
HAL Id: insu-01181629
https://insu.hal.science/insu-01181629

Submitted on 30 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EMIC waves observed by the low-altitude satellite
DEMETER during the November 2004 magnetic storm

D Píša, Michel Parrot, O Santolík, J. D. Menietti

To cite this version:
D Píša, Michel Parrot, O Santolík, J. D. Menietti. EMIC waves observed by the low-altitude satellite
DEMETER during the November 2004 magnetic storm. Journal of Geophysical Research Space
Physics, 2015, 120, 10 p. �10.1002/2014JA020233�. �insu-01181629�

https://insu.hal.science/insu-01181629
https://hal.archives-ouvertes.fr


Journal of Geophysical Research: Space Physics

EMIC waves observed by the low-altitude satellite DEMETER
during the November 2004 magnetic storm

D. Píša1,2,3, M. Parrot2, O. Santolík1,4, and J. D. Menietti3

1Institute of Atmospheric Physics, AS CR, Prague, Czech Republic, 2LPC2E/CNRS, Orléans, France, 3Department of Physics
and Astronomy, University of Iowa, Iowa City, Iowa, USA, 4Faculty of Mathematics and Physics, Charles University in
Prague, Prague, Czech Republic

Abstract This paper presents an analysis of ULF (0–20 Hz) waves observed by the low-altitude satellite
Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) during the
magnetic storm of November 2004. Since these ULF waves are measured by both electric and magnetic
antennas, they may be identified as electromagnetic ion cyclotron (EMIC) waves. While EMIC waves have
been previously observed in the low-altitude ionosphere, this is the first time that they are observed for
such extensive time periods and at such high frequencies. A common feature of these emissions is that their
observation region in the low-altitude ionosphere extends continuously from the high-latitude southern
trough in one side up to the high-latitude northern trough. The analysis of wave propagation points to
the possible source region placed in the inner magnetosphere (L∼2–3). Observed wave frequencies
indicate that waves must be generated much farther from the Earth compared to the satellite orbit.
Exceptionally high frequencies of about 10 Hz can be explained by the source region placed in the deep
inner magnetosphere at L ∼2.5. We hypothesize that these waves are generated below the local helium
gyrofrequency and propagate over a large range of wave normal angles to reach low altitudes at L∼1.11.
In order to investigate this scenario, a future study based on ray tracing simulations will be necessary.

1. Introduction

The paper presents an analysis of electromagnetic waves observed by the satellite DEMETER (Detection of
Electro-Magnetic Emissions Transmitted from Earthquake Regions). These waves were observed in the ULF
range (0–20 Hz) in the upper ionosphere during a large magnetic storm. There is evidence that they might be
related to electromagnetic ion cyclotron (EMIC) waves [e.g., Cornwall, 1965]. After initial satellite observation
[Russell et al., 1970; Gurnett, 1976; Kintner and Gurnett, 1977], EMIC waves have been extensively studied by
both ground and satellite experiments. In auroral regions EMIC waves have been observed in connection with
the intense electron fluxes by the S3-3 satellite [Kintner et al., 1979; Temerin and Lysak, 1984], the Freja satel-
lite [Hamrin et al., 2002], the Fast satellite [Chaston et al., 2002], and the Polar satellite [Santolík et al., 2002b].
They have been also measured in the equatorial region at various altitudes by the GEOS satellites [Young et al.,
1981; Rauch and Roux, 1982], the DE 1 satellite [Olsen et al., 1987], the Akebono satellite [Sawada et al., 1991;
Kasahara et al., 1994; Liu et al., 1994; Sakaguchi et al., 2013], the Equator-S satellite [Mouikis et al., 2002], the
CRESS satellite [Fraser and Nguyen, 2001; Meredith et al., 2003, 2014], the Cluster satellites [Santolík et al., 2002a;
Pickett et al., 2010; Grison et al., 2013; Liu et al., 2013], and the Time History of Events and Macroscale Interac-
tions during Substorms satellites [Usanova et al., 2008, 2012]. During magnetic storms, an anisotropy in the
pitch angle distribution of the ring current can occur in the equatorial region. The anisotropy drives the ion
cyclotron instability from which the EMIC waves are generated [see, for example, Bräysy et al., 1998; Erlandson
and Ukhorskiy, 2001; Mouikis et al., 2002; Summers and Thorne, 2003, and references therein]. They can be char-
acterized by harmonic emission between the first multiples of the ion cyclotron frequency observed in both
the electric and magnetic components. It is known that EMIC waves are responsible for electron precipitation
in the inner magnetosphere [Lorentzen et al., 2000; Summers and Thorne, 2003; Meredith et al., 2003].

