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Abstract Head-on collisions between negative and positive streamer discharges have recently been
suggested to be responsible for the production of high electric fields leading to X-rays emissions. Using
a plasma fluid approach, we model head-on collisions between negative and positive streamers. We
observe the occurrence of a very strong electric field at the location of the streamer collision. However,
the enhancement of the field produces a strong increase in the electron density, which leads to a collapse
of the field over only a few picoseconds. Using a Monte Carlo model, we have verified that this process is
therefore not responsible for the acceleration of a significant number of electrons to energy >1 keV. We
conclude that no significant X-ray emission could be produced by the head-on encounter of nonthermal
streamer discharges. Moreover, we quantify the optical emissions produced in the streamer collision.

1. Introduction

The processes responsible for the production of high-energy radiation in thunderstorms and laboratory
discharges are not fully understood yet. X-ray bursts have been detected from the ground during the descent
of natural negative lightning stepped leader [Moore et al., 2001] and rocket-triggered lightning flashes [Dwyer
et al., 2003]. Recently, observational studies have been dedicated to understand these emissions in lightning
[e.g., Howard et al., 2008; Saleh et al., 2009; Dwyer et al., 2011; Schaal et al., 2014], and laboratory experiments
have confirmed that atmospheric pressure discharges produce X-rays [e.g., Dwyer et al., 2005; Rahman et al.,
2008; Nguyen et al., 2008, 2010; March and Montanyà, 2011; Kochkin et al., 2012, 2015].

The emission of X-rays by lightning discharges is believed to be caused by the production of thermal run-
away electrons [Dwyer, 2004]. Indeed, Moss et al. [2006] have suggested that the strong electric fields that are
produced in streamer heads could be responsible for thermal runaway electron production and Celestin and
Pasko [2011] have shown how large fluxes of runaway electrons could be produced by streamer discharges
propagating under strong electric fields such as those present at the leader tip. Recently, Babich et al. [2015])
have suggested that thermal runaway electrons could be produced by streamer discharges guided by precur-
sor streamer channels. Moreover, it is interesting to note that based on the theory of production of thermal
runaway electrons by streamers at the leader front, Xu et al. [2014] have shown that negative leaders forming
potential drops of approximately 5 MV in their tip region would produce X-ray spectra similar to observational
results of Schaal et al. [2012] in terms of general shape and spectral hardness.

Encounters between streamers of opposite polarities are believed to be very common in nature and lab-
oratory experiments. In particular, during the formation of a new leader step, the negative streamer zone
around the tip of a negative leader and the positive streamers initiated from the positive part of a bidirectional
space leader strongly interact and numerous head-on encounters are expected. In laboratory experiments,
when streamers are approaching a sharp electrode, streamer discharges with the opposite polarity are
initiated from this electrode and collide with the approaching streamers. Cooray et al. [2009] suggested
that head-on collisions between negative and positive streamers could produce extremely strong electric
fields that would lead to the production of thermal runaway electrons and corresponding X-rays. On the
basis of experimental evidence, Kochkin et al. [2012] recently concluded that X-ray bursts over a timescale
shorter than a few nanoseconds were indeed produced by collisions between positive and negative stream-
ers, but X-ray detections could not be related to specific streamer collisions [see also Kochkin et al., 2015,
section 3.5.2].
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Figure 1. Illustration of a head-on collision between a positive (right) and a negative streamer (left) moving toward each
other under an external electric field E⃗.

However, the estimation of the increase in the electric field during encounters of streamers with opposite
polarities (see Figure 1) is a complicated problem. Indeed, an increase of the field beyond the conventional
breakdown threshold would rapidly increase the electron density at the location of the encounter. In turn,
one expects that the field would swiftly collapse due to the corresponding increase in the electron density.

In this paper, we investigate this nonlinear problem using a nonthermal plasma fluid model and estimate
upper limits on fluxes of high-energy electrons and photons possibly produced in this process using Monte
Carlo simulations.

