A NMR and molecular dynamics study of CO2-bearing basaltic melts and glasses
Yann Morizet, R. Vuilleumier, M. Paris

To cite this version:

HAL Id: insu-01182359
https://insu.hal.science/insu-01182359
Submitted on 24 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A NMR and molecular dynamics study of CO$_2$-bearing basaltic melts and glasses

Y. Morizet a,b,*, R. Vuilleumier c, M. Paris d

a CNRS/INSU - Université d’Orléans — BICM, UMR 7327, Institut des Sciences de la Terre d’Orléans, 1er de la Férolière, 45071 Orléans, France
b Université de Nantes, Nantes Atlantique Université, Laboratoire de Planétologie et Géodynamique de Nantes (LPGN), UMR CNRS 6112, 2 rue de la Houssinière, 44322 Nantes, France
c Laboratoire FASTEUR, Département de Chimie, Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris 6), UMR CNRS 8640, 24 rue Lhomond, 75005 Paris, France
d Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP12229, 44322 Nantes Cedex 3, France

ARTICLE INFO

Article history: Accepted 23 March 2015
Available online xxxx

Keywords:
CO$_2$ speciation
Aluminosilicate network speciation
High temperature melt versus glass
MAS NMR
First-principles molecular dynamics simulations

ABSTRACT

The presence of volatile, especially carbon dioxide (CO$_2$), in silicate liquids is considered as a key parameter to magmatic degassing and eruptive processes. Unfortunately, due to experimental difficulties, our current knowledge on the CO$_2$ effect on silicate melt structure is weak and relies on the observation of ex-situ recovered CO$_2$-bearing glasses.

In the present work, we confront the results obtained from NMR spectroscopic observations of glass synthesised at pressure between 0.5 and 3.0 GPa and theoretical investigations from first-principles molecular dynamics (FPMD) simulations conducted at 5.0 and 8.0 GPa on high temperature melt for a simplified basaltic composition. The results obtained on the aluminosilicate framework (molar fraction of silicon species and Al average coordination number) suggest that both ex-situ and in-situ results compare adequately. The results are in agreement with our current knowledge on the change in aluminosilicate melt glass structure with changing intensive conditions. Increasing pressure from 0.5 to 8.0 GPa induces 1) an increase in the average Al coordination number from 4.1 to almost 5.0 and 2) an increase in the degree of polymerisation with Na$_2$SiO$_5$ changing from 1.30 to 0.80.

The presence of CO$_2$ does not seem to induce a dramatic change on both the average Al coordination number and the Na$_2$SiO$_5$. FPMD simulations performed with 0 and 20 wt.% CO$_2$ at 8.0 GPa result in a change from 4.84 to 4.96 for the average Al coordination number and in a change from 0.87 to 0.80 for the Na$_2$SiO$_5$ value, respectively.

On the contrary, there is a lack of consistency in between the CO$_2$ speciation obtained from NMR spectroscopy and from FPMD simulations. Whereas the analysis of glasses does not reveal the presence of CO$_2$ species, the FPMD simulation results suggests the existence of a small proportion of CO$_2$. Further work with in-situ experimental approach is therefore required to explain the observed lack of consistency between the CO$_2$ speciation in glass and in high temperature melt with basaltic composition.

1. Introduction

Fluids and melt are ubiquitous materials within the Earth deep interiors. After water, carbon dioxide (CO$_2$) is the second most important volatile involved in magmatic systems (Gerlach and Graeber, 1985; Jambon, 1994; Symonds et al., 1994; Morizet et al., 2002, 2010) and in some volcanic systems CO$_2$ becomes the dominant one (Holloway, 1981; Giggenbach, 1997; Andersen and Neumann, 2001; Massuyseau et al., submitted for publication, in this issue). Its impact on magmatic processes is now well-recognized (Eggler, 1974; Brey and Green, 1975, 1976; Wallace and Green, 1988; Falloon and Green, 1989; Draper and Green, 1997). Owing to the large amount of experimental investigations since decades, CO$_2$ solubility and speciation are currently well-constrained as a function of composition (Fine and Stolper, 1988; Pan et al., 1991; Dixon, 1997; Papale, 1999; Botcharnikov et al., 2005, 2006; Iacono-Marziano et al., 2008; Shishkina et al., 2010; Iacono-Marziano et al., 2012; Morizet et al., 2014a) and intensive parameters (Blank and Brooker, 1994; Dixon et al., 1995; Morizet et al., 2002; Newman and Lowenstern, 2002; Behrens et al., 2009; Lesne et al., 2011; Iacono-Marziano et al., 2012).

However, one of the major deficiencies of our current knowledge of CO$_2$ behaviour in aluminosilicate compositions is that most of the available information on CO$_2$ speciation is based on the study of ex-situ recovered samples quenched to glasses. It appears problematic because recent investigations showed that the CO$_2$ speciation recorded in glasses cannot unambiguously be applied to a corresponding high temperature melt condition (Morizet et al., 2001; Nowak et al., 2003; Spickenbaum et al., 2010). The CO$_2$ speciation is suggested to be decoupled from the aluminosilicate network speciation. At temperature...
below the glass transition, the silicate network speciation is fixed but CO₂ speciation still evolves. The results from Nowak et al. (2003) conducted on dacite and albite compositions (Fig. 1A) suggest that at high temperature in the melt, part of the CO₂ speciation is represented by CO₂^{mol} species formed through the following interconversion reaction governed by an equilibrium constant (K) between a carbonate group (CO₃^−) and a CO₂ molecule (CO₂^{mol}):

\[\text{CO}_2^{\text{mol}} + \text{O}_2^2 \rightleftharpoons K \text{CO}_3^2^- \]

(1)

The interconversion reaction in Eq. (1) is probably oversimplified. The nature of the involved oxygen from the melt (O₂²⁻ in Eq. (1)) is currently unknown, (i.e. the negative charge distribution around the oxygen atom is not asserted and the surrounding cation is variable in nature). Those pioneer works (Morizet et al., 2001; Nowak et al., 2003) have focussed on simple compositions in which both C species (CO₂^{mol} and CO₃^-) are present initially in the glasses.

For basalt-like composition in which CO₂ is dissolved solely as CO₃^- groups, we currently do not have solid evidence of such an interconversion mechanism at high temperature in the melt. However, recent molecular modelling conducted by Guillot and Sator (2011) on simple haplo-basaltic composition (MORB) invoked a similar mechanism. As shown in Fig. 1B molecular dynamics simulation results on MORB under high temperature melt conditions conducted at 2273 K show that the proportion of CO₂^{mol} is gradually increasing with decreasing pressure (up to 70% CO₂^{mol} in relative to the total C species at 2.0 GPa). Guillot and Sator (2011) also showed that the proportion of CO₂^{mol} is strongly temperature dependent: 70% and 37% CO₂^{mol} at 2273 and 1473 K, respectively. Those results are in agreement with our current view of the interconversion between CO₂^{mol} and CO₂^- groups observed in more acidic compositions (Morizet et al., 2001; Nowak et al., 2003). Nevertheless, it has never been witnessed experimentally for basaltic compositions in which the CO₂ speciation is only represented by CO₂^- groups (e.g. Fine and Stolper, 1986; Pan et al., 1991; Pawley et al., 1992; Dixon et al., 2007; Morizet et al., 2010).

The molecular structure of aluminosilicate glass/melt can be approximated by a combination of several individual structural units, called Q-species (e.g. Grimmer et al., 1984; Brandiss and Stebbins, 1988; Merzbacher et al., 1990; Stebbins, 1995; Mysen and Richet, 2005) where Q represents a SiO₄ tetrahedron and is considered as a network forming unit. The notation Qⁿ is often employed where n represents the number of bridging oxygen (BO) per tetrahedron.

