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Abstract. Discrete ELF/VLF chorus emissions, the most in-
tense electromagnetic plasma waves observed in the Earth’s
radiation belts and outer magnetosphere, are thought to prop-
agate roughly along magnetic field lines from a localized
source region near the magnetic equator towards the mag-
netic poles. THEMIS project Electric Field Instrument (EFI)
and Search Coil Magnetometer (SCM) measurements were
used to determine the spatial scale of the chorus source lo-
calization region on the day side of the Earth’s outer magne-
tosphere. We present simultaneous observations of the same
chorus elements registered onboard several THEMIS space-
craft in 2007 when all the spacecraft were in the same orbit.
Discrete chorus elements were observed at 0.15–0.25 of the
local electron gyrofrequency, which is typical for the outer
magnetosphere. We evaluated the Poynting flux and wave
vector distribution and obtained chorus wave packet quasi-
parallel propagation to the local magnetic field. Amplitude
and phase correlation data analysis allowed us to estimate the
characteristic spatial correlation scale transverse to the local
magnetic field to be in the 2800–3200 km range.

Keywords. Electromagnetics (Random media and rough
surfaces) – Magnetospheric physics (Plasma waves and in-
stabilities) – Radio science (Remote sensing)

1 Introduction

Discrete ELF/VLF chorus emissions, the most intense elec-
tromagnetic plasma waves observed in the Earth’s radiation
belts and outer magnetosphere, have received increased at-
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tention in the past several years. Characterized by rising
and falling tones in the frequency range from a few hun-
dreds to several thousands of hertz (e.g., reviews byOmura
et al., 1991andSazhin and Hayakawa, 1992), these emis-
sions play the significant role in local acceleration of ener-
getic electrons in the outer radiation belts (Horne et al., 2005)
and (Horne et al., 2005). Chorus is a burst-like wave emis-
sion observed in the near-Earth magnetosphere outside the
plasmapause. These emissions are most often observed on
the Earth’s dawn side between 23:00 and 13:00 MLT (Tsuru-
tani and Smith, 1974; Meredith, 2001, 2003). Chorus emis-
sions, which propagate in the whistler mode, usually consist
of two narrow frequency range bands centered around one-
half the electron gyrofrequency at the geomagnetic equator
(ωce) of the magnetic field line on which the waves are ob-
served (Tsurutani and Smith, 1974). If present, the upper
band exists in the frequency range ofω/ωce≈0.5–0.75 and
contains discrete chorus elements rising at a few kHz/s. The
lower band exists in the frequency range ofω/ωce≈0.2–0.45
and contains both elements rising at a few kHz/s and diffuse
elements.

A number of ELF/VLF chorus emissions have been ob-
served near the magnetic equatorial plane in the dayside
outer magnetosphere. Wave normal vector directions of cho-
rus in the outer magnetosphere were determined for the first
time from data obtained with the OGO5 search coil mag-
netometer (Burton and Holzer, 1974). In Hayakawa et al.
(1990) the GEOS l satellite wave data have been used to de-
termine the wave normal directions of chorus emissions at
geomagnetic latitudes near 17◦, (L-shell about 7.6). Analy-
sis of the wave normal and Poynting vectors for each element
of the emissions has shown that these emissions are gener-
ated in the geomagnetic equator and propagate to higher la-
titudes in a non-ducted whistler mode (Burton and Holzer,
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1974; Hayakawa et al., 1990; Yagitani et al., 1999; Inan
et al., 2004). The GEOTAIL spacecraft has observed many
ELF/VLF chorus emissions in the Earth’s outer magneto-
sphere with the Plasma Wave Instrument (PWI) (Nagano
et al., 1996).