2. Model Formulation

The streamer model we use in the present study is based on the drift-diffusion equations for charged species.
These equations are numerically solved using the finite volume methods in cylindrically symmetric geometry.
The drift-diffusion equations are coupled with Poisson’s equation as follows:

𝜕ne

𝜕t
+ ∇ ⋅ nev⃗e − De∇2ne = Sph + S+e − S−e (1)

𝜕np

𝜕t
= Sph + S+p (2)

𝜕nn

𝜕t
= S+n (3)

∇2𝜙 = −
q
𝜀0

(np − nn − ne) (4)

where subscripts “e,” “p,” and “n” refer to electrons, positive ions, and negative ions, respectively; ni is the
number density of species i; ve is the electron drift velocity; and De, q, 𝜀0, and 𝜙 are the electron diffusion
coefficient, the absolute value of the electron charge, the permittivity of free space, and the electric potential,
respectively. Over the time scale of interest here, ions are considered to be motionless. The S+ and S− terms
stand for the rates of production by electron impact ionization and loss of electrons by attachment, respec-
tively. The transport coefficients and source terms S+ and S− are defined using analytical formulas defined in
the appendix of Morrow and Lowke [1997]. The Sph term defines the rate of production of electron positive-ion
pairs caused by the photoionization process [Zheleznyak et al., 1982; Liu and Pasko, 2004].

To solve numerically equations (1)–(4), we use the finite volume methods coupled with a flux-corrected trans-
port (FCT) technique for steep gradients developed by Zalesak [1979]. An upwind scheme and a fourth-order
finite difference scheme have been used to calculate the low- and high-order fluxes required in the FCT,
respectively [see Zalesak, 1979, Appendix]. To avoid spurious oscillations that appear near the axis of symme-
try in the region of the streamer head where steep density and electric field gradients are significant, we use a
logarithmic function to calculate the fourth-order finite difference scheme to which we add fourth-order
dissipative fluxes [see Kuzmin et al., 2012, pp. 23–65] in order to damp the spurious amplifications of the
electron density caused by the FCT technique. The finite difference form of Poisson’s equation is solved using
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a successive over-relaxation (SOR) method that we have developed. The boundary conditions applied to
Poisson’s equation are the following: 𝜕𝜙

𝜕r
|r=0 = 0, 𝜙(0 ≤ r ≤ 1.92 mm, z = 0) = 0, 𝜙 (r, z = 8 mm) = U, and

𝜙 (r = 1.92 mm, 0 ≤ z ≤ 8 mm) = U× (z/8 mm), where U = 32 kV or 48 kV and corresponds to amplitudes of
homogeneous Laplacian fields E0 = 40 kV/cm and E0 = 60 kV/cm, respectively, between the plane electrodes.

Positive and negative streamers are initiated on each side of the simulation domain by placing two Gaussians
of neutral plasma with characteristic sizes 𝜎z = 200 μm and 𝜎r = 200 μm in the vicinity of each electrode.

The photoionization term is evaluated using an integral approach [Zheleznyak et al., 1982; Liu and Pasko, 2004]
in cylindrical coordinates. In a region around the maximum of the photoionization source, the term Sph is
estimated at every grid points. In other regions, one point over 10 is estimated, and a linear interpolation tech-
nique is employed. We have verified that this technique gives very similar results as those obtained through
more sophisticated methods [see Bourdon et al., 2007].

We quantify the density of excited species of N2(B3Πg), N2(C3Πu), and N+
2 (B

2Σ+
u ) associated with optical emis-

sions of the first positive band system of N2 (1PN2), the second positive band system of N2 (2PN2), and the
first negative band system of N+

2 (1NN+
2 ), respectively. As in the study reported by Xu et al. [2015] quench-

ing of N2(B3Πg) and N2(C3Πu) is considered to occur through collisions with N2 and O2 with rate coefficients
𝛼1 = 10−11 cm3/s [Kossyi et al., 1992] and 𝛼2 = 3 × 10−10 cm3/s [Vallance Jones, 1974, p. 119], respectively.
N2(B2Σ+

u ) is quenched by N2 with a rate coefficient 𝛼1 = 4.53 × 10−10 cm3/s and by O2 with a rate coefficient
𝛼2 = 7.36 × 10−10cm3/s [e.g., Mitchell, 1970; Pancheshnyi et al., 1998; Kuo et al., 2005].