In complex aluminosilicate melts, Al³⁺ is also considered as a network forming cation (AlO₄ tetrahedra) whereas other cations (for example, Ca²⁺, Mg²⁺, Na⁺ and K⁺) are either network modifiers or charge balancing cations (e.g. Neuvillé and Mysen, 1996; Lee and Stebbins, 2000). The way the different Qⁿ species combines within a silicate glass/melt has been extensively addressed. Early work by Mysen and co-workers based on micro-Raman spectroscopy (Mysen and Virgo, 1980; Mysen et al., 1980; Mysen and Frantz, 1994; Mysen, 1997) clearly established that several Qⁿ species are in equilibrium in the glass such as:

\[2Q^n \rightleftharpoons Q^{n+1} + Q^{n-1} \quad n = 1, 2 \text{ or } 3 \]

(2)

Similar conclusion was also drawn from NMR investigations (Maekawa et al., 1991; Maekawa and Yokokawa, 1997; Zhang et al., 1997; Schneider et al., 2003; Xue and Kanzaki, 2004; Malfait et al., 2007a; Davis et al., 2011; Morizet et al., 2014b) for various types of compositions from simple binary MnO–SiO₂ systems but also for more complex Al-bearing systems. This reaction implies that for a given chemical composition three Q⁻species are in equilibrium in glasses. The equilibrium in Eq. (2) provides also a view of the degree of polymerisation of a silicate glass/melt. This degree of polymerisation obtained by the Q⁻species distribution is dependent on the chemical composition and is commonly expressed by the NBO/T parameter which corresponds to the ratio between the non-bridging oxygen and the tetrahedra (Mysen, 1988, 1990). The NBO/T can be readily calculated from the concentrations of oxides. It is commonly assumed that for a 0.1 < NBO/T < 1 calculated from the chemical composition, the reaction given in Eq. (2) involves Q³, Q⁴ and Q⁵ such as:

\[2Q^3 \rightleftharpoons Q^4 + Q^5 \]

(3)

This situation is of particular interest in the present study as the NBO/T is very close to one for the investigated composition (see Section 2). From a general standpoint, the molecular structure (Qⁿ distribution) of a high temperature melt is different from the one of the corresponding glass (Stebbins and Xue, 2014). The glass transition temperature (Tg) (Moynihan et al., 1976) separates the glassy state, with a frozen-in molecular structure, from the liquid state in which molecular
structural changes are fast (Dingwell, 1995; Webb, 1997). The molecular structure preserved in a glass represents the molecular structure of an equivalent melt held at Tg.

Based on in-situ spectroscopic methods conducted at ambient pressure, previous works (e.g. Stebbins and Farnan, 1992; McMillan et al., 1994; Mysen and Frantz, 1994; Neuville and Mysen, 1996; Maekawa and Yokokawa, 1997; Malfait et al., 2007a,b) have shown that Al speciation (i.e. Al coordination number) and Q⁰ distribution are different in the high temperature melt (above Tg) and in the glass (frozen-in at Tg). Spectroscopic investigations on glasses with various fice temperatures (almost equivalent to Tg; Tropin et al., 2011) showed comparable results: Al coordination number, concentration of non-bridging oxygens (NBO) and Q⁰ distribution slightly vary with varying fice temperature (e.g. Brandis and Stebbins, 1988; Stebbins et al., 2008; Thompson and Stebbins, 2013). However, there has been up to now a lack of structural information on volatile-bearing silicate melts at high pressure and high temperature. Mysen and Yamashita (2010) and Mysen (2012, 2013) recently addressed this problem; however those studies only considered simple compositions in the Na₂O-SiO₂ system in equilibrium with C–H–O fluid phase.

Experimental difficulties, including the temperature limitation in diamond anvil cell experiments, prevent the molecular structure to be investigated in complex melts such as basalt. One way to circumvent these experimental difficulties is to investigate the high temperature melt structure through molecular dynamics simulations, which have been routinely applied to investigate liquid properties in various systems (Belonoshko, 1994; Belonoshko and Dubrovinsky, 1996; Guillot and Sator, 2007a,b). More specifically, molecular simulation methods have been employed successfully to evaluate high temperature silicate melt thermodynamic, physical properties (Guillot and Sator, 2007a, b) and more recently CO₂-bearing silicate melt physical properties (Guillot and Sator, 2011). First-principles molecular dynamics simulations (Car and Parrinello, 1985; Vuilleumier, 2006), which rely on forces computed on the fly through density functional theory, allow to study melts at extreme conditions where the local environment can differ significantly from ambient conditions (Vuilleumier et al., 2009; Karki and Stixrude, 2010). The excellent agreement in between the measured and modelled silicate melt physical properties demonstrates the applicability of molecular dynamics methods for the description of silicate materials under in-situ conditions (Guillot and Sator, 2011; their Fig. 12 for CO₂ diffusion coefficient).

In the present work, we combine the two approaches to investigate the molecular structure of CO₂-bearing haplo-basaltic melt/glass composition: 1) first-principles molecular dynamics (FPMD) simulations will be used as a model for the basaltic melt under high temperature high pressure conditions relevant to the Earth mantle conditions; 2) nuclear magnetic resonance spectroscopic methods will be used to investigate the molecular structure of recovered basaltic glasses. One of the objectives of the present study is to find out if the recorded aluminosilicate structure in ex-situ glasses can be correlated to the one observed under in-situ conditions in the high temperature melt. The second objective is to find out if the CO₂ speciation in the high temperature basaltic melt is comparable to the CO₂ speciation recorded at the glass transition temperature. In particular, we will question the importance of CO₂mol as a component of the complex haplo-basaltic melt at high temperature.

2. Experimental procedures and theoretical calculation methods

2.1. Sample synthesis

A synthetic haplo-basaltic (basG) composition in the CaO–MgO–Al₂O₃–SiO₂ system was prepared from a mixture of oxides (MgO, Al₂O₃ and SiO₂) and carbonate (CaCO₃). The oxides were dried in a box furnace at 1100 °C for several hours prior to mixing all oxides and carbonates together in an agate mortar. The CaCO₃ is also the source of CO₂ during the experiments and corresponds to 12.8 wt.% CO₂. Under the investigated experimental conditions (see Table 1), the initial 12.8 wt.% CO₂ is well-above the expected CO₂ solubility. The carbonate was added as 100% CaCO₃ for ¹³C NMR analyses. The SiO₂ was added as both 2⁸SiO₂ and 2⁹SiO₂ for ²⁹Si NMR analytical purpose. The calculated enrichment is ~70% ²⁹Si.

The composition was prepared so as to match the composition used in the FPMD simulations (see Section 2.3). The major element theoretical composition is reported in Table 1 on a CO₂-free basis: 48.87 wt.% SiO₂, 17.40 wt.% Al₂O₃, 16.33 wt.% CaO and 17.40 wt.% MgO. The initial composition has a NBO/T of 0.957 corresponding to a slightly depolymerised composition. The Al/Si ratio in the composition is 0.42. In the remaining of the manuscript, we will refer to both the NBO/T and the NBO/Si. The NBO/Si is calculated from the chemical composition but without taking into account the Al³⁺ concentration in the tetrahedral charges and only Si⁴⁺ is considered. The NBO/Si is of practical use as the theoretical value can be readily compared with the value derived from the ²⁹Si NMR spectra deconvolution (see Section 4.1.1). In the studied composition, the calculated NBO/Si is 1.358.

We conducted the high-pressure experiments in an end-loaded piston-cylinder apparatus following the method reported in Morizet et al. (2002). The experimental conditions are reported in Table 1: the pressure range is 0.5 to 3.0 GPa, the temperature range is 1773 to 1873 K. The temperatures were monitored by a WRe₃–WRe₂₅ thermo-couple in all experiments. The capsule was surrounded by an alumina sleeve to avoid contact with the graphite furnace.

For the experiments between 0.5 and 2.0 GPa, a 19 mm talc–Pyrex assembly was used. A tapered graphene furnace was employed to reduce the temperature gradient along the capsule (less than 20 °C along the 12 mm Pt capsule). For the experiment conducted at 3.0 GPa, a 12.7 mm talc–Pyrex assembly was used. This assembly also included a tapered furnace giving a thermal gradient of less than 20 °C over a 7 mm capsule length. A pressure correction of 5% was applied for the tcalc Pyrex assemblies consistent with the suggested friction correction by McDade et al. (2002) for tcalc–Pyrex assemblies. Run durations were at least 3 h to ensure equilibrium.

Two different pressure plates were used: 1/2 inch and 3/4 inch pressure plates with a special design in which holes have been drilled to improve the experimental quench rate. The use of these two different pressure plates result in similar quench rates at the end of the experiments. The temperature quench rate for the piston cylinder apparatus was timed at more than 200 °C/s to 500 °C/s for both 3/4 and 1/2 inch pressure plates. Isobaric quenching ensured that quench (decompression) bubbles were not formed. Most of the recovered glasses are clear and crystal free; although in the samples synthesised at 2.0 and 3.0 GPa, a small fraction of corundum (on the order of a few %) was identified in the ²⁷Al NMR spectrum (see Table 1; Fig. 4C). It should be noticed that the corundum crystals were not observed optically in the glass, witnessing its very low abundance. Additionally, the recovered sample synthesised at 3.0 GPa was slightly blackened, suggesting the presence of a small proportion of graphite that might be due to a possible contact in between the Pt capsule and the graphite furnace (Brooker et al., 1998). The presence of this graphite appears not to impact the outcome of the present results.

