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Abstract 

This study aimed at assessing the effect of nitrogen addition under two forms, nitrate and 

ammonium on the stabilization of Zn, Pb and Cd by Populus euramericana Dorskamp grown 

in contaminated soils for 35 days under controlled conditions.  Temporal changes in the soil 

pore water (SPW) were monitored for pH, dissolved organic carbon (DOC) and total 

dissolved concentrations of metals in the soils rhizosphere. Rhizospheric SPW pH decreased 

gradually with NH4
+
 addition and increased with NO3

–
 addition up to one unit, whilst it 

slightly decreased initially then increased for the untreated control soil  DOC increased with 

time up to 6 times, the highest increase occurring with NH4
+
 fertilization. An increase in the 

metal concentrations in the rhizospheric SPW was observed for NH4
+
 addition associated with 

the lowest rhizospheric SPW pH, whereas the opposite was observed for the control soil and 

NO3
–
 fertilization. Fertilization did not affect plant shoots or roots biomass development 

compared to the untreated control (without N addition). Metals were mostly accumulated in 

the rhizosphere and N fertilization increased the accumulation for Zn and Pb while Cd 

accumulation was enhanced for NH4
+
 addition. Collectively our results suggest metal 

stabilization by Populus euramericana Dorskamp rhizosphere with nitrogen fertilization and 

are potential for phytostabilisation of contaminated technosol. 
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Abbreviations 

CEC        Cation exchange capacity 

DOC       Dissolved organic carbon 

EC          Electrical conductivity 

MDN      Mortagne-du-Nord 

PTE        Potentially toxic elements 

SPW       Soil pore water 

TOC       Total organic carbon 

WHC      Water holding capacity 

 

 

1. Introduction 

Industrial operations such as smelting, mining, combustion of fossil fuel and waste disposal 

cause contamination of soil ecosystems with the release of huge amounts of potentially toxic 

elements (PTE)(Komarnicki, 2005; Jamali et al., 2009).  The exposure to these PTE is 

considered as a serious threat to plants, humans and the whole environment through its entry 

into the food chain resulting in phytotoxicity (Pinto et al., 2004). Therefore, one of the main 

primary challenges for researchers in the field of environmental sciences is to reduce the 

environmental contamination to limit human health and ecosystems risks (Chigbo et al., 2013; 

Zhu et al., 2014).  

Several traditional methods have been extensively used to remediate contaminated soils and 

technosol such as ‘dig and dump’, soil washing and sieving. These approaches are effective 

but destructive thus not sustainable in terms of consumption of raw materials and waste 

production and costly for large contaminated sites (Basta et al., 2004; Raicevic et al., 2005; 

Pandey et al., 2009). Less invasive, low-cost phytoremediation options such as 

phytostabilization, singly and in combination with in situ stabilization (i.e. aided 

phytostabilisation) are potential technologies to restore the physical, chemical and biological 

properties of PTE contaminated soils based on the stabilization of PTE in the plant 

rhizosphere (Mench et al., 2000; Bolan et al., 2003; Raicevic et al., 2005; Kumpiene et al., 

2006, 2008; Phillips et al., 2012).    

Rhizospheric soil is a dynamic region where multiple interactions occur in plant roots-soil-

microbe system (Darrah et al., 2006). It is characterized by high microbial activity, and is 
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clearly distinct from bulk soil with regard to pH, redox potential and availability of nutrients 

(Hinsinger et al., 2005). The fate of PTE in soils is influenced by physical and chemical 

reactions between the solid components of soil and the liquid phase. Soil factors such as pH, 

soil organic matter (SOM), texture, redox potential, and temperature (Nyamangara, 1998) and 

biological processes controlled by soil micro-organisms and plants are key-players in the root 

zone for the PTE mobility and bioavailability (Chaignon et al., 2002). Several studies 

investigated the effect of root activities on the speciation and bioavailability of PTE such as 

root-induced pH changes, exudation of organic compounds, N mineralization, soil enzyme 

activities, nitrification and denitrification (Priha et al., 1999; Norton and Firestone, 1996; 