In the inner and middle magnetosphere the onset of wave
generation has been associated with substorm electron injec-
tions (Goldstein and Tsurutani, 1984). The source of the
waves in the outer dayside region within a fewRE of the
magnetopause is less well understood. In the radiation belts,
chorus is believed to be generated through electron cyclotron
instability by anisotropic distributions of energetic electrons
in the 5 to 150 keV range. In the outer magnetosphere simul-
taneously measured wave and particle data captured onboard
the GEOTAIL spacecraft for chorus emissions in the day-
side outer magnetosphere were analyzed in (Yagitani et al.,
1999). The anisotropy observed onboard GEOTAIL was too
small to generate the observed chorus emissions by the lin-
ear cyclotron resonance mechanism. The co-existence of hiss
and chorus has been observed frequently by satellites in the
outer magnetosphere (Hattori et al., 1991). A mechanism
for hiss-triggered chorus based on GEOS-1 observations was
proposed byHattori et al.(1991).

The size of the generation region can be used to inves-
tigate and choose the generation mechanism. Before the
Cluster mission, observations of ELF/VLF chorus emissions
were carried out mainly by single spacecraft (Trakhtengerts,
1999). Considerable simultaneous chorus data were col-
lected by ISEE1 and ISEE2 spacecraft (Gurnett et al., 1979).
Although the correlation scale based on comparison of spec-
trograms from ISEE1 and ISEE2 was estimated to be in the
range of units of hundred kilometers.

Recent Poynting flux and polarization measurements on
board the Cluster spacecraft confirmed not only that the cho-
rus source is located close to the equatorial plane (Santolik
and Gurnett, 2003; Santolik et al., 2005; Parrot et al., 2003)
but also that the dimension of the chorus source region mea-
sured along the magnetic field lines is 3000–5000 km (San-
tolik and Gurnett, 2003). The radiation belt chorus gener-
ation region scales were estimated theoretically (Helliwell,
1967; Trakhtengerts, 1999) and experimentally (Santolik and
Gurnett, 2003; Breneman et al., 2009) using data from co-
ordinated CLUSTER observations. The problem is to de-
termine the source size given the signal distortion due to
whistler wave propagation through the random irregularities
of the medium.Santolik and Gurnett(2003), andBreneman
et al. (2009) determined the correlation lengths of chorus-
type whistler waves based on multi-point Cluster WBD mea-
surements near the chorus source region during the magnetic
storm of 18 April 2002. Correlation scales were obtained
from the dependence of the chorus wave amplitude correla-
tion coefficient on the distance between Cluster spacecraft.
Correlation was found to be significant throughout a range
of separation distances 60–260 km parallel to and 7–100 km
perpendicular to the background magnetic field line. At these

scales, the correlation coefficient depends weakly on parallel
separation and decreases with perpendicular separation. It
varies between approximately 60 and 120 km for different
data intervals. The spatial scales obtained were explained by
a chorus generation region transverse to the spatial scales of
the background magnetic field (Santolik et al., 2003).

In this paper we address the transverse dimensions of cho-
rus sources using simultaneous observations of intense cho-
rus by five THEMIS spacecraft (THA, THB, THC, THD,
THE) before they were finally deployed into their designated
orbits. The analysis is done for regions close to the geo-
magnetic equator at a radial distance of 8–9RE which is
not covered by previous work using CLUSTER data with
new technique based on nonstationarity of the mutual statis-
tic characteristics. We correlate and analyze waveform data
from the five spacecraft at different separations. Our study is
based mainly on high-resolution, three-axis magnetic wave-
form data from the search coil magnetometer (SCM) (Le
Contel, 2008) and two-axis electric waveform data from the
electric field wave instrument (EFW) (Bonnell et al., 2008).
We also use supporting data from the electrostatic analyzer
(ESA) and spin-averaged measurements from the flux-gate
magnetometers (FGM) (Auster et al., 2008).

The paper is organized as follows: in section two the
THEMIS SCM and EFW data description is presented and
the description of processed chorus activity is proposed. In
section three correlation analysis of the multi-point measure-
ments of the whistler waveform is presented. The technique
for numerical calculation of the transverse correlation scale
of the electromagnetic wave refractive index fluctuation and
the distance to the source region is proposed. In section four
the results are summarized.