2.2. Analytical methods

2.2.1. Electron probe micro-analyses (EPMA) for glass chemical composition

The major element compositions of glasses were measured using EPMA. Measurements were done on a Cameca SX 50, with 15 kV and 10 nA, with 10 s peak counting time for all elements. Analyses were conducted in defocused mode (10 μm beam diameter). The average major element concentrations (in wt.%) obtained from more than 20 analyses for each recovered glasses are reported in Table 1. The standard deviation for each oxide is at most 0.3 wt.% for SiO₂.
2.2.2 Vibrational micro-Raman and micro-FTIR spectroscopic measurements for volatile content determination

Confoocal micro-Raman was used to quantify the dissolved CO$_2$ in the glass samples. The Raman system is a Jobin–Yvon Labram spectrometer (focal distance = 300 mm) equipped with a 2400 grooves/mm grating and a CCD detector. The light source is an Ar laser Innova 300-5W from Coherent© operating at 514.5 nm. The typical output laser power was set at 150 mW. The analyses were performed in confocal mode (hole = 500 μm, slit = 200 μm) with a Leitz (×40) objective. The spectra were recorded in the network and CO$_3^2$ vibrational frequency range between 200 and 1200 cm$^{-1}$. The spectral frequency position was measured with the emission lines of Ne- and Hg-lamps and metal-Si chip. The accuracy stays within ±1 cm$^{-1}$. The acquisition time was usually within 45–90 s to obtain a reasonably good signal to noise ratio (S/N).

The glass CO$_2$ solubility was determined from micro-Raman spectroscopy using the calibration method of Morizet et al. (2013a, b). The method is based on a statistical analysis of the Raman stretching vibrational band of the aluminosilicate framework (800–1100 cm$^{-1}$) and the signature of the ν$_1$ CO$_3^2$ band (1070–1090 cm$^{-1}$). The ratio between the area of the ν$_1$ CO$_3^2$ and the area of the aluminosilicate stretching vibrational bands is linearly correlated to the CO$_2$ content. This method is applicable to glass compositions in which CO$_2$ is dissolved solely as CO$_3^2$ groups. This is the case in the present investigated composition and in agreement with our current knowledge of the CO$_2$ dissolution mechanisms (Fine and Stolper, 1986; Blank and Brooker, 1994; Dixon et al., 1995). The reader is referred to this article for further information on the method.

The wt.% CO$_2$ is reported in Table 1. The CO$_2$ solubility ranges from 0.37 to 2.18 wt.% with a typical error of less than 0.2 wt.%. This increase in CO$_2$ solubility is observed with increasing pressure as shown in Fig. 2 (0.37 and 2.18 wt.% CO$_2$ at 0.5 and 3.0 GPa, respectively) and is in good consistency with previous studies (e.g., Blank and Brooker, 1994; Thibault and Holloway, 1994; Brooker et al., 1999; Morizet et al., 2002; Botcharnikov et al., 2005, 2006; Behrens et al., 2009; Morizet et al., 2014a, b). The CO$_2$ solubility level used for FPMD simulations at 5.0 and 8.0 GPa is also reported in Fig. 2 (5.0 and 19.8 wt.% CO$_2$) and has been constrained from the molecular dynamics simulation results reported in Guillot and Sator (2011). The effect of temperature on CO$_2$ solubility is unknown because of the small number of investigated samples; however, it has been shown that at such a high temperature (1773 to 1873 K), the temperature dependency of CO$_2$ solubility is probably relatively reduced (Morizet et al., 2002). The range of CO$_2$ solubility determined for this haplo-basaltic composition is comparable to previous results on CO$_2$ solubility for typical basaltic compositions (Pan et al., 1991; Blank and Brooker, 1994). Moreover, the CO$_2$ solubility determined in the glasses is in good agreement with previous molecular dynamics calculations by Guillot and Sator (2011) for the same composition and shown in Fig. 2 for comparison. We observe a slightly lower CO$_2$ solubility at 3.0 GPa than suggested by Guillot and Sator (2011). This lower CO$_2$ solubility is likely due to the presence of graphite in this sample which induces a lower CO$_2$ thermodynamic activity in the fluid phase (see Morizet et al., 2010).

Although all the experiments were conducted under anhydrous conditions, micro-FTR analysis performed on doubly polished basG-1.5...
sample reveals the presence of a small but measurable quantity of water dissolved in the glass in the form of OH− groups, with a band at 4500 cm−1. Subsequent quantification using the Beer–Lambert approximation (Ollhorst et al., 2001) was done considering the area of the 4500 cm−1 OH− peak, the integrated extinction coefficient (230 L·mol−1·cm−2) proposed by Jakobsson (1997) and a density of 2950 g·L−1 as measured by the Archimedian method in toluene. Replicated measurements give a H2O content of less than 0.3 wt%. This amount of water could result from adsorbed water molecules onto the starting material powder prior to the experiments; alternatively, the presence of water could also be due to hydrogen diffusion through the capsule walls (Truckenbrodt and Johannes, 1999) and originate from the talc breakdown of the high pressure assembly upon heating.

2.2.3. 13C, 27Al and 29Si solid state magic angle spinning nuclear magnetic resonance spectroscopy

Solid state 13C-, 27Al- and 29Si-MAS NMR analyses of the partially crushed samples were performed with a 500 MHz Bruker Avance III. 4 and 2.5 mm CP/MAS probes were employed and the samples were loaded in a ZrO2 rotor with Teflon end-cap. Rotors were spun at 10–14 kHz for 13C and 29Si analyses and at 30 kHz for 27Al analyses. All spectra are measured using the scalar J coupling between unlike spins (here, a two-bonds27Al coupling). Optimized transfer from 27Al to 29Si is obtained for de-

\[\text{Swi} \text{t} \text{ha} \text{n} R \text{F} \]

field of 10 kHz. The 2D27Al–29Si R-INEPT sequence was acquired with two delays \(\tau \) and \(\tau' \) are required.

\[\text{R-INEPT} \]

first minimum of the O–Si interatomic distances. Only bonds between oxygen and Si, Al or C are considered. All simulations were then run for 10 ps long simulations used for analysis of the structures.

For these analyses, the atom connectivity was defined on an interatomic distance basis. Only bonds between oxygen and Si, Al or C were considered. An oxygen atom is said to be linked to an atom X (X = Si, Al or C), if the O–X distance is smaller than the distance of the first minimum of the O–X radial distribution. These distances are 1.8 Å for C, 2.2 Å for Si and 2.5 Å for Al.
3. Results

3.1. Nuclear magnetic resonance spectroscopy

3.1.1. 29Si MAS NMR

A typical example of acquired 29Si Direct MAS NMR spectrum is provided in Fig. 3 for basG-0.5 sample. The 29Si peak is centred at −82 ppm corresponding to Si in Qn configuration. No evidence for five coordinated Si species was identified at −150 ppm (Stebbins and Poe, 1999). The acquired 29Si Direct MAS spectrum exhibits a slight peak asymmetry witnessing that the 29Si spectrum is a complex convolution of individual peaks; each of these being attributed to a given Qn species (Lippmaa et al., 1980; Grimmer et al., 1984; Schramm et al., 1984; Maekawa et al., 1991; Stebbins, 1995; Zhang et al., 1997; Schmidt et al., 2000; Schneider et al., 2003; Mysen and Cody, 2005; Malfait et al., 2007b; Angeli et al., 2011; Davis et al., 2011; Morizet et al., 2013b). The evidence for several Qn species is further asserted by the various NMR experiments we have conducted. In Fig. 3A, we show a comparison between 29Si Direct MAS

Table 2

Speciation results from in-situ FPMD simulations and ex-situ NMR analyses: Si speciation (Qn speciation) is reported with the calculated NBO/Si and Al speciation with the average Al co-ordination number. The C speciation obtained from FPMD simulations is also provided.