EMIC waves are also known to be propagated along steep density gradients of a plasmapause boundary to
lower altitudes [e.g., Thorne and Horne, 1997]. Previous DEMETER observations in the vicinity of the plasma-
pause boundary show EMIC emissions detected during higher geomagnetic activity [Parrot et al., 2006a, 2014].
EMIC waves can interact with the ring current ions which can be subsequently scattered into the ionosphere,
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where they may modify the ionospheric conditions. These processes couple the magnetosphere with the
ionosphere, and they can give rise to ULF waves propagating in the ionospheric waveguide [Demekhov, 2012].
Several active experiments showed that modulated heating of the ionosphere in the presence of natural cur-
rents (e.g., auroral electrojet) can initiate electromagnetic waves in the ELF band (3–3000 Hz) [Ferraro et al.,
1982; McCarrick et al., 1990; Moore et al., 2007; Eliasson et al., 2012]. They have shown that these artificially trig-
gered ELF emissions can propagate inside the Earth ionosphere waveguide to large distances with very little
attenuation.

Our observations occur during the magnetic storm of November 2004. This particular storm was the strongest
of the entire mission with minimum Dst = −373 nT and Kp = 9 occurring on 8 November 2004. This disturbed
period also provided an opportunity to measure other new phenomena in the equatorial region [Berthelier
et al., 2008; Malingre et al., 2008], in the trough [Parrot et al., 2006a], or along the complete half orbits [Pfaff
et al., 2008; Colpitts et al., 2012].

This paper reports observations attributed to EMIC waves recorded in the low-altitude ionosphere during this
magnetic storm of 8–12 November 2004. Section 2 briefly describes the instrumentation, section 3 describes
the observations, section 4 is devoted to discussion, and section 5 presents conclusions.

2. The Experiment

The French satellite DEMETER was launched on 29 June 2004, and the mission lasted to the end of December
2010. It was a three-axis stabilized spacecraft with a low-altitude (∼710 km) polar and circular orbits. The
orbit was subsequently lowered to 660 km in 2005. With nearly Sun-synchronous trajectory the satellite was
covering regions in two local times. The ascending half orbits corresponded to nighttime (22:30 LT), and the
descending half orbits corresponded to daytime (10:30 LT). Electromagnetic waves and plasma parameters
were measured all around the Earth up to geomagnetic latitudes ±65∘. The electric field experiment covered
the frequency range from DC up to 3.5 MHz, whereas the magnetic field instrument measured from a few
hertz up to 20 kHz. There were two different modes of operation of the satellite (survey and burst). During the
survey mode, three-axis waveforms of the electric components up to 20 Hz were continuously recorded (the
sampling frequency was ∼39 Hz). When the instruments were operated in the burst mode, waveforms of all
six components of the electromagnetic field were recorded in the ELF range up to 1.25 kHz with the sampling
frequency 2.5 kHz. The burst mode allows spectral analysis with better time and frequency resolutions. It also
enables the determination of the characteristics of wave propagation. Details of the wave experiment can be
found in Berthelier et al. [2006] and Parrot et al. [2006b]. Throughout the paper a local geomagnetic coordinate
system is used: the z axis is parallel with the ambient magnetic field line, the x axis lies in the orbital plane
pointing outward away from the Earth, and the y axis completes the orthogonal system.

