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ABSTRACT

We present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100MeV–
300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is
the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates
twice as much data, as well as a number of analysis improvements, including improved calibrations at the event
reconstruction level, an updated model for Galactic diffuse γ-ray emission, a refined procedure for source
detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths.
The 3FGL catalog includes 3033 sources above 4σ significance, with source location regions, spectral properties,
and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model
for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238
sources are considered as identified based on angular extent or correlated variability (periodic or otherwise)
observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths.
More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes
of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class.
From source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic
diffuse emission is ∼3% at 1 GeV.

Key words: catalogs – gamma-rays: general

Supporting material: FITS file, machine-readable tables

1. INTRODUCTION

This paper presents a catalog of high-energy γ-ray sources
detected in the first 4 yr of the Fermi Gamma-ray Space
Telescope mission by the Large Area Telescope (LAT). It is
the successor to the LAT Bright Source List (hereafter 0FGL;
Abdo et al. 2009d), the First Fermi LAT (1FGL; Abdo

et al. 2010d) catalog, and the Second Fermi LAT (2FGL;
Nolan et al. 2012) catalog, which were based on 3 months, 11
months, and 2 yr of flight data, respectively. The 3FGL
catalog both succeeds and complements the First Fermi LAT
Catalog of Sources Above 10 GeV (1FHL, Ackermann
et al. 2013a), which was based on 3 yr of flight data but
considered only sources detected above 10 GeV. The new
3FGL catalog is the deepest yet in the 100MeV–300 GeV
energy range. The result of a dedicated effort for studying the
active galactic nucleus (AGN) population in the 3FGL
catalog is published in an accompanying paper (3LAC;
Ackermann et al. 2015).
We have implemented a number of analysis refinements for

the 3FGL catalog:

70 Royal Swedish Academy of Sciences Research Fellow, funded by a grant
from the K. A. Wallenberg Foundation.
71 NASA Postdoctoral Program Fellow, USA.
72 Funded by a Marie Curie IOF, FP7/2007-2013—Grant agreement no.
275861.
73 Funded by contract ERC-StG-259391 from the European Community.
74 Funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of
Education, University and Research (MIUR).
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1. Pass 7 reprocessed data75 are now used (Section 2.2).
The principal difference relative to the original Pass 7
data used for 2FGL is improved angular resolution above
3 GeV. In addition, systematics of the instrument
response functions (IRFs) are better characterized and
smaller.

2. This catalog employs a new model of the diffuse Galactic
and isotropic emissions, developed for the 3FGL analysis
(Section 2.3). The model has improved fidelity to the
observations, especially for regions where the diffuse
emission cannot be described using a spatial template
derived from observations at other wavelengths. In
addition, the accuracy of the model is improved toward
bright star-forming regions and at energies above 40 GeV
generally. The development of this model is described in
a separate publication (Casandjian & the Fermi LAT
Collaboration 2015).

3. We explicitly model 25 sources as extended emission
regions (Section 3.4), up from 12 in 2FGL. Each has an
angular extent measured with LAT data. Taking into
account the finite sizes of the sources allows for more
accurate flux and spectrum measurements for the
extended sources, as well as for nearby point sources.

4. We have further refined the method for characterizing and
localizing source “seeds” evaluated for inclusion in the
catalog (Section 3.1). The improvements in this regard
are mostly marked at low Galactic latitudes, where an
iterative approach to finding seeds has improved the
sensitivity of the catalog in the Galactic plane.

5. For studying the associations of LAT sources with
counterparts at other wavelengths, we have updated
several of the catalogs used for counterpart searches and
correspondingly recalibrated the association procedure.

The exposure of the LAT is fairly uniform across the sky,
but the brightness of the diffuse backgrounds, and hence the
sensitivity for source detection, depends strongly on direction.
As for previous LAT source catalogs, for the 3FGL catalog
sources are included based on the statistical significance of
their detection considered over the entire time period of the
analysis. For this reason the 3FGL catalog is not a
comprehensive catalog of transient γ-ray sources; however,
the catalog does include light curves on a monthly timescale for
sources that meet the criteria for inclusion.

In Section 2 we describe the LAT and the models for the
diffuse backgrounds, celestial and otherwise. Section 3
describes how the catalog is constructed, with emphasis on
what has changed since the analysis for the 2FGL catalog. The
3FGL catalog itself is presented in Section 4, along with a
comparison to previous LAT catalogs. We discuss associations
and identifications in Section 5 and Galactic source counts in
Section 6. The conclusions are presented in Section 7. We
provide appendices with technical details of the analysis and of
the format of the electronic version of the catalog.

2. INSTRUMENT AND BACKGROUND

2.1. The Large Area Telescope

The LAT detects γ-rays in the energy range from 20MeV to
more than 300 GeV, measuring their arrival times, energies,

and directions. The LAT is also an efficient detector of the
intense background of charged particles from cosmic rays and
trapped radiation at the orbit of the Fermi satellite. Accounting
for γ-rays lost in filtering charged particles from the data, the
effective collecting area is ∼6500 cm2 at 1 GeV (for the
P7REP_SOURCE_V15 event selection used here; see
below). The live time is nearly 76%, limited primarily by
interruptions of data taking when Fermi is passing through the
South Atlantic Anomaly (SAA) (∼13%) and readout dead-
time fraction (∼9%). The field of view of the LAT is 2.4 sr at
1 GeV. The per-photon angular resolution (point-spread
function, PSF, 68% containment) is ∼5° at 100MeV,
decreasing to 0◦. 8 at 1 GeV (averaged over the acceptance of
the LAT), varying with energy approximately as E 0.8− and
asymptoting at ∼0◦. 2 above 20 GeV. The tracking section of the
LAT has 36 layers of silicon strip detectors interleaved with 16
layers of tungsten foil (12 thin layers, 0.03 radiation length, at
the top or Front of the instrument, followed by four thick
layers, 0.18 radiation length, in the Back section). The silicon
strips track charged particles, and the tungsten foils facilitate
conversion of γ-rays to positron–electron pairs. Beneath t he
tracker is a calorimeter composed of an eight-layer array of CsI
crystals (∼8.5 total radiation lengths) to determine the γ-ray
energy. A segmented charged-particle anticoincidence detector
(plastic scintillators read out by photomultiplier tubes) aro und
the tracker is used to reject charged-particle background events.
More information about the LAT is provided in Atwood et al.
(2009), and the in-flight calibration of the LAT is described in
Abdo et al. (2009g) and Ackermann et al. (2012a, 2012c).

2.2. The LAT Data

The data for the 3FGL catalog were taken during the period
from 2008 August 4 (15:43 UTC) to 2012 July 31 (22:46
UTC), to covering close to 4 yr. They are the public data
available from the Fermi Science Support Center (FSSC).
Intervals around bright GRBs (080916C, 090510, 090902B,
090926A, 110731A; Ackermann et al. 2013b) were excised.
Solar flares became relatively frequent in 2011–12 (close to
solar maximum) and were excised as well whenever they
were bright enough to be detected over a month at the 3σ
level. Solar flares last much longer than GRBs, so we were
attentive not to reject too much time. Since the γ-ray emission
is localized on the Sun, we kept intervals during which the
Sun was at least 3° below the Earth limb76 even during solar
flares. The solar flares were detected over 3 hr intervals so the
corresponding Good Time Intervals (GTIs) are aligned to
those 3 hr marks. Overall about 2 days were excised due to
solar flares. In order to reduce the contamination from the γ-
ray-bright Earth limb (Section 2.3.4), times when the rocking
angle of the spacecraft was larger than 52° and events with
zenith angles larger than 100° were excised as well. The
precise time intervals corresponding to selected events are
recorded in the GTI extension of the 3FGL catalog (FITS
version; Appendix B).
The rocking angle remained set at 50° after 2009 September

(it was 35° for about 80% of the time before that).77 With the
larger rocking angle the orbital plane is further off axis with the

75 Seehttp://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/
Pass7REP_usage.html.

76 This selection in FTOOLS notation is ANGSEP(RA_SUN,DEC_SUN,
RA_ZENITH,DEC_ZENITH) > 115.
77 See the LAT survey-mode history at http://fermi.gsfc.nasa.gov/ssc/
observations/types/allsky/.
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result that the survey is slightly non-uniform. The maximum
exposure is reached at the north celestial pole. At 1 GeV it is
60% larger than the minimum exposure, which is reached at the
celestial equator (Figure 1).

In parallel with accumulating new data, developments on the
instrument analysis side (Bregeon et al. 2013) led to
reprocessing all LAT data with new calibration constants,
resulting in the Pass 7 reprocessed data that were used for
3FGL.78 The main advantage for the source catalog is that the
reprocessing improved the PSF above 10 GeV by ∼30%,
improving the localization of hard sources (Section 3.1). We
used the source class event selection.

The lower bound of the energy range was left at 100MeV,
but the upper bound was raised to 300 GeV as in the 1FHL
catalog. This is because as the source-to-background ratio
decreases, the sensitivity curve (Figure 18 of Abdo
et al. 2010d, 1FGL) shifts to higher energies.

2.3. Model for the Diffuse Gamma-ray Background

Models for the diffuse γ-ray backgrounds were updated for
the 3FGL analysis, taking into account the new IRFs for Pass 7
reprocessed data and the improved statistics available with a
4 yr data set, and also applying some refinements in the
procedure for evaluating the models. The primary components
of the diffuse backgrounds are the diffuse γ-ray emission of the
Milky Way and the approximately isotropic background
consisting of emission from sub-threshold celestial sources
plus residual charged particles misclassified as γ-rays. In
addition, we treat the “passive” emission of the Sun and Moon
from cosmic-ray interactions with the solar atmosphere, solar
radiation field, and the lunar lithosphere as effectively a diffuse
component, because the Sun and Moon move across the sky.
The residual Earth limb emission after the zenith angle
selection (Section 2.2) is also treated as effectively diffuse.
Each component of the background model for the 3FGL
analysis is described in more detail below.

2.3.1. Diffuse Emission of the Milky Way

The diffuse γ-ray emission of the Milky Way originates in
cosmic-ray interactions with interstellar gas and radiation. As
for 2FGL, for any given energy the model is primarily a linear

combination of template maps derived from CO and H I line
survey data plus infrared maps of interstellar dust, which trace
interstellar gas and in the model represent the γ-ray emission
from pion decay and bremsstrahlung. In addition, we include in
the model a template representing the intensity of emission
from inverse Compton scattering of cosmic-ray electrons on the
interstellar radiation field. This component was calculated
using the GALPROP code79 (Moskalenko & Strong 1998).
For the 3FGL analysis we have made several improvements

relative to 2FGL in modeling the diffuse emission. The
development of this new model is described by Casandjian &
the Fermi LAT Collaboration (2015).80 Here we briefly
summarize the improvements. For 3FGL the representation of
the gas traced uniquely by the infrared maps was improved in
the vicinity of massive star-forming regions. The overall model
was fit to the LAT data iteratively, taking into account a
preliminary version of the 3FGL source list, for the energy
range 50MeV–50 GeV. Relative to the 2FGL model for
Galactic diffuse emission, we have improved the extrapolation
to lower and higher energies using the energy dependence of
the γ-ray emissivity function. We developed a new procedure
to account for the structured celestial γ-ray emission that could
not be fit using templates derived from observations at other
wavelengths. This residual component, also fit iteratively, was
derived by deconvolving the residuals to take into account the
effects of the PSF, filtering the result to reduce statistical
fluctuations (removing structures on angular scales smaller
than ∼2°). The spectrum was modeled as inverse Compton
emission from a population of cosmic-ray electrons with a
spectral break at 965MeV.

2.3.2. Isotropic Background

The isotropic diffuse background was derived from all-sky
fits of the 4 yr data set using the Galactic diffuse emission
model described above and a preliminary version of the 3FGL
source list. The diffuse background includes charged particles
misclassified as γ-rays. We implicitly assume that the
acceptance for these residual charged particles is the same as
for γ-rays in treating these diffuse background components
together. For the analysis we derived the contributions to the
isotropic background separately for Front-converting and
Back-converting events. They are available as iso_sour-
ce_xxx_v05.txt from the FSSC, where xxx is front
or back.

2.3.3. Solar and Lunar Template

The quiescent Sun and the Moon are fairly bright γ-ray
sources (Abdo et al. 2011b, 2012b). The Sun moves in the
ecliptic, but the solar γ-ray emission is extended because of
cosmic-ray interactions with the solar radiation field; detectable
emission from inverse Compton scattering of cosmic-ray
electrons on the radiation field of the Sun extends several
degrees from the Sun (Abdo et al. 2011b). The Moon is not an
extended source in this way, but the lunar orbit is inclined
somewhat relative to the ecliptic, and the Moon moves through
a larger fraction of the sky than the Sun. Averaged over time,
the γ-ray emissions from the Sun and Moon trace a region
around the ecliptic. We used models of their observed emission
together with calculations of their motions and of the exposure

Figure 1. Exposure at 1 GeV in Galactic coordinates and Hammer–Aitoff
projection for the 4 yr period analyzed for the 3FGL catalog. The units are
equivalent on-axis observing time (in Ms).

78 Details about the performance of the LAT are available at http://www.slac.
stanford.edu/exp/glast/groups/canda/lat_Performance.htm.

79 See http://galprop.stanford.edu.
80 The model is available as gll_iem_v05_rev1.fit from the FSSC.
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of the observations by the LAT to make templates for the
equivalent diffuse component for the 3FGL analysis using
gtsuntemp (Johannesson & Orlando 2013). For the light curves
(Section 3.6) we evaluated the equivalent diffuse components
for the corresponding time intervals.

2.3.4. Residual Earth Limb Template

The limb of the Earth is an intense source of γ-rays from
cosmic-ray collisions with the upper atmosphere (Abdo
et al. 2009a). At the ∼565 km altitude of the (nearly circular)
orbit of the LAT, the limb is ∼112° from the zenith. During
survey-mode observations, which predominated in the first 4 yr
of the Fermi mission, the spacecraft was rocked toward the
northern and southern orbital poles on alternate ∼90-minute
orbits. With these attitudes, the edge of the LAT field of view
closest to the orbital poles generally subtended part of the Earth
limb. As described in Section 2.2, we limited the data selection
and exposure calculations to zenith angles less than 100°.
Because the Earth limb emission is so intense and the tails of
the LAT PSF are long (Ackermann et al. 2012a), a residual
component of limb emission remained in the data. Over the
course of a precession period of the orbit (∼53 days), the
residual glow fills out large “caps” around the celestial poles,
with the angular radius determined by the sum of the orbital
inclination (25◦. 6) and the angular distance of the zenith angle
limit from the orbital pole (10°). Casandjian & the Fermi LAT
Collaboration (2015) describe how the map and spectrum of
the residual component were derived. The spectrum is well
modeled as a steep power law in energy with index 4.25. This
is steep enough that the residual Earth limb emission
contributes significantly only below 300MeV.

3. CONSTRUCTION OF THE CATALOG

The procedure used to construct the 3FGL catalog has a
number of improvements relative to what was implemented for
the 2FGL catalog. In this section we review the procedure, with
an emphasis on what is being done differently. The
significances (Section 3.2), spectral parameters (Section 3.3),
and fluxes (Section 3.5) of all catalog sources were obtained
using the standard pyLikelihood framework (Python analog of
gtlike) in the LAT Science Tools81 (version v9r32p5). The
localization procedure (Section 3.1), which relies on pointlike,
provided the source positions, the starting point for the spectral
fitting, and a comparison for estimating the reliability of the
results (Section 3.7.4). Throughout the text we use the test
statistic TS 2 log= Δ  for quantifying how significantly a
source emerges from the background, comparing the likelihood
function  with and without that source.

3.1. Detection and Localization

This section describes the generation of a list of candidate
sources, with locations and initial spectral fits, for processing
by the standard LAT science analysis tools, especially gtlike to
compute the likelihood (Section 3.2). This initial stage uses
instead pointlike (Kerr 2010). Compared with the gtlike-based
analysis described in Sections 3.2–3.7, it uses the same data,
exposure, and IRFs, but the partitioning of the sky, the
computation of the likelihood function, and its optimization are
independent. Since this version of the computation of the

likelihood function is used for localization, it needs to represent
a valid estimate of the probability of observing a point source
with the assumed spectral function.
The process started with an initial set of sources from the

2FGL analysis: not just those reported in that catalog, but also
including all candidates failing the significance threshold (i.e.,
with TS 25< ). It also used the latest extended source list with
25 entries (Section 3.4) and the three-source representation of
the Crab (Section 3.3). The same spectral models were
considered for each source as in Section 3.3, but the favored
model (power law or curved) was not necessarily the same.
Many details of the processing were identical to the 2FGL

procedure: using HEALPix82 (Górski et al. 2005) with
N 12side = , to tile the sky, resulting in 1728 tiles of ∼25 deg2

area; optimizing spectral parameters for the sources within each
tile, for the data in a cone of 5° radius about the center of the
tile; and including the contributions of all sources within 10° of
the center. The tiles are of course discrete, but the regions,
which we refer to as RoIs, for Regions of Interest, are
overlapping and not independent. The data were binned in
energy (14 energy bands from 100MeV to 316 GeV) and
position, where the angular bin size (the bins also defined using
HEALPix) was set to be small compared with the PSF for each
energy and event type. Separating the photons according to
event type is important, especially for localization, since the
Front-converting events have a factor of two narrower PSF
core than the Back-converting events. Thus, the parameter
optimization was performed by maximizing the logarithm of
the likelihood, expressed as a sum over each energy band and
each of the two event types (Front, Back). The fits for each
RoI, maximizing the likelihood as a function of the free
parameters, were performed independently. Correlations
between sources in neighboring RoIs were then accounted for
by iterating all 1728 fits until the changes in the log likelihoods
for all RoIs were less than 10.
After a set of iterations had converged, then the localization

procedure was applied and source positions updated for a new
set of iterations. At this stage, new sources were occasionally
added using the residual TS procedure described below. The
detection and initial localization process resulted in 4029
candidate point sources with TS 10> .
New features that are discussed below include an assessment of

the reliability of each spectral fit and of the model as a whole in
each RoI, a different approach to the normalization of the Galactic
diffuse background component, and a method to unweight the
likelihood to account for the effect of potential systematic errors in
the Galactic diffuse emission on source spectra.

3.1.1. Fit Validation

An important criterion is that not only are the spectral and
spatial models for all sources optimized, but the predictions of
the models are consistent with the data. Maximizing the
likelihood as an estimator for spectral parameters and position
is valid only if the likelihood, given a set of parameters,
corresponds to the probability of observing the data. We have
three measures.
The first compares the number of counts in each energy

band, combining Front and Back, for each of the 1728 regions,
defining a 2χ -like measure as the sum of the squares of the
deviations divided by the predicted number of counts. The

81 See http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/. 82 http://healpix.sourceforge.net.
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number of counts is the expected variance for Poisson counting
statistics. This measure is of course only a component of the
likelihood and depends only weakly on most of the point
sources. That is, maximizing the likelihood does not necessa-
rily minimize this quantity. But it is important to check the
reliability of the diffuse model used, since this can distort the
point-source spectral fits. Figure 2 shows the distribution of
that 2χ -like measure and its values as a function of location on
the sky. The number of degrees of freedom is 14 (the number
of energy bands) minus the effective number of variables. The
fact that the distribution peaks at 9≃ seems sensible. The ∼35
regions with 502χ > indicate problems with the model. Most
are close to the Galactic plane, indicating difficulty with the
component representing the Galactic diffuse emission. The few
at high latitudes could be due to missing sources or, for very
strong sources, inadequacy of the simple spectral models that
we use.

The second measure is a check that the spectral model for
each source is consistent with the data. The likelihood
associated with a source is the product of the likelihoods for
that source for each energy band, including the contributions of
nearby, overlapping sources, and the diffuse backgrounds. The
correlations induced by those are only relevant for the lower
energies, typically below 1 GeV. For this analysis, we keep
these contributions fixed. We form the spectral fit quality as
2 log( )bands fit  , where the flux for each band is optimized
independently in bands , whereas the spectral model is applied
in fit . The spectrum in Figure 3 illustrates the concept.

In Figure 4, we show the distribution of the spectral fit
quality for all preliminary spectra, with separate plots for the
three different spectral functions (Section 3.3): power law,
lognormal, and power law with an exponential cutoff. The
latter, applied almost exclusively to pulsars, is separated into
sources in and out of the Galactic plane. It is seen that sources
in the plane often have poorer fits. All are compared with an
example 2χ distribution with 10 degrees of freedom. There are

14 bands, and two to four parameters, but the higher-energy
bands often do not contribute, so the number of degrees of
freedom is not well defined, and we use 10 for illustration only.

Figure 2. Distributions of the 2χ measure of consistency of the measured spectrum of each RoI with the model (capped at 50). Left: histogram highlighting the low-
latitude subset. Right: distribution of the values over the sky.

Figure 3. Spectral energy distribution for a typical source, in this case PSR
J1459−6053, as measured by the pointlike analysis. The lower plot shows the
pulls, defined as the square root of the difference 2 logΔ  between the fitted
flux and the spectral model in each energy band, signed with the residual. The
points with error bars reflect the dependence of the likelihood on the flux for
each energy band, combining Front and Back, while the curve is the result of
the fit to all the energy bands.
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Finally, the localization process fits the logarithm of the
likelihood as a function of position to a quadratic form and
checks the consistency with a 2χ -like measure (Section 3.1.3).