<table>
<thead>
<tr>
<th>FPMDa Glass synthesesb</th>
<th>basM-8-CO2</th>
<th>basM-8-free</th>
<th>basM-5-CO2</th>
<th>basM-5-free</th>
<th>basG-0.5</th>
<th>basG-1.5</th>
<th>basG-2</th>
<th>basG-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si X Qn speciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qn 4</td>
<td>0.063 (0.006)</td>
<td>0.081 (0.013)</td>
<td>0.034 (0.011)</td>
<td>0.042 (0.007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qn (nAl)</td>
<td>0.360 (0.014)</td>
<td>0.333 (0.020)</td>
<td>0.297 (0.004)</td>
<td>0.303 (0.016)</td>
<td>0.110 (0.011)</td>
<td>0.114 (0.011)</td>
<td>0.120 (0.012)</td>
<td>0.116 (0.012)</td>
</tr>
<tr>
<td>Qn (mAl)</td>
<td>0.383 (0.015)</td>
<td>0.358 (0.032)</td>
<td>0.439 (0.018)</td>
<td>0.437 (0.008)</td>
<td>0.479 (0.048)</td>
<td>0.490 (0.049)</td>
<td>0.514 (0.051)</td>
<td>0.581 (0.058)</td>
</tr>
<tr>
<td>Qn (kAl)</td>
<td>0.166 (0.007)</td>
<td>0.184 (0.004)</td>
<td>0.194 (0.017)</td>
<td>0.170 (0.017)</td>
<td>0.411 (0.041)</td>
<td>0.396 (0.040)</td>
<td>0.366 (0.037)</td>
<td>0.302 (0.030)</td>
</tr>
<tr>
<td>Qn (kAl)</td>
<td>0.027 (0.007)</td>
<td>0.034 (0.006)</td>
<td>0.035 (0.007)</td>
<td>0.047 (0.005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qn 0</td>
<td>0.000 (0.000)</td>
<td>0.009 (0.003)</td>
<td>0.001 (0.001)</td>
<td>0.001 (0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBO/Si c</td>
<td>0.797 (0.041)</td>
<td>0.865 (0.070)</td>
<td>0.937 (0.077)</td>
<td>0.922 (0.061)</td>
<td>1.30 (0.130)</td>
<td>1.28 (0.128)</td>
<td>1.25 (0.125)</td>
<td>1.19 (0.119)</td>
</tr>
<tr>
<td>Al coordination speciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVAl</td>
<td>0.255 (0.028)</td>
<td>0.300 (0.036)</td>
<td>0.423 (0.032)</td>
<td>0.467 (0.037)</td>
<td>0.856 (0.086)</td>
<td>0.751 (0.075)</td>
<td>0.624 (0.062)</td>
<td>0.591 (0.059)</td>
</tr>
<tr>
<td>VAl</td>
<td>0.514 (0.022)</td>
<td>0.533 (0.048)</td>
<td>0.469 (0.031)</td>
<td>0.429 (0.035)</td>
<td>0.129 (0.013)</td>
<td>0.195 (0.020)</td>
<td>0.280 (0.028)</td>
<td>0.291 (0.029)</td>
</tr>
<tr>
<td>VIAl</td>
<td>0.227 (0.029)</td>
<td>0.163 (0.019)</td>
<td>0.104 (0.014)</td>
<td>0.100 (0.003)</td>
<td>0.015 (0.002)</td>
<td>0.054 (0.005)</td>
<td>0.055 (0.006)</td>
<td>0.073 (0.007)</td>
</tr>
<tr>
<td>Average Al coordination</td>
<td>4.96 (0.04)</td>
<td>4.84 (0.03)</td>
<td>4.66 (0.03)</td>
<td>4.61 (0.02)</td>
<td>4.16 (0.10)</td>
<td>4.30 (0.11)</td>
<td>4.41 (0.11)</td>
<td>4.46 (0.11)</td>
</tr>
<tr>
<td>CO₂ speciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>0.123</td>
<td>0.184</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free CO₂−</td>
<td>0.164</td>
<td>0.190</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBO–carb.</td>
<td>0.440</td>
<td>0.380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si–carb.–Al</td>
<td>0.099</td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al–carb.–Al</td>
<td>0.136</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si–carb.–Si</td>
<td>0.038</td>
<td>0.079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Error estimates on X Qn speciation and Al coordination speciation from FPMD simulations are two sided confidence interval at 0.95% estimated from a Student distribution using results from five blocks of 2 ps each.

b The X Qn speciation was determined from the 29Si MAS NMR spectra deconvolution (see Supplementary material). We considered a typical error of 10% relative to the determined X Qn value. This error is probably overestimated. The Al environment concentrations was determined in glasses from the 27Al MAS NMR spectra simulation (see Supplementary material). We also considered a 2.5% relative error to determine the average Al coordination number within the glasses.

c The corresponding NBO/Si was calculated with the following equation: NBO/Si = 4 × X Q0 + 3 × X Q1 + 2 × X Q2(kAl) + 1 × X Q3(mAl).

Fig. 3. A) Comparison between 29Si Direct MAS NMR spectrum and 27Al–29Si R-INEPT NMR spectra acquired with τ = τ′ = 15 and 50 ms for basG-0.5 quenched glass. The 29Si Direct MAS spectrum exhibits a peak maximum at −81.6 ppm whereas the selective nature of the R-INEPT spectra (probing different Al–O–Si bonds) give peak maxima at −81.0 and −85.0 ppm. We also show the difference between the 29Si Direct and R-INEPT τ = 15 and 50 ms. The difference spectra suggest that the R-INEPT acquisition does not fully reproduce the 29Si Direct spectrum. B) The 29Si Direct MAS spectra (dotted line) were deconvoluted with three peaks (solid line). The 29Si chemical shift for these peaks are −79.0, −84.4 and −92.8 ppm and each peak was assigned to Q2(kAl), Q3(mAl) and Q4(nAl), respectively (see text for details on the peak assignment).
spectrum and two ^{27}Al-^{29}Si R-INEPT spectra for basG-0.5 glass sample. We also report the difference spectra between the ^{29}Si Direct MAS and the R-INEPT NMR spectra.

As explained in the experimental section, choosing $\tau = \tau' = 1/2$ J (where J is the 2 J[Al–O–Si] coupling value) mostly favours magnetization transfer from pairs of spins (i.e. Q0(1Al)). Moreover, using smaller τ values enhances signals associated with higher J coupling values. As shown in Fig. 3A, the ^{27}Al-^{29}Si R-INEPT spectrum obtained with $\tau = \tau' = 15$ ms is centred at -85 ppm. By increasing $\tau = \tau'$ to 50 ms, the maximum of the ^{27}Al-^{29}Si R-INEPT spectrum appears at -81 ppm (Fig. 3A). This small left-shift witnesses the existence of smaller J coupling values than those probed with $\tau = \tau' = 15$ ms. Therefore, the 4 ppm left-shift induced by increasing $\tau = \tau'$ is probably due to an increase of the Q(2Al) contribution to the whole signal. In contrast to the ^{27}Al-^{29}Si R-INEPT spectrum obtained with $\tau = \tau' = 15$ ms, the one obtained with $\tau = \tau' = 50$ ms does not reproduce the lowest frequency part at -91 ppm of the ^{29}Si direct MAS spectrum as shown by the difference spectrum (Direct-R 50 ms in Fig. 3A). Since the -85 ppm was mainly associated to Q1(1Al) species, this unobserved signal might be assigned to Q0(1Al) species. The width of the ^{27}Al-^{29}Si R-INEPT spectrum obtained with $\tau = \tau' = 50$ ms is also too small to reproduce the highest frequency part of the ^{29}Si direct MAS spectrum at -78 ppm. This reveals the existence of Q0(1Al) species of lower J values such as Q1(1Al). The presence of Q0(1Al) and Q0(0Al) cannot be assessed by R-INEPT experiment which is a through-bond transfer technique. However, these two species are likely to exist in our glass samples.

The ^{29}Si NMR spectrum deconvolution procedure has been reported in previous work (Morizet et al., 2013b, 2014b; and references therein). The ^{29}Si NMR spectrum deconvolution was conducted simultaneously on the entire set of spectra and using three Gaussian peaks. The simultaneity of the procedure implies that for a given Gaussian peak, the fitting parameters is provided in Supplementary material.

This procedure is an approximation since the glass structure might be described with more than three individual species. For instance, we clearly identified the presence of ^{29}Si Q0 units with various Al surrounding inducing a shift in the ^{29}Si δiso (Hiet et al., 2009); however, the impact of 5- and 6-coordinated Al unit on the ^{29}Si δiso is currently unknown. Furthermore, the fact that a given ^{29}Si Q0 species might have several Al surrounding which can be AlO$_4$, AlO$_5$, and/or AlO$_6$ could induce a change in the shape of the peak representing this Q0 species; hence, a Gaussian shape might not be appropriate in that case. Consequently, there is an additional complexity not taken into account in the present deconvolution procedure.