Weintraub et al., 2007; Kaiser et al., 2010). Roots can indeed modify the PTE mobility by 

changing soil pH, electrochemical potentials through element sorption in apoplast and 

functioning of membrane transporters, and their rhizodeposition or complexation in the 

rhizosphere, including soluble root exudates and mucilages (Hinsinger, 2001; Lombi et al., 

2001; Chaignon et al., 2002). Moreover, the PTE solubility can be increased by the methods 

of acidification, complexation with chelates and PTE desorption or dissolution when the 

soluble PTE fraction is depleted (Marschner, 1995; Monsant et al., 2008).  

With a high biomass production and a large capacity to store PTE into the woody organs, 

trees are good candidates for phytostabilization. Furthermore, these species are often able to 

explore a large volume of soil, which potentially allows a better phytostabilisation than 

smaller plants. Among trees under temperate latitude, Populus species exhibit the greatest 

growth rates at the expense of large water and nitrogen requirements (Barigah et al., 2014).  

For this reason poplars are good candidate for phytoremediation. 

The dynamics of the availability of PTE in rhizospheric soils are influenced by N fertilizers. 

In fact PTE phytoavailability is strongly associated with the pH in the root environment. 

Therefore it is important to adopt a practicable field method to alter the pH. The altering of 

the N source is one of the suggested methods for modifying the rhizosphere pH (Nye, 1981; 

Marschner and Romheld, 1996).  Additionally the production of root exudates is a potential 

source of complexing agents for PTE (Hinsinger, 2001). 

The main objective of this study was therefore to investigate the effect of two nitrogen 

fertilizers (NH4
+
 and NO3

−
) on rhizospheric soil pore water (SPW) pH, dissolved organic 

carbon (DOC) concentrations, PTE (Zn, Cd and Pb) concentrations in SPW and their uptake 

by Populus euramericana Dorskamp grown in contaminated soils. 
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2 Materials and methods 

2.1 Soil sampling 

Soil samples used in this study were collected from a metallophyte grassland contaminated 

with Zn, Pb and Cd located at Mortagne-du-Nord (MDN) in Northern France. This area is 

adjacent to a former metallurgical site occupied for over 60 years by a Zn smelter unit linked 

to a sulfuric acid production unit and a Pb smelting unit (Thiry and van Oort, 1999). The 

geological context is made of the Sand of Ostricourt (Paleocene/ lower Eocene). These are 

glauconious sand with a medium granulometry, on top of them are the clay alluvial material 

of the nearby River Scarpe, clays and fine sands rich in organic matter. Three soil sampling 

sites named (MDN1, MDN2, and MDN3) were selected for this study according to the level 

of PTE concentrations (Qasim and Motelica-Heino, 2014) and spatial distribution of the 

vegetation which essentially consists of Arabidopsis halleri L. and Avena sativa L. Surface 

soils (0-20 cm) were sampled at each location. The main physico- chemical properties of the 

selected soil samples are summarized in Table 1. 

 

2.2 Experimental design and plant analysis 

A plant growth experiment was conducted with plastic pots: 0.5 kg of dry soil sub-sample 

taken after homogenizing a larger volume of composite technosol sample was used per pot for 

each soil location. Stems of Populus euramericana Dorskamp with rooting were grown on the 

soils for 35 days. The N treatments were NH4Cl and KNO3 which were applied at 200 mg N 

kg 
-1

 on days 7, 14, 21 and 28 by mixed with distilled water used to maintain 80% of the water 

holding capacity (WHC), whereas, only distilled water was applied for the untreated control 

soils. The experiment was replicated 5 times, performed in forty-five pots (3 soil samples × 3 

treatments × 5 replicates for each soil).    

Woody stem cuttings obtained from 1-year-old cutback stems of Populus euramericana 

Dorskamp genotype were planted into sand in order to obtain rooted cuttings. After rooting 

(15 days), plants were transferred into pots (one plant per pot) containing the contaminated 

soils. Concomitantly, the rooted cutting plants were pruned in order to make sure that the new 

leafy stems were entirely formed while plants were exposed to PTE. 