3.1.2. Galactic Diffuse Normalization and Unweighting

The model that we used for the Galactic diffuse background
is a global fit using the data, as described in Section 2.3. For an
individual RoI, however, we found that we needed to adjust the
normalizations for each band to fit the data. For the relatively
broad energy bands, four per decade, used in the pointlike fit
we allow the normalization for each band to vary, effectively
ignoring the spectral prediction of the diffuse component
analysis. So, for each of the 1728 RoIs, and for each of the
eight energy bands below 10 GeV, we measured a normal-
ization factor, which applies to both Front and Back, by
maximizing the likelihood with respect to it. A motivation for
this procedure was that, for the lowest energy bands, it often
improved the fit consistencies of the spectral models of the
sources in the same RoI.

While the precision of the determination of the average
contribution from the Galactic diffuse for an energy band is
subject to only the statistics of the number of photons, the value
of the Galactic diffuse intensity at the location of each source,
that is, the angular distribution of the intensity, is subject to an
additional systematic error. Since this intensity is strongly
correlated with the measurement of the flux from the source
itself, and the correlation can be very significant for weak
sources, we have adopted an ad hoc but conservative procedure
to account for the additional uncertainty by increasing the
width of the log likelihood distribution from each energy band
according to how sensitive it is to the Galactic diffuse
contribution. This is accomplished by dividing the log
likelihood by max(1, Ndiff /1000), where Ndiff is the predicted
number of Galactic diffuse photons in the RoI. This has the

effect of limiting the precision to the statistics of 1000 photons
in the RoI and energy band, i.e., it unweights contributions
from energy ranges for which the contribution from the diffuse
component is relatively less well defined.

3.1.3. Localization

The position of each source was determined by maximizing
the likelihood with respect to its position only. That is, all other
parameters are kept fixed. The possibility that a shifted position
would affect the spectral models or positions of nearby sources
is accounted for by iteration. Ideally, the likelihood is the
product of two Gaussians in two orthogonal angular variables.
Thus, the log likelihood is a quadratic form in any pair of
angular variables, assuming small angles. We define LTS, for
Localization test statistic, to be twice the log of the likelihood
ratio (LR) of any position with respect to the maximum; the
LTS evaluated for a grid of positions is called an LTS map. We
fit the distribution of LTS to a quadratic form to determine the
uncertainty ellipse, the major and minor axes, and orientation.
We also define a measure, the localization quality (LQ), of how
well the actual LTS distribution matches this expectation by
reporting the sum of the squares of the deviations of eight
points evaluated from the fit at a circle of radius corresponding
to twice the geometric mean of the two Gaussian sigmas.
Figure 5 shows examples of localization regions for point
sources. The distribution of the LQ is shown in Figure 6.
An important issue is how to treat apparently significant

sources that do not have good localization fits, which we
defined as LQ 8> . An example is shown in Figure 5 (right).
We flagged such sources (Flag 9 in Table 3) and for them
estimated the position and uncertainty by performing a moment
analysis of the LTS function instead of fitting a quadratic form.
Some sources that did not have a well-defined peak in the
likelihood were discarded by hand, on the consideration that

Figure 4. Distributions of the spectral fit quality (capped at 50). Left: sources fit with a power-law spectrum; center: sources fit with a log normal; right: sources fit
with a power law with exponential cutoff. All are overlaid with the 2χ distribution with 10 degrees of freedom.
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they were most likely related to residual diffuse emission.
Another possibility is that two nearby sources produce a
dumbbell-like shape; for some of these cases we added a new
source by hand. A final selection demanding that the semimajor
radius (1σ) be less than 0◦. 25 resulted in 3976 candidate
sources, of which 142 were localized using the moment
analysis.

As in 1FGL and 2FGL, we compared the localizations of the
brightest sources with associations with their true positions in
the sky. This indicated that the absolute precision is still the
same, ∼0◦. 005 at the 95% confidence level. After the
associations procedure (Section 5.2), we compared the
distribution of distances to the high-confidence counterparts
(in units of the estimated 1σ errors) with a Rayleigh
distribution and noted that it was slightly broader, by a factor

of 1.05 (smaller than the 1.1 factor used in 1FGL and 2FGL).
Consequently, we multiplied all error estimates by 1.05 and
added 0◦. 005 in quadrature to both 95% ellipse axes. The
resulting comparison with the Rayleigh distribution is shown in
Figure 3 of Ackermann et al. (2014, 3LAC) and indicates good
agreement.

3.1.4. Detection of Additional Sources

We used the pointlike definition of likelihood itself to detect
sources that needed to be added to the model of the sky. Using
HEALPix with N 512side = , we defined 3.2 M pixels in the sky,
separated by ;0◦. 15, then evaluated the improvement in the
likelihood from adding a new point source at the center of each,
assuming a power-law spectrum with index 2.2. The TS value
for each attempt, assigned to the pixel, defines a residual TS
map of the sky. Next we performed a cluster analysis for all
pixels with TS 10> , determining the number of pixels, the
maximum TS, and the TS-weighted centroid. All such clusters
with at least two pixels were added to a list of seeds. Then each
seed was reanalyzed, now allowing the spectral index to vary,
with a full optimization in the respective RoI, and then
localized. The last step was to add all such refit seeds, if the fits
to the spectrum and the position were successful, and TS 10> ,
as new sources, for a final optimization of the full sky.

3.2. Significance and Thresholding

The framework for this stage of the analysis is inherited from
the 2FGL catalog. It splits the sky into RoIs, varying typically
half a dozen sources near the center of the RoI at the same time.
There were 840 RoIs for 3FGL, listed in the ROIs extension of
the catalog (Appendix A). The global best fit is reached
iteratively, injecting the spectra of sources in the outer parts of
the RoI from the previous step. In that approach the diffuse
emission model (Section 2.3) is taken from the global
templates (including the spectrum, unlike what is done with
pointlike in Section 3.1), but it is modulated in each RoI by
three parameters: normalization and small corrective slope of
the Galactic component and normalization of the isotropic
component. Appendix A shows how those parameters vary
over the sky.

Figure 5. Examples of localization TS maps. The contours for 68%, 95%, and 99% containment are shown. The scale (in decimal degrees) is not the same in both
plots. Left: PSR J1459−6053, a good localization with LQ = 0.63. Right: 3FGL J2246.7−5205, a bad localization with LQ = 14.

Figure 6. Distribution, in the preliminary source list, of the localization quality
LQ (capped at 10).
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Among more than 4000 seeds coming from the localization
stage, we keep only sources at TS 25> , corresponding to a
significance of just over 4σ evaluated from the 2χ distribution
with 4 degrees of freedom (position and spectral parameters,
Mattox et al. 1996). The model for the current RoI is readjusted
after removing each seed below threshold, so that the final
model fits the full data. The low-energy flux of the seeds below
threshold (a fraction of which are real sources) can be absorbed
by neighboring sources closer than the PSF radius. There is no
pair of seeds closer than 0◦. 1, so the neighbors are unaffected at
high energy. The fixed sources outside the core of the RoI are
not tested and therefore not removed during the last fit of an
RoI. Since the TS threshold at the previous step was set to 16,
seeds with 16 TS 25< < still populate the outer parts of the
RoI, preventing the background level from rising (bullet 5
below).

We introduced a number of improvements with respect to
2FGL (by decreasing order of importance):

1. After 2FGL was completed, we understood that it was
important to account for the different instrumental
backgrounds in Front and Back events (Section 2.3).
Implicitly assuming that they were equal as in 2FGL
resulted in lower TS (fewer sources) and tended to
underestimate the low-energy flux. The impact is largest
at high latitude. We used different isotropic spectral
templates for Front and Back events but a common
renormalization parameter. We also used different Front
and Back models of the Earth limb. The same distinction
was introduced for computing the fluxes per energy band
(Section 3.5) and per month (Section 3.6).

2. Another effect discovered after 2FGL was a slight
inconsistency (8% at 100MeV) between the Front and
Back effective areas. This affected mostly the Galactic
plane, where the strong interstellar emission makes up
90% of the events. That effect created opposite low-
energy residuals in Front and Back that did not
compensate each other because of the differing PSF. It
was corrected empirically in the P7REP_SOURCE_V15
version of the IRFs (Bregeon et al. 2013).

3. We put in place an automatic iteration procedure at the
next-to-last step of the process checking that the all-sky
result is stable (2FGL used a fixed number of five
iterations), similar to what was done for localization in
2FGL. Quantitatively, we iterated an RoI and its
neighbors until log  did not change by more than 10.
In practice, this changes nothing at high latitude but
improves convergence in the Galactic plane. Fifteen
iterations were required to reach full convergence. That
iteration procedure was run twice, allowing sources to
switch to a curved spectral shape (Section 3.3) after the
first convergence.

4. The software issue that prevented using unbinned like-
lihood in 2FGL was solved. We took advantage of that by
using unbinned likelihood at high energy where keeping
track of the exact direction of each event helps. At low
energy we used binned likelihood in order to cap the
memory and CPU resources. The dividing energy was set
to 3 GeV, resulting in data cubes (below 3 GeV) and
event lists (above 3 GeV) of approximately equal size.
Both data sets were split between Front and Back. This
was implemented in the SummedLikelihood framework of
pyLikelihood. In binned mode, the pixel size was set to

0◦. 2 and 0◦. 3 for Front and Back events, respectively (at
3 GeV the FWHM of the PSF is 0◦. 25 and 0◦. 38,
respectively). The energy binning was set to 10 bins
per decade as in 2FGL. In the exposure maps for
unbinned mode, the pixel size was set to 0◦. 1 (even
though the exposure varies very slowly, this is required to
model precisely the edge of the field of view).

5. We changed the criterion for including sources outside
the RoI in the model. We replaced the flat 7° distance
threshold by a threshold on contributed counts (predicted
from the model at the previous step). We kept all sources
contributing more than 2% of the counts per square
degree in the RoI. This is a good compromise between
reliability and memory/CPU requirements and accounts
for bright sources even far outside the RoI (at 100MeV
the 95% containment radius for Back events is 14°).
Compared to 2FGL, that new procedure affects mostly
high latitudes (where the sources make up a larger
fraction of the diffuse emission). Because it brings more
low-energy events from outside in the model, it tends to
reduce the fitted level of the low-energy diffuse emission,
resulting in slightly brighter and softer source spectra.

6. The fits are now performed up to 300 GeV, and the overal
significances (Signif_Avg) and the spectral para-
meters refer to the full 100MeV–300 GeV band.

7. We introduced explicitly the model of the Sun and Moon
contributions (Section 2.3), without any adjustment or
free parameter in the likelihood analysis. The success of
that procedure is illustrated in Figures 7 and 10.

8. For homogeneity (so that the result does not depend on
which spectral model we start from) the TS 25>
threshold was always applied to the power-law model,
even if the best-fit model was curved. There are 21
sources in 2FGL with TS TS 25curve− < , which would
not have made it with this criterion (see Section 3.3 for
the definition of TScurve).

3.3. Spectral Shapes

The spectral representation of sources was mostly the same
as in 2FGL. We introduced an additional parameter modeling a
super- or subexponentially cutoff power law, as in the pulsar
catalog (Abdo et al. 2013). However, this was applied only to
the brightest pulsars (PSR J0835−4510 in Vela, J0633+1746,
J1709−4429, J1836+5925, J0007+7303). The global fit with
nearby sources was too unstable for the fainter ones, which
were left with a simple exponentially cutoff power law. The
subexponentially cutoff power law was also adopted for the
brightest blazar 3C 454.3.83 The fit was very significantly better
than with either a lognormal or a broken power-law shape.
Even though bright sources are not a scientific objective of a
catalog, avoiding low-energy spectral residuals (which trans-
late into spatial residuals because of the broad PSF) is
important for nearby sources.
Therefore, the spectral representations that can be found in

3FGL are:

1. A lognormal representation (LogParabola in the
tables) for all significantly curved spectra except pulsars

83 That is only a mathematical model; it should not be interpreted in a physical
sense since it is an average over many different states of that very variable
object.
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and 3C 454.3:
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where log is the natural logarithm. The reference energy
E0 is set to Pivot_Energy in the tables. The
parameters K, α (spectral slope at E0), and the curvature
β appear as Flux_Density, Spectral_Index, and
beta in the tables, respectively. No negative β
(spectrum curved upward) was found. The maximum
allowed β was set to 1 as in 2FGL.

2. An exponentially cutoff power law for all significantly
curved pulsars and a super- or subexponentially cutoff
power law for the bright pulsars and 3C 454.3
(PLExpCutoff or PLSuperExpCutoff in the
tables, depending on whether b was fixed to 1 or left
free):
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where the reference energy E0 is set to Pivot_Energy
in the tables and the parameters K, Γ (low-energy spectral
slope), Ec (cutoff energy), and b (exponential index)
appear as Flux_Density, Spectral_Index,
Cutoff, and Exp_Index in the tables, respectively.
Note that this is not the way that spectral shape appears in
the Science Tools (no E E( )c

b
0 term in the exponential),

so the error on K in the tables was obtained from the
covariance matrix. The minimum Γ was set to 0.5 (in
2FGL it was set to 0).

3. A simple power-law form for all sources not significantly
curved.

As in 2FGL, a source is considered significantly curved if
TS 16curve > , where TS 2(logcurve = (curved spectrum)

log− (power-law)). The curved spectrum is PLExpCutoff
(or PLSuperExpCutoff) for pulsars and 3C 454.3,

LogParabola for all other sources. The curvature signifi-
cance is reported as Signif_Curve (see Section 3.5).
Another difference with 2FGL is that the complex spectrum

of the Crab was represented as three components:

1. A PLExpCutoff shape for the pulsar, with free K, Γ,
and Ec.

2. A soft power-law shape for the synchrotron emission of
the nebula, with free K and Γ since the synchrotron
emission is variable (Abdo et al. 2011c). The synchrotron
component is called 3FGL J0534.5+2201s.

3. A hard power-law shape for the inverse Compton
emission of the nebula, with parameters fixed to those
found in Abdo et al. (2010e). That component does not
vary, and leaving it free made the fit unstable. It is called
3FGL J0534.5+2201i.

In 2FGL, two sources (MSH 15−52 and Vela X) spatially
coincident with pulsars had trouble converging, and their
spectra were fixed to the result of the dedicated analysis (Abdo
et al. 2010a, 2010g). In 3FGL the spectra of five sources were
fixed for the same reason: the same two, the inverse Compton
component of the Crab Nebula, the Cygnus X cocoon
(Ackermann et al. 2011a), and the γ-Cygni supernova remnant
(SNR). The spatial template of γ-Cygni was taken from Lande
et al. (2012) as in 1FHL. We did not switch to the more
complex spatial template used in Ackermann et al. (2011a), but
the spectral template was obtained from a reanalysis of the
Cygnus region including the Cygnus X cocoon (L. Tibaldo
2015, private communication).
Overall in 3FGL six sources (the five brightest pulsars and

3C 454.3) were fit as PLSuperExpCutoff (with b of
Equation (2) 1< ), 110 pulsars were fit as PLExpCutoff, 395
sources were fit as LogParabola, and the rest (including the
five fixed sources) were represented as power laws.

3.4. Extended Sources

As for the 2FGL and 1FHL catalogs, we explicitly model as
spatially extended those LAT sources that have been shown in
dedicated analyses to be resolved by the LAT. Twelve
extended sources were entered in the 2FGL catalog. That

Figure 7. Spectral energy distribution of the same source (the BL Lac TXS 0836+182) as 2FGL J0839.4+1802 (left) and 3FGL J0839.6+1803 (right). This source
was flagged as “possibly due to the Sun” (Flag 11 in Table 3) in 2FGL. Entering the Sun and Moon into the background model has reduced to zero the low-energy
signal that drove the 2FGL fit, resulting in a hard source in 3FGL. The dashed line is the best fit over the full energy range (Section 3.2), and the grayshaded area is the
statistical uncertainty around the best fit (for a given spectral form). The vertical scale is not the same in the left and right plots. Note that the 300 MeV–1 GeV point
has (asymmetric) error bars in 3FGL as explained in Section 3.5 even though its significance is less than 2σ . Upper limits (indicated by a downward triangle in 3FGL
and a downward arrow in 2FGL) are at 95% confidence level.
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number grew to 22 in the 1FHL catalog. The spatial templates
were based on dedicated analysis of each source region and
have been normalized to contain the entire flux from the source
( 99%> of the flux for unlimited spatial distributions such as 2D
Gaussians). The spectral form chosen for each source is the
best adapted among those used in the catalog analysis (see
Section 3.3). Three more extended sources have been reported
since then and were included in the same way in the 3FGL
analysis.84

The catalog process does not involve looking for new
extended sources or testing possible extension of sources
detected as point-like. This was last done comprehensively by
Lande et al. (2012) based on 1FGL. The extended sources
published since then were the result of focused studies, so there
most likely remain unreported faint extended sources in the
Fermi-LAT data set. The process does not attempt to refit the
spatial shape of known extended sources either.

The extended sources include 12 SNRs, nine pulsar wind
nebulae (PWNe) or candidates, the Cygnus X cocoon, the
Large and Small Magellanic Clouds (LMC and SMC), and the
lobes of the radio galaxy Centaurus A. Below we provide notes
on new sources and changes since 2FGL:

1. HB 21 is an SNR recently reported as an LAT source
(Reichardt et al. 2012). We added it to the list, using the
simple disk template and LogParabola spectral shape
derived by Pivato et al. (2013).

2. HESS J1303−631 and HESS J1841−055 are two H.E.S.S.
sources (most likely PWNe) recently reported as faint
hard LAT sources by Acero et al. (2013). We added them
to the list, using the original H.E.S.S. template rather than
the best spatial fit to the LAT data, in keeping with the
spectral analysis in that paper.

3. We changed the spectral representation of the LMC and
the Cygnus Loop from PLExpCutoff to LogPar-
abola, which fits the data better. The curvature of the
fainter SMC spectrum is not significant; therefore, it was
fit as a power law.

In general, we did not allow any point source inside the
extended templates, even when the TS maps indicated that
adding new seeds would improve the fit. Most likely (pending
a dedicated reanalysis) those additional seeds were simply
residuals due to the fact that the very simple geometrical
representations that we adopted are not precise enough, rather
than independent point sources. We preferred not splitting the
source flux into pieces. The only exceptions are 3FGL J1823.2
−1339 within HESS J1825−137, 3FGL J2053.9+2922 inside
the Cygnus Loop, 3FGL J0524.5−6937 inside the LMC, and
sources inside the Cygnus X cocoon. The first one is as
significant as the extended source and was a 2FGL source
already. The next two are well localized over large extended
sources and show a very hard spectrum, so they do not impact
the spectral characteristics of the extended sources. The Cygnus
X cocoon was fixed (Section 3.3), and allowing point sources
on top of it was necessary to reach a reasonable representation
of the region.

Table 1 lists the source name, spatial template description,
spectral form, and the reference for the dedicated analysis.
These sources are tabulated with the point sources, with the
only distinction being that no position uncertainties are

reported and their names end in e (see Section 4.1).
Unidentified point sources inside extended ones are marked
by “xxx field” in the ASSOC2 column of the catalog.

3.5. Flux Determination

The source photon fluxes are reported in the same five
energy bands (100–300MeV, 300MeV–1 GeV, 1–3 GeV,
3–10 GeV, 10–100 GeV) as in 2FGL. The fluxes were obtained
by freezing the spectral index to that obtained in the fit over the
full range and adjusting the normalization in each spectral
band. For the curved spectra (Section 3.3) the spectral index in
a band was set to the local spectral slope at the logarithmic mid-
point of the band E En n 1+ , restricted to be in the interval [0, 5].
The photon flux between 1 and 100 GeV and the energy flux
between 100MeV and 100 GeV (F35 and S25 in Table 5; the
subscript ij indicates the energy range as 10i–10j MeV) are
derived from the full-band analysis assuming the best spectral
shape and their uncertainties from the covariance matrix. Even
though the full analysis is carried out up to 300 GeV in 3FGL,
we have not changed the energy range over which we quote
fluxes, so that they can be easily compared with past fluxes.
The photon flux above 100 GeV is negligible anyway, and the
energy flux above 100 GeV is not precisely measured (even for
hard sources).
Improvements with respect to the 2FGL analysis are as

follows:

1. We used binned likelihood in the first three bands (up to
3GeV) and unbinned likelihood in the last two bands,
distinguishing Front and Back events. The pixel sizes in each
band in binned mode were 0◦.3 and 0◦.5, 0◦.2 and 0◦.3, 0◦.1 and
0◦.15, where in each band the first value is for Front, the
second one for Back. This reduces error bars by 10%–15%
compared to mixing Front and Back events as in 2FGL.

2. Following what was done in the 1FHL catalog, the errors
on the fluxes of moderately faint sources (TS 1⩾ in the
band) were computed as 1σ errors with MINOS in the
Minuit85 package. This was done whenever the relative
error on flux in the quadratic approximation (from the
covariance matrix) was larger than 10%. Both errors (lower
and upper) are reported in the FITS table (Appendix B).
The lower error is reported with a minus sign (when the
error comes from the quadratic approximation, the lower
error is simply minus the upper error). The upper limits
Fi
UL for very faint sources (TS 1< ) were computed as in

2FGL, using the Bayesian method (Helene 1983) at 95%
of the posterior probability. The upper error is then reported
as F F0.5( )i i

UL BF− , where Fi
BF is the best-fit flux, and the

lower error is set to NULL.
3. The same iteration procedure described in Section 3.2

was put in place for the fluxes per energy band using a
more stringent criterion ( log 3Δ < ). Convergence was
fast at high energy (little cross-talk between sources). It
was a little slower at low energy (six iterations in the first
band) but much faster than the full-band fit because no
spectral adjustment was involved.

