virtual Observatory-compliant in-
terface. However, the currently-available IVOA model for
time series data (Graham et al., 2014) is an intentionally
minimal interim solution; we prefer to wait for more mature
standards to become available (e.g. McDowell et al., 2015)
before proceeding.

6. Implementation

In this section, we turn our attention to the underlying
technology which implements the workflow described in
sections 3 and 4.

6.1. Architecture
The TraP is structured as a series of pipeline “steps”,

each of which performs a logically discrete operation in
turn. These steps, and the relationship between them, are
shown graphically in Fig. 2.

The operations carried out by the TraP naturally split
into those which involve directly interacting with image
data (such as loading data from disk or finding and mea-
suring sources within it) and those which operate on mea-
surements derived from the data (source association or
aggregate calculation).

Interacting with images and performing measurements
upon them is most effectively accomplished by bespoke soft-
ware packages developed by members of the TKSP which
directly encode the required algorithms. We have developed
a series of such packages using the Python programming
language14. The choice of Python for this task, together
with a discussion of the approach taken, is motivated in
§6.2.

The derived data which results from source measure-
ments is highly structured. It can be efficiently stored using
a relational database system (Codd, 1970). The contribu-
tion of the database goes beyond mere storage, however:
by performing calculations within the database itself it
possible to operate on the entire corpus of data efficiently
and with minimal overhead due to data transport. In this
way, the database becomes the core computational engine
of the TraP. The design and structure of the database is
described in §6.4.

A control layer sits above the core scientific logic as
defined in Python code and the database. This control layer
defines the structure of the pipeline—effectively connecting
the components together in the correct order—as well as
providing utility services such as parallelization and task
distribution, which we describe in §6.3.

14http://www.python.org/

Finally, and in addition to the pipeline routines de-
scribed, the TraP offers the option to save a copy of all
the pixel data processed to a separate document-oriented
database for later use by the Banana web interface (§5.2.2).
This is described in §6.5.

6.2. Python
Python is the primary programming language used in

the TraP. We consider Python to be the default choice
for astronomical software development where performance
is not the critical consideration in the near to intermedi-
ate future. It provides a flexible and expressive language
together with a wide ecosystem of scientific and other li-
braries, and it is easily extensible using code written in
lower-level languages where maximum performance is re-
quired15. Furthermore, thanks to projects like IPython
(Pérez and Granger, 2007) and AstroPy (Astropy Collab-
oration et al., 2013), Python is also increasingly finding
a role in the daily workflow of many astronomers as an
interactive data analysis toolbox. Although we do not
directly use these tools in the TraP, this familiarity then
lowers the barrier to entry on larger projects as the novice
coder becomes more proficient, potentially widening the
pool of future maintainers and contributors to open-sourced
scientific codes.

Although we have had great success using Python, a sig-
nificant downside is that, as a dynamically typed language,
there is a risk of run-time type errors. We have countered
this by adopting a strongly test-focused development style
and building an extensive suite of TraP unit tests. This is
a topic we return to in §7.4.

6.3. Parallelization and distribution
Some operations which are carried out by the TraP

can be performed concurrently on multiple datasets. For
example, the initial source finding and measurement step
(§4.3) can be performed on many independent images si-
multaneously without changing its results. We can exploit
this intrinsic parallelism to obtain the best possible run-
time performance by distributing processing across multiple
CPU cores (or even distinct machines) and scheduling as
many operations to run concurrently as is possible.

Of course, the performance improvement which may be
achieved in this way is limited: some operations (such as
source association, §4.4) cannot run concurrently (we rely
on data being processed in a particular order to ensure
reproducibility; §4.7.3); there is an intrinsic ordering of
pipeline steps (it is impossible to perform source association
before source measurement is complete); and, for reasons
of reproducibility, we mandate that all steps relating to
images corresponding to a particular observation time are
complete before a subsequent observation time can start

15We have experimented with writing portions of the TraP in
Cython (http://www.cython.org/) for performance reasons with
some success, but no Cython code is shipped with the current release.
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processing (§4.7.3). These intrinsically sequential parts
of the processing limit its overall performance (Amdahl,
1967).

We have implemented the TraP in such a way that the
definition of the underlying algorithms is independent of the
method used to start tasks and collect results. In this way,
it is possible to insert different task scheduling back-ends
which support different parallelization and distribution
techniques. Three are currently supported by the TraP:

• The serial back-end runs tasks sequentially using a
single Python interpreter. Using the standard Python
interpreter16 means that all (non-database) process-
ing takes place in series on a single CPU core.

• The multiproc back-end uses the multiprocessing
package17 to schedule jobs on multiple CPUs within
a single machine concurrently.

• The celery back end uses Celery18, an asynchronous
task distribution system, to marshal the distribution
of concurrent TraP tasks across a cluster of multiple
machines.

The end user may select which back-end to use when
invoking the TraP from the command line.

Note that the celery system does not arrange for data
to be transmitted across the cluster. If, for example, it
is used to distribute a source finding step across multiple
images, it is required that each machine have access to the
particular images which it is to process (perhaps on its local
disk or on shared storage). This is a convenient match to
the imaging process on the LOFAR cluster, which deposits
image data on the cluster node which was responsible for
creating it. We have, nevertheless, prototyped an image
transmission system which is better integrated with the
TraP, but it is not included in the current release.

Many-core exploitation works well for the ‘embarrass-
ingly parallel’ problem of sourcefinding across many dif-
ferent images (corresponding to different frequencies and
pointings). However, the bottleneck for processing a timestep
then becomes the database operations, placing stringent
performance requirements on the combination of query
complexity and database back-end used, as covered in Sec-
tion 6.4.

6.4. Database
All source measurements, together with metadata de-

scribing the images from which they were taken, are stored
and processed in a relational database. The contents of the
database is itself one of the core products of the TraP (§3.2),
while queries run over the database are an intrinsic part
of regular pipeline processing. Only a single instance of

16The reference “CPython” implementation.
17multiprocessing is part of the Python standard library.
18http://www.celeryproject.org/

the TraP may write to a given database during processing
(but the database may be accessed by arbitrary read-only
queries). However, both of the supported database manage-
ment systems, as described in §6.4.1, provide for multiple
isolated databases being hosted within a single system, so
supporting multiple pipeline instances is straightforward.
This could be used, for example, to support multiple inde-
pendent monitoring campaigns.

