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Abstract 

 It is becoming increasingly popular to use phytoremediation methods for the 

reclamation of mine sites containing metal(loid)s. This study aims to assess the 

phytostabilization ability of two willow species (Salix viminalis and Salix purpurea) on 

technosols from a former gold mining site presenting polymetallic contamination (As, Sb and 

Pb). Different reconstituted soils using a mixture of the litter and the technosol collected on 

this previously mined site and a non-contaminated control garden soil were investigated in a 
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laboratory mesocosm. The physico-chemical soil parameters and the total metal(loid)s  

content in pore water were determined. After 45 days of growth, roots, leaves and stems from 

the two willow species were harvested. The biomass, metal(loid) concentrations and the 

mineral mass were determined for the different plant organs. Both Salix species were able to 

develop root systems on the different reconstituted soils and a variable aboveground biomass 

according to the soil composition. As, Sb and Pb accumulated mainly in the Salix rhizosphere. 

S. purpurea was more efficient in accumulating As in the plant’s upper parts than S. viminalis. 

S. viminalis showed an ability to transfer Pb and Sb to its shoots whereas S. purpurea did not 

translocate these elements.  

Keywords: Salix, metal(loid)s, phytoremediation, mining waste, technosols, phytoavailability 

 

Abbreviations: 

G: Garden soil 

T: Technosol 

L: Litter 

PTTE: Potentially Toxic Trace Elements 

SPW: soil pore water 

1. Introduction 

 At the interface with the atmosphere, biosphere, hydrosphere and lithosphere, soil is 

important for the flora, for the fauna and for human activities (concept of "critical zone," 

Brantley et al., 2006). Since the beginning of industrialization in the 19th century, the 

development of human activities has induced soil contamination by metal(loid)s, thereby 
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generating both sanitary and ecotoxicological risks. Mining activities and metal processing 

industry are great concerns, generating potentially toxic trace elements (PTTE) rich-wastes 

(Shu et al., 2001; Schuwirth et al., 2007). In particular, the ore extraction process is 

accompanied by rock extraction which contains mineral phases potentially rich in metals and 

metalloids (Davies 1983). One of the resulting effects is the formation of mining wastes 

stored as tailings. In the case of gold mining, metal extraction is often associated with arsenic-

rich arsenopyrites tailings which can induce potential acid drainage in the environment.  

 The potential transfer of these PTTE to vegetation (phytoavailability) or any 

dispersion in the environment could be limited and better managed. In a context of ecological 

risk assessment of former mining and industrial sites, it is essential to develop knowledge (i) 

of the behavior of metal(loid)s in various abiotic and biotic compartments of contaminated 

technosols, (ii) to define the mechanisms inducing their transfers and their ability to 

bioaccumulate, and in fine (iii) their toxic and ecotoxicological effects at the different 

biological integration levels (Morel, 1997; Hazrat et al., 2013). Mobility is defined as the 

ability for an element to move from a soil compartment to another one (exchangeable forms, 

minerals, oxides / hydroxides, organic molecules) and the bioavailability of an element 

corresponds to its ability to move from the soil compartment to a living organism (Juste, 

1988). Moreover even if the total content of a metal(loid) in a soil is high, its bioavailability 

could be limited. Therefore knowledge of the quantity of metal(loid)s and their physical and 

chemical forms is paramount to understanding the transfer to and the accumulation within 

living species. Many factors can influence the metal(loid)s’ mobility in soil such as pH and 

organic composition and concentration (Bolan et al., 2014). When metal(loid)s are easily 

bioavailable, they can be absorbed by crops and disseminate along the food chain, ultimately 

damaging health by causing mutagenic and carcinogenic effects (Hazrat et al., 2013). 
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 To remediate metal(loid) contaminated technosols, there are several available 

approaches notably physico-chemical or thermal techniques which are difficult to implement, 

expensive and ultimately disrupting for  the ecosystem and soil fertility balance (Hazrat et al., 

2013). In contrast phytoremediation appears to be an environmentally friendly and 

inexpensive alternative technology (Chaney 1983) to reclaim contaminated soils. 