3. The Observations

All events studied here occurred within 09–12 November 2004 in the recovery phase of a large geomagnetic
storm (with minimum Dst = −373 nT occurring on 8 November 2004). Figure 1 shows ULF data recorded on 10
November 2004 during a complete half orbit between 22:48:06 and 23:21:44 UT. The panels represent three
components of the electric field. One can clearly see a broadband emission at a frequency of about 10 Hz in Ex

and Ey components, while Figure 1 (bottom) for the Ez component, which is along the ambient magnetic field,
does not show similar signature. This emission is observed practically all along the half orbit and is only limited
at higher latitudes (in the north and in the south) by the ionospheric trough. The trough is identified by the
rapid electron and ion density change (not shown) and the occurrence of the intense electrostatic turbulence
(shown in Figure 1, time intervals 22:49–22:52 and 23:16–23:18). The solid, dashed, and dash-dotted white
lines present the equatorial O+, He+, and H+ cyclotron frequencies connected to the satellite position traced
by using the International Geomagnetic Reference Field (IGRF) model [Finlay et al., 2010]. There are no burst
mode data available for this half orbit. During the analyzed time period 26 half orbits with similar emissions
(as shown in Figure 1) were found. There are no such emissions observed during the onset of the geomagnetic
storm on 8 November 2004.

Figure 2 represents ULF spectrograms observed on 11 November 2004. Spectrograms display several line
bands which are approximately 2.5, 5, and 10 Hz. The frequency band near 5 Hz is observed along the major
part of the orbit at low and middle latitudes, whereas the other frequency bands are observed over smaller
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Figure 1. (from top to bottom) ULF spectrograms of the three electric components up to 15 Hz. The data are recorded on 10 November 2004 between 22:48:06
and 23:21:44 UT. The spectrogram intensity is color coded according to the scales on the right. The components are in a coordinate system linked to the Earth’s
magnetic field B0 (Ez is along B0). The parameters below are the universal time (UT), the magnetic local time (MLT), the geomagnetic latitude and longitude,
and McIlwain parameter (L). The vertical white lines indicate data gaps due to calibration. The set of lines observed in Figure 1 (bottom) around 23:15:00 UT at
frequencies less than 5 Hz is due to interferences. The solid, dashed, and dash-dotted white lines indicate equatorial O+ , He+, and H+ cyclotron frequencies
traced from the satellite position.

parts of the orbit in the north (10 Hz) and in the south (2.5 Hz). For this half orbit, the burst mode is available
between 06:23:33 and 06:28:58 UT. Detailed wave propagation analysis of ELF waveforms for three magnetic
field components and three electric field components up to 20 Hz is shown in Figure 3. Figures 3a and 3b,
respectively, represent high-resolution power spectrograms of magnetic and electric field fluctuations. The
polar angle of the wave vector presented in Figure 3c has been obtained by the singular value decomposition
(SVD) method [Santolík et al., 2003] in the coordinate system linked to the ambient terrestrial magnetic field
B0. Figures 3d and 3e show the sense of polarization of the magnetic and electric components, respectively,
with a level of confidence, i.e., normalized by its standard deviation, also using the SVD method. Negative
values mean left-hand polarized field, positive values correspond to the right-handed polarization, and values
between −1 and +1 indicate a low confidence level. Figure 3f presents the polar angle of the Poynting flux
with respect to the ambient magnetic field. It can be seen that the same broadband emissions appear both on
the electric and on the magnetic spectrograms centered at frequencies of about 6 Hz and 12 Hz. The satellite
was on the dayside (∼11:00 LT) moving from the north to the south. The polar angle of the wave vector at both
frequencies is rising with descending geomagnetic latitude and reaching angle∼90∘ below a latitude of∼15∘.
The polarization of the magnetic field is significantly right handed for higher latitudes, and it is more mixed
when reaching lower latitudes. The polarization of the electric field is dominantly right handed throughout the
whole interval for both frequencies. The polar angle of the Poynting vector is rising with descending latitude
and reaches a value of ∼90∘ below a latitude of ∼15∘, i.e., energy propagates perpendicular with respect to
the ambient magnetic field.

The wave propagation analysis for all available data with the ULF wave signature observed in the burst mode
between 9 and 12 November 2004 is shown in Figure 4. For this purpose, spectral matrices of all six com-
ponents of electromagnetic field fluctuations [Santolík et al., 2003] with time resolution of 4 s and frequency
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Figure 2. Same representation as Figure 1 but observed on 11 November 2004 between 06:11:36 UT and 06:49:14 UT. The vertical white lines at ∼06:23 and
06:29 indicate the time intervals where instruments were operated in the burst mode. The white line at ∼06:42 shows a data gap.