4. We report as nuFnuxxx_yyy the spectral energy
distribution (SED) in the band defined by xxx–yyy
MeV, which can be directly overlaid on an SED plot. The
SED was obtained by dividing the energy flux in the band

84 The templates and spectral models are available through the FSSC. 85 http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit/home.html.
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by the bandwidth in natural logarithm log(yyy/xxx).
Since the fit is performed on the flux only (no spectral
freedom in each band), the relative error on the SED is
the same as that on the corresponding flux.

As in 2FGL, we report in 3FGL a curvature significance
Signif_Curve= RTScurve syst (in σ units) after approxi-
mately accounting for systematic uncertainties on effective area
via

( )( )
( )

R

F F f F

F F
, (3)

i i i i i i

i i i i

syst

PL 2 2 rel fit 2

PL 2 2

⎜ ⎟
⎛
⎝

⎞
⎠∑

∑

σ

σ

=

− +

−

where i runs over all bands, Fi
PL is the flux predicted by the

power-law model, and Fi
fit is the flux predicted by the best-fit

(curved) model in that band from the spectral fit to the full
band. fi

rel reflects the systematic uncertainty on effective area
(Section 3.7). The values were set to 0.1, 0.05, 0.05, 0.05, 0.1
in our five bands (the fourth one went down from 0.08 in
2FGL, thanks to improved calibration). Equation (3) is not
exactly the same formula used for 2FGL. In 2FGL Fi

fit would

have been replaced by Fi
PL. The disadvantage of the previous

estimate was that it capped Signif_Curve to rather low

values (below 15), resulting in a small dynamic range because
the largest relative systematic errors are in the two extreme
bands and in those bands the power-law fit can run way above
the points (because the spectra are curved downward). Using
the curved fit (closer to the points) to estimate the systematic
errors is a more reasonable procedure and recovers a larger
dynamic range (up to 85 in 3FGL).
As in 2FGL, we consider that only sources with Sig-

nif_Curve > 4 are significantly curved (at the 4σ level).
When Rsyst is small (bright source), it can happen that
TS 16curve > (triggering a curved model following Section 3.3)
but Signif_Curve < 4. The 43 such sources with
LogParabola spectra (and two pulsars with PLExpCutoff
spectra) but Signif_Curve < 4 could be power laws within
systematic errors. Nevertheless, we do not go back to power-
law spectra for those sources because they are better fit with
curved models and power-law models would result in negative
low-energy residuals, which might affect nearby sources. One
of them is illustrated in Figure 8. All are bright sources with
modest curvature.
Spectral fit quality (for Flag 10 in Table 3) is computed as in

Equation (3) of Nolan et al. (2012, 2FGL) rather than as in
Section 3.1.1. Among the 42 sources flagged because of a too
large spectral fit quality, most show deviations at low energy
and are in confused regions or close to a brighter neighbor, as
in Figure 9.

Table 1
Extended Sources Modeled in the 3FGL Analysis

3FGL Name Extended Source Spatial Form Extent (deg) Spectral Form Reference

J0059.0−7242e SMC 2D Gaussian 0.9 PowerLaw Abdo et al. (2010b)
J0526.6−6825e LMC 2D Gaussiana 1.2, 0.2 LogParabola Abdo et al. (2010k)
J0540.3+2756e S 147 Map L PowerLaw Katsuta et al. (2012)
J0617.2+2234e IC 443 2D Gaussian 0.26 LogParabola Abdo et al. (2010j)
J0822.6−4250e Puppis A Disk 0.37 PowerLaw Lande et al. (2012)
J0833.1−4511e Vela X Disk 0.88 PowerLaw Abdo et al. (2010g)
J0852.7−4631e Vela Junior Disk 1.12 PowerLaw Tanaka et al. (2011)
J1303.0−6312e HESS J1303−631 2D Gaussian 0.16 PowerLaw Aharonian et al. (2005)
J1324.0−4330e Centaurus A (lobes) Map L PowerLaw Abdo et al. (2010c)
J1514.0−5915e MSH 15−52 Disk 0.25 PowerLaw Abdo et al. (2010a)
J1615.3−5146e HESS J1614−518 Disk 0.42 PowerLaw Lande et al. (2012)
J1616.2−5054e HESS J1616−508 Disk 0.32 PowerLaw Lande et al. (2012)
J1633.0−4746e HESS J1632−478 Disk 0.35 PowerLaw Lande et al. (2012)
J1713.5−3945e RX J1713.7−3946 Map L PowerLaw Abdo et al. (2011d)
J1801.3−2326e W28 Disk 0.39 LogParabola Abdo et al. (2010f)
J1805.6−2136e W30 Disk 0.37 LogParabola Ajello et al. (2012)
J1824.5−1351e HESS J1825−137 2D Gaussian 0.56 LogParabola Grondin et al. (2011)
J1836.5−0655e HESS J1837−069 Disk 0.33 PowerLaw Lande et al. (2012)
J1840.9−0532e HESS J1841−055 2D Gaussianb (0.41, 0.25) PowerLaw Aharonian et al. (2008)
J1855.9+0121e W44 Ringb (0.22, 0.14), (0.30, 0.19) LogParabola Abdo et al. (2010i)
J1923.2+1408e W51C Diskb (0.40, 0.25) LogParabola Abdo et al. (2009b)
J2021.0+4031e γ-Cygni Disk 0.63 PowerLaw Lande et al. (2012)
J2028.6+4110e Cygnus X cocoon 2D Gaussian 2.0 PowerLaw Ackermann et al. (2011a)
J2045.2+5026e HB 21 Disk 1.19 LogParabola Pivato et al. (2013)
J2051.0+3040e Cygnus Loop Ring 0.7, 1.6 LogParabola Katagiri et al. (2011)

Note.
List of all sources that have been modeled as extended sources. The Extent column indicates the radius for disk sources, the dispersion for Gaussian sources, and the
inner and outer radii for ring sources.
a Combination of two 2D Gaussian spatial templates.
b The shape is elliptical; each pair of parameters a b( , ) represents the semimajor a( ) and semiminor b( ) axes.
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Spectral plots for all 3FGL sources overlaying the best
model on the individual SED points are available from
the FSSC.

3.6. Variability

The light curves were computed over the same (1 month)
intervals as in 1FGL and 2FGL (there are now 48 points). The
first 23 intervals correspond exactly to 2FGL. The fluxes in
each bin were obtained by freezing the spectral parameters to
those obtained in the fit over the full range and adjusting the
normalization. We used unbinned likelihood over the full
energy range for the light curves. Over short intervals it does
not incur a large CPU or memory penalty and it preserves the
full information. We used a different isotropic and Earth limb
model for Front and Back events, as in the main fit
(Section 3.2). We also used a different Sun/Moon model for

each month (the Sun is obviously at a different place in the sky
each month). That improvement, together with our removing
the solar flares, effectively mitigated the peaks that we noted in
the 2FGL light curves due to the Sun passage near the source
(Flag 11 in Table 3). We have not noted any obvious Sun-
related peak in the 3FGL light curves (Figure 10).
As in the band flux calculation (Section 3.5), the errors on

the monthly fluxes of moderately faint sources (TS 1> ) were
computed as lower and upper1σ errors with MINOS in Minuit.
Both errors (lower and upper) are reported in the FITS table
(Table 16), so the Unc_Flux_History column is a 2 × 48
array. This allowed providing more information in the light-
curve plots86 by keeping points with error bars whenever
TS 1> (the lower error does not reach 0). When TS 1< , the
95% upper limit is converted into an upper error in the same
way as in 2FGL and the band flux calculation.
We noted an inconsistency between the light curve and the

flux from the main fit (over the full interval) in several
extended sources, whereby the average of the light curve
appears distinctly above the flux from the main fit. It is
particularly obvious in Cen A lobes, HESS J1616−508
(Figure 11), S147, W28, and W30. We traced the problem to
the fact that we used unbinned likelihood over the whole
energy range for the light curves but binned likelihood for the
main fit below 3 GeV. We have not found any evidence that
this affects the point sources. Since we do not expect variability
in extended sources, we left this inconsistency in the catalog as
a known feature.
The variability indicator Variability_Index is the

same as in 2FGL, with the same relative systematic error of
2%. Variability is considered probable when Variabili-
ty_Index exceeds the threshold of 72.44 corresponding to
99% confidence in a 2χ distribution with 47 degrees of
freedom.

Figure 8. Spectral energy distribution of 3FGL J0222.6+4301 (3C 66A) fitted
by a LogParabola spectrum with 0.039 0.007β = ± but Signif_Curve
(defined just before Equation (3)) = 2.81. The curvature is statistically
significant, but a power law cannot be excluded given the range of the
systematic errors on effective area.

Figure 9. Spectral energy distribution of 3FGL J1226.9−1329 (PMN J1226
−1328) flagged with bad spectral fit quality (Flag 10 in Table 3). The first two
points deviate from the power-law fit. This source is within 1◦. 3 of the much
brighter pulsar PSR J1231−1411, so it is confused with it (within r68) below
600 MeV.

Figure 10. Light curve of 3FGL J1315.7−0732 (NVSS J131552−073301) in
the ecliptic plane. That source is significantly variable. The flares do not
correspond to the times when the Sun passed through the region (vertical
orange bands). The only effect of the Sun passage is somewhat larger error
bars. The gray shaded horizontal area materializes the systematic uncertainty of
2%. Upper limits (indicated by a downward triangle) are at 95% confidence
level.

86 These plots are available from the FSSC.
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The Crab Nebula and pulsar are a particularly difficult case.
The nebula is very variable (Abdo et al. 2011c; Tavani et al.
2011), while the pulsar has no detected variability. So we
would have liked the synchrotron component to absorb the full
variability in 3FGL. It does not turn out this way, however,
because the spectrum of the nebula becomes much harder
during flares. This is not accounted for in the variability
analysis (the spectral slopes are fixed to that in the full
interval). As a result, the pulsar component also increases
during the nebular flares and the pulsar becomes formally
variable. We stress here that it is only a feature of our automatic
analysis and is in no way a real detection of variability in the
Crab pulsar. Besides the Crab, we detect the (real) variability
of PSR J2021+4026 (Figure 12, Allafort et al. 2013). The only
other formally variable pulsar is PSR J1732−3131 just above
threshold. Since this is 1 in 137 pulsars, it is compatible with a
chance occurrence at the 99% confidence level.

3.7. Limitations and Systematic Uncertainties

3.7.1. Source Confusion

As for the 1FGL and 2FGL catalogs, we investigated source
confusion by comparing the actual distribution of angular
separations between 3FGL sources with what would be
expected for a population of sources that could be detected
independently regardless of how small their angular separa-
tions. The formalism is defined in Abdo et al. (2010d, 1FGL).
We considered the region of the sky above b 10∣ ∣ = °, within
which the average angular separation of 3FGL sources is 2◦. 2.
The distribution of nearest neighbors distances is shown in
Figure 13 along with the distribution expected if the source
detection efficiency did not decrease for closely spaced sources.
The observed density of nearest-neighbor starts to fall below
the expected curve at about 0◦. 8 angular separation. The implied
number of missing closely spaced sources is ∼140, or about 6%
of the estimated true source count in the region. For the 2FGL
catalog the fraction was only 3.3%. This indicates that even

though the PSF improved after the Pass 7 reprocessing, the
larger number of detected sources (2193 versus 1319) is now
pushing the LAT catalog into the confusion limit even outside
the Galactic plane. Because the confusion process goes as the
square of the source density, the expected number of sources
above the detection threshold within 0◦. 5 of another one (most
of which are not resolved) has increased by a factor of 3
between 2FGL and 3FGL.
The consequence of source confusion is not only losing a

fraction of sources. It can also lead to “composite” γ-ray
sources merging the characteristics of two very nearby
astronomical objects. An example is the unassociated 3FGL
J0536.4−3347, located between two bright blazars. Its
spectrum is relatively soft, similar to that expected from the
FSRQ BZQ J0536−3401, 14′ away. Its location, however, is
closer (4′) to the BL Lac BZB J0536−3343 because that one
dominates at high energy, where the Fermi PSF is best. That
issue is discussed in more detail in the 3LAC paper.

Figure 11. Light curve of 3FGL J1616.2−5054e (HESS J1616−508). That is
an extended source that should not be variable. Indeed the monthly fluxes are
compatible with a constant, but not with the flux extracted over the full 4 yr
(dashed line with gray shaded uncertainty). That inconsistency is due to a
remaining difference between binned and unbinned likelihood fits affecting
only extended sources.

Figure 12. Light curve of 3FGL J2021.5+4026 (PSR J2021+4026 in the γ
Cygni SNR). The variability of that pulsar is easily detected by the automatic
procedure. The vertical scale does not start at 0.

Figure 13. Distribution of nearest-neighbor distances for 3FGL sources at
b 10∣ ∣ > °. The dashed curve was derived as described in Abdo et al. (2010d,
1FGL). It is the distribution expected if sources could be detected at arbitrarily
small angular separations. The dashed curve is normalized to match the total
observed number of sources for separations >0◦. 8 (2035). This corresponds to
an expected true number of sources (extrapolated down to 0 separation) of
2336 at b 10∣ ∣ > °.
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3.7.2. Instrument Response Functions

The systematic uncertainties on effective area have improved
since 2FGL, going from P7SOURCE_V6 to P7REP_SOUR-
CE_V15. They are now estimated to be 5% between 316MeV
and 10 GeV, increasing to 10% at 100MeV and 15% at 1 TeV
(see the caveats page at the FSSC), following the methods
described by Ackermann et al. (2012a). As in previous LAT
catalogs, we have not included those uncertainties in any of the
error columns, because they apply uniformly to all sources. They
must be kept in mind when working with absolute numbers, but
comparisons between sources can be carried out at better
precision. The systematic uncertainties on effective area have
been included in the curvature significance (Section 3.5), and a
systematic uncertainty of 2% on the stability of monthly flux
measurements (measured directly on the bright pulsars) has been
included in the variability index (Section 3.6).

3.7.3. Diffuse Emission Model

The model of diffuse emission is the main source of
uncertainties for faint sources. Contrary to the effective area, it
does not affect all sources equally: its effects are smaller
outside the Galactic plane, where the diffuse emission is fainter
and varying on larger angular scales. It is also less of a concern
in the high-energy bands (>3 GeV), where the core of the PSF
is narrow enough that the sources dominate the background
under the PSF. But it is a serious concern inside the Galactic
plane in the low-energy bands (<1 GeV) and particularly inside
the Galactic ridge ( l 60∣ ∣ < °), where the diffuse emission is
strongest and very structured, following the molecular cloud
distribution. It is not easy to assess precisely how large the
uncertainties are, because they relate to uncertainties in the
distributions of interstellar gas, the interstellar radiation field,
and cosmic rays, which depend in detail on position on the sky.

For an assessment we have tried re-extracting the source
spectra using one of the eight alternative interstellar emission
models described in de Palma et al. (2013), namely, the one
obtained with optically thin H I, an SNR cosmic-ray source
distribution and a 4 kpc halo, adapted to the P7REP IRFs. For
computational reasons we have not used all eight alternative
models, but that one should be representative. In each RoI we

left free the normalization of each component of the model
contributing (with its normalization set to 1) more than 3% of
the total counts in the RoI. The isotropic normalization was
also left free, but the inverse Compton, Loop I, and Fermi
bubble components were fixed (too large scale to be fitted
inside a single RoI). That approach (independent components)
differs enough from the standard diffuse model that it can
provide a stronger test than comparing with the previous
generation diffuse model, as we did for 2FGL. Nevertheless,
both models still rely on nearly the same set of H I and CO
maps of the gas in the interstellar medium, so they are not as
independent as we would like.
The results show that the systematic uncertainty more or less

follows the statistical one, i.e., it is larger for fainter sources in
relative terms. We list the induced biases and scatters of flux and
spectral index in Table 2. We have not increased the flux and index
errors in the catalog itself accordingly because this alternative
model does not fit the data as well as the newer one. The fit quality
is nearly everywhere worse, except near the Carina region, where
we know that the standard model does not fit the data very well
(Appendix A). From that point of view we may expect these
estimates of the systematic uncertainties to be upper limits. So we
regard the values as qualitative estimates. In the Galactic plane
(and even worse in the Galactic ridge) the systematic uncertainties
coming from the diffuse model are larger than the statistical ones.
In the Galactic ridge, even the bias is larger than the statistical
uncertainty. The effect is larger than what we estimated for 2FGL
(even though the diffuse model has improved), partly because the
exposure is twice as deep and partly because the new alternative
model is further from the standard one. Outside the Galactic plane
the systematic uncertainty due to the diffuse model remains less
than the statistical one, and the bias is negligible.
The same comparison also allows flagging outliers as suspect

(Section 3.9). A total of 119 sources received Flag 1 (Table 3)
because they ended up with TS 25< with the alternative
model, and 118 received Flag 3, indicating that their photon or
energy fluxes changed by more than 3σ . That uncertainty also
appears in Flag 4, whereby we flag all sources with source-to-
background ratio less than 10% in all bands in which they are
statistically significant.

Table 2
The Table Gives the Bias and the Scatter Induced by Changing One of two Important Elements in the Analysis Chain

Selection Quantity Diffuse Model (Section 3.7.3) Analysis Method (Section 3.7.4)

Bias Scatter Bias Scatter

Galactic ridge Eflux (174) 1.88σ+ (+21%) 3.40σ (42%) 0.47σ− (−7%) 1.93σ (27%)
Index (88) 1.44σ+ (+0.14) 1.81σ (0.37) 0.08σ− (−0.01) 2.40σ (0.21)

Galactic plane Eflux (662) 0.51σ+ (+7%) 2.19σ (32%) 0.66σ− (−12%) 1.26σ (23%)
Index (470) 0.34σ+ (+0.04) 1.54σ (0.21) 0.44σ− (−0.06) 1.15σ (0.15)

High latitude Eflux (2193) 0.07σ+ (+1%) 0.98σ (15%) 0.42σ− (−7%) 0.74σ (13%)
Index (1960) 0.23σ+ (+0.03) 0.73σ (0.10) 0.34σ− (−0.05) 0.73σ (0.10)

Note.
The table gives the bias and the scatter induced by changing one of two important elements in the analysis chain, first in units of the statistical error (i.e., on
A A( )i i i

alt σ− ), then in absolute terms (i.e., on A Ai i
alt − ), where Ai is either the log of the energy flux between 100 MeV and 100 GeV or the spectral index in the

standard analysis, Ai
alt is the same quantity in the alternative analysis, and iσ the statistical uncertainty on Ai. The spectral index comparison is restricted to pure power-

law sources. The Galactic ridge is defined as b 2∣ ∣ < ° and l 60∣ ∣ < °. High latitude is defined as b 10∣ ∣ ⩾ °. The Galactic plane is everything else (i.e., it does not
include the Galactic ridge). The number of sources in each selection is given in parentheses after the quantity.
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3.7.4. Analysis Method

The check presented in this section is new to 3FGL. As
explained in Section 3.1, a total of the pointlike-based method
used to detect and localize sources also provides an estimate of
the source spectra and significance. Therefore, we use it to
estimate systematic errors due to the analysis itself. Many
aspects differ between the two methods: the code, the RoIs, the
Earth limb representation. The alternative method does not
remove faint sources (with TS 25< ) from the model. The
diffuse model is the same spatially, but it was rescaled
spectrally in each energy bin. The pointlike-based method also
rescales log  in order to play down the energy bins in which
the source-to-background ratio is low.

The procedure to compare the results is the same as in
Section 3.7.3. We list the induced biases and scatters of flux
and spectral index in Table 2. In general, the effect of changing
the analysis procedure is less than changing the diffuse model.
Outside the Galactic ridge (and even outside the Galactic
plane), we observe a negative bias on flux and index (i.e.,
fainter harder sources with the pointlike pipeline) close to half
the statistical error. That effect is probably the result of
removing the sources below threshold in the standard method.
This favors absorbing the flux of faint neighbors at low energy
(where the PSF is broad), resulting in somewhat brighter and
softer sources.

A total of 118 sources received Flag 1 (TS 25< with
pointlike), and 101 received Flag 3 (flux changed by more than
3σ). Only 25 (Flag 1) and 19 (Flag 3) sources are flagged from
both the diffuse model and the analysis method comparisons. In
other words, the 3FGL catalog is more or less halfway between
the result from pointlike and the result with the alternative
diffuse model. Comparing the lists from pointlike and the

alternative diffuse model would result in 202 sources with Flag
1 and 209 with Flag 3.

3.8. Sources toward Local Interstellar Clouds
and the Galactic Ridge

As we did for the 2FGL catalog, we carefully evaluated
which sources are potentially artifacts due to systematic
uncertainties in modeling the Galactic diffuse emission. The
procedure, described in more detail in the 2FGL paper, flags
unassociated sources with moderate TS and spectral index

2Γ > , corresponding to features in individual gas components.
For 3FGL we did not consider sources that have very curved
spectra to be artifacts. Very soft sources with power-law
spectra are instead more likely to be problematic. Sources
considered to be potential artifacts are assigned an analysis flag
in the catalog (Section 3.9). We also append c to the source
names.
Relative to the 2FGL catalog, far fewer c sources are flagged

here (78 here versus 162 for 2FGL) despite the much greater
number of sources overall in the 3FGL catalog. Away from the
Galactic plane, the reduction of c sources is primarily due to
improvement of the representation of the dark gas component
of the Galactic diffuse emission model in the vicinity of
massive star-forming regions (Section 2.3). At low latitudes,
the reduction primarily is due to relaxing the criterion on
unassociated sources with very curved spectra.
Figure 14 shows the locations of the c sources for 3FGL.