6.4.1. Database management systems
The TraP is developed and tested using two relational

database management systems (RDBMS): MonetDB19 and
PostgreSQL20.

MonetDB is an ongoing project to build a database with
exceptional performance and scalability based on research
into data organization and query optimization (Idreos et al.,
2012). The potential performance benefits of MonetDB are
impressive, particularly when considering the ultimate data
volumes expected from the RSM (§2.2) and, later, from the
SKA. However, its development is driven by fundamental
database research and scientific user groups, and it may
occasionally perform in unexpected or undesirable ways.
We therefore also verify the correct operation of the TraP
and, where necessary, provide “production grade” deploy-
ments using PostgreSQL, which has a long pedigree as an
industry-standard database management system.

The TraP pipeline code and the Banana web interface
send queries to the database using SQL. Although SQL
is a standardized language21, there is significant variation
in its implementation between different database vendors:
code that is written and tested against one database may
unexpectedly fail when run on another system. Therefore,
while the code in the TraP is designed to be standards
compliant and database vendor agnostic, it is occasionally
necessary to add special cases to work around different
SQL dialects. To accommodate this the TraP provides a
simple templating system for SQL queries. For example,
we can accommodate both the PostgreSQL and MonetDB
syntaxes for defining a function within the database as
follows:

{% ifdb monetdb %}
CREATE PROCEDURE BuildFrequencyBands()
{% endifdb %}

{% ifdb postgresql %}
CREATE OR REPLACE FUNCTION BuildFrequencyBands()
RETURNS void
AS $$
{% endifdb %}

BEGIN
-- Definition elided

END;

19http://www.monetdb.org/
20http://www.postgresql.org/
21ISO/IEC 9075-1:2011
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In this way it is easy to extend the TraP’s database support
to encompass other systems if required.

6.4.2. Database structure
The structure of the current version of the TraP database

is elaborate, consisting of many separate tables, some with
tens of individual columns, complex relationships between
them, and a variety of stored procedures. It is described
in detail in the TraP Handbook22. A simplified version is
shown in Fig. 5.

It is expected that, as TraP development progresses, the
database will evolve to meet new requirements. For this
reason, the database is versioned, and the TraP does not
support mixing results across versions. The current code-
base does not offer explicit support for “schema migrations”
(converting a database from one version to another without
losing data), although versions with this functionality have
been prototyped, and off-the-shelf schema migration tools23

may be applicable.
It is worth noting, for performance reasons, the database

is not fully normalized (Kent, 1983).

6.4.3. Positional database queries
Perhaps the most common operation required of the

database, both during pipeline processing (e.g. §4.4) and
during later analysis is the “cone search”: finding all ob-
jects of a particular type (such as source measurements,
running catalogue entries) within a given search radius of
a particular position. Since this operation is so common,
we give it special consideration.

Given a particular target (ατ , δτ ), search radius r and
list of positions (α1, δ1), (α2, δ2), ...(αn, δn), the simplest
approach to finding all the positions which fall within the
radius of the target is to iterate down the list calculating
for each one the great-circle distance

rτ,n = arccos(sin δτ sin δn + cos δτ cos δn cos |ατ − αn|)
(40)

and selecting only those sources for which rτ,n ≤ r. While
conceptually simple, this involves multiple calculations for
every source to be checked: it is prohibitively computation-
ally expensive given a large source list.

Since this simple approach is impractical, we adopt an
approach based on that described by Gray et al. (2006)24.
This involves a hierarchical approach, filtering the list of
candidate sources first on declination then on right ascen-
sion before selecting candidates based on a Cartesian dot
product.

First, when any new source measurement is inserted
into the database, or when the weighted mean position

22http://docs.transientskp.org
23For example, Alembic http://alembic.readthedocs.org/.
24Note that a variety of alternative approaches were considered,

such as HTM (Szalay et al., 2006) and Q3C (Koposov and Bartunov,
2006); practical experience and compatibility with the database man-
agement systems informed the approach taken.

(§4.7.1) of a catalogue source is updated, we calculate a
corresponding position on the unit sphere:

x = cos δ cosα (41)
y = cos δ sinα (42)
z = sin δ (43)

At the same time, we define a function zone(δ) which
maps a declination to a particular “zone”, corresponding
to a strip of the sky. Zones must increase monotonically
with declination: zone(δm) includes all declinations falling
between zone(δm−1) and zone(δm+1). In the current ver-
sion of the TraP we use the largest integer smaller than δ
as the zone, thus:

zone(δ) = bδc. (44)

However, this definition is flexible: given the constraint
above, future versions could adopt a zone definition with a
more fine-grained resolution or variable zone heights (e.g.
chosen to provide zones of uniform area).

The Cartesian coordinates and the zone are stored in
the database and are henceforth available for each running
catalogue source and source measurement with no further
run-time calculation.

It is next necessary to describe the ‘inflation’ of angular
distances in right ascension with declination. For example,
at a declination of 0◦, a circular region with radius θ centred
on right ascension α includes RAs in the range [α−θ, α+θ],
whereas at a declination of 90◦ it covers the complete circle.
Following Gray et al., we define the function alpha(θ, δ) as

alpha(θ, δ) =

{
arctan sin θ√

cos(δ−θ) cos(δ+θ)
if |δ|+ θ < 90;

180 otherwise.
(45)

In general, such a circle at arbitrary α, δ can be said to cover
the range [α− alpha(θ, δ), α+ alpha(θ, δ)]. alpha(θ, δ) is
implemented as a stored procedure directly in the database
so that it can be calculated for arbitrary θ and δ with
minimal overhead.

These definitions made, we are now able to quickly
filter the list positions to be searched. First, we cal-
culate the maximum and minimum zones in which tar-
gets may be found, rejecting all those targets for which
zone(δn) lies outside the range [zone(δτ−r), zone(δτ+r)].
Then we reject all targets for which αn lies outside the
range [ατ −alpha(r, δ), ατ +alpha(r, δ)]. By ensuring that
the database is appropriately indexed on zone(δn) and α
this filtering can be done extremely fast.

The above filtering reduces the potentially large list
of positions to match to a much more manageable size.
For each position, we now check whether it lies within
the required angular distance of the target. Rather than
calculating the great circle distance (Eq. 40) it is more
efficient to use a scalar product based on the Cartesian
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Image
A plane of an image 
cube: a two dimensional 
spatial pixel grid 
corresponding to a given 
time, frequency and 
Stokes parameter.