resolution of 3.7 Hz have been calculated. For each time interval, the frequency with a maximum power in
the magnetic field component was selected. The dynamics of the wave amplitudes for the observed events is
typically in a range of 10–100 μV m−1 for the electric field and 1–10 pT for the magnetic field, respectively. All
dependencies are plotted as a function of geomagnetic latitude. The dayside and the nightside half orbits are
shown by red and black crosses, respectively. The wave normal directions (Figures 4a and 4b) were computed
through the SVD method. Thetak is defined as the polar angle between the wave vector and the magnetic
field, 0∘ for parallel and 180∘ for antiparallel propagation with respect to the magnetic field. Phik defines an
azimuthal angle between the wave vector and magnetic field, 0∘ (180∘) for a direction outward (toward) the
Earth. The wave normal angle for dayside half orbits and positive latitudes decreases with increasing latitude.
For negative latitudes we have a few observations showing wave normal angles almost antiparallel to the
magnetic field. Nightside observations are only obtained for higher latitudes and show more scattered wave
normal angles. Both data sets show azimuthal angles which correspond to propagation from the magneto-
sphere toward the Earth. The ellipticity can be defined as the ratio of the two axes of the polarization ellipse
and gives values from −1 to 1. The polarization can be estimated from the sign for the ellipticity plotted in
Figure 4c. The polarization is mostly right handed for the dayside observations and mixed for the nightside
data. Figure 4d presents a variation of the polar angle for the Poynting vector with respect to the ambient
magnetic field. Polar angle for both data sets and positive latitudes decreases with increasing latitude. For
lower positive latitudes, waves propagate almost perpendicular to the magnetic field, whereas for higher lati-
tudes waves are more field aligned. For negative latitudes on the dayside, the polar angle is almost antiparallel
to the magnetic field.

For a better visualization, wave normal and Poynting vector directions for the daytime observations from
Figures 4a and 4d (red crosses) are plotted as a function of the geomagnetic latitude in Figure 5. Both wave
normal vector (black arrow) and the Poynting vector (red arrow) are projected to the meridional plane at
MLT=11 h with a step of 5∘in the geomagnetic latitude. The projection of the IGRF model is shown by light
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Figure 3. (a and b) Sum of the power spectral densities of the three measured magnetic field components and three
measured electric field components, respectively, according to the color bars at the right-hand side, in the frequency
range up to 40 Hz. (c) Polar angle Thetak , 0∘ for waves propagating parallel to magnetic field and 180∘ for waves
propagating antiparallel to magnetic field. (d) Sense of polarization of the wave magnetic field with a level of confidence
using the method of singular value decomposition (SVD) of the magnetic spectral matrix [Santolík et al., 2003]. (e) Sense
of polarization of the wave electric field with a level of confidence. (f ) Polar angle of the Poynting flux with respect to
the local field line of the ambient magnetic field, 0∘ indicating the same direction and 180∘ the opposite direction.

gray lines. The dashed black line represents the projection of the satellite’s orbit. This analysis points to a
possible source region in the magnetosphere instead of the top of the ionosphere.

4. Discussions

In this study we examine ULF data from the DEMETER satellite during the November 2004 magnetic storm.
This was the strongest geomagnetic storm during the entire mission. The analyzed observations are therefore
unique for the DEMETER mission. During the rest of the mission the geomagnetic activity was very quiet, with
only a few exceptions. For this reason there was no similar opportunity to observe EMIC-like fluctuations at
such high frequencies and in a large range of geomagnetic latitudes.

Past observations in the same region have shown that similar harmonic structures might be related to EMIC
waves. Using Magsat data, Iyemori and Hayashi [1989] have observed PC1 waves at ionospheric altitudes
(350–550 km) at 58∘–60∘ invariant latitude which is close to the plasmapause position. Erlandson et al. [1993]
have reported low-frequency (0.5–4.0 Hz) electromagnetic ion cyclotron waves observations by the DE 2
satellite at magnetic latitudes from 57 to 60∘ and altitudes from 600 to 900 km. With the same data, Erlandson
and Anderson [1996] have performed a statistical analysis which indicates that most events were observed at
frequencies between 0.4 and 2.0 Hz, in the dawn (0400–0600 MLT) and noon (1000–1500 MLT) sectors, and
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Figure 4. Wave propagation properties derived from all burst mode observations between 9 and 12 November 2004.
Data are divided into two groups for the dayside (red points) and nightside (black points) half orbits. (a) Polar angle
Thetak and (b) azimuthal angle Phik of the wave vector; (c) ellipticity and (d) polar angle of the Poynting flux as a
function of geomagnetic latitude.

from 50∘ to 62∘ invariant latitude [see also Iyemori et al., 1994]. These previous low-altitude missions reported
EMIC waves observed only during time periods up to a maximum of 1 min at high invariant latitudes (50–60∘).