2 Data description and processing technique

THEMIS (Time History of Events and Macroscale In-
teractions during Substorms) consists of five identically-
instrumented spacecraft, launched on 17 February 2007. The
main goal of this mission is to conduct multi-point inves-
tigations of substorm phenomena in the magnetotail of the
Earth’s magnetosphere (Sibeck et al., 2008). During the
coast phase of the mission between 17 February 2007 and
15 September 2007, all five THEMIS spacecraft were lined
up in the same orbit with apogee at 15.4RE and perigee at
1.3 RE. Orbital inclination to the ecliptic plane was 13.7◦.
The THEMIS spacecraft were nearly radially aligned. Dur-
ing 2007 the THEMIS orbit apogees rotated through the day-
side of the Earth’s magnetosphere, such that in April 2007 the
orbit skimmed the dusk magnetopause.

For the current study, search coil magnetometer (SCM)
observations (Le Contel, 2008) and plasma measurements
from the electric field instrument (EFI) (Bonnell et al., 2008)
were analyzed. Waveforms in the wave burst mode (on-board
trigger) with 8192 samp/s were processed. For additional
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Fig. 1. Detailed time-frequency power spectrograms of magnetic
field fluctuations near the source region captured by the SCM in-
struments onboard four THEMIS spacecraft on 17 July 2007. Pan-
els (from top to bottom) show data from THB, THC, THD, and
THE, respectively. Magnetic dipole latitude, magnetic shell, and
SM coordinates are given for all s/c. Radial distances are from 10.6
to 11.5RE, and MLT is about 13:30 UT during this interval.

information about background conditions, flux gate magne-
tometer (FGM) observations (Auster et al., 2008) and plasma
measurements of the electrostatic analyzers (ESA) (McFad-
den et al., 2008) were used. We use spin averaged magnetic
field data with a 3 s resolution and plasma moments with a
3 s resolution.

At about 13:12 UT on 17 July 2007, high-amplitude cho-
rus emissions were captured onboard four THEMIS space-
craft with radial distances from 10.6 to 11.5RE. Electric
field measurements were available only for THC, THD, and
THE. Detailed time-frequency power spectrograms of mag-
netic and electric field fluctuations near the source region
captured by the SCM instruments onboard the four THEMIS
spacecraft THB, THC, THD, and THE are shown in the
Figs. 1 and 2, respectively. Their positions are listed in Ta-
ble 1.

Fig. 2. Detailed time-frequency power spectrograms of electric field
fluctuations near the source region captured by the EFI instruments
onboard four THEMIS spacecraft on 17 July 2007. Panels (from
top to bottom) show data from THC, THD, and THE, respectively.
Magnetic dipole latitude, magnetic shell, and SM coordinates are
given for all s/c. Radial distances are from 10.6 to 11.5RE, and
magnetic local time is about 13:30 UT.

Table 1. Positions of the THEMIS spacecraft and cross spacecraft
distances along and transverse to the local magnetic field relative to
THC on 17 July 2007 at 13:12:00 UT.

SC i–j XSM, RE YSM, RE ZSM, RE l||, km l⊥, km

THA 11.8950 3.5361 0.7120 2021.1 9754.77
THB 9.8636 4.0663 0.1040 –376.5 4215.3
THC 10.5024 3.9734 0.2494 0.0 0.0
THD 10.5211 3.9274 0.2813 237.5 373.3
THE 10.7474 3.9482 0.2863 251.9 1586.0

The wave normal vectork direction is estimated using
the singular value decomposition technique (Santolik et al.,
2003), which involves computing a spectral matrix consist-
ing of auto-power and cross-power spectra from the three
magnetic components. Although this method has an inherent
180◦ ambiguity in the wave normal direction, this ambigu-
ity can be removed if the Poynting vector can be determined.
Since the wave normal vector must have a component in the
direction of the energy flow, a scalar product(S×k) must be
positive.

www.ann-geophys.net/28/1377/2010/ Ann. Geophys., 28, 1377–1386, 2010
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Fig. 3. Dependence of thek directions (top) and Poynting vector directions (bottom) on the frequency in GSE coordinates. Wave amplitude
is coded with circle size. The direction of the local magnetic field is shown with a red cross.