The majority are close to the Galactic plane, where the
diffuse γ-ray emission is brightest and very structured.
Clusters are apparent in regions where spiral arms of the
Milky Way are viewed essentially tangentially, in particular
the Cygnus (l 80∼ °) and Carina (l 285∼ °) regions, where

Table 3
Definitions of the Analysis Flags

Flaga Meaning

1 Source with TS 35> , which went to TS 25< when changing the diffuse model
(Section 3.7.3) or the analysis method (Section 3.7.4). Sources with TS 35⩽ are not flagged
with this bit because normal statistical fluctuations can push them to TS 25<

2 Not used
3 Flux (>1 GeV) or energy flux (>100 MeV) changed by more than 3σ when

changing the diffuse model or the analysis method. Requires also that the flux
change by more than 35% (to not flag strong sources)

4 Source-to-background ratio less than 10% in highest band in which TS 25>
Background is integrated over πr68

2 or 1 square degree, whichever is smaller

5 Closer than refθ from a brighter neighbor. refθ is defined in the highest band in

which source TS 25> , or the band with highest TS if all are 25< . refθ is set

to 2◦. 17 (FWHM) below 300 MeV, 1◦. 38 between 300 MeV and 1 GeV, 0◦. 87
between 1 and 3 GeV, 0◦. 67 between 3 and 10 GeV, and 0◦. 45 above
10 GeV ( r2 68)

6 On top of an interstellar gas clump or small-scale defect in the model of
diffuse emission; equivalent to the c designator in the source name (Section 3.8)

7 Unstable position determination; result from gtfindsrc outside the 95% ellipse
from pointlike

8 Not used
9 Localization Quality > 8 in pointlike (Section 3.1) or long axis of 95% ellipse >0◦. 25
10 Spectral Fit Quality 16.3> (Equation (3) of Nolan et al. 2012, 2FGL)
11 Possibly due to the Sun (Section 3.6)
12 Highly curved spectrum; LogParabola β fixed to 1 or PLExpCutoff

Spectral_Index fixed to 0.5 (see Section 3.3)

a In the FITS version the values are encoded as individual bits in a single column, with Flag n having value 2 n( 1)− . For information about the FITS version of the table
see Table 16 in Appendix B.
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the systematic uncertainties of the Galactic diffuse emission
model are especially large. None of the c sources are
identified (Section 5.1), and 63 (∼80%) have no firm
association with a counterpart at other wavelengths, a much
larger fraction than the overall average (∼30%) for 3FGL
(Table 6).

3.9. Analysis Flags

As in 2FGL, we identified a number of conditions that
should be considered cautionary regarding the reality of a
source or the magnitude of the systematic uncertainties of its
measured properties. They are described in Table 3.

Each flag has the same definition as for the 2FGL catalog,
except for Flag 7, which was unused in that catalog.

Flags 1–12 have similar intent as in 2FGL, but differ in detail.

1. Flags 1 and 3 are now applied not only when a source is
sensitive to changing the diffuse model (Section 3.7.3)
but also to the analysis method (Section 3.7.4).

2. Flag 2 is not used. We did not go so far as to rerun the full
detection and localization procedure (Section 3.1) with
the alternative diffuse model. Assessing the changes in
source characteristics is normally enough.

3. For Flag 4, we lowered the threshold for flagging the
source-to-background ratio to 10%, recognizing that the
uncertainties in the interstellar emission model are now
reduced (Appendix A).

4. We reinstated Flag 7 (comparison between pointlike and
gtfindsrc localizations), which was not used in 2FGL
because of an inconsistency in the unbinned likelihood
results. It indicates sources for which the source locations
derived from pointlike (Section 3.1.3) and gtfindsrc are
inconsistent at the 95% confidence level. gtfindsrc was
applied only above 3 GeV due to computing time
constraints. This is appropriate for most sources (because
the PSF is much better at high energy) but does not allow
testing the localization of soft sources.

5. Flag 8 has been merged into Flag 9. Both tested
localization reliability.

6. Flag 11 is deprecated because we put in place an explicit
time-dependent model for the Sun and Moon emission
(Section 2.3).

4. THE 3FGL CATALOG

We present a basic description of the 3FGL catalog in
Section 4.1, including a listing of the main table contents and
some of the primary properties of the sources in the catalog.
We present a detailed comparison of the 3FGL catalog with the
2FGL catalog in Section 4.2.

4.1. Catalog Description

Table 4 is the catalog, with information for each of the 3033
sources;87 see Table 5 for descriptions of the columns. The
source designation is 3FGL JHHMM.m+DDMM, where the 3
indicates that this is the third LAT catalog, and FGL represents
Fermi Gamma-ray LAT. Sources close to the Galactic ridge
and some nearby interstellar cloud complexes are assigned
names of the form 3FGL JHHMM.m+DDMMc, where the c
indicates that caution should be used in interpreting or
analyzing these sources. Errors in the model of interstellar
diffuse emission, or an unusually high density of sources, are
likely to affect the measured properties or even existence of
these 78 sources (see Section 3.8). In addition, a set of analysis
flags has been defined to indicate sources with unusual or
potentially problematic characteristics (see Section 3.9). The c
designator is encoded as one of these flags. An additional 572
sources have one or more of the other analysis flags set. The 25
sources that were modeled as extended for 3FGL (Section 3.4)
are singled out by an e appended to their names.
The designations of the classes that we use to categorize the

3FGL sources are listed in Table 6 along with the numbers of
sources assigned to each class. Figure 15 illustrates where the
source classes are in the sky. We distinguish between
associated and identified sources, with associations depending
primarily on close positional correspondence (see Section 5.2)
and identifications requiring measurement of correlated varia-
bility at other wavelengths or characterization of the 3FGL
source by its angular extent (see Section 5.1). In the cases of
multiple associations with a 3FGL source, we adopt the single
association that is statistically most likely to be true if it is
above the confidence threshold (see Section 5.2). Sources
associated with SNRs are often also associated with PWNe and
pulsars, and the SNRs themselves are often not point-like. We
do not attempt to distinguish among the possible classifications
and instead list in Table 7 plausible associations of each class
for unidentified 3FGL sources found to be positionally
associated with SNRs.88 The Crab pulsar and PWN are
represented by a total of three entries, two of which (designated
i and s) represent spectral components of the PWN (see
Section 5.1). We consider these three entries to represent two
sources.

Figure 14. Locations of the c sources in the 3FGL catalog overlaid on a grayscale representation of the model for the Galactic diffuse γ-ray emission used for the
3FGL analysis (see Section 2.3). The plotted symbols are centered on the locations of the sources. The model diffuse intensity is shown for 1 GeV, and the spacing of
the levels is logarithmic from 1% to 100% of the peak intensity.

87 Table 4 has 3034 entries because the PWN component of the Crab Nebula is
represented by two cospatial sources (Section 3.3).
88 Four sources positionally associated with SNRs were also found to be
associated with blazars. We cannot quantitatively compare association
probabilities between the blazar and the (spatially extended) SNR classes. In
the 3FGL catalog, we list only the blazar associations for them. The sources
and SNR associations are 3FGL J0217.3+6209 (G137.2+01.3), 3FGL J0223.5
+6313 (G132.7+01.3), 3FGL J0526.0+4253 (G166.0+04.3), and 3FGL
J0215.6+3709 (G074.9+01.2).
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Table 4
LAT 4 yr Catalog

Name
3FGL R.A. Decl. l b 1θ 2θ ϕ σ F35 F35Δ S25 S25Δ 25Γ 25ΔΓ Mod Var Flags γ-ray Assoc. TeV Classa ID or Assoc.

J0000.1
+6545

0.038 65.752 117.694 3.403 0.102 0.078 41 6.8 1.0 0.2 13.6 2.1 2.41 0.08 PL L 3 2FGL J2359.6+6543c L L L

J0000.2
−3738

0.061 −37.648 345.411 −74.947 0.073 0.068 −89 5.1 0.2 0.1 2.4 0.7 1.87 0.18 PL L L L L L L

J0001.0
+6314

0.254 63.244 117.293 0.926 0.248 0.160 −65 6.2 0.6 0.1 13.0 1.9 2.73 0.11 PL L 3,4,5 2FGL J2358.9+6325 L spp L

J0001.2
−0748

0.321 −7.816 89.022 −67.324 0.082 0.070 −19 11.3 0.7 0.1 7.8 0.9 2.15 0.09 PL L L 2FGL J0000.9−0748 L bll PMN J0001−0746

1FGL J0000.9−0745
J0001.4

+2120
0.361 21.338 107.665 −40.047 0.211 0.188 −33 11.4 0.3 0.1 8.1 0.8 2.78 L LP T L 3EG J2359+2041 L fsrq TXS 2358+209

J0001.6
+3535

0.404 35.590 111.661 −26.188 0.213 0.167 8 4.2 0.3 0.1 3.4 0.8 2.35 0.19 PL L 4 L L L L

J0002.0
−6722

0.524 −67.370 310.139 −49.062 0.102 0.086 69 5.9 0.3 0.1 3.3 0.8 1.95 0.16 PL L L L L L L

J0002.2
−4152

0.562 −41.883 334.070 −72.143 0.217 0.140 68 5.2 0.3 0.1 3.0 0.7 2.09 0.19 PL L L 2FGL J0001.7−4159 L bcu 1RXS J000135.5−415519

1FGL J0001.9−4158
J0002.6

+6218
0.674 62.301 117.302 −0.037 0.061 0.054 −55 18.0 2.8 0.2 18.4 1.7 2.35 L LP L L 2FGL J0002.7+6220 L L L

J0003.2
−5246

0.815 −52.777 318.976 −62.825 0.070 0.061 −44 5.7 0.3 0.1 3.0 0.8 1.90 0.17 PL L L L L bcu RBS 0006

J0003.4
+3100

0.858 31.008 110.964 −30.745 0.181 0.163 13 6.3 0.3 0.1 4.9 0.8 2.55 0.13 PL L L L L L L

J0003.5
+5721

0.890 57.360 116.486 −4.912 0.089 0.072 1 5.4 0.5 0.1 5.4 1.1 2.18 0.13 PL L L L L L L

a See Table 6 for class designators.

(This table is available in its entirety in machine-readable form.)
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The photon flux for 1–100 GeV (F35) and the energy flux for
100MeV–100 GeV in Table 4 are evaluated from the fit to the
full band (see Section 3.5). We do not present the integrated
photon flux for 100MeV–100 GeV (see Section 3.5). Table 8
presents the fluxes in individual bands as defined in Section 3.5.

4.2. Comparison with 0FGL, 1FGL, 2FGL and 1FHL

4.2.1. General Comparison

We compare the 3FGL with previous catalogs released by
the LAT collaboration. These are listed in Table 9.

Associations among 3FGL and 0FGL/1FGL/2FGL and
1FHL sources are based on the following relation:

d , (4)x a x a x, ,
2

,3FGL
2θ θΔ ⩽ = +

where Δ is the angular distance between the sources, dx is
defined in terms of the semimajor axis of the x% confidence
error ellipse for the position of each source, e.g., the 95%
confidence error for the automatic source association procedure
(Section 5.2), and “a” is alternatively 0FGL, 1FGL, 2FGL, and
1FHL. In total, 1720 3FGL sources were automatically
associated with entries in either the 0FGL, 1FGL, 2FGL, or

1FHL catalogs. The statistics of the association results are
reported in Table 13.
In the 3FGL analysis the spectral fits are made using power-

law, power-law with an exponential cutoff, or log-parabola
models (Section 3.3). For each 2FGL and 3FGL source we also
evaluated the spectral index (Γ) of the best power-law fit, and
this enables a comparison of the spectral characteristics of the
1FGL, 2FGL, and 3FGL sources. Figure 16 shows the
distributions of the power-law indices of the sources at high
Galactic latitude and only those with a power-law spectral type
in the 1FGL, 2FGL and 3FGL catalogs, to avoid possible
confusion from more complex features. The three distributions
are very similar, with an average 2.23 0.011FGLΓ = ± , average

2.21 0.012FGLΓ = ± , and average 2.19 0.013FGLΓ = ± . How-
ever, the peaks of the three distributions are not exactly
coincident; also, they have different skewnesses. The small
differences in the power-law index distributions could be
related to slightly different systematic uncertainties in the
effective area between the IRFs P7REP_SOURCE_V15,
P7SOURCE_V6, and P6_V3_DIFFUSE used, respectively,
for 3FGL, 2FGL, and 1FGL.
We have compared the distribution of the 95% confidence

error radii of the 1FGL, 2FGL, and 3FGL sources at high

Table 5
LAT Third Catalog Description

Column Description

Name 3FGL JHHMM.m+DDMM[c/e/i/s], constructed according to IAU Specifications for
Nomenclature; m is decimal

minutes of R.A.; in the name, R.A. and Decl. are truncated at 0.1 decimal minutes and 1′,
respectively;

c indicates that based on the region of the sky the source is considered to be potentially
confused

with Galactic diffuse emission; e indicates a source that was modeled as spatially extended
(see Section 3.4);

the two spectral components of the Crab PWN are designated i and s
R.A. Right Ascension, J2000, deg, 3 decimal places
Decl. Declination, J2000, deg, 3 decimal places
l Galactic longitude, deg, 3 decimal places
b Galactic latitude, deg, 3 decimal places

1θ Semimajor radius of 95% confidence region, deg, 3 decimal places

2θ Semiminor radius of 95% confidence region, deg, 3 decimal places

ϕ Position angle of 95% confidence region, deg. east of north, 0 decimal places
σ Significance derived from likelihood test statistic for 100 MeV–300 GeV analysis, 1 decimal

place
F35 Photon flux for 1–100 GeV, 10−9 photons cm−2 s−1, summed over 3 bands, 1 decimal place

F35Δ 1σ uncertainty on F35, same units and precision

S25 Energy flux for 100 MeV–100 GeV, 10−12 erg cm−2 s−1, from power-law fit, 1 decimal place
S25Δ 1σ uncertainty on S25, same units and precision

25Γ Photon number power-law index, 100 MeV–100 GeV, 2 decimal places

25ΔΓ 1σ uncertainty of photon number power-law index, 100 MeV–100 GeV, 2 decimal places

Mod. PL indicates power-law fit to the energy spectrum; LP indicates log-parabola fit to the energy
spectrum;

EC indicates power-law with exponential cutoff fit to the energy spectrum
Var. T indicates <1% chance of being a steady source; see note in text
Flags See Table 3 for definitions of the flag numbers
γ-ray Assoc. Positional associations with 0FGL, 1FGL, 2FGL, 3EG, EGR, or 1AGL sources
TeV Positional association with a TeVCat source, P for unresolved angular size, E for extended
Class Like “ID” in 3EG catalog, but with more detail (see Table 6). Capital letters indicate firm

identifications;
lowercase letters indicate associations

ID or Assoc. Designator of identified or associated source
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Galactic latitude. The distribution of 95% confidence error
radius for those sources with 25 TS 100< < in any of the
1FGL, 2FGL, and 3FGL catalogs (Figure 17) shows the
localization improvement for a given range of source detection
significances. We evaluated the 95% confidence error radius as
the geometric mean of the semimajor and semiminor axes of
the 95% confidence error ellipse.

Figure 18 shows the energy flux distribution in 1FGL,
2FGL, and 3FGL. Comparing the current flux threshold with
those published in previous LAT Catalog papers, we see that in
3FGL the threshold is down to 3 10 12≃ × − erg cm−2 s−1, from

5 10 12≃ × − erg cm−2 s−1 in 2FGL and 8 10 12≃ × − erg cm−2 s−1

in 1FGL. Above that flux the 2FGL and 3FGL distributions are
entirely compatible.

However, the 1FGL distribution shows a distinct bump
between 1 and 2 10 11× − erg cm−2 s−1. That accumulation of
fluxes was clearly incorrect. We attribute it primarily to
overestimating significances and fluxes due to the unbinned
likelihood bias in the 1FGL analysis, and also to the less
accurate procedure then used to extract source flux (see
discussion in the 2FGL paper).

4.2.2. Comparison of Individual Sources

Figure 19 shows the distribution of the differences
3FGL 2FGLΓ − Γ and 3FGL 1FGLΓ − Γ for the 621 high-latitude
sources with power-law spectrum type in common among the
three catalogs. The average of the 3FGL–2FGL distribution is
0.04 ± 0.01, with the 3FGL sources slightly softer than the
2FGL ones, while the average of the 3FGL–1FGL distribution
is −0.04 ± 0.01, with the 3FGL sources slightly harder than the
1FGL ones.
When comparing the distribution of 95% confidence error

radius for the sources in common among all the LAT catalogs,
we see that for 3FGL this parameter extends to lower values
than for the earlier catalogs, showing that the localization has
improved, thanks to improvements in the 3FGL analysis and
increased statistics over the longer integration period for 3FGL
(Figure 20).

4.2.3. Possible Causes for Losing Sources

In the remainder of this section we describe a variety of
reasons why the “lost” 0FGL, 1FGL, 2FGL, and 1FHL sources
might not appear in the 3FGL catalog. Table 10 shows the
statistics of the “lost” sources.
We have also produced tables with all the “lost” sources for

each previous LAT catalog. The first rows of the “lost” γ-ray
source table for the 2FGL catalog are listed in Table 11, only
reported for guidance.89 In the last columns of Table 11 we
assigned to each source one or more flags corresponding to
possible causes for it to be lost and which we will discuss in the
following paragraphs. In many cases, no one reason can be
singled out.
Lost sources from previous LAT catalogs are in general

equally distributed over all latitudes, with a slight excess at low
latitudes for 2FGL “lost” sources. In fact, about 10% of the
2FGL “lost” sources are at low Galactic latitude, compared to
6% of high-latitude “lost” 2FGL sources. We remind the reader
that at low latitudes the Galactic diffuse emission is most
intense and improvements in the model for the diffuse emission
would be expected to have the most influence (Section 2.3).
The sources in common among 3FGL and the previous LAT
catalogs are primarily outside the Galactic plane, as are the
sources newly detected in 3FGL. Most of the “lost” sources
were also listed as unassociated in the previous FGL catalogs.
Among the former associated “lost” sources, most of them
were associated with AGNs and a few with pulsars. For sources
of the AGN type their absence from the 3FGL catalog can be
due to their intrinsic variability. A faint source that flared
during the first year, allowing it to be detected in 0FGL, can be
diluted and become undetectable in a longer time interval.
Most of the “lost” sources have analysis flags or the c

designator in 1FGL and 2FGL names, indicating that these
sources were already flagged as influenced by the diffuse
emission and recognized as potentially problematic or possibly
spurious.
Some other 1FGL, 2FGL, and 1FHL sources do not have

counterparts in the 3FGL catalog because they have been
resolved into two or more 3FGL sources or candidate source
seeds. We flag them with “S” (split) in the “Flag” column of
Table 11. In some cases only one of the seeds reached TS 25>
and so was included in the 3FGL list.

Table 6
LAT 3FGL Source Classes

Description Identified Associated

Designator Number Designator Number

Pulsar, identified by
pulsations

PSR 143 L L

Pulsar, no pulsations seen
in LAT yet

L L psr 24

Pulsar wind nebula PWN 9 pwn 2
Supernova remnant SNR 12 snr 11
Supernova remnant/pul-

sar wind nebula
L L spp 49

Globular cluster GLC 0 glc 15
High-mass binary HMB 3 hmb 0
Binary BIN 1 bin 0
Nova NOV 1 nov 0
Star-forming region SFR 1 sfr 0
Compact steep spectrum

quasar
CSS 0 css 1

BL Lac type of blazar BLL 18 bll 642
FSRQ type of blazar FSRQ 38 fsrq 446
Non-blazar active galaxy AGN 0 agn 3
Radio galaxy RDG 3 rdg 12
Seyfert galaxy SEY 0 sey 1
Blazar candidate of

uncertain type
BCU 5 bcu 568

Normal galaxy (or part) GAL 2 gal 1
Starburst galaxy SBG 0 sbg 4
Narrow-line Seyfert 1 NLSY1 2 nlsy1 3
Soft-spectrum radio

quasar
SSRQ 0 ssrq 3

Total L 238 L 1785

Unassociated L L L 1010

Note.
The designation “spp” indicates potential association with SNR or PWN (see
Table 7). Designations shown in capital letters are firm identifications;
lowercase letters indicate associations. In the case of AGNs, many of the
associations have high confidence. Among the pulsars, those with names
beginning with LAT were discovered with the LAT.