Plants were cultivated in a controlled environmental growth chamber (20 – 22°C, 14h day 

/10h night length, 150 µE m
-2

s
-1 

of light intensity and 80% relative humidity) for the whole 

duration of the experiment. At the end of the experiment, the plants were harvested, washed 

thoroughly with tap water and then rinsed with distilled water. Each plant was separated into 

roots, woody stem cuttings (correspond to the organ used to obtained the rooted cuttings), 
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stems and leaves. The different plants organs were oven dried in 70°C for three days until 

constant weight.  Dried plant organs were then ground with a laboratory grinder and 200mg 

(±0.5mg) of each plant organ was digested with a pressurized closed-vessel microwave 

system (Multiwave 3000, Anton Paar GmbH, Germany). Microwave polyfluoroacetylene 

(PFA)-teflon vessels were cleaned before each digestion using 10ml of aqua regia 

(HNO3/HCl, 1:3v/v), heated for 20min at 200°C and then rinsed with double deionized water. 

ICP–MS (Finnigan Element XR, Thermo Electron, Germany) measurements were carried out 

to determine the plant PTE concentrations in the different organs. 

 

2.3 Soil solution collection and analysis 

Rhizospheric SPW was collected five times at regular intervals during the cultivation period 

using Rhizon soil moisture samplers (Rhizosphere Research Products, Wageningen, The 

Netherlands). Distilled water was added to the soils to maintain 80% of the WHC. The system 

was allowed to equilibrate for 24hr before SPW collections. The collected SWP was separated 

into several sub-samples for analysis. The extracted soil solutions were used for the 

determination of pH, DOC concentrations, and PTE total dissolved concentrations. SPW pH 

was determined using a combined pH-EC meter (WTW, ProfiLine 1970i, Germany). DOC 

was analyzed using an automatic carbon analyzer (Shimadzu© TOC 5000A). SPW were 

analyzed with ICP-MS (Finnigan Element XR, Thermo Electron, Germany). 

 

2.4 Statistical analysis    

Results were analyzed with the SPSS statistical software package (SPSS, Chicago, Il, USA). 

Means are expressed with their standard error and were compared by ANOVA. In each case 

the number of replicates (n) is indicated. Statistical tests were considered significant at P ≤ 

0.05. 

 

 

3. Results and discussion 

3.1 Rhizopsheric soil solution pH and dissolved organic carbon concentration 

The temporal variation of rhizospheric SPW pH in untreated control and N treatments for all 

studied soil samples during the cultivation period are shown in Fig.1.  

It can be seen that there was a significant difference in the SPW pH between the N treatment 

and the untreated control sample. For all studied samples at the end of experiment, the NH4
+
 

treatment resulted in the lowest pH value (6.05, 5.43 and 4.96), whereas the  NO3
−
 treatment 
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resulted in the highest pH value (7.90, 7.04 and 6.97) for  MDN1, MDN2 and MDN3 samples 

respectively. Among them, the lowest pH value was observed for the MDN3 sample, whilst, 

the highest was for the MDN1sample. 

The application of N fertilizers such as (NH4)2SO4, KNO3 and urea has been considered as 

one of the main factors causing acidification or alkalization of agricultural soils, and its 

uptakes by many plants have increased or decreased rhizospheric pH related to the proton 

release through nitrification of NH4
+
 or OH

−
 release through NO3

−
 uptake (Bouman et al. 

1995). 

Monsat et al. (2008) observed a pattern of pH changes similar to our findings in a Thlaspi 

caerulescens rhizospheric soil due to N fertilization. Our results were also consistent with 

those of Sabir et al. (2013) which showed that nitrogen forms significantly affected the soil 

pH. These authors reported that the NO3
−
 fed plants recorded the maximum soil pH whereas 

minimum soil pH was recorded where only NH4
+
 was applied. Tachibana et al. (1995) also 

reported that soil pH decreased as low as 2.9 by application of N fertilizers at high rates in a 

green tea experiment. Ruan et al. (2000) showed that the application of NH4
+
 to the soil of tea 

plants resulted in significant reduction in rhizospheric pH due to the cation-anion balance 

during nutrient uptake by plants. 