Running Catalogue
An astronomical source, 
associating all individual 
measurements with 
derived aggregate 
position and flux. Flux

Aggregated flux in each 
of the available frequency 
bands for a given 
running catalogue entry.

Extracted Source
An individual 
measurement of a 
particular source in a 
given image.

Rejection
The reason for excluding 
an image from further 
processing, if applicable.

Dataset
A collection of images 
and associated pipeline 
configuration which 
constitutes a particular 
scientific dataset.

Frequency Band
A range of frequencies 
which we regard as 
equivalent for the 
purposes of constructing 
a lightcurve.

Figure 5: Simplified version of the TraP database structure. Each box represents a database table, while lines represent key-based cross-
references. A single line refers to a unique key, while a split line indicates that a many-to-one relationship is possible. For example, an Image is
a member of a single Dataset, but a Dataset may contain many Images.

positions calculated according to Eqs. 41–43. Thus we
check for:

xτ · xn + yτ · yn + zτ · zn ≤ cos r (46)

Since (xn, yn, zn) for each candidate is already stored in
the database, the total amount of computation (and hence
running time) is kept to a minimum.

The above procedure fails in the case of a discontinuity
in RA: at the meridian, we jump from 359◦ to 0◦, breaking
the check for αn lying within a given range. To work around
this, if a source association query crosses the meridian, we
rotate the RAs of the relevant sources by 180◦ to avoid the
discontinuity, perform the association as normal, and then
rotate the results back to the original orientation.

6.4.4. Iteratively updating aggregate quantities
As per §4.7, we store weighted mean positions, flux den-

sities and variability indices for all sources in the database.
When a new measurement is appended to a particular run-
ning catalogue entry, it would be possible to re-calculate
these quantities from scratch by averaging over all the ex-
isting information about that source in the database. This
would clearly be inefficient, though. Instead, we update
these quantities iteratively.

The arithmetic mean of some property x over N mea-
surements is

xN =
1
N

N∑

i=1

xi (47)

where xi is the ith measurement of x. When a further
measurement of x is taken, updating the mean iteratively

is straightforward:

xN+1 =
NxN + xN+1

N + 1
. (48)

As per §4.7.1, we also calculate the weighted mean
defined as in Eq. 34. The weight of measurement xi is wxi ;
the sum of all weight over N measurements is

WxN =
N∑

i=1

wxi . (49)

Given ξxN and WxN it is then possible to express the
weighted mean after N + 1 measurements as

ξxN+1 =
WxN ξxN + wxN+1xN+1

WxN + wxN+1

(50)

=
NwxN ξxN + wxN+1xN+1

NwxN + wxN+1

. (51)

Therefore, by storing the number of measurements (N)
and the average weight (wxn) in addition to the weighted
mean, we can iteratively update the mean and weighted
mean source properties as new measurements are added to
the database without revisiting all previous measurements.

As measurements are associated with catalogue sources,
we keep track not only of the mean parameters but also of
the evolving variability parameters, Vν and ην , as described
in §4.7.2.

Updating Vν is straightforward. We store both the
mean and the mean square flux density per band, Iν and
I2
ν and update them using the procedure described above.
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They can then be directly used to calculate Vν based on
Eq. 35.

To handle ην , we substitute Eq. 33 into Eq. 36 to get

ην =
N

N − 1

(
1
N

N∑

i=1

wν,i(Iν,i − ξIν )2

)
(52)

=
N

N − 1

(
1
N

N∑

i=1

wν,i(I2
ν,i − 2Iν,iξIν + ξ2

Iν )

)
(53)

=
N

N − 1

(
wνI2

ν − 2ξIνwνIν + ξ2
Iνwν

)
(54)

=
N

N − 1

(
wν Iν

2 − wν Iν
2

wν

)
(55)

where we use the definition of ξIν from Eq. 34. This
quantity can be calculated directly from the aggregates
stored in the database.

Every time a new association is stored in the database,
the values of the variability parameters calculated at the
time of association are stored together with it. In this
way, it is possible to query the database for the variability
parameters corresponding to any point in the history of a
particular running catalogue entry.

6.5. Pixel store
Images are not created during the operation of the TraP;

in general, therefore, we regard their storage as outwith the
scope of TraP operations. However, it is often convenient
to maintain easy access to image data which has been
processed. This enables end users who are analysing the
TraP results to quickly cross-check them with a visual
inspection of the image data. Indeed, tools such as Banana
(§5.2.2) can over-plot details of sources identified by the
TraP on the image data.

In normal operation, the TraP reads images from the
filesystem attached to whichever machine (or machines)
upon which it is executing. Often, that filesystem is not
intended as long-term image storage, but is rather a tem-
porary resting place on whatever compute system is being
used for analysis. Further, it may not always be desir-
able (for security or management reasons) for the ultimate
scientific user of the TraP to have access to the systems
upon which the pipeline runs. Finally, it is simply more
convenient to aggregate images for display in one location,
rather than have Banana or other tools search for them on
diverse filesystems.

For these reasons, the TraP can optionally insert a copy
of all pixel data it processes to a centralized store. The
term “pixel data” is used deliberately: rather than stor-
ing complete image cubes, with full metadata, images are
reduced to a lowest common denominator form consisting
of just a pixel grid and coordinate system stored in FITS
format. This enables a convenient and uniform interface
by which data may be accessed for display, but does not
amount to a comprehensive archive of the images.

The pixel storage used by the TraP is implemented as a
MongoDB25 database. MongoDB is a “document-oriented”
database, which makes it easy to simply store and retrieve
large “blobs” of binary data (such as our pixels) using a
simple key-value look-up scheme.

Pixel data may be saved to the MongoDB database by
the data accessor (§4.1) when it is first loaded from disk. A
URL identifying the location of the corresponding pixels is
then stored in the Image table of the main TraP database
(Fig. 5).

6.6. Dissemination of transient notifications
After an event has been selected as scientifically note-

worthy, information about it must be rapidly distributed.
In general, notifications will be sent to the community at
large, although it is possible that certain events may only
be shared with selected partners.

Currently, the rate of transients being announced by
LOFAR is low, but we anticipate it increasing in the future
(Fender et al., in prep.; Stewart et al., in prep.). Look-
ing further ahead to facilities like SKA (Dewdney et al.,
2010) and LSST (Ivezić et al., 2014), it is reasonable to
expect that millions of transients may be announced every
day. Furthermore, rapid turn-around time for follow-up
observations is often necessary. Therefore, we regard it as
imperative that, as far as is possible, transient alerts can be
generated, transmitted, received and acted upon without
human intervention. This makes possible the development
of the automatic systems that will be required to handle
the upcoming transient deluge (see, for example, Staley
et al., 2013).