89 The full table of lost 2FGL sources and similar tables for lost 0FGL, lost
1FGL, and lost 1FHL sources are available only in the electronic version.
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Several other possible causes of “lost” sources are evident:
(1) the 3FGL γ-ray centroid has shifted with respect to the
previous FGL catalogs, preventing the matching; (2) statistical
threshold effects, i.e., their TS has dropped below 25.
Additional considerations include variability and (generally
small) effects from the different event selections used for the
analyses (P7REP_SOURCE_V15 for 3FGL, P7CLEAN_V6
for 1FHL, P7SOURCE_V6 for 2FGL, and P6_V3_DIFFUSE
for 0FGL); different Galactic diffuse emission models; different
analysis procedures (unbinned likelihood analysis for 0FGL and
1FGL, binned likelihood analysis for 2FGL and 1FHL, and a
combination of binned and unbinned for 3FGL). We analyze

those causes in more detail for 2FGL in Section 4.2.4. We stress
that these differences are often not negligible.
A comparison of the source significances of the “lost”

sources with those in the 3FGL catalog shows that (Figure 21)
in the latter we have not lost highly significant sources. The
peaks of the source significance distributions for all the sources
of the FGL catalogs (not shown in the Figure 21) have shifted
from 4–6σ for 1FGL to 4–5σ for 2FGL and 3FGL.
The power-law indices of high Galactic latitude ( b 10∣ ∣ > °)

“lost” sources with power-law spectral type tend to be softer
than average for their catalogs (Figure 22).
The numbers of associated sources among the 0FGL, 1FGL,

and 2FGL catalogs and the 3FGL catalog do depend on the

Figure 15. Full sky map (top) and blow-up of the inner Galactic region (bottom) showing sources by source class (see Table 6). All AGN classes are plotted with the
same symbol for simplicity.

21

The Astrophysical Journal Supplement Series, 218:23 (41pp), 2015 June Acero et al.



criteria used to define spatial coincidence (Equation (4)). The
numbers of 1FGL–3FGL, 2FGL–3FGL, and 1FHL–3FGL
associated sources increase if we use d99.9Δ < as an
association criterion.90 The 193 additional associations (listed

in Table 11 and corresponding 0FGL, 1FGL, 1FHL tables in
the column “3FGL ( d )99.9Δ < ”) represent about 5% of the
0FGL, 1FGL, 2FGL, and 1FHL sources, as expected when
passing from d95 to d99.9. Furthermore, the improved model of
the Galactic diffuse emission (Section 2.3) used to build the
3FGL catalog, together with the expected increase of the
signal-to-noise ratio due to the use of 48 months of data,

Table 7
Potential Associations for Sources near SNRs

Name 3FGL SNR Name PWN Name TeV Name Common Name

J0001.0+6314 G116.5+01.1 L L L
J0128.4+6257 G127.1+00.5 L L R5
J0220.1+6202c G132.7+01.3 L L HB3
J0224.0+6235 G132.7+01.3 L L HB3
J0500.3+5237 G156.2+05.7 L L L
J0610.6+1728 G192.8−01.1 L L PKS 0607+17
J0631.6+0644 G205.5+00.5 L L Monoceros Loop
J0640.9+0752 G205.5+00.5 L L Monoceros Loop
J0838.1−4615a G263.9−03.3 L L Vela
J0839.1−4739 G263.9−03.3 L L Vela
J0843.1−4546 G263.9−03.3 L L Vela
J1101.9−6053 G290.1−00.8 L L MSH 11−61A
J1111.9−6038 G291.0−00.1 G291.0−0.1 L MSH 11−62
J1209.1−5224 G296.5+10.0 L L PKS 1209−51
J1212.2−6251 G298.5−00.3 L L L
J1214.0−6236 G298.6−00.0 L L L
J1345.1−6224 G308.8−00.1 L L L
J1441.5−5955c G316.3−00.0 L L MSH 14−57
J1549.1−5347c G327.4+00.4 L L L
J1551.1−5610 G326.3−01.8 L L Kes 25
J1552.9−5610 G326.3−01.8 L L Kes 25
J1615.3−5146e L HESS J1614−518 L
J1628.9−4852 G335.2+00.1 L L L
J1636.2−4709c G337.2+00.1 L HESS J1634−472 L
J1638.6−4654a G337.8−00.1 L L Kes 41
J1640.4−4634c G338.3−00.0 L HESS J1640−465 L
J1641.1−4619c G338.5+00.1 L HESS J1641−463 L
J1645.9−5420 G332.5−05.6 L L L
J1722.9−4529 G343.0−06.0 L L RCW 114
J1725.1−2832 G358.0+03.8 L L L
J1728.0−4606 G343.0−06.0 L L RCW 114
J1729.5−2824 G358.0+03.8 L L L
J1737.3−3214c G356.3−00.3 L L L
J1745.1−3011 G359.1−00.5 L HESS J1745−303 L
J1745.6−2859c G000.0+00.0 G359.95−0.04 Galactic center Sgr A East
J1810.1−1910 G011.1+00.1 L HESS J1809−193 L
J1811.3−1927c G011.2−00.3 L HESS J1809−193 L
J1817.2−1739 G013.3−01.3 L L L
J1818.7−1528a G015.4+00.1 L L L
J1828.4−1121a G020.0−00.2 L L L
J1829.7−1304 G018.9−01.1 L L L
J1833.9−0711a G024.7+00.6 L L L
J1834.6−0659 G024.7+00.6 L L L
J1840.1−0412 G027.8+00.6 L L L
J1915.9+1112 G045.7−00.4 L L L
J1951.6+2926 G065.7+01.2 L L L
J2014.4+3606 G073.9+00.9 L L L
J2022.2+3840 G076.9+01.0 L L L
J2225.8+6045 G106.3+02.7 L G106.3+2.7 L

Note.
These sources are classified as spp in Table 4. They may be pulsars rather than the SNR or PWN named. Four additional 3FGL sources are associated with both an
SNR and a blazar. For these the catalog lists the blazar associations; see text.
a These sources have been found to be significantly variable, i.e., Variability_Index 72.44> (Section 3.6), which would be unexpected for physical
associations with SNRs or PWNe.

90 Assuming a Rayleigh distribution for the source angular separations, d99.9 is
evaluated using 1.5299.9 95θ θ= .
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allowed us to obtain better localizations of the sources at
positions that might be outside the 95% confidence error
regions reported in the 0FGL, 1FGL, or 2FGL catalogs. Indeed,
about half of the 193 additional associations concern sources
located along the Galactic plane. Also, in the 1FGL catalog the
positions of sources associated with the LAT-detected pulsars
and X-ray binaries are the high-precision positions of the
identified counterparts. (These sources can be easily recognized
because they have null values in the localization parameters
reported in the 1FGL catalog.) Not all of these associations
appear in the 3FGL catalog because they cannot be associated
using d95, but those that can be associated using d99.9 are listed
in Table 11 (and corresponding 0FGL, 1FGL, and 1FHL
tables).

To study a possible reason for 0FGL, 1FGL, 2FGL, and
1FHL sources to disappear in the 3FGL catalog, we have
compared the TS they had when published in their respective
catalogs with their values in the 3FGL pointlike analysis. The
3FGL catalog was built, in fact, starting from 4003 seeds with
TS 10> in the pointlike analysis (Section 3.1). The final gtlike
analysis, which did not change the positions of the seeds,

Table 8
LAT 4 yr Catalog: Spectral Information

0.1–0.3 GeV 0.3–1 GeV 1–3 GeV 3–10 GeV 10–100 GeV

Name 3FGL F1
a TS1 F2

a TS2 F3
b TS3 F4

c TS4 F5
c TS5

J0000.1+6545 1.81 0.84
0.82

−
+ 2.2 0.69 0.14

0.14
−
+ 5.3 1.24 0.23

0.23
−
+ 6.0 0.58 0.40

0.49
−
+ 1.5 0.28 0.15

0.19
−
+ 2.4

J0000.2−3738 0.01 0.01
0.20

−
+ 0.0 0.01 0.01

0.03
−
+ 0.6 0.15 0.06

0.07
−
+ 2.9 0.75 0.26

0.32
−
+ 4.2 0.16 0.09

0.15
−
+ 3.5

J0001.0+6314 2.91 0.71
0.74

−
+ 4.0 0.47 0.11

0.11
−
+ 4.3 0.30 0.18

0.18
−
+ 1.7 1.16 0.42

0.48
−
+ 3.3 0.02 0.02

0.13
−
+ 0.4

J0001.2−0748 0.41 0.26
0.26

−
+ 1.6 0.21 0.04

0.05
−
+ 5.3 0.52 0.10

0.11
−
+ 7.0 2.11 0.45

0.51
−
+ 8.0 0.10 0.08

0.15
−
+ 1.6

J0001.4+2120 1.52 0.24
0.24

−
+ 6.8 0.36 0.05

0.05
−
+ 7.6 0.36 0.09

0.10
−
+ 4.5 0.00 0.00

0.19
−
+ 0.0 0.00 0.00

0.11
−
+ 0.0

J0001.6+3535 0.95 0.27
0.27

−
+ 3.6 0.04 0.04

0.04
−
+ 0.9 0.17 0.08

0.09
−
+ 2.5 0.40 0.23

0.31
−
+ 2.0 0.23 0.13

0.19
−
+ 2.3

J0002.0−6722 0.05 0.05
0.28

−
+ 0.2 0.06 0.03

0.03
−
+ 2.0 0.20 0.07

0.08
−
+ 3.4 0.83 0.27

0.32
−
+ 4.8 0.28 0.14

0.19
−
+ 3.1

J0002.2−4152 0.53 0.22
0.22

−
+ 2.5 0.06 0.03

0.03
−
+ 2.1 0.09 0.06

0.07
−
+ 1.5 0.98 0.31

0.36
−
+ 4.7 0.26 0.14

0.19
−
+ 2.6

J0002.6+6218 1.05 0.40
0.40

−
+ 2.6 0.80 0.09

0.09
−
+ 9.4 2.44 0.23

0.23
−
+ 13.3 3.58 0.64

0.69
−
+ 7.4 0.00 0.00

0.15
−
+ 0.0

J0003.2−5246 0.66 0.38
0.38

−
+ 1.8 0.00 0.00

0.03
−
+ 0.0 0.18 0.07

0.08
−
+ 3.1 0.79 0.28

0.36
−
+ 3.7 0.30 0.14

0.19
−
+ 4.5

J0003.4+3100 0.86 0.25
0.27

−
+ 3.4 0.15 0.04

0.04
−
+ 3.6 0.36 0.09

0.10
−
+ 4.9 0.20 0.19

0.26
−
+ 1.1 0.01 0.01

0.14
−
+ 0.1

J0003.5+5721 0.00 0.00
0.31

−
+ 0.0 0.23 0.07

0.07
−
+ 3.5 0.49 0.14

0.14
−
+ 4.0 0.92 0.35

0.41
−
+ 3.3 0.24 0.12

0.16
−
+ 3.0

J0003.8−1151 0.01 0.01
0.21

−
+ 0.0 0.05 0.03

0.04
−
+ 1.5 0.23 0.07

0.08
−
+ 3.8 0.47 0.24

0.30
−
+ 2.5 0.18 0.11

0.16
−
+ 2.5

J0004.2+6757 0.59 0.59
1.16

−
+ 0.5 0.56 0.13

0.13
−
+ 4.4 0.59 0.18

0.19
−
+ 3.4 1.15 0.42

0.47
−
+ 3.2 0.09 0.07

0.11
−
+ 1.4

J0004.2+0843 0.23 0.23
0.25

−
+ 0.8 0.03 0.03

0.04
−
+ 0.7 0.12 0.08

0.09
−
+ 1.5 1.16 0.35

0.41
−
+ 5.3 0.08 0.06

0.12
−
+ 2.0

Notes.
a In units of 10−8 photons cm−2 s−1.
b In units of 10−9 photons cm−2 s−1.
c In units of 10−10 photons cm−2 s−1.

(This table is available in its entirety in machine-readable form.)

Table 9
Statistics of Sources in LAT Catalogs

0FGLa 1FGL 2FGL 1FHLb 3FGL

Total 205 1451 1873 514 3033
High-latitude sources 132 1043 1319 399 2193
Low-latitude sources 73 408 554 115 841
“Lost” sourcesc

in 3FGL
12 310 300 17 L

Notes.
a 0FGL, the LAT Bright Source List, has a lower energy limit of 200 MeV and
a significance threshold TS 100> .
b 1FHL is a catalog for the energy range >10 GeV.
c Sources without a counterpart in the 3FGL catalog, at the level of overlapping
95% source location confidence contours. These sources are discussed in
Table 10.

Figure 16. Distributions of the spectral index for the high-latitude sources
( b 10∣ ∣ > °) in 1FGL (1043 sources, blue line), 2FGL (1173 sources, red line),
and 3FGL (1960 sources, black line) catalogs. 2FGL and 3FGL samples
include only power-law spectrum type.

23

The Astrophysical Journal Supplement Series, 218:23 (41pp), 2015 June Acero et al.



resulted in the 3033 sources with TS 25> that make up the
3FGL catalog. Therefore, possibly many seeds did not reach
the threshold but can be associated with 0FGL, 1FGL, 2FGL,
and 1FHL sources (using d99.9Δ < ). These sources, marked
with “T” (for “true”) in the “3FGL Seed” column of the
Table 11, can be considered to be previously confirmed sources
whose significance dropped below the threshold, as a result of
time variability, changes in the model, or changes in the catalog
analysis procedure for Galactic diffuse emission. Finally, we
looked for those “lost” sources whose distances from an
extended 3FGL source are less than 1°, and these are flagged
with “E” in the column “Flag” of Table 11.

4.2.4. Step-by-step from 2FGL to 3FGL

In order to understand the improvements of the 3FGL
analysis with respect to 2FGL, we have considered the effects
of changing the analysis, the data set, and the diffuse emission
model without changing the time range (i.e., leaving it as 2 yr
years). To that end, we started with the 2FGL catalog and
changed each of those three elements in sequence and
compared each intermediate result with the previous one.

1. The main difference between the analyses is the Front/
Back handling (Section 3.2). The comparison showed

Figure 17. Distributions of the 95% confidence error radii for high-latitude
sources ( b 10∣ ∣ > °) with 25 TS 100< < in 1FGL (blue line), 2FGL (red line),
and 3FGL (black line), illustrating the improvement of localizations for sources
of equivalent detection significances.

Figure 18. Distributions of the energy flux for 1FGL (blue line), 2FGL (red
line), and 3FGL (black line) sources at high Galactic latitude ( b 10∣ ∣ > °).

Figure 19. Distribution of the differences 3FGL 1FGLΓ − Γ (blue line) and
3FGL 2FGLΓ − Γ (red line) for the 621 sources at high latitude ( b 10∣ ∣ > °) in
common among the 1FGL, 2FGL, and 3FGL catalogs. For the 2FGL and
3FGL samples only power-law spectrum type sources have been considered.

Figure 20. Distributions of the 95% confidence error radius for high-latitude
sources ( b 10∣ ∣ > °) in common among 1FGL (blue line), 2FGL (red line), and
3FGL (black line), illustrating the improvement of localizations for sources of
equivalent detection significances.
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that using identical isotropic diffuse spectra for Front and
Back events in 2FGL resulted in underestimating the low-
energy fluxes of high-latitude sources. As a consequence,
the corrected analysis leads to larger TS values, higher
photon fluxes, softer spectra, and smaller curvatures than
in 2FGL. The effects are small on the scale of individual
sources but collectively obvious. Quantitatively, the
average difference in spectral index induced by this
change was measured to be +0.05. Because that effect is
due to the background, it is at the same level in σ units
( 0.4σ≃ ) for faint and bright sources.

2. Changing data from Pass 7 (2FGL) to Pass 7 reprocessed
(3FGL) results in somewhat larger TS, harder sources,
and more curved spectra (but no change of integral flux
on average). The average difference in spectral index is
−0.03. This goes in the opposite direction to (and
therefore partly offsets) the difference due to the separate
Front/Back handling. However, the dependence on flux is
not the same. The reprocessing affects essentially all
spectral indices and curvatures equally in absolute terms.

3. Finally, changing the model for Galactic diffuse emission
from gal_2yearp7v6_v0 used in 2FGL to
gll_iem_v05_rev1 results in smaller TS, lower
fluxes, and less curved spectra (but no change of spectral
index on average). Like the first point above, this
background-related effect is smaller in absolute (curva-
ture) or relative (flux) terms for brighter sources.

In conclusion, to first order the resulting net changes are not
very large, consistent with the general comparison between
3FGL and 2FGL at the beginning of this section. The 3FGL
sources tend to be less curved than 2FGL ones. In particular,
there are fewer pathological very strongly curved sources (with

1β = and Flag 12 set) in 3FGL (41) than in 2FGL (64) even
though there are more LogParabola spectra in 3FGL (395)
than in 2FGL (336) because of the better statistics.

5. SOURCE ASSOCIATION AND IDENTIFICATION

5.1. Firm Identifications

As with the 2FGL and earlier LAT catalogs, we retain the
distinction between associations and firm identifications.
Although many associations that we list between LAT sources
and potential counterparts at other wavelengths, particularly
those for AGNs, have very high probability of being true, a
firm identification, shown in the catalog by capitals in the Class
column in Table 6, is based on one of three criteria.

1. Periodic Variability. Pulsars are the largest class in this
category. All PSR labels indicate that pulsed γ-rays have
been seen from the source with a probability of the
periodicity occurring by chance of less than 10−6. Pulsars
detected in blind searches of LAT data are indicated as
“LAT PSR” in the “ID or Assoc.” column of Table 4; the
other PSR detections are based on folding with radio or
X-ray ephemerides (see Abdo et al. 2013). A similar
chance probability requirement applies to the other set of
periodic sources, the high-mass binaries (HMB). Three of
these are included in the catalog: LS I+61 303 (Abdo
et al. 2009c), LS 5039 (Abdo et al. 2009e), and 1FGL
J1018.6−5856 (Corbet et al. 2011). Although not quite
meeting the same chance probability, another binary
(BIN) is included as an identification: Eta Carinae
(Reitberger et al. 2012, 2015).

2. Spatial Morphology. Spatially extended sources whose
morphology can be related to extent seen at other
wavelengths include SNRs, PWNe, and galaxies, as
described in Section 3.4. The Centaurus A lobes and core
are both marked as identified, because they are part of the
same extended source, although the core itself does not
show spatial extent. Although individual molecular
clouds could in principle be included in this list, the
catalog construction incorporates most known clouds into
the diffuse model, and so no sources of this type are
identified in the catalog.

3. Correlated Variability. Variable sources, primarily
AGNs, whose γ-ray variations can be matched to
variability seen at one or more other wavelengths, are
considered to be firm identifications. Although some
cases are well documented, such correlated variability is
not always easily defined. We conservatively require data
in more than two energy bands for comparison. Finding a
blazar to have a high X-ray flux at the same time as a γ-
ray flare, for example, does not qualify if there is no long-
term history for the X-ray emission. We include those
sources whose variability properties are documented
either in papers or with Astronomer’s Telegrams.91 This
list does not represent the result of a systematic study.
Ongoing work will undoubtedly enlarge this list. The one
Galactic source identified in this way is nova V407 Cygni
(Abdo et al. 2010h). Similarly short duration tangent
gamma-ray emission observed from the classical novae,
V959 Mon 2012 and V1234 Sco 2012, were not detected
in the 4 yr integrated analysis in the 3FGL (Ackermann
et al. 2014).

We include one exception to these rules. The Crab PWN is
listed as a firm identification even though it does not meet any

Table 10
Statistics of “Lost” 0FGL, 1FGL, 2FGL, and 1FHL Sources

Category
0FGL not
in 3FGL

1FGL not
in 3FGL

2FGL not
in 3FGL

1FHL not
in 3FGL

All 12 310 300 17
With flags L 131 211 L
Name-FGL ca L 104 87 L
AGNs 1 22 27 1
PSR 0 1 3 0
Unassociated 11 264 234 16
Within 1° of a

3FGL eb
3 27 33 4

Sources in Other FGL Catalogs

0FGL L 5 5 0
1FGL 4 L 56 1
2FGL 3 67 L 1
1FHL 0 2 8 L
Not in any other

Fermi catalog
7 237 237 15

Notes.
a c indicates that based on the region of the sky the source is considered to be
potentially confused with Galactic diffuse emission.
b e indicates a source that was modeled as spatially extended.

91 See http://www.astronomerstelegram.org.
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Table 11
2FGL Sources Not in the 3FGL Catalog

2FGL 2FGL Assoc.a la ba 95θ a σa 25Γ a Vara 3FGLb 3FGLc Δd d99.9Δ 3FGLe Flagsf

(deg) (deg) (deg) p> 90% ( d99.9Δ < ) (d 199.9 < Δ < °) (deg) Seed

J0004.2+2208 L 108.732 −39.43 0.194 5.401 2.494 F L L L L T L
J0011.3+0054 PMN J0011+0058 102.317 −60.352 0.223 6.172 2.435 T L L L L L F
J0013.8+1907 GB6 J0013+1910 110.786 −42.858 0.16 4.077 2.056 T L L L L L L
J0014.3−0509 L 99.374 −66.312 0.169 4.218 2.445 F J0014.3−0455 L 0.322 0.725 T F
J0118.6−4631 L 289.226 −69.872 0.134 4.483 1.782 F L L L L L L
J0124.6−2322 L 188.135 −81.611 0.113 7.473 2.31 F L J0123.7−2312 0.217 1.225 L S,F
J0128.0+6330 L 126.998 0.922 0.255 4.965 2.57 F L J0128.4+6257 0.432 1.262 L F
J0129.4+2618 L 133.451 −35.784 0.333 4.863 2.561 F J0127.9+2551 L 0.813 0.707 T L
J0158.6+8558 L 124.201 23.262 0.18 4.24 2.521 F J0145.6+8600 L 0.334 0.691 T L
J0214.5+6251c L 132.251 1.495 0.134 4.112 2.257 F L L L L L c, F
J0218.7+6208c L 132.937 0.975 0.078 10.52 2.767 F J0217.3+6209 L 0.208 0.753 T S, c, F
J0219.1−1725 1RXS J021905.8−172503 191.883 −67.564 0.148 4.315 1.92 F L L L L T L
J0221.3+6025c L 133.81 −0.528 0.11 4.579 2.452 F L J0221.1+6059 0.391 1.451 L c, F
J0221.4+6257c L 132.962 1.856 0.118 9.547 2.635 F L J0223.5+6313 0.316 1.11 T S, c, F
J0227.2+6029c L 134.471 −0.22 0.097 6.069 2.383 F L L L L L c, F

Notes.
a All the values reported in these columns are from the 2FGL catalog.
b Name of the 3FGL source associated with the 2FGL source with positional coincidence evaluated using d99.9.
c Closest 3FGL source having a distance d 199.9 < Δ < ° from the position of the 2FGL source.
d In this column is reported the angular separation (Δ) between the 2FGL source and the 3FGL sources associated using d99.9 or the closest 3FGL source.
e T: The 2FGL source and one of the initial seeds for the 3FGL analysis have angular separation d99.9< .
f S: The 2FGL source was split/resolved into one or more seeds; c: The 2FGL source was flagged with c, i.e., possibly contaminated by the diffuse emission; F: the 2FGL source had analysis flags; E: The 2FGL source
has a distance <1° from an extended 3FGL source.(This table is available in its entirety in FITS format.)
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of these criteria. The well-defined energy spectrum, distinct
from the Crab pulsar spectrum and matching spectra seen at
both lower and higher energies, provides a unique form of
identification (Abdo et al. 2010e).