In the case of the untreated control soils, a change in the pH values was also observed for all 

studied samples but remained lower from those with N fertilization. Rhizospheric SPW of the 

untreated controls increased by 0.2 – 0.3 pH units compared to the initial value, which can be 

explained as a consequence of differential rates in the uptake of cations and anions by plants 

in order to maintain electrical neutrality within their roots or probably related to changes in 

Ca concentration. Our findings are also in agreement with that of Knight et al. (1997), which 

used Rhizon soil moisture samplers and reported an increase in the solution pH between 0.4 

and 0.9 units after Noccaea caerulescens growth. Tao et al. (2003) also reported an increase 

in pH in maize rhizospheric soil during the cultivation period.  

Globally rhizospheric pH can be influenced by N source via three mechanisms:  

nitrification/denitrification reactions, displacement of H
+
/OH

−
 adsorbed on the soil solid 

phase and release/uptake of H
+
 by roots in response to NH4

+
/ NO3

–
 uptake by plant roots 

(Nye, 1981; Marschner and Romheld, 1996; Tang and Rengel, 2003; Silber et al., 2004). It is 

well known that the uptake of NH4
+
 or NO3

−
 by plants depend on their concentrations in soil 

solution, root absorption and plant growth rate (Richardson et al., 2009). When plants take up 

NH4
+
, more cations than anions will be release through proton release to regulate pH and 

charge balance resulting in rhizosphere pH decreases, whereas uptake of NO3
−
 may increase 
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rhizosphere pH through the release of OH
− 

(Haynes, 1990; Taylor and Bloom, 1998; 

Hinsinger et al., 2003).   

The changes in DOC concentrations within the rhizosphere during the cultivation period are 

shown in Fig. 2. DOC concentrations in the rizospheric SPW for the untreated control and N 

treated soils increased gradually with the cultivated period for all studied samples. Fig.2 

showed that the N fertilizers application significantly increased the concentrations of DOC for 

both MDN1 and MDN3 compared to untreated control but not for MDN2. For all studied 

samples, the highest DOC concentrations at the end of the experiment were recorded for the 

NH4
+
 treatment. 

There are various components involved in the release of organic carbon into the rhizosphere 

(Rovira et al., 1979). Soil humus, plant litter and the organic compounds in root exudates are 

active substances which considered as the main sources of SOM in soils (Kalbitz et al., 2000) 

which exhibiting strong affinities with respect to PTE. In the literature, many studies have 

reported that application of N can influence the DOC depending on microbial activity (Park et 

al., 2002; Scheuner and Makeschin, 2005; Cory et al., 2004; McDowell et al., 2004). In this 

study, the increase in DOC concentrations due to the application of N fertilizers confirms the 

hypothesis that the increase in microbial activity and utilization of C substrate stimulated the 

release of DOC in comparison to the untreated control. These findings are in agreement with 

that of Lakzian et al. (2010) which reported that the application of N fertilizers increased the 

DOC concentration by 30% in comparison to soils without treatment. Pregitzer et al. (2004) 

also reported that chronic N fertilization increases the production and leaching of DOC. 

Similarly, Sitaula et al. (2004) and Curtis et al. (1995) reported that the application of N 

fertilizers had direct or indirect effects on microbial activity and the release of DOC.  

 

3.2 Zn, Pb and Cd concentrations in rhizospheric SPW 

The total dissolved concentrations of Zn, Pb and Cd in the rhizospheric SPW of the untreated 

control and N fertilized soils during the cultivation period are shown in Fig. 3, 4 and 5 

respectively. 