The ion cyclotron frequencies calculated along the satellite’s orbit from the fluxgate magnetometer data for
a hydrogen, helium, and oxygen are in the range of 300–600 Hz, 75–163 Hz, and 19–35 Hz, respectively.
Therefore, ULF emissions observed by the DEMETER satellite were not detected at ion cyclotron frequencies
related to the local magnetic field. The wave normal and Poynting flux angles plotted in Figures 4a and 4d
show that with increasing latitude these angles are decreasing. The azimuthal angles of the wave normal
for most of the events, especially at the dayside, show propagation from the magnetosphere to the Earth
(±180∘). Although it was shown in the past [e.g., Demekhov, 2012] that ULF/ELF wave sources can exist in
the ionosphere, our analysis of wave normal and Poynting vector directions point to a source region which
would be more likely located in the inner magnetosphere. The source position is consistent with the generally
accepted model for EMIC waves, which are generated in the inner magnetosphere close to the plasmapause
boundary [e.g., Cornwall, 1965].

The similar magnetospheric conditions as those for the DEMETER observations were met during the Akebono
mission. Sakaguchi et al. [2013] show EMIC waves at the frequency of about 8 Hz related to a severe geomag-
netic storm (with Dst minimum −255 nT occurring on 19 September 1989) observed by the Akebono satellite
(L ∼ 2.5–5) in September 1989. After the onset and at the beginning of recovery phase, the plasmapause
was pushed toward the Earth reaching field lines (L ∼ 2.5–3 RE) where the He+ cyclotron frequency is about
10 Hz. A magnetic activity-dependent model of the plasmapause position [O’Brien and Moldwin, 2003] consis-
tent with conditions for 10 November 2004 is presented in Figure 5 and shows a compression reaching radial
distances about of 2 RE for the local time around 10:30. The plasmapause was probably located closer to the
Earth, and therefore waves from the source region generated close to the He+ cyclotron frequency can be
observed by DEMETER.

In a single-ion cold plasma approximation, EMIC waves can propagate at frequencies below the H+ cyclotron
frequency as the guided (field-aligned) left-hand polarized and unguided right-hand polarized waves [Young
et al., 1981; Rauch and Roux, 1982; Fraser, 1985]. An occurrence of heavy ions such as He+ and O+ causes
the wave modes to be more complicated, with two additional resonances, two cutoffs, and two crossover
frequencies [Gurnett et al., 1965]. This is visualized in Figure 6. For the wave vector parallel with the ambient
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Figure 5. Directions of the wave normal (black arrow)
and the Poynting vector (red arrow) projected to the
plane of the magnetic meridian at MLT = 11 h. Dayside
burst mode observations between 9 and 12 November
2004 (red points from Figure 4) with the 5∘ step in the
geomagnetic latitude are plotted. The black dashed
line shows the projected altitude of DEMETER. Light
gray lines represent a projection of the IGRF
geomagnetic field.

magnetic field, Thetak = 0∘, the left-hand mode has
three resonances at each ion cyclotron frequency.
There are three stop bands between cyclotron fre-
quency and L-mode cutoff. The right-hand mode is un-
affected. At the crossover frequency the left-hand and
right-hand branches cross each other. For oblique
angles of the wave vector, 0∘< Thetak < 90∘, the sense
of polarization changes between right- and left-
handed modes at the crossover frequency. At this fre-
quency a polarization reversal occurs. For the wave
vector perpendicular to the ambient magnetic field,
Thetak = 90∘, waves in the left-hand mode can only
propagate between crossover and L-mode cutoff. The
right-hand mode has stop band between bi-ion hybrid
resonance and crossover frequency. For more detailed
description see, for example, Rauch and Roux [1982].