With the above considerations in mind, we have stan-
dardized upon the VOEvent (Seaman et al., 2011) format
developed by the International Virtual Observatory Al-
liance (IVOA) for describing transients detected by LOFAR.
VOEvent provides a standardized, machine-readable way of
describing a celestial event with the implication that timely
follow-up is of interest. VOEvent provides mechanisms for
describing:

• The facility and/or observer responsible for publish-
ing the notification packet;

• A description of the event observed;

• Where and when the observations where made;

• Instrument specific information describing how the
data was collected; and

• A scientific assessment of the event, which may be
used to motivate the request for follow-up.

All of this information is presented in an XML document
which can be conveniently manipulated by computer, but

25https://www.mongodb.org/
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it may also be accompanied by plain text descriptions for
human consumption.

The flexibility of this format is such that early LOFAR
transient notifications can be simple (a position, a times-
tamp, a frequency and a flux density measurement, for
example), and, as our understanding of both the instru-
mentation and the low frequency radio sky improves, the
event descriptions can become increasingly elaborate and
include detailed classification information and scientific
assessment.

The VOEvent standard does not specify a means by
which VOEvents should be transmitted from originator
to recipient. However, ongoing work in the IVOA and
the transient astronomy community has developed a trans-
portation protocol (Allan and Denny, 2009) and an early
version of a worldwide distribution network (Williams et al.,
2012). The TKSP team has developed Comet26 (Swinbank,
2014), an open-source implementation of this transporta-
tion system, and will use that to publish VOEvents to the
distribution network. A prototype of a similar system is
currently being used to notify the robotic pt5m telescope27

of observations by AMI-LA.

7. Development methods

The TraP is a large and complex project: it consists of
some tens of thousands of lines of code, written in Python
and SQL, which are very different languages; it ingests
image data from a variety of different sources; it interacts
with two different types of database; and it is developed,
tested and supported by a heterogeneous team of soft-
ware developers and academic astronomers spread across
multiple different institutions. Ensuring the delivery of
reliable software which produces scientifically valid results
under these circumstances requires a rigorous development
methodology.

7.1. Planning and issue tracking
TraP releases are made at the cadence of a few per year.

This provides a compromise between deploying new and
upgraded features to end users as rapidly as possible, and
providing a stable base which users can trust to provide
consistent results from day to day while they work on a
particular science project.

Releases alternate between “science” and “technical”
focuses. The science-focused releases aim to deploy new
and upgraded scientific analysis capabilities. Technically
focused releases concentrate on consolidation of the code-
base and introducing new technology, without changing
the capabilities available to end users.

26http://comet.transientskp.org/
27https://sites.google.com/site/point5metre/

Goals for a release are defined through a series of “is-
sues” targeted to a particular milestone in an issue tracker28.
During the development cycle a daily test build is made
available for commissioners. In light of development expe-
rience and results from the test build, the issues targeted
for the milestone may be revised, and new issues may be
added. When all the issues targeted for that milestone have
been addressed, a release occurs and the cycle repeats.

7.2. Code repository and version control
The most fundamental tool in developing and maintain-

ing a large codebase is a version control system. This is
essential to maintain a list of changes to the code, includ-
ing information about who changed what, when, and what
the rationale was. We use the version control system to
develop and test multiple variations of the TraP in parallel;
to isolate and revert errors introduced to the code; and
to enable the painless integration of code developed by
different and geographically separate developers.

The TraP makes use of Git29, with a central repository
currently hosted on GitHub30. Our experience has been
that software developers are quick to adapt to working with
Git, but that its complexity can be off-putting to those
coming from a more purely scientific background. We
have organized training sessions and workshops in order to
mitigate this.

7.3. Code review
In order to ensure that all code entering the codebase is

of high quality, and to ensure that there is no single part of
the codebase which is understood by only one developer, we
require that all code contributions are reviewed by a team
member other than their original author before they are
added to the TraP. This process is managed using GitHub’s
“pull request” interface.

The overhead introduced by this review step is not
negligible: the reviewer must often invest considerable
time to become familiar with the code being reviewed,
and sometimes a lengthy discussion between the original
author and the reviewer can result. Furthermore, it can
occasionally be frustrating for the author to wait for a
reviewer to become available during busy times.

Despite these downsides, though, the review process
has been successful: since it was instituted, the quality and
reliability of the TraP codebase has increased markedly,
and the entire development team has better insight into all
parts of the pipeline rather than just their own particular
specialization.

28For most of the lifetime of the TraP to date, this was Redmine,
http:///www.redmine.org/. We have recently switched to GitHub
Issues, http://www.github.com/, for better integration with our ver-
sion control system.

29http://www.git-scm.com/
30http://www.github.com/
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7.4. Testing and continuous integration
Testing is fundamental to the development of any soft-

ware system. Mistakes are inevitable, and, in a large and
complex codebase, predicting all possible effects of even
simple changes becomes challenging. This is particularly
the case when development takes place using a dynamic
language such as Python: with no compile-time checking
for type or even syntax, it is easy for errors to slip by
without being noticed.

The TraP codebase is rigorously and automatically
tested. At time of writing, the test suite consists of some
347 individual test cases, with three times that number of
individual assertions contained within them. Test cases
cover everything from ‘unit’ testing (checking that individ-
ual functions and procedures perform as expected when
provided with both normal and extraordinary input condi-
tions) to large scale ‘integration’ tests which validate the
scientific results produced by large sections of the TraP
on given input data. All new code must pass all of these
tests (or, alternatively, explain why the test suite should be
changed) before it is accepted by the code review process.
Furthermore, all submissions are expected to come with
their own set of tests which demonstrate their correctness.

Our testing infrastructure is based upon the unittest
module provided as part of Python’s standard library and
the Jenkins31 continuous integration system.

7.5. Documentation
Documentation is provided both for the end-user as-

tronomer who needs to understand how to process their
data and interpret the results, and for the expert user
or developer who is extending the TraP to address their
particular use case.

The TraP is documented using the Sphinx32 documenta-
tion system. This can both automatically generate interface
documentation from the TraP’s Python code while also in-
corporating hand-written material giving a more complete
description of the code along with tutorial-style documen-
tation. As part of the code review process, reviewers are
expected to check that code not only functions properly
and is well tested, but also that, if appropriate, it is ac-
companied by appropriate additions or alterations to the
documentation.