A significant difference was observed for Zn concentrations in rhizospheric SPW between 

untreated controls and treated fertilized soils for all studied soil samples during the cultivation 

period. Zn concentration in the rhizospheric SPW for MDN1 dropped markedly with the 

NO3
−
 fertilization and increased gradually in the case of the NH4

+
 fertilization, whilst in the 

untreated control sample, it remained almost constant at the beginning and decreased towards 

the end of the experiment (Fig. 3A). For MDN2 and MDN3, Zn rhizospheric SPW 
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concentrations did not differ among them at the beginning of the experiment. However a 

significant difference was observed among them at the end of the experiment and the highest 

Zn concentration was recorded for the NH4
+
 treatment whilst the lowest was found for NO3

−
 

(Fig. 3B, 3C) respectively.     

Pb total dissolved concentration in the rhizospheric SPW for the untreated control for 

MDN1and MDN2 was relatively higher at the beginning and then dropped remarkably at the 

end of the experiment. On the other hand, Pb concentration gradually decreased and increased 

with time for the NO3
−
 and NH4

+
 treatments respectively. A significant difference between the 

untreated control and N treatments was observed (Fig. 4A, 4B). For MDN3, Pb 

concentrations in the untreated control increased gradually similarly to that of the NH4
+
 

treatment but dropped considerably at the end of the experiment. Gradual decrease in Pb 

concentration with time was also observed with NO3
−
 (Fig. 4C).       

In the case of Cd, total dissolved concentrations in the rhizospheric SPW for MDN1 

remarkably increased and decreased with time for NH4
+
 and NO3

−
 respectively. In contrast for 

the untreated control, Cd concentration was higher at the beginning then decreased at the end 

of the experiment (Fig. 5A). The same pattern was also observed for MDN2 with the 

exception of a significant increase at the end of the experiment for the NH4
+
 treatment (Fig. 

5B). For MDN3, Cd concentration trend was similar to that of Pb (Fig. 5C). 

The solubility of Zn showed an increase in the rhizospheric SPW for all studied samples after 

NH4
+
 addition in comparison to the untreated control and that fertilized with NO3

−
. This can 

be attributed to decrease in the soil pH, but also to its ability to form selective complexes with 

DOC compounds due to the higher affinity of Zn for DOC (Kim et al., 2010a).    

In contrast to soils amended with NH4
+
, Zn, Pb and Cd concentrations decreased in the 

rhizospheric SPW of untreated control and that fertilized with NO3
−
. The decrease in PTE 

solubility may be due to the increase in pH in spite of the increase in DOC concentrations. In 

fact, Zn is generally relatively insoluble at pH>7 and its solubility decreases with pH (Ross, 

1994). Moreover, PTE occurring predominantly as free ion forms are more sensitive to effects 

arising from differences in pH value (Luo et al., 2001). In fact the decrease in Zn in the SPW 

in compost- and biochar-amended soils was due to the Zn presence mainly in water-soluble 

fractions (Beesley et al., 2010). Therefore the increase in pH values due to NO3
−
 addition and 

the competing effect of changes in pH and DOC after plant growth on PTE chemistry might 

be enhanced by sorption on soil organic and inorganic particle surfaces.  

In addition, despite a higher DOC concentration for MDN3, the studied PTE solubility in the 

rhizospheric SPW increased more for MDN1than for MDN3 which may be attributed to the 
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competition between cations in the SPW for the DOC binding sites. A high portion of DOC 

exuded from the root can in fact react with different major cations such as Mg and Ca for the 

MDN3 sample, whereas, for the MDN1sample, DOC induced by roots may interact easily 

with PTE because of less competition for DOC binding sites. 

The Pb concentration in the rhizospheric SPW decreased in MDN3 with the lowest pH value 

even though in the case of NH4
+
 treatment in comparison to both MDN1and MDN2. This 

result is in agreement with those of Sauvé et al. (1998) which reported that Pb solubility is 

higher near neutrality, or which was likely due to formation of Pb organic complexes in soil 

solution. 