In total, we firmly identify 238 out of the 3033 3FGL
sources. Among those, 143 are pulsars, 66 are AGNs (BCU,
BLL, FSRQ, NLSY1, or RDG) 12 are SNRs, 4 are binaries
(BIN or HMB), 9 are PWNe, 2 are normal galaxies, 1 is a
massive star-forming region, and 1 is a nova (Table 6).

Figure 21. Distributions of the significances of “lost” 1FGL and “lost” 2FGL
sources compared to the 1FGL and 2FGL sources that are associated with
3FGL sources. All sources at high Galactic latitudes ( b 10∣ ∣ > °) are included.
(2FGL sources associated to 3FGL sources: solid red line, “lost” 2FGL
sources: dashed red line, 1FGL sources associated to 3FGL sources: solid blue
line, “lost” 1FGL sources: dashed blue line).

Figure 22. Distributions of the power-law index of the 1FGL sources (blue
solid line) and 2FGL sources (red solid line) in the 3FGL catalog and of the
“lost” 1FGL sources (blue dashed line) and 2FGL sources (red dashed line).
All samples include only high-latitude sources ( b 10∣ ∣ > °).

Table 12
Catalogs Used for the Automatic Source Association Methods

Name Objectsa Reference

High E d˙ 2 pulsars 213 Manchester et al. (2005) b

Other normal pulsars 1657 Manchester et al. (2005) b

Millisecond pulsars 137 Manchester et al. (2005) b

Pulsar wind nebulae 69 Collaboration internal
High-mass X-ray binaries 114 Liu et al. (2006)
Low-mass X-ray binaries 187 Liu et al. (2007)
Point-like SNRs 157 Green (2009)
Extended SNRs† 274 Green (2009)
O stars 378 Maíz-Apellániz

et al. (2004)
WR stars 226 van der Hucht (2001)
LBV stars 35 Clark et al. (2005)
Open clusters 2140 Dias et al. (2002)
Globular clusters 160 Harris (1996)
Dwarf galaxies† 100 McConnachie (2012)
Nearby galaxies 276 Schmidt et al. (1993)
IRAS bright galaxies 82 Sanders et al. (2003)
BZCAT (Blazars) 3060 Massaro et al. (2009)
BL Lac 1371 Véron-Cetty and

Véron (2010)
AGNs 10,066 Véron-Cetty and

Véron (2010)
QSO 129,853 Véron-Cetty and

Véron (2010)
Seyfert galaxies 27,651 Véron-Cetty and

Véron (2010)
Radio-loud Seyfert galaxies 29 Collaboration internal

1WHSP 1000 Arsioli et al. (2015)
WISE blazar catalog 7855 D’Abrusco et al. (2014)
NRAO VLA Sky Survey
(NVSS)c

1,773,484 Condon et al. (1998)

Sydney University Molonglo Sky
Survey (SUMSS)c

211,050 Mauch et al. (2003)

Parkes-MIT-NRAO surveyc 23,277 Griffith & Wright (1993)
CGRaBS 1625 Healey et al. (2008)
CRATES 11,499 Healey et al. (2007)
VLBA Calibrator Source List 5776 http://www.vlba.nrao.edu/

astro/calib/vlbaCalib.txt
ATCA 20 GHz southern sky
survey

5890 Murphy et al. (2010)

ATCA follow-up of 2FGL unas-
sociated sources

424 Petrov et al. (2013)

ROSAT All Sky Survey (RASS)
Bright and Faint Source
Catalogsc

124,735 Voges et al. (1999),d

58 months BAT catalog 1092 Baumgartner et al. (2010)
Fourth IBIS catalog 723 Bird et al. (2010)

First AGILE catalog* 47 Pittori et al. (2009)

Third EGRET catalog* 271 Hartman et al. (1999)

EGR catalog* 189 Casandjian & Gre-
nier (2008)

0FGL list* 205 (Abdo et al. 2009d, 0FGL)

1FGL catalog* 1451 (Abdo et al. 2010d, 1FGL)

2FGL catalog* 1873 (Nolan et al. 2012, 2FGL)

1FHL catalog* 514 (Ackermann
et al. 2013a, 1FHL)

TeV point-like source catalog* 82 http://tevcat.uchicago.edu/

TeV extended source catalog† 66 http://tevcat.uchicago.edu/

LAT pulsars 147 Collaboration internal
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5.2. Automated Source Associations

Our approach for automated source association closely
follows that used for the 2FGL, and details of the method are
provided in Abdo et al. (2010d, 1FGL) and Nolan et al.
(2012, 2FGL).

In summary, we use a Bayesian approach that trades the
positional coincidence of possible counterparts with 3FGL
sources against the expected number of chance coincidences to
estimate the probability that a specific counterpart association is
indeed real (i.e., a physical association). As for 1FGL and
2FGL, we retain counterparts as associations if they reach a
posterior probability of at least 80%. We apply this method to a
set of counterpart catalogs for which we calibrate the prior
source association probabilities using Monte Carlo simulations
of fake 3FGL catalogs.

Table 12 lists the catalogs used in the automatic association
procedure, organized into four categories: (1) known or plausible
γ-ray-emitting source classes, (2) surveys at other frequencies, (3)
GeV sources, and (4) identified γ-ray sources. The first category
allows us to assign 3FGL sources to object classes, while the
second category reveals multiwavelength counterparts that may
suggest the possible nature of the associated 3FGL sources. The
third category allows assessment of former GeV detections of
3FGL sources, and the fourth keeps track of all firm identifications
(see Section 5.1). For this last category we claim associations
based on the spatial overlap of the true counterpart position with
the 3FGL 99.9% confidence error ellipse.

With respect to 2FGL, we updated all catalogs for which
more comprehensive compilations became available. As
for 1FGL and 2FGL, we separately consider energetic and
nearby pulsars, with spin-down energy flux E d˙ 5 102 32> ×
erg kpc−2 s−1. We also consider millisecond pulsars (MSPs)
separately. For spin period P (s) and spin-down rate Ṗ,
we define MSPs as pulsars satisfying Plog ˙ 19.510 + +

P2.5 log 010 < .
Catalogs indicated with an asterisk in Table 12 have source

location uncertainties greater than those for the 3FGL sources.
Catalogs indicated with a dagger have extended sources, with
sizes greater than the source location uncertainty regions for
3FGL. For these catalogs we cannot apply the Bayesian
association method. For the former catalogs we base associations
on overlap of the 95% confidence error radii. For the latter, we
require overlap between the extended source and the 95%
confidence radius (semimajor axis) of the 3FGL source. These
approaches are much less reliable than the Bayesian associations,
so we do not claim any associations based on overlap in our final
catalog. We record, however, any spatial overlap with a TeV
source in the FITS file version of the catalog and use a special
flag in our catalog (TEVCAT_FLAG), distinguishing point-like
(P, angular diameter < 20′) from extended (E) TeV counterparts

(see Appendix B). We furthermore list all unassociated 3FGL
sources that are spatially overlapping with SNRs or PWNe in
Table 7.

5.2.1. Active Galactic Nuclei Associations

AGNs, and in particular blazars, are the largest class of
associated sources in 3FGL at high Galactic latitudes.
In 3LAC, as in the Second LAT Catalog of AGNs (2LAC;

Ackermann et al. 2011b), we added another association method
to the automatic one described above. This is the LR method,
frequently used to assess identification probabilities for radio,
infrared, and optical sources (e.g., de Ruiter et al. 1977;
Prestage & Peacock 1983; Sutherland & Saunders 1992;
Lonsdale et al. 1998; Masci et al. 2001; Ackermann
et al. 2011b). It is based on uniform surveys in the radio and
in X-ray bands, enabling us to search for possible counterparts
among the faint radio and X-ray sources. The LR method
makes use of counterpart densities (assumed spatially constant
over the survey region) through the N slog log− relation and
therefore the source flux. This approach has been already used
in 2LAC, and we refer the reader to Section 3.2 of that paper
for a comprehensive description of the method, which
computes the probability that a suggested association is the
“true” counterpart.92

A source is considered as a likely counterpart of the γ-ray
source if its reliability (see Equation (4) in 2LAC) is greater
than 0.8 in at least one survey.
In total, our automatic association procedure based on the

Bayesian method finds 1663 3FGL sources that are associated
with AGNs, while the LR-based association method finds 1340
3FGL sources. For 405 sources only the Bayesian method
provides an association, and for 82 sources only the LR method
does so.
Overall, 3FGL includes 1745 sources associated with AGNs

(58% of all 3FGL sources), of which 1145 are blazars, 573 are
candidate blazars, 15 are radio galaxies, 5 are Seyfert galaxies,
and 3 are other AGNs. The Seyfert galaxies are narrow-line
Seyfert 1 galaxies that have been established as a new class of
γ-ray active AGNs (Abdo et al. 2009f).
Comparing to 2FGL, we can make the following

observations:

1. The 3FGL includes 610 more sources of AGN type than
the 2FGL, i.e., a 76% increase. The fraction of new
sources (not present in 2FGL) is slightly higher for hard-
spectrum (i.e., Γ < 2.2) sources than for soft-spectrum
ones (i.e., Γ > 2.2), 51% versus 47%, respectively, but
the relative increase reaches 72% for very hard spectrum
(i.e., Γ < 1.8) sources. In the 3FGL, 477 counterparts are
new (81 FSRQs, 146 BL Lacs, 240 candidate blazars of
unknown type, 10 non-blazar objects); the other counter-
parts were present in previous AGN Fermi catalogs but
not included in any of the 0FGL, 1FGL, or 2FGL
catalogs for various reasons (e.g., the corresponding γ-
ray sources were not associated with AGNs, had more
than one counterpart, or were flagged in the analysis).

Table 12
(Continued)

Name Objectsa Reference

LAT identified 137 Collaboration internal

a Number of objects in the catalog.
b http://www.atnf.csiro.au/research/pulsar/psrcat
c All-sky surveys used only in the Likelihood Ratio method; see Section 5.2.1.
d The RASS Faint Source Catalog is available from http://www.xray.mpe.
mpg.de/rosat/survey/rass-fsc/.

92 We note that the implementation of the LR method for the 2LAC
associations was plagued with an error in the management of the sky
coordinate precession that affected some of the associations. These false
associations were also included in the active galaxy associations in 2FGL. The
error has been fixed and the 2FGL associations re-derived. The corrected 2FGL
catalog file has been delivered to the FSSC for distribution. In the present work,
comparisons with 2FGL findings are based on this corrected set of associations.
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2. The fraction of counterparts of unknown type (named
“bcu”) has increased notably between the two catalogs
(from 20% to 28%). The number of these sources in the
3FGL has increased by more than a factor of 2.5 relative to
that in the 2FGL, becoming almost equal to that of FSRQs.
This increase is mainly due to the lower probability of
having a published high-quality spectrum available for
these fainter sources because of the lack of optical
observing programs. In 3LAC, sources of the “bcu” type
have been divided into three sub-types depending of the
multiwavelength information available to characterize
their “blazarness.” In this paper we do not propagate this
sub-division and refer to the 3LAC for census.

3. The relative increase in “bcu” drives a drop in the
proportions of FSRQs and BL Lacs, which only represent
29% and 41% of the 3FGL, respectively (38% and 48%
for 2FGL). The relative increase in the number of sources
with respect to 2FGL is 34% and 42% for FSRQs and BL
Lacs, respectively.

4. Out of 825 AGNs in the 2FGL, a total of 68 are missing
in the full 3LAC sample, most of them due to variability
effects. A few others are present in 3FGL but with shifted
positions, ruling out the association with their former
counterparts.

5.2.2. Normal Galaxies

The γ-ray emission of normal galaxies is powered by
cosmic-ray interactions with interstellar gas and radiation. They
are numerous but typically faint relative to active galaxies. The
most luminous of the normal galaxies are starburst galaxies,
which have very high densities of gas and massive star
formation near their centers. Less distant are normal galaxies in
the local group. As described above, we searched for
associations with sources in catalogs of nearby galaxies and
IRAS bright galaxies (Table 12).

In the 3FGL catalog we do not find additional associations
with normal galaxies relative to those reported already in
2FGL: starburst galaxies M82 (3FGL J0955.4+6940), NGC
253 (3FGL J0047.5−2516) NGC 1068 (3FGL J0242.7−0001),
and NGC 4945 (3FGL J1305.4−4926), and local group
galaxies LMC (3FGL J0526.6−6825e), M31 (3FGL J0042.5
+4117), and the SMC (3FGL J0059.0−7242e).

Five sources in the 3FGL catalog lie within the extended
source model for the LMC and are otherwise unassociated with
counterparts at other wavelengths. These sources (3FGL
J0456.2−6924, 3FGL J0524.5−6937, 3FGL J0525.2−6614,
3FGL 0535.3−6559, and 3FGL J0537.0−7113) are classified
here as “gal” based solely on the spatial coincidence with the
LMC, and their associations are listed as LMC field. Their
particular natures remain uncertain.

5.2.3. Pulsars

Because pulsed emission can be such a clear signature,
pulsars represent the largest class of firmly identified
astrophysical objects in the 3FGL catalog. An extensive
discussion of γ-ray pulsar properties is found in the 2FGL
Catalog of Gamma-ray Pulsars (Abdo et al. 2013, 2PC). The
public catalog of LAT-detected pulsars is regularly updated.93

At the time of the 3FGL association analysis, this catalog had
147 pulsars (Table 12). Only 137 of the LAT-detected pulsars
have associations in the 3FGL catalog, however (Table 6). The
missing 10 did not reach the TS 25⩾ criterion based on their
average fluxes. Three of these are PSR J0737−3039A
(Guillemot et al. 2013), J1640+2224, and J1705−1906 (Hou
et al. 2014), and the remaining seven are flagged in the 2PC
“spectral results” tables as either being too faint to fit or
requiring an on-peak analysis to obtain spectra.

5.2.4. Pulsar Wind Nebulae

In addition to the four PWNe found in 2FGL (Crab, Vela-X,
MSH 15−52, HESS J1825−137), the 3FGL catalog includes
seven new PWN associations. Five of these are firm
identifications because they are spatially extended LAT sources
(see Table 1): HESS J1303−631 (3FGL J1303.0−6312e),
HESS J1616−508 (3FGL J1616.2−5054e), HESS J1632−478
(3FGL J1633.0−4746e), HESS J1837−069 (3FGL J1836.5
−0655e), and HESS J1841−055 (3FGL J1840.9−0532e). The
other two are positional associations with known PWNe:
G279.8−35.8 (3FGL J0454.6−6825) and G0.13−0.11 (3FGL
J1746.3−2859c).

5.2.5. Globular Clusters

Two globular cluster associations from the 2FGL catalog are
not found in the 3FGL catalog.

1. 2FGL J1727.1−0704, previously associated with IC
1257, is found as 3FGL J1727.6−0654. This source is
not formally associated with the globular cluster.

2. 2FGL J1824.8−2449, which was associated with NGC
6626, has been firmly identified as PSR J1824−2452A
(Johnson et al. 2013). Its catalog listing is 3FGL
J1824.6−2451.

The number of globular clusters associated with LAT
sources does continue to grow. New associations are NGC
2608 (3FGL J0912.2−6452), NGC 6316 (3FGL J1716.6
−2812), NGC 6441 (3FGL J1750.2−3704), NGC 6541
(3FGL J1807.5−4343), NGC 6717 (3FGL J1855.1−2243),
and NGC 6752 (3FGL J1910.7−6000). NGC 6752 had
previously been noted as a likely LAT source by Tam et al.
(2011b).

5.2.6. Supernova Remnants

Twelve SNRs are firmly identified in the 3FGL catalog as
spatially extended sources (see Table 1). Six had previously
appeared in the 2FGL catalog: IC 443, W28, W30, W44,
W51C, and the Cygnus Loop. Additions are S147 (3FGL
J0540.3+2756e, Katsuta et al. 2012), Puppis A (3FGL J0822.6
−4250e, Hewitt et al. 2012), Vela Jr. (3FGL J0852.7−4631e,
Tanaka et al. 2011), RX J1713.7−3946 (3FGL J1713.5−3945e,
Abdo et al. 2011d), Gamma Cygni (3FGL J2021.0+4031e,
Lande et al. 2012), and HB21 (3FGL J2045.2+5026e,
Reichardt et al. 2012; Pivato et al. 2013).
Additionally, we consider 11 unresolved 3FGL sources as

being confidently associated with SNRs, based on individual
studies of these SNRs in LAT data (see Ferrand & Safi-
Harb 2012, and references therein).94 These are given the “snr”
designator (Table 6). The 2FGL sources that were designated

93 See https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List
+of+LAT-Detected+Gamma-Ray+Pulsars. 94 http://www.physics.umanitoba.ca/snr/SNRcat/
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“snr” have been added to the “spp” class in 3FGL. Many of the
68 SNRs or PWNe in this table are spatially extended sources
at other wavelengths, and therefore the chance probability of an
overlap with an LAT source is non-negligible. As for previous
LAT catalogs, we encourage great care in any analysis using
these potential associations.

5.2.7. Binaries

Three HMB sources that appeared in 2FGL are also found in
3FGL: LS I+61 303 (3FGL J0240.5+6113), 1FGL J1018.6
−5856 (3FGL J1018.9−5856), and LS 5039 (3FGL J1826.2
−1450). All were firmly identified by binary periodicity. We
note that each of the three is a TeV emitter but that the two
other binary systems that have been detected in the TeV energy
regime, HESS J0632+057 and PSR B1259−63, do not have
counterparts in 3FGL. PSR B1259−63/LS 2883 is a bright LAT
source during a small part of the 3.4 yr binary period following
periastron (Abdo et al. 2011a; Tam et al. 2011a). HESS J0632
+057 has not been detected at all.

A fourth HMB from 2FGL, Cygnus X−3 (2FGL J2032.1
+4049), does not appear in 3FGL. It is an intermittent LAT
source and was not active enough averaged over the 4 yr of this
catalog to produce a significant detection. Eta Carinae, which
appeared in 2FGL as a possible massive star association, is
included as 3FGL J1045.1−5941, identified as a binary system.
The LAT data exhibit the known 5.5 yr binary period
(Reitberger et al. 2012, 2015). Although listed in the catalog
as a nova, V407 Cygni is also a binary system. Its flaring
activity in 2010 (Abdo et al. 2010h) was bright enough that it
appears as 3FGL J2102.3+4547.

5.2.8. Multiwavelength Associations

In addition to the catalogs of classified sources, we also
searched for associations with catalogs of radio and TeV
sources. Our association procedure for AGNs heavily relies on
associations with radio sources as most of the γ-ray-emitting
AGNs are bright sources of radio emission (see Section 5.2.1).
In fact, essentially all of the radio associations we find have
been classified subsequently as AGNs.

We did not search for general associations with infrared,
optical, or soft X-ray catalogs. Within the LAT source error
regions we would find multiple potential counterparts, most of
which necessarily would be due to chance, since many of the

sources in these catalogs are thermal in nature. We included,
however, the hard X-ray catalogs INTEGRAL-IBIS and Swift-
BAT and blazar candidates extracted from the infrared WISE
catalog (D’Abrusco et al. 2014) in the automated association
pipeline. These data, when included in a study of the SEDs to
evaluate their synchrotron peak frequencies and general
behaviors, help in understanding the natures of the candidate
counterparts. This was done especially for all the sources
classified as bcu/BCU and agn.

5.2.9. Statistics of Association Results

In total we find that 1976 of the 3033 sources in the 3FGL
catalog (59%) have been associated with at least one non-GeV
γ-ray counterpart by the automated procedures. Table 13
summarizes the association results.