The peak assignment is reported in Table 2 along with the species abundances (X Q0) obtained from the ^{29}Si Direct MAS simulation. The entire set of fitting parameters is provided in Supplementary material. Namely, the -79.0 ppm, -84.4 ppm and -92.8 ppm lines are assigned to Q1(1Al), Q0(1Al) and Q0(0Al) species, respectively. Those derived peak positions are concomitant with the suspected components (see the comparison made between the Direct MAS and the R-INEPT spectra and the difference between both). The R-INEPT analyses clearly identified a component located at -85 ppm but two additional components were not reproduced at -77.5 and -90.6 ppm, respectively.

In the investigated basaltic glass composition, the Al/Si ratio is relatively high (0.42), and considering this value and the Al avoidance rule, it is highly possible that up to 2 Al atoms might be present in the surrounding of the Q0(nAl) as stated by Lee and Stebbins (1999). Furthermore, a peak at around -94 ppm for Q0(2Al) in calcium aluminosilicate glasses was reported by Lee and Stebbins (1999). In a similar way, recent work by Le Losq et al. (2014) on sodium aluminosilicate glasses, Davis et al. (2011) on magnesium silicate glasses and Zhang et al. (1997) on calcium silicate glasses reported a position for Q0(0Al) at -91.0, -90.8 and -90.4 ppm, respectively. From a general stand point, in aluminosilicate glasses, substitution of Al for Si atom as a second neighbour in the close vicinity to a Si atom (i.e. substitution of Si–O–Si to Si–O–Al in tetrahedral configuration) induces a shift in ^{29}Si peak of at least $+5$ ppm (Engelhardt et al., 1985; Schmidt et al., 2000; Hiet et al., 2009; Le Losq et al., 2014). Therefore, a Q1(1Al) would have a ^{29}Si δ_{iso} around -85.0 ppm. The proposed assignment to Q2 for the identified component at -84.4 ppm (see Fig 3B) would be in good agreement with the Q1(1Al) species, as stated previously from R-INEPT experiments (see Fig 3A). Furthermore, the resulting NBO/Si measured from the Q0 abundances in glasses (NBO/Si between 1.19 and 1.30, see Fig 7, Table 2 and Eq. (4)) is totally consistent with the theoretical NBO/Si value of 1.358.

3.1.2. ^{27}Al MAS NMR

We have acquired 1D ^{27}Al Direct MAS, 2D ^{27}Al 3QMAS and ^{27}Al-^{29}Si J-HMQC NMR spectra for basG samples (Fig. 4). Multiple Al environments are identified from the ^{27}Al NMR spectra (both Direct and 3QMAS) of the quenched glasses (Fig. 4B and C). The simulations of the ^{27}Al Direct MAS NMR spectra for basG glasses were performed with DMFit software (Masiot et al., 2002) using Csimple fitting function for ^{27}Al, ^{31}Al and ^{39}Al environments describing the distribution the effect of electrical field gradient (EFG) distribution on Al environments (Neuville et al., 2008). The Csimple fitting function is derived from the Cžejzek distribution function (Cžejzek et al., 1981) and describes the EFG distribution around Al atoms as statistical structural disorder with a Gaussian isotropic model as a physically consistent model for disordered solids (Brand and Le Caër, 1988). Three Al environments were determined: 4-coordinated Al (AlO$_4$ $^{2+}$Al) with $\delta_{iso} \approx +66$ ppm; 5-coordinated Al (AlO$_5$ $^{2+}$Al) with $\delta_{iso} \approx +37$ ppm; 6-coordinated Al (AlO$_6$ $^{2+}$Al) with $\delta_{iso} \approx +6$ ppm (see Supplementary material for corresponding derived peak parameters). Those δ_{iso} peak positions are consistent with previous works (see Stebbins, 1995; Stebbins et al., 2000; Toplis et al., 2000; Neuville et al., 2006). The three Al coordination states are observed and unambiguously identified by 3QMAS ^{27}Al NMR spectra as shown in Fig. 4B for basG samples and have been observed also in basM FPMD simulations. An additional sharp signature has been also identified in basG-3 and basG-2 as shown in Fig. 4C and with a $\delta_{iso} \approx -16$ ppm. According to Stebbins (1995), this sharp signature can be attributed to a small fraction of crystalline corundum (α-Al$_2$O$_3$).

We also show the spectrum acquired ^{27}Al-^{29}Si J-HMQC pulse sequence for basG-1.5 in Fig. 4A. This 2D spectrum confirms the interpretation proposed in Fig. 3 from ^{27}Al-^{29}Si R-INEPT spectra. We observe that ^{27}Al Q0 species (with a peak centred at -86 ppm) is correlated to all Al environments. Therefore, in addition to the Si–O–Al and Si–O–39Al bonds, both Si–O–31Al and Si–O–39Al bonds also exist in the glasses. This result emphasises the importance of multiple Al environments on the global network structure of a silicate glass. Recent investigation by Le Losq et al. (2014) highlighted the important role of 5-coordinated Al in 1) the connectivity in glasses of the tetrahedral network and 2) thermodynamic properties of silicate melts.

3.1.3. ^{13}C MAS NMR

An example of typically acquired ^{13}C MAS NMR spectrum is shown in Fig. 5 for basG-1.5. The ^{13}C MAS NMR reveals that the CO$_2$ speciation is only represented by carbonate CO$_3^{2-}$ species in the haplo-basaltic glasses. This speciation is consistent with previous studies on glasses of basalt-like compositions (Fine and Stolper, 1986; Pan et al., 1991; Dixon et al., 1995; Morizet et al., 2010). No CO$_2$ is identified contrary to what is suggested by FPMD simulations (see Table 2) and the previous work by Guillot and Sator (2011). A graphite NMR signal was observed in ^{13}C MAS NMR spectrum for basG-3. The quantity of graphite is difficult to evaluate due to the strong overlapping with the signal of the Teflon itself at $+110$ ppm. The graphite component appears to be
non-negligible; nevertheless we consider that the graphite presence does not affect dramatically the oxidized CO$_3^{2-}$ speciation evolution in glasses. The presence of graphite implies low f_{O_2} conditions during the experiments. Recent work by Morizet et al. (2010) suggests that applying low f_{O_2} conditions induces a lowering of the CO$_2$ solubility as observed in Fig. 2 for the particular sample basG-3 at 3.0 GPa. However, under moderately reducing conditions, Morizet et al. (2010) did not identify a clear change in the CO$_2$ speciation (no presence of CH$_4$ for instance).

In Fig. 5, we compare 13C NMR spectra collected for different CO$_2$-bearing glass compositions: jadeite glass (Brooker et al., 1999), haplographite glass (Morizet et al., 2002), nepheline glass (Morizet et al., 2014a,b), Ca-melilitite and diopside (Morizet, unpub.). We cover a wide range of composition from fully polymerised jadeite ($NBO/T = 0$) to highly depolymerised diopside ($NBO/T = 2$) and Ca-melilitite ($NBO/T = 2.6$). The chemical composition is also distinct. Jadeite, phonolite and nepheline are Na-rich composition synthesised in the Na$_2$O–Al$_2$O$_3$–SiO$_2$ and Na$_2$O–CaO–MgO–Al$_2$O$_3$–SiO$_2$ systems. Ca-melilitite, diopside and basG-1.5 are Ca–Mg-rich compositions synthesised in the Na$_2$O–CaO–MgO–Al$_2$O$_3$–SiO$_2$ systems, respectively. This comparison will be fully discussed in Section 4.3 in order to provide constraints on the carbonate environments in the studied basaltic composition. For the basG glasses, the peak maximum is situated at $+166$ ppm. The width of the peak is broad and the peak is slightly asymmetric suggesting that the peak is a combination of several CO$_3^{2-}$ environments.

3.2. FPMD results

We first studied the approach towards equilibrium and the extent of the structural rearrangements with respect to the initial configuration. Fig. 6A displays the mean square displacement of the different species in basM-8-CO$_2$ for times up to 11 ps and averaged over the first 10 ps of the simulation. The slowest species (Si) exhibits a mean square displacement of 2 Å2 in 11 ps. The fastest species (Ca$^{2+}$ and Mg$^{2+}$ but also O and C) have mean square displacements around 4 Å2. The onset of diffusion, characterized by a mean square displacement proportional to the elapsed time, is visible on Fig. 6A at the end of the time window. These mean square displacements suggest that nearest neighbour rearrangements had time to occur in the FPMD simulation such that equilibration of nearest neighbour environments has been reached. These rearrangements can have a global effect on the large scale aluminosilicate network but we cannot rule out that large scale relaxation involving long range atomic motions is insufficiently described in the FPMD simulations, retaining some memory of the initial configuration.