The documentation for all released versions of the TraP
as well as the latest developmental version is available from
the project website33.

8. Integration testing

As described in §7.4, the TraP codebase is well covered
by an extensive test suite which tests individual compo-
nents and their interactions when provided with a variety

31http://jenkins-ci.org/
32http://sphinx-doc.org/
33http://docs.transientskp.org/

of different inputs, based on both synthetic and archival
data. Further, individual subsystems and the algorithms
they implement have undergone extensive testing both in
the published literature and in regular use. For example,
Scheers (2011, chapter 4) describes how the source associa-
tion routines were applied to cross-match the VLSS (VLA
Low Frequency Sky Survey; Cohen et al., 2007), WENSS
(Westerbork Northern Sky Survey; Rengelink et al., 1997)
and NVSS (NRAO VLA Sky Survey; Condon et al., 1998)
catalogues. This functionality forms the basis of the LO-
FAR Global Sky Model database (van Haarlem et al., 2013).
Similarly, Spreeuw (2010, chapter 3) describes an elaborate
series of statistical tests on the sourcefinder, which are ex-
panded upon by Carbone et al. (in prep.). Results from the
sourcefinder were also submitted to the ASKAP/EMU34

Source Finding Data Challenge (Hopkins et al., in prep.);
the final results of this exercise have not yet been published,
but preliminary indications are that the TraP code has
performed to a high standard.

Although the individual components of the TraP are
well tested, it is useful to consider an integration test, which
demonstrates the operation of the TraP as a coherent whole
and provides an indication as to how the results may be
interpreted. It is stressed that this section serves primarily
as an illustration of a pipeline run under strictly controlled
circumstances: we do not attempt to account for complex or
unexpected behaviour of astronomical sources, as this can
best be considered by comparing the source behaviour to
the documented sourcefinder capabilities, database sources
association behaviour, variability metrics, etc. It is worth
noting that a companion paper, Rowlinson et al. (in prep.),
expands upon the techniques presented here to establish
strategies to determine optimal TraP configuration for a
given dataset given expected source and image character-
istics, while early science results derived from pre-release
versions of the TraP are now becoming available (Carbone
et al., submitted).

8.1. Simulation procedure
Simulated monochromatic lightcurves representing single-

epoch transients observed at a frequency ν were generated.
Each lightcurve consisted of 20 flux density measurements,
with the flux density recorded for measurement i, Iν,i, given
by:

Iν,i =
{
Itransient if i = 8;
Iquiescent otherwise. (56)

The transient flux density, Itransient was varied over the
range [5, 95] Jy in steps of 5 Jy. The quiescent flux density,
Iquiescent, was varied over the range [0 Jy, Itransient) using
the same step size. In this way, a total of 190 lightcurves
were generated.

For each lightcurve, a set of 20 images representing
LOFAR observations of the transient was simulated. In

34EMU is ASKAP’s Evolutionary Map of the Universe Survey
Science Project
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order to closely mimic genuine LOFAR observations, the
simulation developed was based closely on the structure of
existing LOFAR visibility data. We started with visibility
data obtained as part of LOFAR’s Multifrequency Snapshot
Sky Survey (MSSS; Heald et al., 2014). The data consisted
of 20 observations of the field of 3C 295 (14h11m20.6s,
+52◦12′21′′) made between 03:00Z and 08:00Z on December
24, 2011. Each observation had an integration time of 11
minutes, and was followed by a 4 minute re-pointing time.
Observation configurations were identical, covering 2 MHz
of bandwidth, divided among 10 subbands and centred on
54 MHz.

We generated a model sky for the area being observed by
selecting all sources from the VLSS catalogue (Cohen et al.,
2007) which fall within 8◦ of the pointing centre and which
are above a limiting flux density of 1 Jy. Spectral indices
for these sources were generated by comparing the VLSS
flux densities with those reported in WENSS (Rengelink
et al., 1997) and NVSS (Condon et al., 1998), then used
to extrapolate the source flux density to 54 MHz. Where a
VLSS source had no counterpart in the other catalogues, a
spectral index of -0.7 was assumed.

The simulation procedure for each image was:

1. All subbands were averaged to produce a single chan-
nel with a width of 1 MHz;

2. The stored visibilities were replaced with randomly
generated Gaussian noise at a level chosen to match
the System Equivalent Flux Density of the instrument
(van Haarlem et al., 2013);

3. The appropriate transient flux density, based on the
lightcurve being processed and the image number, was
appended to the model sky at position 14h20m00.0s,
+52◦00′00.0′′ (1.34◦ from 3C 295);

4. BBS (Loose, 2008), the standard tool use for cali-
brating LOFAR data, was used to simulate model
visibilities and add them to the data based on a
user-supplied model sky;

5. The data was calibrated and imaged as usual. The
transient source was included in the model sky used
for calibration. Images were generated with a radius
of 6◦.

The resulting images had an RMS noise level around
0.5 Jy/beam. Simulated sources with Iquiescent ≥ 5 are
therefore detected at around 10σ or higher in their quiescent
states; sources with Iquiescent = 0 are detected when the
transient turns on in image 8.

8.2. Predicted results
The flux density coefficient of variation, Vν , and the

significance of the variability, ην , as described in §4.7.2 were
calculated independently of the pipeline machinery for each
of the 190 lightcurves described in the previous section.
Note that the calculation of these metrics depends not only
on the raw simulated values, as described in the previous
section, but also on the configuration of the pipeline run.
In particular:

• When calculating ην (Eq. 36), we assigned an equal
weight (equal to the reciprocal of the average error
across all flux density measurements) to each data
point.

• Only those flux density measurements recorded in
or after the image of first detection are included in
the variability metric calculation; as per §3, measure-
ments from earlier images are not available during
pipeline processing.

In this way, we were able to predict the variability
metrics which the TraP should calculate for each source,
and determine in advance which ones ought to be identified
as transients for a given TraP configuration.