The density of excited species is estimated according to the following differential equation [Liu and Pasko,
2004]:

𝜕nk

𝜕t
= −

nk

𝜏k
+ 𝜈kne +

∑
m

nmAm (5)

where 𝜏k = [Ak + 𝛼1NN2
+ 𝛼2NO2

]−1 and Ak are the characteristic life time and Einstein’s coefficient of the
excited species k. The quantities nk and 𝜈k are, respectively, the density and the excitation frequency of the
excited species k. The sum over nmAm takes into account the cascading of excited species from higher energy
levels m to the level k.

Moreover, the associated optical emissions are evaluated according to the following integral along the line of
sight [Liu and Pasko, 2004]:

Ik = 10−6 ∫L
Aknkdl (6)

where Ik and nk are the intensity of optical emissions in Rayleighs and the number density of excited species
k, respectively.

In this paper, we show simulation results performed at the ground-level air density N = 2.688×1025 m−3 under
strong externally applied homogeneous electric fields with a spatial resolution Δr = 8 μm and Δz = 8 μm in a
simulation domain (1001 × 241) discretized over regular grid points.

3. Results
3.1. Case E0 = 40 kV/cm
As depicted in Figure 2a that shows the electric field along the z axis, one sees the positive streamer form-
ing and propagating leftward as the negative streamer initiates and propagates rightward. The electric field
in both negative and positive streamers reaches a stable value, before starting to rise when streamers start
influencing each other. The local electric field strongly increases at the moment of the encounter between
both streamer heads. We can clearly see the collapse of the electric field just after reaching a maximum
(see Movie S1 in the supporting information) while a significant rise in the electron density is produced at
the same location as shown in Figure 2c. Figure 2d (solid line) shows the behavior of the maximum electric
field in the simulation domain as function of time for the case of an externally applied homogeneous elec-
tric field E0 = 40 kV/cm. The maximum electric field in the simulation domain reaches 235 kV/cm, which is
lower than the thermal runaway threshold as defined by the maximum electron friction force around∼100 eV
(∼260 kV/cm under ground-level air density). Once the electric field in the streamer heads is stable, the
average velocity before collision is estimated to be ∼106 m/s.
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Figure 2. (a and b) Profile of the electric field along the z axis in the case E0 = 40 kV/cm and 60 kV/cm, respectively.
(c) Profile of the electron density along the z axis in the case E0 = 40 kV/cm. (d) Evolution of the maximum electric field
Emax as a function of time. Solid and dashed lines correspond to the cases E0 = 40 and 60 kV/cm, respectively. In
Figures 2a and 2c, results are shown with a time step of 160 ps. In Figure 2b, results are shown with a time step of 60 ps.

3.2. Case E0 = 60 kV/cm
Figure 2d (dashed line) shows the behavior of the maximum electric field in the simulation domain as function
of time and (Figure 2b) the electric field along the z axis for the case E0 = 60 kV/cm. We observe a similar behav-
ior of the electric field as in the case E0 = 40 kV/cm; however, the maximum value reached is 262 kV/cm. After
reaching a maximum of 262 kV/cm, the electric field collapses over a very short duration of ∼4 ps. The total
time over which the electric field is greater than 250 kV/cm is approximately∼8 ps. The maximum electric field
reached is greater than that obtained in the situation where the homogeneous electric field is E0 = 40 kV/cm
and the average velocity of streamers before the encounter is greater as well (∼3 ×106 m/s).