The Poynting vector is estimated from the Fourier com-
ponents asP=Re(E(ω)×B∗(ω)) (LeDocq, 1998) assum-
ing that(B×E) = 0. Poynting vector calculations performed
with the third component of the electric field (measured by
the axial antenna) give the same results.

The direction ofk and Poynting flux direction are plotted
in Fig. 3. It is clearly seen that whistler waves propagate
mainly parallel to the ambient magnetic field. The direc-
tion of the Poynting flux indicates that observed whistlers
propagate away from the magnetic field minimum of the flux
tube.

3 Correlation analysis

Chorus waves belong to the whistler wave mode. We shall
consider the so-called electron whistler waves in the fre-
quency rangeωLH < ω < �e, whereωLH is the lower hybrid
frequency, and�e=| e | B/me is the electron gyrofrequency.
Their refraction index can be found using the dispersion re-
lation in the cold plasma approximation (Helliwell, 1967):

n2(ω,θ) = 1+
ω2

pe

ω(�e | cosθ | −ω)
, (1)

whereωpe is the electron plasma frequency, andθ is the an-
gle between the wavek and the background magnetic field.
This dependence upon the angle results in anisotropy of
the phase and group velocities and dependence of the wave
polarization upon the angle. We shall consider multipoint
measurements of whistler waves that are supposed to have

group velocities almost along the magnetic field. Our goal
is to analyze multipoint correlations. In magnetized plas-
mas anisotropy also results in anisotropic fluctuations that in
the simplest case can be described by two characteristic cor-
relation lengths: parallel and perpendicular to the magnetic
field. Plasma density inhomogeneities are usually separated
into two groups according to their characteristic scale with
respect to the wavelength. Small-scale inhomogeneities can
scatter whistler mode waves in all directions and profoundly
change wave characteristics (Sonwalkar, 2006). Large-scale
inhomogeneities with spatial scales comparable to and larger
than the wavelength can produce slow variations in wavek

amplitude and direction. This can be done using regular pro-
cedures based on small perturbations of the unperturbed so-
lution. We describe such an approach making use of the sim-
plified model developed for the wave propagation in random
media.

Because we are not interested in the variations of the wave
polarization, we use the scalar field mode for simplicity.

The wave-related field perturbation can be written as

u = U0exp{iS +χ}, (2)

whereS is the wave phase with regular and random com-
ponents andχ is the wave amplitude level. The phase and
amplitude levels are denoted as an infinite series following
Rytov et al.(1978): S=S0+S1+S2+ ... andχ = χ0+χ1+

χ2 + ..., whereS0 andχ0 are solutions for the undisturbed
refractive indexε = 〈ε〉. Below we account only for the first
term in the seriesS1 andχ0.

Ann. Geophys., 28, 1377–1386, 2010 www.ann-geophys.net/28/1377/2010/
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The amplitude level and wave phase fluctuation due to
propagation effects are estimated from the Helmholtz equa-
tion with some assumptions. Taking advantage of the re-
sults ofRytov et al.(1978) andAgapitov et al.(2010), let
us consider the wave propagating from the source region in
the plasma with large-scale random density fluctuations char-
acterized by two scalesl‖ and l⊥ parallel and perpendicu-
lar to the background magnetic field. The primary wave is
thought to propagate along the magnetic field (Fig. 3). Let
us assume that wave propagation can be described in the ge-
ometrical optics approximation, which means thatl‖, l⊥�λ,
λ is the wavelength. Without loss of generality we shall con-
sider a monochromatic wave propagation. Under the above
conditions the wave phase can be written in the form of the
eikonal. With such an approach, one does not consider back-
ward scattering and diffraction effects. Use of the geometric
optic approximation is justified if the first Fresnel zone is
much smaller than the characteristic inhomogeneity scale of
the dielectric permeability (refractive index for wave propa-
gation along the magnetic field):
√

λL � l‖,l⊥. (3)