To further evaluate how these atomic displacements are linked to the reorganisation of the high temperature melt, Fig. 6B shows the total number of bonds in the system and the number of bonds that were conserved from the initial configuration. The slowest species (Si) exhibits a mean square displacement of 2 Å2 in 11 ps. The fastest species (Ca$^{2+}$ and Mg$^{2+}$ but also O and C) have mean square displacements around 4 Å2. The onset of diffusion, characterized by a mean square displacement proportional to the elapsed time, is visible on Fig. 6A at the end of the time window. These mean square displacements suggest that nearest neighbour rearrangements had time to occur in the FPMD simulation such that equilibration of nearest neighbour environments has been reached. These rearrangements can have a global effect on the large scale aluminosilicate network but we cannot rule out that large scale relaxation involving long range atomic motions is insufficiently described in the FPMD simulations, retaining some memory of the initial configuration.

To further evaluate how these atomic displacements are linked to the reorganisation of the high temperature melt, Fig. 6B shows the total number of bonds in the system and the number of bonds that were conserved from the initial configuration. The slowest species (Si) exhibits a mean square displacement of 2 Å2 in 11 ps. The fastest species (Ca$^{2+}$ and Mg$^{2+}$ but also O and C) have mean square displacements around 4 Å2. The onset of diffusion, characterized by a mean square displacement proportional to the elapsed time, is visible on Fig. 6A at the end of the time window. These mean square displacements suggest that nearest neighbour rearrangements had time to occur in the FPMD simulation such that equilibration of nearest neighbour environments has been reached. These rearrangements can have a global effect on the large scale aluminosilicate network but we cannot rule out that large scale relaxation involving long range atomic motions is insufficiently described in the FPMD simulations, retaining some memory of the initial configuration.
bonds. The number of bonds preserved from the initial condition steadily decreases as continuous reorganisation of the bonds occurs in the melt. After 10 ps, nearly 1/4 of the bonds have been broken and at the end of the simulation, only 60% of the bonds are kept intact from the initial condition. All this suggests that significant rearrangement can occur in 10 ps, which was chosen as equilibration period, and statistics will be obtained from the following 10 ps of the simulation.

Fig. 6C shows the time evolution of the population of the different Qn species. It can be seen that during the first ps large variations occur, with inversion of the population of Q3 and Q4 species. These times correspond to the initial fast decay of the number of intact bonds (see Fig. 6B). Then, for times between 10 and 20 ps, used for acquiring statistics, a steady state has been reached. The basM-8-CO2 simulation corresponds to a dense melt at 8.0 GPa, therefore this gives us confidence that also at lower pressure apparent equilibrium can be reached after a few ps of equilibration at the investigated temperature (2073 K).

In Table 2, we then report the abundance of the Si Q0 species, abundance of Al coordination and speciation of carbon for all four simulations at these apparent equilibrium conditions reached in the FPMD simulations. To compute Q0 species, we have considered that a Si atom can be linked to another Si or Al either directly through an oxygen or indirectly through a bonding carbonate, since the two should have the same effect from the point of view of melt polymerisation. Very small differences, within error bars, are observed between the CO2-free and CO2-bearing simulations. While CO2 molecules scavenge NBO to form carbonates, it appears that the formation of network carbonates, in particular Si-carb.-Al and Al-carb.-Al (see Table 2), compensate nearly exactly the loss of NBO oxygen ions, leaving unchanged the degree of polymerisation of the melt. Inspection of the trajectories suggests that the formation of these network carbonate species occur first via bonding of a CO2 molecule to a NBO and then the formation of a new bond with a neighbouring Si or Al, and not via insertion of a CO2 molecule in an already formed Si–O–Al or Al–O–Al bonds.

At this high pressure, we also observe about 6% of Si with a coordination larger than 4, namely five coordinated Si atoms. In that case, we have considered a Si atom to be Q0 if it is bound to NBO, independently of its total coordination number, extending the Q0 definition to non-purely tetrahedral Si sites as found at high temperature-high pressure. The presence of five coordinated Si is supported by recent work by Stebbins and Poe (1999) in which five coordinated Si has been identified in CaO–SiO2 glasses quenched from 10.0 GPa. Inspection of the FPMD trajectory also indicates very mobile Q0 species. FPMD also confirms the previous assignment of NMR spectra with only a minority of Si atoms found to form Q0(0Al) or Q0(0AI) species, with abundances of 10% and 5% in relative to the total Q2 and Q4 species, respectively.

For Al coordination, we similarly observe a very small effect of CO2 dissolution. However, both Q0 species and Al coordination show an increase of polymerisation with pressure. Q0, AlIV and AlVI species follow the evolution of pressure, while Q3 and AlV species evolve the opposite way.

The most important difference observed between NMR analyses of the glasses and the FPMD simulation is the existence of additional species identified in the FPMD results. For instance, the FPMD simulation shows that CO2 is also present in the high temperature melt as free clusters of CO3− and CO2molspecies. The abundances of those species cannot be neglected (more than 15%). The significance of such a difference in CO2 speciation in between NMR on glasses and FPMD simulation on melt will be addressed further in Section 4. At first, it seems to confirm that CO2 speciation cannot be approached adequately in ex-situ glasses and that CO2 speciation in the haplo-basaltic glass is different from the CO2 speciation in the melt under high temperature conditions.

4. Discussion

4.1. Aluminosilicate framework speciation determined from spectroscopy and FPMD

4.1.1. Q0 species distribution and NBO/Si

The peak areas derived from the 29Si NMR spectrum deconvolution in Fig. 3 are directly proportional to the abundance, X Q0, of the species (expressed as a molar fraction). The X Q0 is given in Table 2 and is represented in Fig. 7A. The error considered for each X Q0 is 10% relative to the value. This error is on the order of what is commonly assumed (a few % error on the X Q0 is considered in Malfait et al., 2007a,b). With increasing pressure, there is a clear decrease in X Q0 between 0.41 at 0.5 GPa to 0.30 at 3.0 GPa in the glasses. We observe an opposite trend for X Q1(nAl) which varies from 0.48 at 0.5 GPa to 0.58 at 3.0 GPa in the glasses. The concentration in Q1(nAl) in the glasses is constant (X Q1(nAl) − 0.11) with increasing pressure from 0.5 to 3.0 GPa.

The comparison in between the Q0 distribution observed in glass and in high temperature melt from Fig. 7A reveals that the distribution of Q0 species in glass and high temperature melt cannot be reconstructed adequately. The major difference between melt and glass is observed for Q1(nAl). A large jump in X Q1(nAl) is seen from 3.0 to 5.0 GPa with X Q1(nAl) changing from 0.11 measured in glass to 0.30 determined in melt. The difference between melt and glass is less important for Q2(nAl) but the tendency observed in glass is inverse to the one observed in melt. On the contrary, the evolution of X Q2 in glass and melt seems in good agreement: increasing pressure induces a decrease in X Q2. This suggests that upon increasing pressure, the proportion of X Q1(nAl) first increases but then decreases upon further pressure increase and upon going from the glass to the high temperature melt as a result of some X Q0 species being converted in X Q0(Nal).

The X Q0 results obtained from the FPMD under CO2-free conditions are also reported in Table 2 and in Fig. 7A (open symbol, for clarity the error on these points is not shown but provided in Table 2). The absence
of CO$_2$ does not seem to influence the abundances of the Q0 species. For instance, at 8.0 GPa for basM-8-CO$_2$ (with ~20 wt.% CO$_2$) and basM-8-free, the X Q0 changes do not exceed 10% in relative to the value: X Q4(nAl) 0.36 to 0.33; X Q2(mAl) 0.38 to 0.36; X Q2 0.17 to 0.18 for basM-8-CO$_2$ and basM-8-free, respectively. The same applies to the results obtained at 5.0 GPa: the distribution of Q2 species is almost identical in between CO$_2$-free and CO$_2$-bearing (with 5 wt.% CO$_2$) conditions. In the light of these results, it appears that CO$_2$ might have a limited impact on the degree of melt polymerisation. Seifert et al. (2013) ended up to the same suggestion. Based on acoustic measurements, Seifert et al. (2013) showed that the structure of the CO$_2$-bearing glass seems weakly affected by the presence of CO$_2$ dissolved in the silicate glass network.