3.3. Estimate of the Number of High-Energy Electrons and Photons Produced During the Encounter
of Streamers With Opposite Polarities
Very high amplitudes of the electric field are obtained in both cases described above. In order to quantify
the fluxes of high-energy electrons and the corresponding bremsstrahlung photons produced during the
streamers collision, we have used a Monte Carlo code that simulates the propagation of electrons in air with
energies from sub-eV to MeVs under externally applied electric fields (see Celestin and Pasko [2011] for more
details) in a two-step fashion. In the first step, we calculate the electric field during the streamer collision
through our plasma fluid model as described above. In the second step, we follow the dynamics of test elec-
trons initiated with an energy of 1 eV and distributed over space using our Monte Carlo code under the electric
fields varying in space and time that were obtained in the first step. The number of electrons needed in this
configuration has proven computationally impractical on ∼100 processors to obtain an accurate estimate on
the production of high-energy electrons. For the sake of simplicity, we therefore estimate an upper limit of
the flux of high-energy electrons by using a time-varying homogeneous electric field equal to the maximum
field obtained in our streamer simulation domain at each moment of time as shown in Figure 2d. We empha-
size that this method strongly overestimates the number and energy of electrons obtained since electric field
gradients are neglected.

In the case of an applied field of E0 = 60 kV/cm, at the moment of the collision the conduction current at
the position of the peak electric field (see Figure 2b) reaches 20 A. For comparison, the conduction current
evaluated locally in the positive streamer head when the electric field has reached a stable amplitude (t ≃ 1 ns,
see Figure 2d) is ∼15 A, which is consistent with the amplitude of conduction current in a streamer head
reported in the literature [e.g., Liu, 2010], considering that the external electric field applied in the present
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Figure 3. (a–c) Optical emissions 1PN2, 2PN2, and 1NN+
2 30 ps after the head-on collision in the case of E0 = 40 kV/cm.

study is very strong (see section 4). From this maximum current, one can directly estimate the total number
of electrons passing through a surface perpendicular to the streamer axis per unit time during the streamer
collision. Additionally, our Monte Carlo simulation results indicate that, in the case of E0 = 60 kV/cm, the ratio
between electrons with energies greater than 1 keV to the total number of electrons is lower than 1.5 × 10−7.
During the streamer collision, the strong increase in the electric field takes place over a duration shorter than
0.1 ns (see Figure 2d). Hence, one can estimate that during this time, an upper limit of 20∕qe × 1.5 × 10−7 ×
0.1 × 10−9 ≃2000 electrons with energy greater than 1 keV could be produced.

3.4. Associated Optical Emissions
Figures 3a–3c show the associated optical emissions for 1PN2, 2PN2, and 1NN+

2 band systems. The maximum
peaks of the density of the excited species and corresponding optical emissions are obtained after the max-
imum electric field was reached. In Figure 3, the results correspond to a time ∼30 ps after the collision. We
clearly see that the luminosity increases in the zone of the collision, which could be used as a signature of
head-on encounters between positive and negative streamers.

4. Discussion

A very high maximum electric field of 262 kV/cm has been obtained locally during the head-on collision of
negative and positive streamers propagating under a homogeneous electric field of 60 kV/cm. After a series
of tests performed using a Monte Carlo model in which we have introduced the electric field obtained in
our streamer simulations, we have found that only a maximum of 2000 electrons with energy > 1 keV could
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be produced by the encounter of streamers with opposite polarities studied in this paper due to the rapid
collapse of the strong field produced during the streamer collision (see Figure 2d). This estimate is done in the
case of E0 = 60 kV/cm and would be lower in the case of a weaker applied field since the resulting maximum
field reached during the streamers collision would be weaker as well (see Figure 2d). In order to estimate
the number of bremsstrahlung X-rays produced by these electrons, one can use the Bethe-Heitler differential
cross section [e.g., Lehtinen, 2000, pp. 45–49]. We find that the frequency of X-ray production with energy
greater than 1 keV by electrons with energy of a few keVs in air at ground level is on the order of ∼105 s−1. For
comparison, using the same cross section and air density, an electron with an energy of 1 MeV is associated
with an X-ray (> 1 keV) production frequency of ∼6× 106 s−1. In our simulation results, electrons with energy
greater than 1 keV are only present for a very short time on the order of a few picoseconds. Assuming that
these electrons could be present over a timescale corresponding to the timescale of the whole increase of the
electric field (∼0.1 ns), one finds that only 105 ×2000×0.1×10−9 ≃0.02 X-rays with energy greater than 1 keV
would be produced per streamers encounter.