In the case of untreated control, the increase of PTE in the SPW at the beginning of the 

experiment could be attributed to root related processes such as pH decrease and DOC 

increase, or might be attributed to an exchange reaction by NH4
+
 originating from 

mineralization of organic N, whereas the decrease at the end of the experiment was attributed 

to the increasing in the pH value even though the increase in DOC concentrations may favor 

re-adsorption of PTE onto the soil particles.  The addition of organic matter (OM) may 

influence Zn mobility and increase negatively-charged adsorption sites in the OM-treated 

soils (Hartley et al., 2010). Conversely, Zn was immobilized in an acid soil by humic acids 

isolated from organic materials, (Clemente and Bernal, 2006). In another study on PTE 

contaminated acidic sandy soils phytostabilised with poplars, the Zn concentration in SPW 

significantly decreased with the addition of dolomitic limestone in soil that increased the soil 

pH (Hattab et al., 2014a). The efficiency of assisted phytostabilization using organic 

amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was 

studied on contaminated techno-soils. Addition of sewage sludge increased the solubility of 

Zn due to the formation of soluble organo-metallic complexes. Moreover, Zn was abundant in 

the fulvic acid fraction than in the humic acid fraction which may explain its mobility (Hattab 

et al., 2014b). 

 

3.3 Plant growth and uptake of Zn, Cd and Pb 

During the growth period, several plants appeared unhealthy, with visual symptoms of studied 

metals toxicity. There was foliar necrosis and chlorosis with no significant differences in 

shoots and root biomass between the treatments and between each plant. The growth disorders 

and the cases of necrosis and chlorosis cannot be attributed to any direct effect of nitrogen 

treatments, because the control plants have the same disorders. Localized supply of nitrogen 

treatments had no significant influence on leaves growth, total area and biomass in 
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comparison to the untreated control sample in all studied samples. However, there was a little 

difference among the studied samples. However, the highest leaves biomass was for 

MDN1and the lowest was for MDN3.    

No significant difference was observed for the leaves dry weight between the untreated 

control and nitrogen treatments for all studied samples (Fig. 6A). The same pattern was 

observed for roots dry weight for both MDN1 and MDN2, whilst, in MDN3, the nitrogen 

treatments were significantly decreased the root biomass in comparison to untreated control 

(Fig. 6C). Contrary to leaves and roots biomass in MDN2, the stem biomass on the untreated 

control varied significantly, represented the minimum dry weight values in comparison to 

those of nitrogen treatments, but not for MDN1 and MDN2 (Fig. 6B). As mentioned above, 

the shoot biomass did not respond to pH changes, whereas only the root biomass for MDN3 

was affected by the pH changes due to NH4
+
 supplied which caused a dramatic yield 

reduction.    

In the literature, many researchers confirmed the effect of N forms on plants shoot and root 

biomass. Kraus and Staurt (2002) reported that each of NH4
+
, NO3

−
 and (NH4

+
/ NO3

−
) forms 

were increased the plant dry matter. Also, Ruan et al. (2004, 2007) showed that the root, shoot 

and whole tea plant (Camallia sinensis (L.) O. Kuntze) dry matter productions were 

significantly increased by nitrogen fertilization. Similarly, Zhou et al. (2011) reported that a 

higher dry matter production of cucumber plant resulted from plant fed with NH4
+
, NO3

−
. 

However, our results were not in line with their observations but partially similar to that of 

Monsant et al. (2008) which observed that no significant difference in Thlaspi caerulescens 

plant dry weight caused by nitrogen treatments compared to the control sample. 

The pots experiment of Populus euramericana Dorskamp grown in the studied contaminated 

soils showed an accumulation of varying amounts of studied PTE among the plant organs, the 

roots presenting the highest accumulation of Zn, Cd and Pb. Nitrogen fertilization did not 

affected the plant leaves Zn concentration in all studied samples (Fig. 7A). Zn concentrations 

in plant leaves for the untreated control and that fed with NO3
−
 and NH4

+
 was similar (no 

significant difference was observed) and were statistically at par with each other for all 

studied samples. The same pattern was also observed for Zn concentration in the plant 

cuttings and stems (Fig. 7B, D). Zn concentration in poplar roots was similar between the 

untreated control and that fed with nitrogen treatments in MDN2, whereas for both MDN1 

and MDN3 it was significantly affected by N forms supplied to plants (Fig. 7C). The addition 

of N resulted in the highest Zn concentration in plant roots, whereas the untreated control had 
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the minimum. In general, the poplar roots contained much higher concentrations of Zn than 

leaves in all studied samples, probably due to the preferential distribution of Zn in the roots. 