L is the ray path length – the distance from the generation re-
gion to the observation point. The phase and propagation di-
rection fluctuations (but not the amplitude level) can be pro-
cessed using the geometric optic approximation beyond the
bounds of the first Fresnel zone (Rytov et al., 1978). Let us
suppose that the refractive index can be separated into mean
value and fluctuations:

ε(r) = 〈ε(r)〉+δε(r). (4)

Below we use the correlation function of the refractive in-
dex described by the anisotropic Gaussian correlation func-
tion:

9ε (r) = σ 2
ε exp

[
−

z2

2l2
‖

−
x2

+y2

2l2
⊥

]
, (5)

where the z-axis should be directed along the background
magnetic field direction,l⊥ perpendicular to it, and the dis-
tribution in the perpendicular direction is isotropic. In the
framework of assumptions made, the eikonal and amplitude
level fluctuations are described by the Helmholtz equation

1u+k2ε(r)u = 0. (6)

We are interested in the evaluation of the correlation func-
tion of eikonal (and related with the eikonal phase) and of
the amplitude level correlation. Both characteristics can be
found by using correlation function of the refractive index
(Agapitov et al., 2010). Assuming that the primary wave
propagates approximately along the background magnetic
field S0∼kz, one can find for Gaussian correlations ofε

with two characteristic scales, parallel and perpendicular, the
phase correlation function in the following form:

9S (r1,r2) =

√
π

2

zminl||k
2σ 2

ε

2〈ε(r)〉
exp

[
−

(ρ1−ρ2)
2

2l2
⊥

]
. (7)

Here zmin=min{z1,z2},9ε (ρ1−ρ2,ζ ) – correlation func-
tion of the refractive index. It follows then that

σ 2
S (z) =

√
π

2

zl‖k
2σ 2

ε

2〈ε(r)〉
. (8)

From the above, it follows that the phase variance is pro-
portional to the ray path length, the variance of the refractive
index, and the effective parallel correlation length.

Another important characteristic is the amplitude level
correlation function in the same approximation:

9χ (ρ,z) =
z3

24

∞∫
0

12
⊥
9ε (ρ,ξ)dξ. (9)

One can find the expression for this correlation function
by using the same anisotropic distribution for the refractive
index:

9χ (ρ,z) =

√
π

2

l‖z
3

l4
⊥

σ 2
ε

3〈ε〉

(
ρ4

8l4
⊥

−
ρ2

l2
⊥

+1

)
exp

(
−

ρ2

2l2
⊥

)
(10)

The expression for the amplitude variance is obtained

σ 2
χ =

√
2πz3l‖

3〈ε〉l4
⊥

σ 2
ε . (11)

The amplitude level variance is proportional to the 3rd de-
gree of the ray path length in the geometric optic approxima-
tion. Comparing the amplitude and the eikonal variance, one
finds

σ 2
χ/σ 2

S =
4z2

3l4
⊥
k2

, (12)

which means that the amplitude variance should be substan-
tially smaller than the eikonal variance (the approximation is
applicable whenzλ�l2

⊥
).

All results are obtained assuming a stationary inhomo-
geneity distribution. To apply the approximation of station-
arity to wave propagation, the following conditions should be
satisfied: the characteristic time for wave propagation from
source to observer should be small compared to that for den-
sity and refractive index variationsτ . Tchernov(1977) refers
to this condition as quasi-static. On the other hand, the expo-
sure time for registration of the wave packet should be large
compared with the characteristic time for variations in the
refractive index. For the real data analysis where the homo-
geneity property can be satisfied only locally, it is widely ac-
cepted that one should use the structure function (Tchernov,
1977) determined as

Dε12=

〈
| ε(r1)−ε(r2) |

2
〉
. (13)

rather than the correlation function.
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Fig. 4. Cross-correlation analysis of the discrete chorus element observed at 13:12 UT on 17 July 2007 onboard THEMIS spacecraft. The
correlation coefficient time dependence is shown for spacecraft THC-THD, THC-THE, and THD-THE, respectively. The approximation

with (1−ex )
x function is shown with solid line. The approximation parameters are listed.