We suggest that for our case, left-hand polarized wave
could be generated below the He+ cyclotron reso-
nance. The presence of O+ ions leads to a change of
polarization, at the crossover frequency (fcr), where the
waves become right-hand polarized. The right-hand
polarization allows waves with f < fcr to propagate
across the left-hand mode cutoff above the O+ cyclo-
tron frequency. This is supported by the theoretical
model of polarization change in a multicomponent
plasma [Rauch and Roux, 1982; Perraut et al., 1984] and
is in agreement with previous observations [e.g., Young
et al., 1981; Rauch and Roux, 1982] and more recently
from the Cluster observations [Liu et al., 2013].

DEMETER observations also show similar emissions
detected in high-latitude regions (50–60∘) of the iono-
spheric trough (as presented in Figure 1). Sources for

these waves are known to be close to the equatorial region at the plasmapause boundary (L ∼ 2.5–5 RE)
[Yizengaw et al., 2005]. Waves then propagate to higher latitudes along the density gradient near the plas-
masphere boundary [Kasahara et al., 1992, 1994; Thorne and Horne, 1997; Fraser and Nguyen, 2001]. For these

Figure 6. Dispersion relation of ULF waves in the presence of three ion species (H+ 64%, He+ 2%, and O+ 34%) in the cold plasma approximation. Propagation
with an angle of a wave vector with respect to the ambient magnetic field equal to (left) 0, (middle) 60, and (right) 90∘are shown. Left-hand and right-hand
modes are plotted by the red and black lines, respectively. Ion cyclotron frequencies are represented by black dotted lines. The crossover frequency is shown by
the black dashed line. The overall plasma density at MLT = 12 h, geomagnetic latitude = 0∘, and radial distance = 1.11 RE (satellite’s altitude at geomagnetic
equator) is obtained from the global plasma core model [Gallagher et al., 2000].
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reasons we propose that the waves measured by DEMETER at higher latitudes might also be identified as EMIC
waves. Similar waves at ion cyclotron harmonics were observed in the auroral zone, for example, by Chaston
et al. [2002] and Santolík et al. [2002a].

Our analysis suggests that the observed waves could be generated below the He+ cyclotron resonance. These
emissions are typically observed at frequencies around 2.5, 5, and 10 Hz, which can be due to the helium har-
monics. Kokubun et al. [1991] have observed harmonics of the helium gyrofrequency with EXOS-D data, and
during a magnetic storm Liu et al. [1994] have observed bands at the harmonics of the oxygen gyrofrequency.

A backward ray tracing simulation is needed to thoroughly analyze the wave propagation and possible loca-
tions of the source region. This analysis can be based on the above presented in situ measurements of EMIC
waves. The simulation procedure can be initialized by the measured wave vector directions at the DEMETER
altitude. We have tried to perform initial steps in this analysis, but it became clear that wavelengths at these
frequencies can be sometimes larger than spatial scales for changes of the refractive index. Particularly, this
problem as been encountered for oblique propagation through a region where the wave frequency is close
to the ion cyclotron frequency. This fact introduces additional difficulties to any raypath simulation, and a
proper analysis goes far beyond the scope of this paper.

5. Conclusions

We present observations of ULF waves from the DEMETER satellite during the magnetic storm. The November
2004 magnetic storm was the strongest during the entire DEMETER mission. Our results propose that waves
may be identified as EMIC waves. Although these emissions have been already reported by previous
low-altitude missions at higher latitudes, the new finding with DEMETER data is that these EMIC waves are
observed over a long period and on a large scale of latitudes in the low-altitude ionosphere. The previous
low-altitude missions present EMIC wave observations only during time periods up to a maximum of 1 min. It
was shown in the past that ULF/ELF wave sources can exist in the ionosphere as well, but our measurements
of wave normal and Poynting vector directions point to a source region which would be more likely located in
the magnetosphere. A speculative scenario could be based on a possible origin at the plasmapause equatorial
boundary. In our case, this boundary would be pushed closer toward the Earth due to a large geomagnetic
storm. The waves might then penetrate down to the low-altitude ionosphere by crossing the polarization
reversal region. Consequently, EMIC waves are observed as right-handed polarized waves onboard the
DEMETER satellite. Future study based on ray tracing simulations is needed in order to investigate this
suggested scenario.
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