Fig. 8A showed that N fertilization also did not affect the Pb concentration in plant leaves, 

which showed that for all studied samples, Pb concentrations were statistically at par with 

each other. In the other hand, N forms significantly affected Pb concentrations in both poplar 

cuttings and roots for MDN1 compared to the untreated control but not for MDN2 and MDN3 

(Fig. 8B, 8C). In roots and shoots, the plants amended with NO3
−
 and NH4

+
 in MDN1 had the 

highest Pb concentration compared to the untreated control. However, the Pb distribution 

between roots and leaves for MDN1 was significantly affected by N forms. In MDN1, the Pb 

distribution in the roots was maximum in the plants fed with NO3
−
 and NH4

+
, whilst it was 

minimum for the untreated control. On the other hand, in both MDN2 and MDN3, Pb 

concentrations were statistically at par with each other. 

Addition of N fertilizers significantly affected the plant leaves Cd concentration in 

comparison to untreated control in MDN1. Only NH4
+
 exhibited the highest Cd concentration 

in MDN2, and no significant difference was observed for MDN3 (Fig. 9A). These findings 

are in consistent with that of Fageria and Baligar (2005), Diatta and Grzebisz (2006) which 

reported that acidification of the rhizosphere with NH4
+
 can enhance the plant metals uptake 

such as cadmium in soils. The same picture was observed in plant cuttings (Fig. 9B). Contrary 

to the Cd concentration in plant leaves and cuttings in MDN2, Cd concentration in roots was 

non-significantly affected by N forms (Fig. 9C). However, only NH4
+
 affected the plant roots 

Cd concentration in comparison to NO3
−
 and untreated control. The concentration of both Pb 

and Cd in plant stems was not detected (under detection limit). 

 Little studies have been published on the PTE accumulation of poplars grown in real 

contaminated soils. Among different poplar species, the cultivar Dorskamp has demonstrate 

the largest metal concentrations in leaves when growing in a field containing a polymetallic 

pollution characterized by Pb, Cu, Zn and Cd concentrations 10 times higher than in a 

reference non contaminated soil (Pottier et al., 2015). It is well known that physicochemical 

properties of the soil such as pH and COD and the plant species are able to affect the PTE 

transfer to plant organs. Among them, pH is the most important factor which plays an 

important role in PTE mobility and availability. In the case of rhizospheric soil studies, 

several authors showed that under both field and glasshouse conditions, N supply could 

effectively affect plant metals uptake and metal translocation from root to shoot via the 

increasing or decreasing of pH value (Shi et al., 2010; Erenoglu et al., 2011).  

 



12 
 

4. Conclusions 

When N fertilizers respectively NH4Cl and KNO3 were supplied to Populus euramericana 

Dorskamp grown in soils contaminated with Zn, Pb, and Cd, rhizospheric SPW pH decreased 

and increased respectively for ammonium and nitrate significantly compared to the untreated 

control with time for all studied soils. DOC concentrations increased gradually and a 

significant difference between both nitrogen forms and untreated control was observed. PTE 

total concentrations in the rhizospheric SPW increased with the addition of NH4
+
, whilst it 

decreased with the addition of NO3
−
. No significant difference was observed in the shoot 

biomass between the two N forms and also the untreated control for all studied samples. 