Using the X Q0 values, we calculated the resulting NBO/Si representative of the degree of polymerisation using the following equation (Eq. (4)) proposed in earlier studies (e.g. Frantz and Mysen, 1995):

$$\text{NBO/Si} = 1 \times \text{XQ}^1 + 2 \times \text{XQ}^2 + 3 \times \text{XQ}^3 + 4 \times \text{XQ}^4.$$

(4)

The calculated NBO/Si does not represent the actual true NBO/T. The true NBO/T can only be approximated owing to the fact that the exact configuration of Al species is unknown. For instance, under hydrated conditions, it is currently assumed that four coordinated Al can adopt q1 and q3 configurations (Zeng et al., 1999, 2000; qn species for Al atoms are indicated with lower case in order to avoid confusion with the Qn species for Si atoms). Moreover, the presence of Al in higher coordination (4Al and 6Al, see Fig. 4), for which the impact on the degree of polymerisation is still poorly constrained (Le Losq et al., 2014), prevents from estimating a true value for the NBO/T. As a result, the use of NBO/Si instead of the NBO/T is preferred.

For FPMD simulations, the NBO/Si was calculated without considering the Si–O–CO$_2$ linkages observed. In other words, a Q2 species connected to a CO$_2$ molecule to form a CO$_2^-$ group through NBO interaction (e.g. NBO–carb. unit, see Section 3.1.3) is still considered as a Q2 species and not as a Q3 species. This is consistent with the fact that CO$_2$ is not considered as a network former.

The resulting NBO/Si values are reported in Fig. 7B for glasses and high temperature melts. The average NBO/Si measured in glasses is on the order of 1.25 which is in total consistency with the theoretical value for the NBO/Si of 1.358 (see Table 1) and also confirms the proposed assignment in Fig. 3B. We observe a clear decrease in the NBO/Si with increasing pressure: from 1.30 at 0.5 GPa to 1.19 at 3.0 GPa and down to 0.80 at 8.0 GPa (basM-8-CO$_2$–2). The NBO/Si trend reported in Fig. 7B also suggests that the degree of polymerisation is slightly different in between the melt and the glass for the studied composition.

At both 8.0 and 5.0 GPa, the determined NBO/Si is almost identical in between CO$_2$-free and CO$_2$-bearing (5 wt.% CO$_2$) simulation conditions. Therefore, the change in high temperature melt polymerisation upon CO$_2$ addition appears undetectable for such a melt composition. This result contrasts with recent works (Mysen, 2012, 2013) which suggested a net polymerisation effect for CO$_2$ molecules dissolved as CO$_2^-$ groups. We suggest that if this effect exists it is relatively reduced though.

4.1.2. Al species and average Al coordination number

Al environments abundances are compiled in Table 2 and are shown in Fig. 8 as a function of experimental pressure. We observe in Fig. 8A that increasing pressure induces an increase in the coordination degree of the Al atoms: 4-coordinated Al atoms decrease, 5- and 6-coordinated Al atoms increase. Those trends in the Al coordination are pursued in the high temperature melt state as seen from FPMD simulation results. Interestingly, the abundance of each Al species is comparable in between the glass and the high temperature melt. As for X Q0, the impact of CO$_2$ on the Al speciation is limited. At 5.0 and 8.0 GPa, the abundances of Al species are almost identical in between CO$_2$-free and CO$_2$-bearing FPMD simulation conditions (see Table 2).

Using the Al environment concentrations obtained by NMR deconvoluted spectra and FPMD simulations, we calculated the average coordination number of Al atoms for the studied composition. The results are shown in Fig. 8B as a function of experimental pressure. Between 0.5 and 3.0 GPa, there is a gradual increase in Al coordination from 4.16 to 4.46. This increase is also suggested by the results obtained from FPMD simulations with an average Al coordination increasing from 4.6 to 4.9 at 5.0 and 8.0 GPa, respectively. This clear increase of Al coordination both in glass and high temperature melt with increasing pressure is currently well-accepted (Allwardt et al., 2005, 2007; Lee, 2010, 2011; Lee et al., 2012). As suspected, 1) the average Al coordination number is comparable in ex-situ glass and in-situ melt and 2) the impact of CO$_2$ on the average Al coordination number is weak.
4.2. Comparison between in-situ melt and ex-situ glass

For CO$_2$-bearing conditions, it was impossible to compare molecular structure at identical intensive conditions (P and T) for glass and high temperature melt; however, we investigate close P conditions with ex-situ and in-situ conditions: up to 3.0 GPa for glass and down to 5.0 GPa for melt. Because, we observe well constrained trends for NBO/Si (Fig. 7B) and average Al coordination number (Fig. 8B), we attempted a linear extrapolation for those parameters for glass and melt up and down to 4.0 GPa, respectively. Those extrapolations are represented by the linear trend in Figs. 7B and 8B.

At 4.0 GPa, the change in the NBO/Si between glass and high temperature melt is 0.15 in NBO/Si unit with a change from 1.15 in glass to 1.00 in melt. This change is on the order of 10% towards a decrease in the degree of polymerisation from in-situ to ex-situ. The change in the average Al coordination between glass and melt at 4.0 GPa is even lower and on the order of 1% change in relative to the value: 0.06 unit between melt (4.55) and glass (4.61).

It should be emphasised that such results can only be applicable to the currently studied composition and might not be extended to other compositions. Nevertheless, it appears possible to extract from the glass, which recorded the aluminosilicate network structure of the melt at Tg, the degree of polymerisation and the average Al coordination prevailing in the high temperature melt by applying a slight correction. In other words, the aluminosilicate network molecular structure in the high temperature melt can be straightforwardly approximated through the determination of the aluminosilicate network molecular structure in the glass which recorded the aluminosilicate network molecular structure of the melt at the glass transition temperature. This result is consistent with the recent work by Malfait et al. (2014) who demonstrated that the structure densification of the melt is preserved in the glass upon quenching. Malfait et al. (2014) showed that this observation holds true for pressure up to 3.5 GPa. In the present work, we might extend this observation to higher pressure and to CO$_2$-bearing aluminosilicate glasses and melts. Furthermore, Sanloup et al. (2013) have shown that the Si coordination in glass and melt is similar in both glass and melt at pressure up 35 GPa.

Although those recent studies (Sanloup et al., 2013; Malfait et al., 2014) comfort our conclusions suggesting that the aluminosilicate network structure recorded in the glass is close to the aluminosilicate network structure recorded in the melt, it is commonly assumed that the molecular structure in the high temperature melt is different from the molecular structure of the equivalent glass owing to the increase in structural disorder with increasing temperature (Dubinsky and Stebbins, 2006). Several hypotheses can be formulated to explain the aluminosilicate network of the glass being very close to its high temperature counterpart. The first hypothesis is that the glass transition temperature is higher than expected and the frozen-in molecular structure is representing a molecular structure close to the high temperature melt one. This hypothesis is unlikely considering that the effective quench rate in piston–cylinder experiments is slow. The second hypothesis is that our FPMD simulations were not fully equilibrated and the apparent equilibrium aluminosilicate network molecular structure recorded in the high temperature melt is biased by the empirical potential used to generate the initial configurations. A third hypothesis, which would need to be verified, is that the presence of CO$_2$ dissolved as CO$_2^-$ groups prevents the rearrangements of the aluminosilicate network molecular structure during the glass transition. In other words, the CO$_2^-$ group dissolution preserves a high aluminosilicate network structural disorder.

The lower NBO/Si in the melt as compared to the NBO/Si in the glass is directly linked to the strong change of X Qn observed between the glass and the high temperature melt. A simple linear extrapolation of the NBO/Si trend in the glass would reach NBO/Si = 1 at a pressure of 7.0 GPa, whereas extrapolation from the high temperature melt values reaches NBO/Si = 1 at 4.0 GPa.