5.3. GeV and TeV Source Associations

Through 2014 August, 155 flaring Fermi-LAT sources were
detected and promptly reported in more than 249 Astronomer’s
Telegrams.95 Of these sources, six are not in 3FGL. For two of
these the flaring state was detected outside the time interval
covered by 3FGL: S5 1044+71 (a 2FGL source classified as an
FSRQ) and PMN J1626−2426 (in the proximity of an
unassociated 2FGL source flagged as potentially contaminated
by the diffuse emission). The other four are Cyg X−3 (an HMB
associated with 2FGL J2032.1+4049; see Section 5.2.7),
CGRaBS J1848+3219 (an FSRQ associated with 2FGL
J1848.6+3241), PKS 1124−186 (an FSRQ associated with
2FGL J1126.6−1856), and PKS 2123−463 (an FSRQ asso-
ciated with 2FGL J2125.0−4632). The reason that these three
FSRQs are missing from the 3FGL catalog is probably that
they have average fluxes below the detection threshold.
Sources in 3FGL that are positionally associated with

sources seen by the ground-based TeV telescopes are of
particular interest for broadband spectral studies. As for the
2FGL catalog, we studied associations with the TeVCat96

compilation of sources detected by very high energy
observatories. The energy threshold for TeVCat sources is
not uniform, but it is typically greater than 100 GeV. We used a
compilation of TeVCat sources prepared on 2014 October 27

Table 13
Statistics of Source Associations

Category 0FGL 1FGL 2FGL 1FHLa 3FGL

Total 205 1451 1873 514 3033
Associated 168 821 1224 449 2023
Unassociated 37 630 649 65 1010
New γ-ray sourcesb L 1265 762 52 1312
Sources associated with former LAT detections L 186 1111 462 1721
Sources associated with former GeV detectionsc 74 162 170 4 206
Firmly identified sources 31 65 124 60 238
Sources associated with at least one object of known type 153 623 952 385 1398
Sources that have counterparts only in the multiwavelength catalogs L 92 214 58 576

Notes.
a 1FHL: >10 GeV.
b Non-overlapping 95% source location confidence contours compared to previous LAT catalogs, at the level of overlapping 95% source location confidence contours.
c Here only the 1AGL, 3EG, and EGR catalogs are considered.

95 https://www-glast.stanford.edu/cgi-bin/pub_rapid
96 http://tevcat.uchicago.edu
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that has 148 unique entries. This comprises the so-called
“Default” and “Newly Announced” TeV catalogs. We note
that, as in 1FGL and 2FGL, the “Galactic center ridge” was not
included for association purposes since it represents diffuse
emission over an extended region along the Galactic plane
(Aharonian et al. 2006).

This TeVCat compilation by its nature does not represent a
complete survey, and our general statistical procedure for
evaluating probabilities of chance association could not be
applied. As for 2FGL, we separately considered point-like and
extended TeVCat sources (Table 12). For point-like sources
the criterion for association was overlapping 95% source
location regions (indicated by “P” in the “TeV” column of
Table 4). For extended sources (LAT or TeVCat) the criterion
was spatial overlap within their respective angular extents
(indicated by “E”). We note that, in the literature, the shapes of
the extended TeV sources are usually approximated to a circle
or to an ellipse. For the purposes of our association pipeline, we
imposed a circular geometry on all extended TeV sources,
setting the radius to the length of the semimajor axis. In the
case of TeV sources whose morphologies depart significantly
from a simple ellipse or a circle, this simplification of their
geometry could lead to missed 3FGL associations.

In total, 124 3FGL sources have TeV counterparts. Of the
148 TeV sources considered, 117 have 3FGL associations and,
out of these, 6 TeV sources have multiple 3FGL associations.
Five of these are extended TeV sources and one is the Crab,
which is associated with both the synchrotron and the inverse
Compton Crab 3FGL sources (3FGL J0534.5+2201s/3FGL
J0534.5+2201i). The TeV sources HESS J1018−589, Wester-
lund 2, HESS J1458−608, and MGRO J2019+37 have two
3FGL associations each, while Westerlund 1 has three 3FGL
associations.

We note that the TeV source HESS J1018−589 has two
components, denoted A (a point source) and B (extended
emission). Of the two 3FGL associations, 3FGL J1018.9
−5856, an LAT high-mass binary, lies closer to location A, and
3FGL J1016.3−5858, an LAT pulsar, lies closer to location B.

Table 14 shows the associations between extended TeVCat
sources and 3FGL catalog sources. Some of these, designated
with e appended to their source names, were explicitly
modeled as extended sources corresponding to H.E.S.S.
sources (see Section 3.4).

Out of the 58 TeV AGNs, 57 have associated sources in
3FGL. Only HESS J1943+213, tentatively classified as a high-
synchrotron peaked (HSP) blazar (HESS Collaboration 2011;
Leahy & Tian 2012), does not have a 3FGL association. This
presumed blazar is unique in the TeV sky in that it shines
through the Galactic plane. We note that the VERITAS source
VER J2016+371 is positionally associated with 3FGL J2015.6
+3709 although the VERITAS source is probably a PWN (Aliu
et al. 2014) and the LAT source is associated with an FSRQ of
unknown redshift.

The Milagro source, MGRO J2031+41, which comprises
TeV J2032+4130, was also included as a separate source in the
TeV list that was used to evaluate the associations with 3FGL
because it is postulated that its emission is due to more than one
source (Abdo et al. 2007). Due to the large extent of MGRO
J2031+41 (1◦. 8; Abdo et al. 2012a), it has positional overlap
with eight 3FGL sources in addition to 3FGL J2032.2+4126.
We have listed just one LAT source 3FGL J2028.6+4110e, the
Cygnus Cocoon, as being associated with MGRO J2031+41.

Due to its large extent (2◦. 6), the Milagro Geminga source
(Abdo et al. 2009h) has positional overlap with two 3FGL
sources, 3FGL J0633.9+1746 (the Geminga pulsar) and the
unidentified source 3FGL J0626.8+1743. We have associated
only the Geminga pulsar with the Milagro source. Abdo et al.
(2009h) postulate that the Milagro emission could be due to a
pulsar-driven wind associated with Geminga.
The TeV sources Boomerang and SNR G103.3+02.7 have

positional overlap at TeV energies. They are each positionally
coincident with the same two 3FGL sources, the unidentified
source 3FGL J2225.8+6045 and the pulsar, 3FGL J2229.0

Table 14
Associations of 3FGL with Extended TeV Sources

TeVCat Namea 3FGL Name

Boomerang J2225.8+6045, J2229.0+6114
CTA 1 J0007.0+7302
CTB 37A J1714.5−3832
Geminga J0633.9+1746
HESS J1018−589 J1016.3−5858, J1018.9−5856
HESS J1303−631 J1303.0−6312e
HESS J1356−645 J1356.6−6428
HESS J1458−608 J1456.7−6046, J1459.4−6053
HESS J1503−582 J1503.5−5801
HESS J1507−622 J1506.6−6219
HESS J1614−518 J1615.3−5146e
HESS J1616−508 J1616.2−5054e
HESS J1626−490 J1626.2−4911
HESS J1632−478 J1633.0−4746e
HESS J1640−465 J1640.4−4634c
HESS J1708−443 J1709.7−4429
HESS J1718−385 J1718.1−3825
HESS J1745−303 J1745.1−3011
HESS J1800−240 J1800.8−2402
HESS J1804−216 J1805.6−2136e
HESS J1809−193 J1810.1−1910
HESS J1825−137 J1824.5−1351e
HESS J1834−087 J1834.5−0841
HESS J1837−069 J1836.5−0655e
HESS J1841−055 J1840.9−0532e
HESS J1848−018 J1848.4−0141
HESS J1858+020 J1857.9+0210
IC 443 J0617.2+2234e
Kookaburra (Rabbit) J1418.6−6058
Kookaburra PWN J1420.0−6048
MGRO J1908+06 J1907.9+0602
MGRO J2019+37 J2021.1+3651, J2017.9+3627
MGRO J2031+41 J2028.6+4110e
MSH 15−52 J1514.0−5915e
RX J0852.0−4622 J0852.7−4631e
RX J1713.7−3946 J1713.5−3945e
SNR G292.2−00.5 J1119.1−6127
Terzan 5 J1748.0−2447
TeV J2032+4130 J2032.2+4126
Vela X J0833.1−4511e
VER J2019+407 J2021.0+4031e
W 28 J1801.3−2326e
W 51 J1923.2+1408e
Westerlund 1 J1648.3−4611, J1650.3−4600,

J1651.5−4626
Westerlund 2 J1023.1−5745, J1024.3−5757

Note.
a From http://tevcat.uchicago.edu.
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+6114. We have associated SNR G103.3+02.7 with 3FGL
J2225.8+6045 and Boomerang, classified as a PWN at TeV
energies, with 3FGL J2229.0+6114, the LAT pulsar.

Relative to 2FGL, eight TeV sources are newly associated
with LAT sources. All but one of these sources (HESS J1641
−463) had already been detected at TeV energies when 2FGL
and 1FHL were released. None of these eight sources, however,
have counterparts in those catalogs.

1. The H.E.S.S. Galactic Center source is associated with
3FGL J1745.6−2859c. The corresponding source 2FGL
J1745.6−2858 had a large enough position offset that it
was not considered associated with the TeV source. The
Galactic center remains, however, a particularly complex
region whose detailed study is beyond the scope of this
paper.

2. Three HSP blazars (SHBL J001355.9−185406, 1ES 0229
+200, and 1ES 0347−121) are associated with 3FGL
sources.

3. The shell SNR Tycho is associated with the faint LAT
source 3FGL J0025.7+6404. Although the center of the
TeV emission is offset by 0◦. 12 from the LAT source, the
relatively large uncertainty of the LAT position indicates
sufficient positional overlap for association.

4. The TeV PWN HESS J1809−193 is another new TeV
association in 3FGL. Discovered at TeV energies in
2007, it is a relatively bright TeV source with an integral
flux 14% that of the Crab Nebula in the same energy band
(Aharonian et al. 2007).

5. The unidentified TeV sources HESS J1626−490 and
HESS J1641−463 are also new TeV associations
for 3FGL.

Thirty-one TeV sources have no counterparts in 3FGL; one
of these, the unidentified extended TeV source HESS J1857
+026, has an association in 1FHL (1FHL J1856.9+0252). It is
the only TeV source to have a 1FHL association but none in
2FGL or 3FGL. The other TeV sources having no counterparts
in 3FGL comprise 10 other unidentified TeV sources, 10
PWNe, 2 binaries, 4 shell-type SNRs, 2 SNR–molecular cloud
associations, 1 composite SNR (i.e., 9 out of the 19 SNRs in
TeVCat), and the HSP blazars discussed earlier.

We note that two TeV sources, HESS J1634−472 and SNR
W49B, were each associated with LAT sources in 2FGL and in
1FHL but do not have associations in 3FGL. A source
coincident with W49B has been detected by the LAT, 3FGL
J1910.9+0906, but this does not have positional overlap with
the TeV detection of W49B.

The TeV source HESS J1427−608 had an association in
2FGL but was not associated with an LAT source in 1FHL and
does not have an association in 3FGL.

5.4. Properties of Unassociated Sources

Among the 3033 sources in the 3FGL catalog, 2033 have
associations or identifications with known astrophysical
objects. Although that number is greater than the total number
of sources in the 2FGL catalog, 1010 (33%) of the 3FGL
sources remain unassociated. Among these unassociated
sources are many that were found in previous LAT catalogs,
indicating that some persistent mysteries remain despite
extensive efforts to find associations over the past few years.
The continued prevalence of unassociated sources is expected,
as the improvement in sensitivity with 4 yr of flight data and

improvements to the characterization of backgrounds have
allowed Fermi-LAT to probe the γ-ray sky to unprecedented
depths. As a result, direct comparison to previous releases is
difficult.
The distribution of unassociated sources on the sky is

compared in Figure 23 to the distribution of the associated
sources. The plot reveals some important features that should
be kept in mind when considering unassociated 3FGL sources.
Of the 992 unassociated sources in the 3FGL, 334 fall within
the Galactic plane ( b 5∣ ∣ < °). This leaves 658 unassociated at
b 5∣ ∣ > ° sources for an average density of 1.75 10 2× − sources
deg−2. While this density reflects the finite angular resolution
and sensitivity of the instrument, some of the shortfall of
associations is attributable to the fact that not all areas of the
sky have been mapped uniformly at other wavelengths. For
instance, a 3269 deg2 “overlap region” in the north Galactic
Cap intensively covered by five radio catalogs GB6 (6 cm),
FIRST (20 cm), NVSS (20 cm), WNSS (92 cm), and VLSSr
(4 m), as well as by the Sloan Digital Sky Survey (DR9)
optical survey (Kimball & Ivezić 2008), contains only 31
unassociated sources. The corresponding density of unasso-
ciated sources is 9.48 10 3× − sources deg−2, nearly half of the
overall average.
Within the Galactic plane, the unassociated source popula-

tion is a combination of both Galactic and extragalactic source
classes. Outside the plane, the LAT-detected AGN source
density is 0.045 deg−2. By extrapolation, this implies that there
should be 160 detectable AGNs within the 10° band
surrounding the Galactic plane (not accounting for incomplete-
ness of AGN catalogs at low latitudes). Only 56 sources are
associated with active galaxies in this region. At low latitudes
the LAT detection threshold is higher, and catalogs of active
galaxies are incomplete, but extrapolation from higher latitudes
suggests that fewer than ∼100 of the unassociated sources in
the region b 5∣ ∣ < ° could be active galaxies.
Of the remaining unassociated sources, we expect most to be

Galactic objects. If we use the fractions of Galactic associated
sources in this latitude range as a guide, we find that nearly half

Figure 23. Distributions in Galactic latitude b of unassociated sources (shaded
red region), all associated sources (blue histogram), and all active galaxy
source classes (black line). Binned in bsin , an isotropic distribution would
be flat.
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should be pulsars (47%), and most of the remainder should be
SNRs (44%), with only a small number of other Galactic
sources (9%). These yet-to-be-detected pulsars may never be
seen to pulse: part of the neutron star population will have
magnetic and rotation axis orientations causing γ-ray emission
to be spread over a large part of the rotation phase (Hou
et al. 2014). This, combined with a low γ-ray flux in the
presence of high background, renders blind periodicity
searches insensitive to pulsations (Dormody et al. 2011). That
many of these sources are likely to be previously undetected
SNRs is also reasonable. Ackermann et al. (2012b) recognized
that the distribution of unassociated LAT sources near the
Galactic plane matched the scale height appropriate for
Population I objects, such as the SNR parent population of
massive stars.

It should be emphasized that a substantial fraction of the
unassociated sources (40%) has at least one analysis flag set
(Section 3.9). We find that 57% of the sources with at least one
flag have b 5∣ ∣ < °, which reflects the complexity of the
Galactic diffuse emission (Sections 3.7.3 and 3.8). Because of
the difficulties in source detection against the bright diffuse
background along the Galactic plane, unassociated sources
with analysis flags set should be considered with caution. That
difficulty is acute in the Galactic bulge (within 5° of the
Galactic center), in the Vela (l 268∼ °) and Cygnus (l 80∼ °)
regions. The immediate vicinity of the Galactic center is
particularly uncertain, with seven sources within 1°, on top of
bright diffuse emission. We did not attempt in the framework
of 3FGL to devise models dedicated to those regions, so the
source positions and characteristics there are not as reliable as
in the extragalactic sky.

We also note a number of clusters of unassociated sources,
mostly near the Galactic plane. Obvious ones are near
(l b, ) = (133.5, +1), (340, −2). Since there is no specific
search for extended sources in 3FGL, many of those clusters
are probably extended sources (SNRs, PWNe, star formation
regions). The extended sources that are currently declared
(Section 3.4) are all relatively bright, with a median
significance of 32σ . This leaves a lot of room for fainter
extended sources.

6. GALACTIC SOURCE NUMBER COUNTS

The 3LAC companion paper discusses briefly the source
number counts of extragalactic sources. Here we address the
Galactic source number counts, following the analysis for the
1FHL catalog, which was based on the method described by
Strong (2007), and which addressed energies above 10 GeV.
For 3FGL we use energies above 1 GeV. Photon fluxes over
that energy range (F35 of Table 4) are more accurate than over
the full band, as explained in the 2FGL paper. The much larger
number of sources in 3FGL compared to 1FHL means that the
entire analysis is more robust.

The motivation for performing a Galactic source population
analysis is first to obtain estimates of the global source
characteristics, i.e., space density and luminosity function,
second to estimate the contribution from sources below the
detection threshold to the Galactic “diffuse” emission, and third
to generate templates of this emission, to be incorporated into
diffuse emission models for future source catalogs. Source
population analysis also puts the detected sources in the context
of the total source content of the Galaxy.

The method is guided by properties of known sources such
as pulsars but does not attempt physical modeling of the
sources. The approach is essentially geometrical; nevertheless,
the analysis reveals the basic properties of the source
population. We refer to the modeling of the source popula-
tion(s) as population synthesis. Since the population synthesis
includes all sources down to arbitrarily low flux levels (for a
given model), it can also be used to study the flux limit of the
actual catalog and assess how the observed source number
counts are affected by the detection procedure. This serves as a
consistency check on other methods of assessing the detection
threshold.
An essential principle is to use the fact that low-latitude

sources probe the high-luminosity, low-space-density objects at
large distances, while the high-latitude sources constrain the
low-luminosity, high-space-density nearby objects.
This is because high-luminosity sources are rare but visible

to large distances that are only sampled in the Galactic plane,
while low-luminosity sources are common but only visible
when nearby, so they dominate outside the plane. These
samples are complementary and allow the full luminosity
function to be estimated.

6.1. Source Population Synthesis

The population synthesis and subsequent analysis are
performed using the GALPLOT software, which is publicly
available.97 Let Lγ be the luminosity of a source in
photons s−1 in some energy range. We use photon luminosities
since they are most directly related to the detectability of
sources and detection thresholds. The luminosity function at
galactocentric distance R and distance from Galactic plane z is
the space density of sources per unit luminosity L R z( , , )ρ γ .
The shape of the luminosity function is assumed independent
of position, i.e., L R z( , , )ρ γ is separable in Lγ and (R,z). After
Strong (2007), we assume that the luminosity function depends
on luminosity as Lγ

α− for L L L,min ,max< <γ γ γ and is zero
outside these limits. The total space density of sources is

R z L R z dL( , ) ( , , )∫ρ ρ= γ γ, which we normalize to the value
ρ⊙ at R z R( , ) ( , 0)= ⊙ . For a source of luminosity Lγ at distance

d the flux is S L πd4 2=γ γ . The differential source number
counts are defined as N S( )γ sources per unit flux over the area
of sky considered. At lower Sγ, both the luminosity function
and the spatial boundaries influence N S( )γ . For this analysis
the source fluxes are binned in log(Sγ) so that the plotted
distributions are proportional to S N S( )γ γ ; we use 5 bins per
decade of Sγ , appropriate to the statistics available. We use
standard Monte Carlo techniques to sample L R z( , , )ρ γ
throughout the Galaxy, using oversampling to reduce statistical
fluctuations if necessary. We use the sources generated from
such simulations to form simulated catalogs extending below
the 3FGL flux limit and compare the flux distributions with the
observations.
In the present work we do not explicitly account for the

source detection efficiency in 3FGL, but simply compare the
predictions with the data mindful of the range of the estimated
detection threshold. Since the detection efficiency and thresh-
old depend on direction, mainly because of the Galactic diffuse
emission, and also exposure variations, accounting for this

97 http://sourceforge.net/projects/galplot
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would require considerably more study than possible in the
present work, and is not required for the scope here.

A large number of models were generated and compared
with the data; for this paper we choose one reference model that
is found to reproduce the data satisfactorily but is not unique.
This suffices to illustrate plausible properties of the Galactic
source population. A complete study of source number counts,
optimizing the model over all parameters and considering
spatial distributions and more sky regions, or using information
about particular source classes, is beyond the present paper and
is foreseen in a future work.

6.2. Model and Comparison with Data

Our reference model for the luminosity function has
100ρ =⊙ kpc−3 and an L 1.8

γ
− dependence on luminosity in

the range 2 10 2 1034 39× − × photons s−1 above 1 GeV. The
luminosity law is discussed in Strong (2007); the chosen
power-law index 1.8 is larger than expected for normal pulsars
(1.5 or less) or MSPs, but here we wish to encompass both of
these source types, and also other sources like SNRs, with a
single power-law function, for simplicity. This index is
required to fit N S( )γ at both low and high latitudes; the steep
slope ensures enough low-luminosity sources to match high-
latitude number counts.
The distribution in galactocentric distance is based on the

model of Lorimer et al. (2006) for the distribution of pulsars,
taken as representative of Galactic sources. We adopt an
exponential scale height of 500 pc, guided by that of pulsars;
the source number count distribution N S( )γ depends only
weakly on the scale height. This distribution peaks near
R = 4 kpc and falls to zero at R = 0; it was chosen for

Figure 24. Dependence of source number counts (number of sources per 0.2 dex) on source photon flux S above 1 GeV. The markers are source number counts from
the 3FGL catalog; blue triangles are identified and associated Galactic sources, red circles are identified and associated Galactic, and unassociated sources, and black
squares are all sources including extragalactic (for reference). The curves are from the reference model described in the text. (a) Inner Galaxy ( b 10∣ ∣ < °,

l300 60° < < °); (b) high latitudes ( b 10∣ ∣ > °, all longitudes); (c) all-sky.
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illustration and has not been optimized for the 3FGL source
number counts. The spectrum of sources was taken as a power-
law with exponential cutoff, index 1.4, and cutoff energy
3.2 GeV, with correlated dispersion in these parameters as
found for pulsars. This is representative of pulsars but is not
critical for this work since we use integral photon fluxes above
1 GeV as the basis for the analysis of N S( )γ . The spectrum is
used here only when comparing with the spectrum of
interstellar emission, to estimate the contribution of sources
to the diffuse emission (Section 6.3).