An important property of the correlation function is its
asymptotic behavior. With increasingr, it approaches zero,
and the structure function saturates at some value. Slow spa-
tial variations in the refractive index mean value cannot be
distinguished from large-scale fluctuations, which can sig-
nificantly affect evaluation of the correlation function. Eval-
uation of the structure function represents the difference be-
tween two local points; in this case, large-scale effects are
less important. Thus, structure functions can be applied more
successfully for analysis when only local homogeneity con-
ditions are satisfied.

Let us consider now the mutual coherence function of the
waveform fixed in two points in terms of phase and amplitude
level difference:

0u(r1,r2) =
〈
u(r1)u

∗(r2)
〉
. (14)

In a zone of geometric optic approximation, the phase vari-
anceσS can be evaluated more precisely much better than
the amplitude variance. Neglecting fluctuations in amplitude
with respect to phase, field moment evaluation can be carried
out and the field moment can be rewritten as

u ≈ u0e
iS1 . (15)

The coherence function can be estimated to be equal to

0u(r1,r2) ≈ |u0|
2
〈
ei[S1(r1)−S1(r2)]

〉
(16)

Making use of the relation
〈
eiξ
〉
= e−

1
2

〈
ξ2
〉

for normally
distributedξ with 〈ξ〉 = 0, the following expression is ob-
tained

0u(r1,r2) = I0exp

[
−

1

2
DS(r1,r2)

]
, (17)

whereDS(r1,r2) =

〈(
S̃1(r1)− S̃2(r2)

)2〉
is the phase struc-

ture function. Taking the exposure time long enough (t � τ ,
τ is the characteristic time for the plasma media changes) for
two signals to be registered at separate points, i. e., having
ray paths through the medium where the refractive index can

be considered as independentDS (r1,r2) = (σ 2
1 +σ 2

2 ). For
the (t � τ ) DS (r1,r2) will be a function oft and will grow
with the exposure time approximately linearly

DS(r1,r2) '

(
σ 2

1 +σ 2
2

) t

τ
= σ 2

12
t

τ
. (18)

These results inspire us to study the phase characteristics
of signals measured in different space locations based on
cross-correlation time dependence. Using accumulation pro-
cedures can greatly improve the statistics, and the typical de-
pendencies of the accumulated cross correlations can allow
us to deduce characteristics of the diffusion coefficients that
are dependent upon refractive index fluctuations, as shown
above.

It is worth noting that for the two rays propagating along
the same path with trajectories that differ only in length,
the difference between two diffusion coefficients will be
due only to the length of each trajectory. The correlation
coefficient of signals at pointsr1 and r1 can be found to
equal

Ku(r1,r2) =
1

|u0|
2
0u(r1,r2)

= exp

[
−

1

2
DS(r1,r2)

]
(19)

The time dependence of the averaged correlation coeffi-
cient, similar to that considered before for independent oscil-
lators, can be evaluated as

〈Ku(r1,r2)〉T =
1

T

T∫
0

Ku(r1,r2)dt

=
1−exp[−(σ1+σ2)T ]

(σ1+σ2)T ′
(20)

A nonlinear least-squares approximation of two free pa-
rameters for cross correlation coefficient dependence on esti-
mation time for three THEMIS spacecraft is shown in Fig. 4.
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Function (18) gives minimal chi-square residue compared
with power low fit, Gauss fit, or a combination of those fits.
Below the average of electric and magnetic field component
coefficients is used.

Two ray paths with perpendicular distance between them
are taken to be equal toρ in the transverse direction. The
characteristic dependence of the variance should correspond
to the single ray path when the rays propagate along the
same way, but it should correspond to the sum of two inde-
pendent diffusion coefficients when the characteristic trans-
verse distance between two ray paths becomes larger than
the characteristic perpendicular scale of cross correlations.
If the rays propagate close enough to each other that refrac-
tive index fluctuations are partially correlated, evaluation of
the correlation should take into account the partial correla-
tion.