Despite the difference in SPW pH value caused by the addition of N fertilizers in comparison 

to the untreated control, metals uptake by Populus euramericana Dorskamp shoots is less 

dependent on enhanced metal solubility caused by rhizosphere acidification. PTE stabilization 

by Populus euramericana Dorskamp rhizosphere was found with nitrogen fertilization and the 

potential of this species for the phytoremediation of contaminated technosol was shown. 
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Table 1: Physico-chemical characteristics of the selected samples from Mortagne-du-Nord 

(MDN) (n=3; ± standard deviation) 

 

Parameters MDN1 MDN2 MDN3 

pH-H2O 6.92±0.12 6.35±0.34 6.14±0.17 

EC (µs.cm
-1

) 112.27±3.85 112.64±7.41 113.71±1.93 

CEC (c mol(+) kg
-1

) 7.21±0.70 8.53±0.25 6.74±1.21 

TOC % 3.35±0.94 4.39±0.14 6.45±0.10 

Clay % 2.2± 0.24 1±0.01 1.2±0.24 

Silt % 22.34±0.35 22.16±0.41 22.13±0.34 

Sand % 75.45±0.12 76.84±1.03 76.66±0.28 

Tot. Zn (mg kg
-1

) 7726±12 3114±11 3127±9 

Tot. Pb (mg kg
-1

) 3551±10 881±8 874±5 

Tot. Cd (mg kg
-1

) 72±11 64±5 51±6 

 

EC: electrical conductivity, CEC: cation exchange capacity, TOC: total organic carbon  
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Fig. 1 Effects of nitrogen nutrition on rhizospheric pH of Populus euramericana Dorskamp 

grown in a contaminated technosol, MDN1 (A), MDN2 (B) and MDN3 (C), during 35 days (n 

= 5), bars refer to standard error. For each day measurement, letters indicate differences 

between control and treated soils. 
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Fig. 2 Effects of nitrogen nutrition on rhizospheric DOC concentrations of Populus 

euramericana Dorskamp grown in a contaminated technosol, MDN1 (A), MDN2 (B) and 

MDN3 (C), during 35 days (n = 5), bars refer to standard error. For each day measurement, 

letters indicate differences between control and treated soils. 
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Fig. 3 Effects of nitrogen nutrition on Zn soil pore water of Populus euramericana Dorskamp 

grown in a contaminated technosol, MDN1 (A), MDN2 (B) and MDN3 (C), during 35 days (n 

= 5), bars refer to standard error. For each day measurement, letters indicate differences 

between control and treated soils. 
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Fig. 4 Effects of nitrogen nutrition on Pb soil pore water of Populus euramericana Dorskamp 

grown in a contaminated technosol, MDN1 (A), MDN2 (B) and MDN3 (C), during 35 days (n 

= 5), bars refer to standard error. For each day measurement, letters indicate differences 

between control and treated soils. 
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Fig. 5 Effects of nitrogen nutrition on Cd soil pore water of Populus euramericana Dorskamp 

grown in a contaminated technosol, MDN1 (A), MDN2 (B) and MDN3 (C), during 35 days (n 

= 5), bars refer to standard error. For each day measurement, letters indicate differences 

between control and treated soils. 
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Fig. 6 Effects of nitrogen nutrition on dry weights of leaves (A), stems (B) and roots (C) of 

Populus euramericana Dorskamp grown in a contaminated technosol during 35 days (n = 5), 

bars refer to standard error, letters indicate differences between treatment for a given soil. 
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Fig. 7 Effects of nitrogen nutrition on Zn concentrations in leaves (A), woody stem cuttings 

(B), roots (C) and stems (D) of Populus euramericana Dorskamp grown in a contaminated 

technosol during 35 days (n = 5), bars refer to standard error, letters indicate differences 

between treatment for a given soil. 
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Fig. 8 Effects of nitrogen nutrition on Pb concentrations in leaves (A), woody stem cuttings 

(B) and roots (C) of Populus euramericana Dorskamp grown in a contaminated technosol 

during 35 days (n = 5), bars refer to standard error, letters indicate differences between 

treatment for a given soil. 
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Fig. 9 Effects of nitrogen nutrition on Cd concentrations in leaves (A), woody stem cuttings 

(B) and roots (C) of Populus euramericana Dorskamp grown in a contaminated technosol 

during 35 days (n = 5), bars refer to standard error, letters indicate differences between 

treatment for a given soil. 

 