If one considers that, once produced, energetic electrons could still accelerate in the electrode gap [Cooray
et al., 2009], a longer X-ray emission timescale should be considered. Experiments of spark discharges pro-
ducing X-rays usually involve electrode gaps of ∼1 m [e.g., Dwyer et al., 2008; Kochkin et al., 2012]. An electron
with an energy of 1 keV has a velocity of ∼2 × 107 m/s, corresponding to a propagation lasting 50 ns over
1 m. Hence, one estimates an upper limit of 10 X-rays with energy >1 keV produced by the propagation of
such 2000 electrons over the whole electrode gap. We emphasize that physical parameters have been max-
imized to obtain this upper limit. Given the very low number of X-rays obtained through the mechanism of
encounters of streamers with opposite polarities, it is unlikely that these photons could be detected.

The electric field at the streamer head is partly controlled by the externally applied Laplacian electric field. The
reason why we have used very strong externally applied ambient fields of 40 and 60 kV/cm is to increase
the electric field at the heads of both streamers to maximize the probability of producing thermal runaway
electrons. This had an impact on the velocity of streamers as well. As obvious in Figure 2d, the collision
corresponding to E0 = 60 kV/cm occurred earlier in time than that of E0 = 40 kV/cm. We emphasize that the
homogeneous fields used in this paper are much stronger than fields usually present in the middle of 1 m
spark gaps.

It is important to note that the significant amount of excited species produced during the head-on encounter
of streamers and the associated optical emissions can be used as a signature to determine if a collision
between streamers of opposite polarity actually took place.

The head-on collision patch of the optical emission is reminiscent of luminous patches observed in
sprites and named sprite beads [e.g., Cummer et al., 2006; Stenbaek-Nielsen and McHarg, 2008; Luque and
Gordillo-Vasquesz, 2011]. Note that Cummer et al. [2006] had already found out that collisions between down-
ward streamers and adjacent streamer channels form long-lasting sprite beads. However, the duration of the
luminous patch found in our simulations is too short to account for durations up to 1 s, even if scaled to high
altitude. Indeed, we have performed similar simulations as those presented in the present paper with an air
density corresponding to 70 km altitude and found that the luminous patch lasts over a few microseconds
for 2PN2 and 1NN+

2 and ∼10 μs for 1PN2. Nevertheless, other physical processes such as chemical reactions
unaccounted for in the present study or long-lasting continuing current of the sprite producing lightning dis-
charge may have a significant effect on the overall duration of these luminous patches and sprite produced by
inhomogeneities placed at different altitudes may encounter and produce associated optical patches similar
to those reported in the present study.

5. Conclusions

The main conclusions of this work can be summarized as follows:

1. We have simulated the head-on collision between positive and negative streamers and have showed that
this process is not likely to produce significant number of thermal runaway electrons with energy >1 keV
and the corresponding X-rays.

2. Despite the very high peak electric field obtained during the streamer collision, the corresponding rapid
collapse of the electric field over a few picoseconds due to the large increase of the conductivity at the same
location prevents efficient production of thermal runaway electrons.
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3. We have quantified the amount of excited species and the associated optical emissions. We show that the
occurrence of the streamer collision is followed by a peak of optical emissions associated with 1PN2, 2PN2,
and 1NN+

2 band systems (luminous patch). This may be used as a signature of streamer head-on collisions
and corresponding experimental verification of the capability of streamer collisions to produce X-rays.
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