Figure 24 compares the simulated N S( )γ with the observed
flux distributions of 3FGL sources at low latitudes in the inner
Galaxy ( b 10∣ ∣ < °, l300 60° < < °) and high latitudes
( b 10∣ ∣ > °), as well as for the full sky for reference. The
predictions agree reasonably with Galactic plus unassociated
sources at low latitudes, and with Galactic associated sources at
high latitudes (where unassociated sources are probably mainly
AGNs). At high latitudes it is important that the model does not
overpredict Galactic plus unassociated sources, and this
condition is satisfied. The reference model is consistent with
the low-latitude source number counts, having the observed
dependence on flux above the source detection threshold; the
slope reflects the spatial distribution (independent of the shape
of the luminosity function) above 10−8 photons cm−2 s−1, while
the distributions for both the model and observed source
number counts flatten at lower fluxes, following the luminosity
function.

Some of the unassociated sources in the inner Galaxy may be
AGNs; using high-latitude AGNs and unassociated sources
(which are probably mainly AGNs) and scaling by solid angle,
we estimate about 30 AGNs above the threshold for the inner
Galaxy. This can be compared to 254 Galactic identified plus
associated sources in the inner Galaxy for the same threshold,
so that the AGNs contribution is negligible, especially
considering that most of these should be identified/associated
AGNs and hence excluded from our sample. For comparison,
there are 33 (identified/associated) AGNs in this region, similar
to our estimate from high latitudes, so the selection of Galactic
classes certainly avoids the presence of more than a few AGNs
among the unassociated sources.

Pulsars, including MSPs, have a range of luminosities
10 1032 37− erg s−1 (Abdo et al. 2013), corresponding to about
3 10 3 1034 39× − × photons s−1 (taking a mean energy
2 GeV=3.2 10 3× − erg). This is consistent with the range we
have found from our N S( )γ analysis at low and high latitudes,
although we are not assuming anything about the physical
nature of the sources.

In this model there are 2.9 104× sources in the Galaxy (in
the luminosity range considered), with a total luminosity 1>
GeV of 2 1040× photons s−1, or about 6 1037× erg s−1. 3FGL
contains about 266 Galactic sources (identified plus associated
in Table 6), so that the LAT detects about 1% of the sources in
the Galaxy; allowing for a significant number of unassociated
sources at low latitudes being Galactic, a larger number is
certainly included in 3FGL. Figure 24 shows that the
distribution of simulated sources (in the reference model)
continues down to fluxes ∼100 times below the detection
threshold, the cutoff being due to the finite spatial extent of the
Galaxy. The ratio of total flux below threshold to above
threshold is about 0.25, which gives an estimate of the

contribution of the undetected sources to the “diffuse” emission
(see below).
Using the work of Watters & Romani (2011), we can

estimate the number of γ-ray pulsars in the Galaxy; they give a
pulsar birthrate of 1 per 59 yr, which corresponds to 1.7 104×
pulsars up to age 1Myr. This is consistent with our model; we
include other classes of sources, but this shows that our value is
plausible.

6.3. Contribution of Undetected Sources
to Diffuse Galactic Emission

Judging from the turnover in the inner Galaxy N S( )γ data,

the detection threshold there is about 1 10 9× −

photons cm−2 s−1, and we adopt this for the following
estimates. For the inner Galaxy, the total flux from sources is
3 10 6× − photons cm−2 s−1, with 2.4 10 6× − photons cm−2

s−1 above threshold, 0.6 10 6× − photons cm−2 s−1 below thresh-
old. So 20% of the total source flux is below threshold, and the
ratio of flux below/above threshold is 25%. We can use the
measured diffuse spectrum directly, comparing with the
contribution from sources relative to interstellar emission: for
the inner Galaxy as defined here, this gives 12% from sources
above threshold, 3% from sources below threshold, at 1 GeV.
These estimates are clearly model dependent, in particular the
adopted luminosity function gives a large number of low-
luminosity sources, but they are certainly of the correct order,
since varying the models within the range consistent with the
data does not change the estimates greatly; details are beyond
the scope of this paper.
For comparison with our estimates, Watters & Romani

(2011) used physical modeling of young pulsars and estimated
their contribution to diffuse emission as 2.8%, however using
all-sky averages and for only 6 months of LAT data taking. A
study of the MSP contribution to the Galactic emission, for
energies above 100MeV, has been given by Grégoire &
Knödlseder (2013); they find that the contribution is at the few
percent level.
Population synthesis can be used to estimate the increase in

the number of sources with improved detection limits; in this
model, reducing the threshold by a factor 2 would yield about
twice as many sources at low latitudes.

Table 15
LAT 3FGL FITS Format: ROI Extension

Column Format Unit Description

ROI_num I ROI number (cross-reference to main
table)

RAJ2000 E deg R.A. of ROI center
DEJ2000 E deg Decl. of ROI center
GLON E deg Galactic longitude of ROI center
GLAT E deg Galactic latitude of ROI center
Radius E deg ROI radius (unbinned mode) or half-

side (binned mode)
PARNAMia E L Value of diffuse model parameter i
Unc_PARNAMi E L 1σ error on PARNAMi

Note.
a Two columns (value and error) for each diffuse model parameter. The
parameter name is given by the PARNAMi keyword in the extension header.
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Finally, we consider the global picture. The luminosity of the
interstellar emission from cosmic-ray interactions is about
1 1041× photons s−1 or 4 1038× erg s−1 for energies above
1 GeV (Strong et al. 2010), so that sources have about 20%
of the interstellar luminosity. This is also an estimate of the
contribution of all Galactic sources to the total Galactic γ-ray
intensity, averaged over the sky.

7. CONCLUSIONS

The third Fermi LAT catalog is the deepest yet in the
100MeV–300 GeV energy range. The increased sensitivity
relative to the 2FGL catalog is due to both the longer time
interval (4 yr versus 2 yr for 2FGL) and the use of reprocessed

Pass 7 data, which provides a narrower PSF above 3 GeV. The
3FGL catalog also benefits from higher-level improvements in
the analysis, including an improved model for Galactic diffuse
emission and a refined method for source detection.
The 3FGL catalog includes 3033 sources. The sources are

detected (TS 25> ) based on their average fluxes in the 4 yr
data set; 647 of the sources are found to be significantly
variable on monthly timescales. We flag 78 (2.6%) of the
sources as potentially being related to imperfections in the
model for Galactic diffuse emission; the character c is
appended to their names. An additional 572 (18.9%) are
flagged in the catalog for less serious concerns, e.g., for the
spectral model having a poor fit or for being close to a brighter

Figure 25. Diffuse model parameters in each RoI. The horizontal error bar is the RoI radius. The vertical error bar is the statistical error from the fit. The vertical scale
is the same in the left and right plots for a given parameter. Top: normalization of the Galactic diffuse component (at 500 MeV). Center: spectral index of the power-
law correction to the Galactic diffuse component (positive means a harder model). Bottom: normalization of the isotropic component. Left: all values as a function of
Galactic latitude. Right: Galactic plane only as a function of Galactic longitude.
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Table 16
LAT 3FGL FITS Format: LAT_Point_Source_Catalog Extension

Column Format Unit Description

Source_Name 18A L Official source name 3FGL JHHMM.m+DDMM
R.A.J2000 E deg R.A.
DEJ2000 E deg Decl.
GLON E deg Galactic longitude
GLAT E deg Galactic latitude
Conf_68_SemiMajor E deg Long radius of error ellipse at 68% confidence
Conf_68_SemiMinor E deg Short radius of error ellipse at 68% confidence
Conf_68_PosAng E deg Position angle of the 68% long axis from celestial north,

positive toward increasing R.A. (eastward)
Conf_95_SemiMajor E deg Long radius of error ellipse at 95% confidence
Conf_95_SemiMinor E deg Short radius of error ellipse at 95% confidence
Conf_95_PosAng E deg Position angle of the 95% long axis from celestial north,

positive toward increasing R.A. (eastward)
ROI_num I L ROI number (cross-reference to ROIs extension)
Signif_Avg E L Source significance in σ units (derived from test statistic)

over the 100 MeV–300 GeV band
Pivot_Energy E MeV Energy at which error on differential flux is minimal
Flux_Density E cm−2 MeV−1 s−1 Differential flux at Pivot_Energy
Unc_Flux_Density E cm−2 MeV−1 s−1 1σ error on differential flux at Pivot_Energy
Spectral_Index E L Best-fit photon number power-law index: for LogParabola spectra,

index at Pivot_Energy; for PL(Super)ExpCutoff spectra, low-energy index
Unc_Spectral_Index E L 1σ error on Spectral_Index
Flux1000 E cm−2 s−1 Integral photon flux from 1 to 100 GeV
Unc_Flux1000 E cm−2 s−1 1σ error on integral photon flux from 1 to 100 GeV
Energy_Flux100 E erg cm−2 s−1 Energy flux from 100 MeV to 100 GeV obtained by spectral fitting
Unc_Energy_Flux100 E erg cm−2 s−1 1σ error on energy flux from 100 MeV to 100 GeV
Signif_Curve E L Significance (in σ units) of the fit improvement between power-law

and either LogParabola (for ordinary sources) or PLExpCutoff (for pulsars)
A value greater than 4 indicates significant curvature

SpectrumType 18A L Spectral type (PowerLaw, LogParabola, PLExpCutoff, PLSuperExpCutoff)
beta E L Curvature parameter (β of Equation (1)) for LogParabola; NULL for other spectral types
Unc_beta E L 1σ error on β for LogParabola; NULL for other spectral types
Cutoff E MeV Cutoff energy (Ec of Equation (2)) for PL(Super)ExpCutoff; NULL for other spectral types
Unc_Cutoff E MeV 1σ error on cutoff energy for PL(Super)ExpCutoff; NULL for other spectral types
Exp_Index E L Exponential index (b of Equation (2)) for PLSuperExpCutoff; NULL for other spectral types
Unc_Exp_Index E L 1σ error on exponential index for PLSuperExpCutoff; NULL for other spectral types
PowerLaw_Index E L Best fit power-law index; equal to Spectral_Index if SpectrumType is PowerLaw
Flux30_100 E cm−2 s−1 Integral photon flux from 30 to 100 MeV (not filled)
Unc_Flux30_100 2E cm−2 s−1 1σ lower and upper error on integral photon flux from 30 to 100 MeV (not filled)
nuFnu30_100 E erg cm−2 s−1 Spectral energy distribution between 30 and 100 MeV (not filled)
Sqrt_TS30_100 E L Square root of the test statistic between 30 and 100 MeV (not filled)
Flux100_300 E cm−2 s−1 Integral photon flux from 100 to 300 MeV
Unc_Flux100_300 2E cm−2 s−1 1σ lower and upper error on integral photon flux from 100 to 300 MeVa

nuFnu100_300 E erg cm−2 s−1 Spectral energy distribution between 100 and 300 MeV
Sqrt_TS100_300 E L Square root of the test statistic between 100 and 300 MeV
Flux300_1000 E cm−2 s−1 Integral photon flux from 300 MeV to 1 GeV
Unc_Flux300_1000 2E cm−2 s−1 1σ lower and upper error on integral photon flux from 300 MeV to 1 GeVa

nuFnu300_1000 E erg cm−2 s−1 Spectral energy distribution between 300 MeV and 1 GeV
Sqrt_TS300_1000 E L Square root of the test statistic between 300 MeV and 1 GeV
Flux1000_3000 E cm−2 s−1 Integral photon flux from 1 to 3 GeV
Unc_Flux1000_3000 2E cm−2 s−1 1σ lower and upper error on integral photon flux from 1 to 3 GeVa

nuFnu1000_3000 E erg cm−2 s−1 Spectral energy distribution between 1 and 3 GeV
Sqrt_TS1000_3000 E L Square root of the test statistic between 1 and 3 GeV
Flux3000_10000 E cm−2 s−1 Integral photon flux from 3 to 10 GeV
Unc_Flux3000_10000 2E cm−2 s−1 1σ lower and upper error on integral photon flux from 3 to 10 GeVa

nuFnu3000_10000 E erg cm−2 s−1 Spectral energy distribution between 3 and 10 GeV
Sqrt_TS3000_10000 E L Square root of the test statistic between 3 and 10 GeV
Flux10000_100000 E cm−2 s−1 Integral photon flux from 10 to 100 GeV
Unc_Flux10000_100000 2E cm−2 s−1 1σ lower and upper error on integral photon flux from 10 to 100 GeVa

nuFnu10000_100000 E erg cm−2 s−1 Spectral energy distribution between 10 and 100 GeV
Sqrt_TS10000_100000 E L Square root of the test statistic between 10 and 100 GeV
Variability_Index E L Sum of 2 × log(Likelihood) difference between the flux fitted in each time
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source. Of the 3033 sources in the catalog, 238 (7.8%) are
considered identified, based on correlated variability or (for 25
of the identified sources) correlated angular sizes with
observations at other wavelengths. Of the remainder, we find
likely lower-energy counterparts for 1786 sources (59.6%).
The remaining 992 sources (32.7%) are unassociated.

The identified and associated sources in the 3FGL catalog
include many Galactic and extragalactic source classes. The
largest Galactic source class continues to be pulsars, with 143
known γ-ray pulsars and 24 candidates. Other Galactic source
classes have continued to grow; 15 globular clusters are now
associated with LAT sources. Our analysis of Galactic source
counts, informed by a model for the luminosity function,
suggests that at 1 GeV ∼3% of the Galactic diffuse emission is
due to unresolved Galactic sources. Blazars remain the largest
class of extragalactic source, with more than 1100 identified or
associated with BL Lac or FSRQ active galaxies. Non-blazar
classes of active galaxies are also found, including a Seyfert
galaxy (Circinus galaxy), a compact steep spectrum radio
source (3C 286), and several radio galaxies. The populations of
active galaxies in 3FGL are considered in more detail in the
companion 3LAC catalog.
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have supported both the development and the operation of the
LAT, as well as scientific data analysis. These include the
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Physique des Particules in France; the Agenzia Spaziale
Italiana and the Istituto Nazionale di Fisica Nucleare in Italy;
the Ministry of Education, Culture, Sports, Science and
Technology (MEXT), High Energy Accelerator Research
Organization (KEK) and Japan Aerospace Exploration Agency
(JAXA) in Japan; and the K. A. Wallenberg Foundation, the
Swedish Research Council, and the Swedish National Space
Board in Sweden.
Additional support for science analysis during the operations

phase is gratefully acknowledged from the Istituto Nazionale di
Astrofisica in Italy and the Centre National d’Études Spatiales
in France.
This work made extensive use of the ATNF pulsar catalog98

(Manchester et al. 2005). This research has made use of the
NASA/IPAC Extragalactic Database (NED), which is operated
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Technology, under contract with the National Aeronautics
and Space Administration, and of archival data, software, and
online services provided by the ASI Science Data Center
(ASDC), operated by the Italian Space Agency.

Table 16
(Continued)

Column Format Unit Description

interval and the average flux over the full catalog interval; a value greater
than 72.44 over 48 intervals indicates <1% chance of being a steady source

Signif_Peak E L Source significance in peak interval in σ units
Flux_Peak E cm−2 s−1 Peak integral photon flux from 100 MeV to 100 GeV
Unc_Flux_Peak E cm−2 s−1 1σ error on peak integral photon flux
Time_Peak D s (MET) Time of center of interval in which peak flux was measured
Peak_Interval E s Length of interval in which peak flux was measured
Flux_History 48E cm−2 s−1 Integral photon flux from 100 MeV to 100 GeV in each interval (best fit from

likelihood analysis with spectral shape fixed to that obtained over full interval)
Unc_Flux_History 2 × 48E cm−2 s−1 1σ lower and upper error on integral photon flux in each interval

added in quadrature with 2% systematic component
Extended_Source_Name 18A L Cross-reference to the ExtendedSources extension for extended sources, if any
0FGL_Name 18A L Name of corresponding 0FGL source, if any
1FGL_Name 18A L Name of corresponding 1FGL source, if any
2FGL_Name 18A L Name of corresponding 2FGL source, if any
1FHL_Name 18A L Name of corresponding 1FHL source, if any
ASSOC_GAM1 18A L Name of likely corresponding 1AGL source
ASSOC_GAM2 18A L Name of likely corresponding 3EG source
ASSOC_GAM3 18A L Name of likely corresponding EGR source
TEVCAT_FLAG A L P if positional association with non-extended source in TeVCat

E if associated with a more extended source in TeVCat, N if no TeV association
ASSOC_TEV 24A L Name of likely corresponding TeV source from TeVCat
CLASS1 5A L Class designation for associated source; see Table 6
ASSOC1 26A L Name of identified or likely associated source
ASSOC2 26A L Alternate name of identified or likely associated source
Flags I L Source flags (binary coding as in Table 3)b

Notes.
a Separate1σ errors are computed from the likelihood profile toward lower and larger fluxes. The lower error is set equal to NULL, and the upper error is derived from
a Bayesian upper limit if the 1σ interval contains 0 (TS 1< ; see Section 3.5).
b Each condition is indicated by one bit among the 16 bits forming Flags. The bit is raised (set to 1) in the dubious case, so that sources without any warning sign
have Flags = 0.

98 http://www.atnf.csiro.au/research/pulsar/psrcat
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This research has made use of Aladin,99 TOPCAT100 and
APLpy, an open-source plotting package for Python.101 The
authors acknowledge the use of HEALPix102 (Górski
et al. 2005).

Facilities: Fermi.

APPENDIX A
DIFFUSE MODEL ADJUSTMENTS

In Section 3.2 we noted that the diffuse emission model has
three free parameters in each RoI. We report their values in the
ROI extension of the catalog (Table 15), and we show in
Figure 25 how they vary over the sky. The first thing to notice
is that the amplitude of the variations is relatively small.
Overall the Galactic normalization does not vary by more than
20%, and in the Galactic plane (i.e., where it is the dominant
component) it does not vary by more than 10%. The slope of
the power-law correction does not exceed 0.1 (positive or
negative), and inside the plane it does not exceed 0.05. The
isotropic normalization does not vary by more than 40%, and
outside the Galactic plane (i.e., where it is the dominant
component) it does not vary by more than 20%. This indicates
that the diffuse model is quite accurate. Nevertheless, the
statistical precision of the data is so good that the deviations are

formally very significant. Leaving those parameters free allows
releasing some of the tension that exists locally between the
data and the diffuse model.
At high latitudes (left-hand plots) the isotropic component is

stable (as it should be), but the Galactic normalization shows a
clear north–south effect. The model is too high in the south but
lacks emission in the north. The middle plot also indicates that
the model is somewhat too hard particularly in the north. The
group of points where the model is too hard in the south is
around (R.A., decl.) = (+10°, −60°).
At low latitudes (right-hand plots) the error bars on the

Galactic diffuse parameters are very small and the parameter
values are very correlated between an RoI and its neighbor.
This is because the distance between the centers of neighboring
RoIs in the plane (a few degrees) is much smaller than their
diameter (15°–20°). The model appears to be too low and
somewhat too hard east of the Galactic center (around
longitude +35°), whereas it is too high and too soft just west
of the Carina region (around longitude −80°). Outside those
two regions the fitted Galactic model is very close to the
original one. Inside the plane the isotropic component is a
minor contributor, and it tends to fluctuate a lot.
Figure 26 is another illustration of the same effect. It shows

the residuals between the data and the full-sky model (original
diffuse model + 3FGL sources, without any free parameter),
integrated from 100MeV to 100 GeV. The figure is restricted
to the Galactic plane because at the scale shown here (0◦. 5
pixels) nothing comes out clearly at high latitude. The units are

Figure 26. Residuals when setting the diffuse model normalizations to 1 and no power-law correction, integrated from 100 MeV to 100 GeV and expressed in sigma
units over 0◦. 5 pixels. Top: positive Galactic longitudes from the anticenter to Cygnus. Center: Galactic ridge. Bottom: negative Galactic longitudes from Carina to the
anticenter.

99 http://aladin.u-strasbg.fr/
100 http://www.star.bristol.ac.uk/m̃bt/topcat/
101 http://aplpy.github.com
102 http://healpix.jpl.nasa.gov/
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sigma units (statistical deviations). The model was originally
computed with 0◦. 1 pixels in order to model the sources
accurately. The main features are the data excess east of the
Galactic center and the data deficit around −80°, which
correspond to the features in Figure 25.

APPENDIX B
DESCRIPTION OF THE FITS VERSION

OF THE 3FGL CATALOG

The FITS format version of the 3FGL catalog103 has four
binary table extensions. The extension LAT_Point_Sour-
ce_Catalog Extension has all of the information about
the sources, including the monthly light curves (Table 16).

The extension Hist_Start lists the Mission Elapsed
Time (seconds since 00:00 UTC on 2000 January 1) of the start
of each bin of the monthly light curves. The final entry is the
ending time of the last bin.

The extension GTI is a standard GTI listing the precise time
intervals (start and stop in MET) included in the data analysis.
The number of intervals is fairly large because on most orbits
(∼95 minutes) Fermi passes through the SAA, and science data
taking is stopped during these times. In addition, data taking is
briefly interrupted on each non-SAA-crossing orbit, as Fermi
crosses the ascending node. Filtering of time intervals with
large rocking angles, other data gaps, or operation in non-
standard configurations introduces some more entries. The GTI
is provided for reference and would be useful, e.g., for
reconstructing the precise data set that was used for the 2FGL
analysis.

The extension ExtendedSources (format unchanged
since 2FGL) contains information about the 25 spatially
extended sources that are modeled in the 3FGL catalog,
including locations and shapes.
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