Taking into account evaluation of the perpendicular char-
acteristic scale, we propose to use the following algorithm to
produce an estimate. The transverse dependence of the phase
correlation coefficient should have the same Gaussian form
as the refractive index:

KS(z,ρ1;z,ρ2) = e
−

(ρ1−ρ2)
2

2l2ε . (21)

With partial correlations it is natural to suggest the follow-
ing dependence of variance:

σ 2
12= σ 2

1 +σ 2
2 −2σ1σ2KS12. (22)

In addition,ρ1 −ρ2 = ρ12,z1 − z2 = z12. This system of
equations can therefore be represented in the following form:

σ12=
1

2〈ε〉
z1l‖σ

2
ε +

1

2 〈ε〉
z2l‖σ

2
ε −2

1

2 〈ε〉

√
z1z2l‖σ

2
ε KS12, (23)

To estimate the diffusion coefficient for two separate
points with differentρ andz, one should divide the trajec-
tory of two ray paths separated in transverse direction till
|ρ1 −ρ2| the minimum parallel distance for two propagat-
ing rays, let us call itz1, and then the part of the trajectory
from the pointz1 to the pointz2 along the second ray. The
entire variance, and consequently the diffusion coefficient,
can be presented for each part of the trajectory. The cross-

correlation coefficientKS12 will be equal to exp

{
−

(ρ1−ρ2)
2

2l2
⊥

}
along the part of trajectory where two rays are present. The
variance addition along the one single path where only one
ray exists can be evaluated in the same way as the variance
for auto correlation – by setting the cross correlation coeffi-
cientKS12 equal to zero for this part of the trajectory. This
results in the following:

σ12=
1

2〈ε〉
z1l‖σ

2
ε

[
1−exp

{
−

(ρ1−ρ2)
2

2l2
⊥

}]
+

1

2〈ε〉
z12l‖σ

2
ε . (24)

Let z be the distance from the source to the closest spacecraft
(spacecraft 1).

The procedure employed is based on the solution of the
system of equations

σ12= α

[
z

(
1−exp

(
−

ρ2
12

2l2
⊥

))
+0.5z12

]
. (25)

where the notationα =

(
l‖σ

2
ε

〈ε〉

)
is used. The discrete chorus

elements shown in Fig. 1 were observed in the frequency
range 0.15—0.25 of the local electron gyrofrequency that is
typical for the outer magnetosphere. The field-aligned Poynt-
ing flux of whistler emissions shows that they propagate
along the magnetic field lines from the magnetic field mini-
mum that is consistent with the waves being generated there.
The solution of this system of equations for discrete chorus
elements gives the wave generation source position,l⊥, and

(
l‖σ

2
ε

ε̃
). For the obtained case it can be simplified due to inde-

pendence of the ray path from the source to THE and THD
and from the source to THE and THC. The transverse corre-
lation scale can be estimated from relation (24) for spacecraft
THC and THD.

The plasma frequency for the selected interval is near
2260 Hz; the gyrofrequency is 1200 Hz. If the wave disper-
sion relation for whistler waves in a cold plasma is assumed,
the wavelength is estimated to be in the range of 220–300 km,
and the phase velocity in the range of (55–60)×106 m/s. A
high significance level can be provided due to existence of
three magnetic field components and two electric field mea-
sured waveforms.

The correlation scale of the refractive index and the elec-
tron concentration perturbation are estimated. The phase
cross-correlation time dependence gives a correlation scale
from 250 to 500 km transverse to the local magnetic field.
The obtained distance to the source region varies from 400 to
2000 km with source speed about 5–10 thousand km/s along
the magnetic field line (Fig. 5).

This allows us to conclude that the phase and amplitude
level correlation properties can be explained in terms of wave
propagation effects caused by random fluctuations of plasma
refractive index related to density fluctuations assuming that
the wave generation source is coherent in some plane or fluc-
tuates similarly to the density distribution. But can our initial
assumptions be justified? Taking the conditions of observa-
tions of whistler wave chorus during 17 July 2007 by three
THEMIS spacecraft, one finds that although the size of the
first Fresnel zone is less than the characteristic inhomogene-
ity scale, their values are of the same order. The relation
l2ε�l‖λ is largely satisfied.