Phytoremediation takes advantage of the specific processes and metabolism of plants. Water 

and chemicals are taken up from soil and soil pore water to leaves by root absorption and leaf 

transpiration (pump function, using solar energy). In addition, root exudates released into the 

soil lead to remobilization of contaminants, allowing them to be phytoextracted or 

phytostabilized (Kidd et al., 2009). Moreover, phytoremediation restores wildlife and can be 

used on a large area and does not require maintenance once implemented, as well as 

enhancing soil fertility (Mench et al., 2009). Its purpose is either to limit metal(loid) 

dispersion into the environment or to allow the extraction of soil contaminants to the above 

ground plant parts (Vangronsveld et al., 2009). An efficient plant for phytoremediation has to 

present: (i) a high biomass production, (ii) a facility for cultivation and (iii) a high ability to 

tolerate, translocate, accumulate metal(loid)s in its biomass or to exclude these elements from 

living organs (Hazrat et al., 2013; Vangronsveld et al., 2009). 

 Currently around 500 plants are known to be metal(loid) hyperaccumulators. For 

example the Brassicaceae family is well known for its ability to tolerate Ni and Zn (Kumar et 

al., 1995; Baker et al., 1992; Van der Ent et al., 2013). However this family presents a low 

biomass production; thus an alternative to overcome this low biomass production is the use of 

woody species which demonstrate a high biomass production and a large capacity to store 

metal(loid)s into the woody organs, this process is called dendroremediation (Gonzalez-Oreja 

et al., 2008). Furthermore, these species are often able to extend their root systems over a 

large volume of soil, which potentially allows a better phytoextraction and/or 
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phytostabilisation. Among these trees, willows (Salix sp) are good candidates (Malá et al., 

2010) because they can be used either in Short Rotation Coppice (SRC) or in Very Short 

Rotation Coppice (VSRC) (Algreen et al. 2013; Karp and Shield, 2008; Ceulemans et al. 

1996) allowing the formation of an important biomass. 

About 450 species of willow have been described (Argus 1997) and among them only 

around ten have been investigated for their phytoremediation ability. In this study we selected 

two species: Salix viminalis and Salix purpurea, which have proved to be efficient in 

accumulating metal(oid)s (Mleczek et al., 2010; Cosio et al., 2006) and have contrasting 

stational requirements. Experiments to assess the tolerance and metal(loid)s distribution in 

willow organs have been mainly made in hydroponic conditions using monometallic stresses 

(Wang and Greger, 2004; Dos Santos Utmazian et al., 2007; Purdy and Smart 2008; 

Zhivotovsky et al., 2010). To be closer to field conditions, it is important to develop 

experimental approaches using real soils collected from contaminated sites. 

The aim of this study was to test the ability of two willow species to develop a root 

system and an aerial biomass on a metal contaminated technosol. We tested the potential 

advantage of an organic amendment to improve phytoremediation process. This work  

focused on using a garden soil as an amendment and also as a control soil. The concentration 

of metal(loid)s was determined for bulk soil and soil pore water, in order to follow their 

bioavailability and thus their potential uptake by willows.  

 This study was conducted on mine technosols highly contaminated with As, Sb and 

Pb. Different soil mixtures were prepared using the technosol mineral horizon and its 

associated litter and a control garden soil. Non rooted cuttings of two willow species (Salix 

viminalis and Salix purpurea) were placed on these reconstructed soils in the laboratory and 

allowed to grow for 45 days. The physico-chemical soil parameters and the total 

concentrations of metal(loid)s in the soil mixtures and in the soil pore water (SPW) were 
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determined. Then, the willow’s biomass was quantified, thereby allowing an assessment of 

the accumulation of metal(loid)s in the different organs. Finally, the phytoremediation 

potential of these two species according to the amendments applied was discussed and 

compared in terms of metal(loid) tolerance. 