8.3. Transients pipeline results
Each dataset of snapshot images (190 datasets, 1 for

each transient) was run through TraP. A near-default
pipeline configuration was used: the quality control system
set to not reject any images and the shape of all point
sources was constrained to be equal to that of the clean
beam. The variability metrics corresponding to the final
snapshot for each source were extracted from the database
at the end of each pipeline run. Fig. 6 shows the predicted
values for each of the transient sources in comparison to
the measured value by the transient pipeline. The scatter
in this figure is due to three factors:

• The simulation process generates sources on a noisy
background, and this noise impacts on the results
produced by the sourcefinder;

• When a source is not detected by the initial sourcefind-
ing step, the TraP’s null-detection procedure (§4.5)
will force a constrained fit to its position and record
a (likely non-zero) flux density. The prediction pro-
cedure, by contrast, assumes a flux density of 0 Jy;

• The predicted values were calculated assuming an
equal weighting for all flux density points, whereas
the TraP assigns each point an independent weight.

Taking these expected deviations into account, the pre-
dicted and measured values are consistent with each other.
In particular, we tend to predict higher variability indices
than are measured for faint sources, as our prediction pro-
cedure takes no account of image noise, assigns an equal
weight to all measurements, and assigns a flux density of
0 Jy to non-detections.

As per §5.1, we distinguish between two classes of tran-
sients: new detections and variable sources. In this section
we describe targeted tests which confirm that both mecha-
nisms are performing as expected.

Throughout this section, we refer to “true positive” (TP)
detections when a transient source is correctly identified as
such; “false positive” (FP) detections when a non-transient

22



10−2 10−1 100 101

Observed Vν

0.01

0.1

1

10

P
re

di
ct

ed
V
ν

New detections
Variable sources
Equal values

(a) Flux density coefficient of variation (Vν).

100 101 102 103

Observed ην

1

10

100

1000

P
re

di
ct

ed
η
ν

New detections
Variable sources
Equal values

(b) Significance of the flux density variability (ην).

Figure 6: Comparison of predicted and measured variability parameters for simulated transients.

source is incorrectly labelled as transient, and “false nega-
tive” (FN) detections when a transient source is incorrectly
labelled as non-transient. We then define

Precision =
TP

TP + FP
and (57)

Recall =
TP

TP + FN
. (58)

Following these definitions, the precision of the result
is the fraction of the total number of detections which are
correct and the recall is the fraction of the total number
of transients which were correctly identified. The best
possible TraP performance is obtained by maximizing both
the precision and the recall.

8.3.1. New detections
We selected all sources from the database that were

initially detected in any image except the first. Following
the procedure described in §5.1.1, and using a margin of
3σ, we classified them as either not transient (i.e. below
previous detection threshold), marginally transient (above
previous detection threshold in the lowest-noise portion
of at least one previous image) or likely transient (above
previous detection threshold in the highest-noise portion
of at least one previous image). We find that:

• Likely transients are recovered with a precision of 1.0
and recall of 0.94;

• Marginal transients are recovered with a precision of
0.02 and recall of 1.0.

Based on the simplified test described here, we conclude
that the algorithm used to detect likely transients provides
a robust way of identifying many transients with a high re-
sistance to false positives. Further, since all lightcurve data
is retained in the database, the list of marginal transients
provides a key starting point for future manual checking
and data mining.

An important limiting factor in this test is the limited
resolution at which the noise maps are stored (i.e. just a
“best” and “worst” value for each image). Recording noise
at a more fine-grained level would enable us to significantly
increase the precision with which possible transients are
identified. This is a possible area of future TraP develop-
ment (§10).

8.3.2. Variable sources
We selected all sources which were initially observed

in the first image (i.e. they were not candidates for being
marked as new detections) and which had values of ην and
Vν greater than 0.1 and 0.01 respectively. We constructed
an equivalent list based on the simulation inputs and known
image noise level; note that this list excludes some transient
sources which fall below the detection threshold. By com-
bining these lists, we can calculate the precision and recall
(Eqs. 57 & 58) as a function of the variability parameters.
These are plotted in Fig. 7. Above some limiting value of
each threshold, there are no positive detections (either true
or false) so the values of Eqs. 57 and 58 are undefined; the
plots are truncated at this point. Note that for values of
ην ≥ 1 and Vν ≥ 0.3 the precision is 1.0: no false positives
are recorded. Below these values, precision drops rapidly
due to noise-based variation of stable sources.

For all values of ην and Vν the recall is similarly close to
1.0. Variations are due to uncertainties introduced by the
simulation and measurement process, which occasionally
cause the measured value of the transient parameters to
drop below their predicted values.

9. Run-time performance

As described in sections 2.2 and 3, the TraP is ultimately
intended to perform near real-time analysis of streaming
image data. Although the required rapid imaging capabil-
ity is not yet available from LOFAR, we anticipate that
other projects—most notably AARTFAAC (Prasad and
Wijnholds, 2012)—will provide streaming image data in
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Figure 7: The precision and recall probabilities as functions of the triggering thresholds for the variability metrics Vν and ην .

the relatively near future. It is therefore instructive to
consider to what extent the run-time performance of the
TraP is adequate to address such a data stream.

It is worth emphasizing that TraP development to date
has focused on correctness rather than performance. Our
aim has been to produce a robust and well-tested code-
base that can then be optimized to address real-time data
processing. We strive to adopt fundamental algorithms
which show benign scaling characteristics to large numbers
of images and sources, but emphasize that the codebase
still provides ample opportunity for optimization.

Broadly, we split our consideration of performance char-
acteristics into two parts, corresponding to the two most
computational expensive parts of the TraP. In §9.1 we
focus on the performance of the Python code, and particu-
larly that of the computationally intensive source finding
algorithms. In §9.2 we turn to the matter of inserting
and associating measurements in the database and the
calculation of per-source aggregates.

Throughout, we emphasize that there are a large num-
ber of tunable parameters in this analysis, both in terms
of the pipeline configuration and the characteristics of the
test data; here, we only give an overview of likely scaling
considerations. For a detailed review of the sourcefinder
performance refer to Carbone et al. (in prep.), and for an
in-depth discussion of database characteristics see Scheers
et al. (in prep.).

Throughout this section, the times reported correspond
to Python code running on an Intel Xeon E5-2660v2 CPU
with a maximum clock speed of 2.2 GHz and, where ap-
plicable, interoperating with PostgreSQL 9.3.5 running on
an AMD Opteron 2384 with a maximum clock speed of
2.7 GHz. We configured PostgreSQL to make better use
of the available system resources by increasing its working
memory (to 100 MB), its shared buffer (to 2048 MB) and
its checkpoint interval to 32 segments.
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Figure 8: Time taken to calculate the background and RMS maps as
a function of the number of pixels in the image. The solid line shows
the mean measured time over 3800 test images; the dashed line, a
quadratic fit to the data.