Now we evaluate the transverse scale of the chorus waves
source region. To quantify the differences between the spec-
trograms observed near the chorus source region on the four
spacecraft, we analyzed spectrogram correlation. The main
problem is to distinguish between the source spatial proper-
ties and effect of wave propagation through the medium with
randomly distributed inhomogeneities affecting the wave’s
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Fig. 5. The time dynamics of variation coefficientsDSij obtained
from waveforms of the THC, THD, THE spacecraft is shown with
black, blue and red circles (amplitude is marked on the left scale).
The time dynamic of distance from THC spacecraft to the source
region is shown with black squares (amplitude is marked on the
right scale).

Fig. 6. The amplitude level correlation coefficients of the SCM
magnetic field and EFI electric field waveform captured onboard
THEMIS spacecraft at 13:12 UT on 17 July 2007 in dependence on
cross spacecraft distances.

phase velocity. This can be done if cross distances between
observation points vary over a wide range and the source spa-
tial scale is much greater (or much less) than the electron
concentration perturbation spatial scale. We used a common
time resolution of 0.0625 s, sufficient to distinguish the sepa-
rate elements and much greater than a random variation time
scale. This gives us 480 data points for each spacecraft in a
32-s time interval. We then calculated the cross-correlation
coefficients of the common logarithms of these data for each
pair of spacecraft. The characteristic scale is estimated by
non-linear Gaussian fit of the correlation coefficient depen-
dence on the cross spacecraft distance transverse to the local
magnetic field. The generation region size is estimated to be
in the range of 2800–3200 km. The dependence of the cor-

relation coefficient on the cross-spacecraft distance is shown
in Fig. 6. The spatial scale is found to be much greater than
the length of whistler wave and also much greater than the
refractive index characteristic scale.

4 Discussion and conclusion

We present a case study of multispacecraft observations of
whistler wave emissions in the outer Earth magnetosphere
region near the geomagnetic equator that was not covered
in previous work using CLUSTER data. THEMIS project
Electric Field Instrument (EFI) and Search Coil Magnetome-
ter (SCM) measurements were used to determine the spatial
cor515 relation scale of the chorus source region. We present
simultaneous observations of the same chorus elements reg-
istered onboard four THEMIS spacecraft in 2007 when all
the spacecraft were in the same orbit. The transverse to the
background magnetic field cross spacecraft distances varied
in the range from 200 to 6000 km.

We propose the novel analysis technique aiming to es-
timate the characteristics of electron concentration fluctua-
tions by solving the reverse problem of the wave propaga-
tion through the random media. This method similar to inter-
ferometry technique is based on the multi spacecraft chorus
waveform measurements near the source region. It allows
one to evaluate the characteristic scales of fluctuations of di-
electric constant of the medium along and transverse to the
direction of the wave propagation and the characteristic dis-
tance to the chorus source.

Since the electron concentration perturbation scale is
much smaller than the estimated chorus generation region
scale, the analyzed event allows us to obtain a good assump-
tion for the chorus source region scale. Also propagation
nearly parallel to the local magnetic field gives an opportu-
nity to distinguish the parallel from the transverse perturba-
tion scale and to estimate the distance to the source along the
magnetic field line.

The discrete chorus elements were observed in the fre-
quency range 0.15–0.25 of the local electron gyrofrequency
typical for the outer magnetosphere. The field-aligned Poynt-
ing flux of whistler emissions shows that they propagate
along the magnetic field lines in the direction away from the
magnetic field minimum that is consistent with the waves
being generated there. The averaged amplitude correlation
analysis allows us to estimate the characteristic spatial half-
width of the source region transverse to the local magnetic
field to be about 2800–3200 km. The correlation scale of re-
fractive index and the electron concentration perturbation are
estimated under the geometric optic assumption. The phase
cross-correlation time dependence gives a correlation scale
from 250 to 500 km transverse to the local magnetic field.
The obtained distance to the source region varies from 400 to
2000 km with source speed about 5–10 thousands km/s along
the magnetic field line.
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