There can then be two origins for the lowering of the NBO/Si ratio. First, NBO oxygen could be consumed by the addition of CO$_2$ molecules, which would be incorporated following the evolution of pressure, because of the higher solubility of CO$_2$ at higher pressure. However, an identical result is found for the CO$_2$ free simulation suggesting that this is not the origin of the low NBO/Si ratio. Second, the total number of bonds involving network-forming atoms increases with increasing intensive conditions. This is clearly supported by the increase of Al coordination both observed experimentally and found in the simulations. The trend obtained from NMR and FPMD is here very much consistent. Hence the increase in the Al coordination is accompanied by an overall decrease of NBO/Si with pressure. However, those changes do not explain the contrasted behaviour observed in the glass and in the high temperature melt.
However, simulation predicts in the melt the presence of higher coordination of Si with \(Q^2 \) species having an abundance of about 6\%. If upon cooling, these spurious configurations are eliminated at the glass transition temperature such that only tetrahedral Si is found in the glass as expected, this would lead to an increase in the number of NBO by about that same amount, 6\% of the Si, within error bars of the observed 15% jump between the glass and melt NBO/Si ratios.

4.3. Carbon dioxide speciation in melt and glass

The first striking observation on carbon dioxide speciation is that the results in the glass and in the high temperature melts show a lack of consistency. Whereas CO\(_{2}\) is absent from the analysed glasses (CO\(_2\) is only present as CO\(_{2}^-\) units), the FPMD simulations obtained at 5.0 and 8.0 GPa clearly identify the presence of CO\(_{2}^{\text{mol}}\) (\(\geq 12\% \)) in the melt at 2073 K.

On the contrary, we observe a good agreement in between the \(^{13}\)C NMR results and the FPMD simulation results for the identified carbonate units. In Fig. 5, we compare \(^{13}\)C NMR spectra obtained on various glass compositions. In their study, Brooker et al. (1999) identified three different types of carbonates in fully polymerised glass compositions such as jadeite: Al-carb.–Al, Si-carb.–Al and Si–carb.–Si located at +165, +160 and +155 ppm, respectively. Those units are network carbonates in a sense that a CO\(_3^2^-\) molecule is linked to one tetrahedra on each side (see Kohn et al., 1991 for details). The network carbonates are present in fully polymerised (jadeite) and slightly depolymerized (phonolite) compositions (Morizet et al., 2002). Additional \(^{13}\)C NMR signatures are observed at higher chemical shift and are attributed to NBO–carb. M\(^{12+}\) units. Those NMR signatures have been reported in previous studies (Brooker et al., 1999; Morizet et al., 2002, 2010) and are often identified in depolymerized compositions as seen in Fig. 5. The nature of the surrounding cation in the NBO–carb. M\(^{12+}\) units is yet to be clarified; however, in Fig. 5, we can see that in Na-rich settings nephelinite exhibits a peak maximum close to +170 ppm whereas Ca- and Mg-rich Ca-melilitite and diopside have a peak maximum between +168 and +169 ppm. Therefore, one can postulate that higher \(^{13}\)C chemical shift (\(~+170\ ppm\) would correspond to NBO–carb. with Na\(^+\) environments; whereas lower \(^{13}\)C chemical shift (\(+168–169\ ppm\) would correspond to NBO–carb. with Ca\(^{2+}\) and/or Mg\(^{2+}\) environments.

In Fig. 5, the peak maximum for bas-G-1.5 glass is situated at the frontier between the network and the NBO carbonate regions at +166 ppm. The tail in the spectrum extends down to +160 ppm suggesting that network carbonates are present in the glass. The nature of the network carbonate is unknown without relevant spectrum deconvolution; however, following the work of Brooker et al. (1999), Al–carb.–Al and Si–carb.–Al might be present in this basaltic glass composition. Additional NBO–carb. M\(^{12+}\) units are also suspected as the carbonate peak extends up to +172 ppm. Because the investigated composition is synthesised in the CaO–MgO–Al\(_2\)O\(_3\)–SiO\(_2\) system, we strongly suggest that NBO–carb. Ca\(^{2+}\) or NBO–carb. Mg\(^{2+}\) is present in the glass. It would also be in agreement with the \(^{13}\)C NMR signature for CO\(_2^-\)-bearing diopside glass shown in Fig. 5. The presence of both network and NBO carbonates units is corroborated by the results obtained with FPMD simulations (see Table 2) which identify Si–carb.–Al and Al–carb.–Al as network carbonates (on the order of 25% at 8.0 GPa) and NBO carbonate units (on the order of 40% at 8.0 GPa).

Although there is a qualitative agreement in terms of CO\(_2^-\) suggestion in between glass and high temperature melt, the presence of CO\(_{2}^{\text{mol}}\) as identified by FPMD simulations suggests that both CO\(_2^-\)-bearing melt and CO\(_2^-\)-bearing glass may not be adequately compared for CO\(_2^\) speciation.

However, FPMD simulations taken as representative of the in-situ high temperature conditions suffer from possible defects. First, we should bear in mind that it relies on density functional theory; and second, the unavoidable small size and short time-scale of the FPMD simulation may constitute a major limitation. If it appears clear that the CO\(_2^\) speciation measured in glasses does not provide a true picture of the CO\(_2^\) speciation in the high temperature melt, it is yet not sure that our apparent equilibrium FPMD results can yet be considered as fully representative of the melt under high temperature in-situ conditions. However, while the limited time-scale in the FPMD simulations makes hard to evaluate the amount of CO\(_{2}^{\text{mol}}\), FPMD simulations also point out with better confidence towards a significant amount of free CO\(_2^-\) clusters with charge compensating cations (15% at 8.0 GPa). It is also possible that the solubility of CO\(_2^\) is not well evaluated from empirical force-field simulations and that the systems investigated here are oversaturated in CO\(_2^\), which is expected to promote the CO\(_{2}^{\text{mol}}\) species since the structure is not able to accommodate for the extra CO\(_2^-\). Should it finally be noted, that this difference between glass and melt could well be connected with the difference in Q\(^2\) speciation, in particular with the presence of five coordinated Si found in the melt simulation. By consuming NBO atoms, these species could make the system more favourable to CO\(_{2}^{\text{mol}}\). Therefore, more solid evidences are required to fully constrain the CO\(_2^\) speciation in the melt under high temperature conditions in particular for basaltic glasses.

5. Future work and concluding remarks

The presented work aimed at comparing the molecular structure in recovered silicate glasses, representing the molecular structure of the melts frozen-in at the glass transition temperature, and the molecular structure determined from first-principles molecular dynamics simulations of melts at high pressure and high temperature conditions. We focussed our efforts on CO\(_2^\)-bearing simple haplo-basaltic composition. Several samples were synthesised at high pressure and the recovered glasses were investigated via spectroscopic method. Molecular dynamics simulations were conducted at higher pressure on the same composition so as to investigate the alumino-silicate molecular network structure in presence of CO\(_2^-\). The main conclusion is that the comparison between the alumino-silicate network molecular structure of the glass and the molecular structure of the high temperature melt from FPMD simulations is possible. In detail, we show that:

- The average Al coordination number determined in the glasses is totally consistent with the average Al coordination observed by FPMD simulations for the high temperature melts: Increasing the pressure induces an increase in the average Al coordination as expected both in the glass and in the high-temperature melt.
- The degree of polymerisation (expressed as the NBO/Si) is compared adequately using both methods. The NBO/Si increases with increasing pressure in agreement with previous works. Although, a complex structural mechanism has to be invoked so as to explain the change in the Si Q\(^4\) abundances in between the low pressure (P \(< 3.0\) GPa) glass structure preserved at 1 GPa and the high pressure (5.0 and 8.0 GPa) melt structure held at 2073 K.
- The configuration of the CO\(_2^-\) environments as suggested by FPMD simulations is also comparable to the CO\(_2^-\) environments observed in glasses: Both network and non-bridging CO\(_2^-\) environments are present in the investigated simplified basaltic composition.

There is a discrepancy concerning CO\(_2^\) speciation. Whereas FPMD simulations do not rule out the existence of CO\(_{2}^{\text{mol}}\) species in the haplo-basaltic melt at high temperature, analysed glasses do not show any evidence of such unit. The difference in CO\(_2^\) speciation between melt and glass was put forward for different composition but has never been documented for basaltic composition. Further experimental investigations are required so as to provide observable proofs of the complex behaviour of the CO\(_2^\) speciation. For instance, in-situ experiments in diamond anvil cell would be extremely useful in deciphering
the CO₂ speciation under high temperature melt conditions for basalt-like compositions.

Acknowledgement

This work was performed using HPC resources from GENCI-CINES/IDRIS (Grants x2013086383 and x2014082309). Special thanks to Ida Di Carlo for helping with the EPMA analyses. The authors are grateful to the ANR agency which financed the current work through the ANR-2010-BLAN-621 “Electro lith”. The authors thank the University of Orléans, the University of Nantes and the CNRS for their access to analytical facilities.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2015.03.021.

References