9.1. Sourcefinder performance
Based on the discussion in §4.3, we divide the opera-

tion of the sourcefinder into two major components: the
calculation of per-image background and RMS maps, then
the identification and measurement of sources within the
image. The former depends on the size of the image, but is
independent of the number of sources within it; the latter
increases with source count.

For each of the 3800 images simulated as described
in §8.1 the time taken to generate background and RMS
maps covering the whole image was measured. The edges
of the images were then masked, and timing repeated for
maps covering only the unmasked portion. This process
was repeated until only a small fraction of the image was
left unmasked. The times recorded are shown in Fig. 8.
For comparison, we also plot the results of a least squares
quadratic fit to the data:

tmap = 1.9× 10−11p2 − 2.5× 10−6p+ 0.1 s, (59)
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Figure 9: Time taken to find and measure the sources in an image as
a function of the number of sources found. The solid line shows the
mean time measured over 3800 test images; the dashed line a linear
fit to the data.

where tmap is the time taken to process p pixels. While
the detailed values are system dependent, it is important
to note that the algorithm scales as O(N2) in number of
pixels.

As the unmasked area of each image is decreased, the
number of sources which can be detected and measured
within the image also decreases. For each portion of each
image we performed a source finding and measurement step
with a detection threshold of 10σ. The sourcefinder was
configured not to deblend sources (§4.3.3), and to constrain
the shape of the resulting measurements to be equal to the
restoring beam (§4.3.5).

Fig. 9 records the total time taken to identify and fit all
the sources in an image as a function of the source number.
A linear least squares fit to the data provides the expression

tfit = 0.012n+ 0.053 s (60)

for the tfit taken to identify and measure n sources. While
again the detailed timings are system-dependent, the key
point is the scaling as O(N) with number of sources.

9.2. Database performance
There are two important axes along which database

performance could vary. The first is with number of images
processed: as more data is stored, the number of source
measurements which must be associated and the number
of data points of which aggregates must be calculated
increases. For use in a long term monitoring programme,
we require that this accumulation of data does not cause the
database to become slower with time. Secondly, we consider
performance as a function of the number of sources per
image: more measurements increase not only the number of
aggregates to be calculated but also the number of potential
source associations.

Artificial source lists representing an artificial sky at
arbitrary frequency and pointing and covering a circular
region of radius 20◦ were constructed. Sources were placed
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Figure 10: Time taken to process each simulated observation with a
population of 1100 sources in the database.

on a regular grid within the region. Each source was
assumed to be a point source, and assigned a random flux
density in the range 1–10 Jy from a uniform distribution.
Sixteen such source lists were created, containing between
50 and 1200 sources in increments of 50.

For each source population, a set of 100 source measure-
ments was constructed by perturbing the source position
with a Fisher distribution (Fisher, 1953) with concentra-
tion parameter κ = 2 × 109, chosen to approximate the
systematic position uncertainty of around 5” which we
have observed to be typical in LOFAR images (Carbone
et al., in prep.). This simulates an observation of the source
population.

For each source population, each simulated observa-
tion in turn was inserted and processed (including source
association and calculation of aggregate parameters by
the database). The time taken to perform all database
operations was recorded.

In Fig. 10 we show the time taken to perform all the
processing of each simulated observation of 1100 sources as
a function of image number; a similar pattern is observed
for all other source counts. The characteristic “saw tooth”
pattern in the figure is due to PostgreSQL periodically
checkpointing its write ahead log; other minor variations
are explained by internal housekeeping tasks running within
the database and by varying system and network load over
the course of the test. The key result, though, is that there
is no evidence of a systematic increase in processing time
with observation number.

In Fig. 11 we show the mean time taken to perform all
the processing of each simulated observation as a function
of source count. For comparison, we also plot the expression

tdb = 0.0017n+ 0.10 s (61)

where tdb is the time taken to process a simulated observa-
tion of n sources. The detailed timings are, again, system
dependent, but it is important to note the scaling as O(N)
with number of sources per observation.
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Configuration Freq. BW Num. stations Max. baseline FWHM Ang. res. Pixels per
name (MHz) (MHz) Core Remote (km) (deg.) (asec.) image

LBA core only 60 3.6 24 0 3.5 9.8 294.7 1.0× 105

LBA 6 km baselines 60 3.6 24 4 6.0 9.8 171.9 3.0× 105

LBA NL array 60 3.6 24 16 121.0 9.8 8.5 1.2× 108

HBA core only 150 3.6 24 0 3.5 3.8 117.9 9.5× 104

HBA 6 km baselines 150 3.6 24 4 6.0 3.8 68.8 2.8× 105

HBA NL array 150 3.6 24 16 121.0 3.8 3.4 1.1× 108

Table 2: Parameters of LOFAR observing modes. For each mode, we quote the angular resolution and full width at half maximum of a single
beam and a bandwidth of 3.6 MHz, equivalent to 20 subbands.

Configuration Integration 5σ detection limit Source count Processing time (s)
name time (s) (mJy/beam) Origin Number Sourcefinder Database

LBA core only 1 2346.5 VLSS 27.6 0.46 0.15
10 C 1066.3 VLSS 90.0 1.22 0.25

LBA 6 km baselines 1 2005.1 VLSS 34.9 1.58 0.16
10 634.1 VLSS 196.3 3.55 0.42

100 C 465.0 VLSS 312.6 4.98 0.62

LBA NL array 1 1395.8 VLSS 60.1 2.86× 105 0.20
10 441.4 VLSS 337.9 2.86× 105 0.67

100 139.6 RSM 761.3 2.86× 105 1.37
1000 44.2 WENSS 2043.6 2.86× 105 3.50

10000 14.0 FIRST 3537.0 2.86× 105 5.99

HBA core only 1 C 137.0 LOFAR 45.3 0.67 0.18

HBA 6 km baselines 1 102.0 LOFAR 70.5 1.86 0.22
10 C 59.7 LOFAR 157.4 2.92 0.37

HBA NL array 1 82.8 LOFAR 96.4 2.53× 105 0.26
10 26.2 WENSS 323.0 2.53× 105 0.64

100 8.3 FIRST 449.5 2.53× 105 0.85
1000 2.6 FIRST 2516.8 2.53× 105 4.29

10000 0.8 FIRST 14153.5 2.53× 105 23.64

Table 3: Source counts and processing times predicted for a single image using each of the LOFAR configurations described in Tab. 2 at a
range of integration times. The symbol C indicates that the detection limit was set by confusion noise rather than image sensitivity.
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Figure 11: Time taken by the database to process a simulated obser-
vation as a function of number of sources in the observation. The
solid line shows the mean value over 100 test observations; the dashed
line, a linear function for comparison.

9.3. Practical performance considerations
We conclude this discussion of pipeline runtime perfor-

mance by comparing the measured TraP performance to
potential LOFAR transient monitoring strategies.

The initial Radio Sky Monitor strategy (Fender et al.,
in prep.) is to use six beams from LOFAR to tile out a
wide area on the sky. Each beam consists of four frequency
bands, which are imaged separately. Assuming LOFAR
is operating in 8 bit mode (§2.1), each band contains 20
subbands and provides a bandwidth of 3.6 MHz.

In Tab. 2 we list the parameters of each of six major
LOFAR observing modes and provide the full width at
half maximum and the angular resolution of a single image
constructed using the survey strategy described. The ob-
serving modes include using only the core LOFAR stations,
using the full Dutch LOFAR array, and using only that
subset of the full array which contains baselines no more
than 6 km in length. This latter configuration has been
shown to provide a good compromise between image fidelity
and processing time in early LOFAR observations and has
been used for initial RSM observations.

In Tab. 3 we provide estimates of the 5σ detection limit
and corresponding source count for each of the configu-
rations at a range of integration times. Sensitivity and
confusion limits were estimated using the online LOFAR
Image Noise Calculator35. Following current standard LO-
FAR observing practice, when using the high band remote
stations were “tapered”, reducing sensitivity while increas-
ing field of view to match that of the stations in the core.
Where possible, source counts were taken from preliminary
analysis of LOFAR RSM data (Fender et al., in prep.);
otherwise, they were estimated by extrapolating from other
surveys assuming a spectral index of −0.7: for each configu-
ration, the survey best approximating the spatial resolution
was selected from FIRST (Faint Images of the Radio Sky

35Version 0.31; http://www.astron.nl/~heald/test/sens2.php

at Twenty-cm; Becker et al., 1994), NVSS (Condon et al.,
1998), VLSS (Cohen et al., 2007) and WENSS (Rengelink
et al., 1997).

Also in Tab. 3 we estimate the processing time for each
image through both the sourcefinder (tmap + tfit) and the
database (tdb). Note that these equations reflect the par-
ticular characteristics of the systems used for benchmark-
ing and can provide only guideline performance estimates.
Further note that this estimate includes only the major
pipeline components identified above; it is reasonable to
expect modest overheads from other parts of the pipeline.

Note that for most image types excluding the full array
the processing time per image is considerably less than
the integration time for that image. This indicates that
processing a real-time stream of images of this type is
tractable on the systems used for benchmarking.

As described above, the likely operation configuration
consists not of a single image stream but of four bands in
each of six beams: a factor of 24 greater than the figures
quoted. For all 1 s, and some longer, integrations, this
increases the total processing time to greater than the
integration time. However, three factors mitigate this:

• As described in §6.3, we support parallel (and, option-
ally, distributed) sourcefinder operation: by distribut-
ing the processing time required over multiple CPUs,
we achieve a near-linear reduction in wall-clock time.

• By starting to search for sources in timestep tn+1

before timestep tn has finished processing, we can
ensure that both sourcefinding and database systems
are efficiently occupied, rather than synchronously
waiting for each other.

• The hardware platform used for benchmarking the
database is several years old; more powerful systems
are now available which will provide a significant
constant factor improvement in database throughput.

We also emphasize that the real-time LOFAR imaging
mode is still under development (§2.2): all current process-
ing is carried out off-line. The run-time performance of the
TraP is significantly better than that of the imaging tools
used to provide it with input in this mode.

Finally, we reiterate that TraP development to date has
focused on correctness over performance. There is much
still to be gained in terms of optimization of individual
algorithms, efficiency of implementation (e.g. replacing core
Python loops with Cython equivalents) and best exploiting
the performance of high level tools (e.g. the potential gains
of the MonetDB system over PostgreSQL as described in
§6.4.1).

10. Releases and future development

This manuscript describes release 2.0 of the TraP, dating
from December 2014. With this release, the TraP became
an open source project, and therefore freely available to
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download from our GitHub repository36 under a two-clause
BSD-style37 license. If you use the TraP, or code derived
from it, in a paper or other publication, we request that
you cite this work.

After this release, development will continue. Future
releases of the TraP are expected to expand upon the
current functionality to offer features such as:

• Performance optimization in support of real-time
streaming transient monitoring;

• Automatic preliminary classification of detected tran-
sients;

• Support for multi-terabyte lightcurve archives and
enhanced archive data-mining and visualization;

• Automatic cross-correlation of TraP detected sources
with known catalogue sources across a range of wave-
lengths;

• Improved methods for apportioning flux density from
a single measurement among multiple sources on
association;

• Full Stokes support, for both identifying and classify-
ing sources;

• Higher resolution and more flexible noise maps;

• Construction and usage of a deep average image of
the surveyed area.

11. Conclusions

The current and next generation of astronomical survey
facilities, across a wide range of wavelengths but particu-
larly in the radio, provide an opportunity to explore the
transient and variable sky in powerful and unprecedented
ways. This is especially true of LOFAR, which combines a
remarkably wide field of view with unique sensitivity to low
radio frequencies and a flexible, software-driven architec-
ture. However, identifying transients in the massive data
volumes produced by these instruments is challenging.

This manuscript has described our attempt to rise to
this challenge in the form of the LOFAR Transients Pipeline.
It combines a flexible, high-performance architecture with
robust analysis tools in a well tested and documented
package. We have shown how it can both be used to
generate alert messages as new transients are discovered
and to populate a database of lightcurves of potential
transients for offline analysis. We have demonstrated that
it is capable of accurately recovering a known population
of transients from simulated LOFAR observations.

36https://github.com/transientskp/tkp/
37http://opensource.org/licenses/BSD-2-Clause

The TraP is now being used in support of ongoing
LOFAR observing campaigns. However, development con-
tinues, and we are actively expanding its capabilities, both
to better address ongoing LOFAR operations and to in-
crease its applicability to other instruments and wavelength
regimes. The codebase is open source and freely available;
we actively invite you to join us in improving it.
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