 

2. Material and methods 

2.1 Field site and soil sampling 

 Soils used for this study came from a settling basin of a former gold mine, located at 

"La Petite Faye", 60 km north of Limoges, France (GPS coordinates: 01°34'23''E; 

46°08'37''N). The mine has not been in use since 1964 and produced approximately 34,000 

tons of mine wastes that were dumped into a settling basin of about 12,000 sqm, and with a 

depth greater than five meters. The site studied currently has vegetation as described by 

Wanat at al. (2014) consisting mainly of grasses, ferns (Pteridium aquilinum) and giant 

horsetails (Equisetum telmateia). The main PTTE present in soils are As, Pb and Sb (Wanat et 

al., 2013, 2014). Due to the mining process, the site was divided into two areas, depending on 

the granulometry of materials inducing two levels of metal(loid)s content. Our study focused 

on a technosol collected in the least contaminated area, the same used in Qasim and Motelica-

Heino (2014). 

2.2 Preparation of the soil mixtures 

Nine different soil mixtures (Table 1) were prepared using two soil horizons collected in the 

settling basin and a garden soil:  

 Litter (L), the organic substrate above the technosol, between 0 and 5 cm depth, 
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 Technosol (T), the mineral horizon derived from the mining waste from the tailings 

pond, between 5 and 25 cm depth, 

 Garden soil (G), soil collected between 5 and 25 cm deep in the park of Orléans 

University, France, used as a control soil. 

For each reconstituted soil (Table 1), the mixtures were prepared using a volume/volume ratio 

from the different soils tested (L, T and G) to obtain a final volume of 2 liters. Four replicates 

were prepared for each treatment. 

2.3 Plant material 

 Two willow species were studied (Salix viminalis L. and Salix purpurea L.) over a 45-

day period. Experiments were performed using unrooted cuttings that were 15 cm long and 

0.8 cm in diameter. For each repetition, 12 cuttings were used per species. Pots were 

maintained to field capacity daily using tap water. The temperature in the mesocosm was 

maintained at 20 ± 2° C. The day light was set at 16 h per day using photoflood lamps (1000 

μmoles.m
-2

.s
-1

). 

2.4 Physico-chemical parameters and metal(loid)s concentrations of the studied soils 

 Before adding the cuttings to the different soil mixtures to be tested, 50 grams of soil 

samples were taken randomly from each pot (n = 4), dried at 60°C for 72 hours and then 

sieved to obtain a 1 mm diameter maximum particle size. 

 Total metal(loid) concentrations in soils were determined by HR-ICP-MS (Inductively 

Coupled Plasma Mass Spectrometry, Thermo Finnigan Element 2XR, Thermo Scientific, 

Waltham, MA, USA). Previously, two hundred mg of sieved soil were treated using an acid 

mixture (3 ml of 37% hydrochloric acid and 6 ml of nitric acid 65%) and mineralized using a 
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microwave (Multiwave ECO Anton Paar, Graz, Austria). The digested samples were adjusted 

to 50 ml with deionized water and filtered by a HAWP Millipore membrane 0.45µm. 

2.5 Physico-chemical parameters and concentrations of metal(loid)s in the soil pore water 

(SPW).  

 All measurements were carried out before the introduction of cuttings from 20 ml of 

SPW which was sampled from the soils studied using porous plugs rhizons ™ (porosity = 

0.15μm) (Rhizosphere, Wageningen , The Netherlands).  

 The water content of the soils was calculated using the formula: W=
Mw

Ms
, with Mw = 

weight of water in the soil and Ms = dry weight of the soil.  

 pH measurements of the SPW were performed using a pH meter (Cyberscan 500, 

Eutech instruments). 

 Measurements of DOC (dissolved organic carbon) were performed using a DOC 

analyzer (Shimadzu Corporation, Kyoto, Japan). Quantifications of major cations and anions 

were performed by ion chromatography (Columns: CS16 and AS17, and ICS900 ICS1100, 

Dionex, Sunnyvale, CA, USA). The ionic strength was calculated from the data obtained after 

the quantification of major cations and anions. Measurement of total dissolved concentrations 

of metal(loid)s was performed according to the protocol adopted for bulk soils (cf. above 

paragraph) after adding 50 µl of 67% nitric acid to each sample. 

2.6 Biomass and metal(loid)s measurements in willows organs 

 After 45 days of growth on the different tested soils, organs of each plant were 

sampled and separated (leaves, stems and roots formed during the experiment). The samples 

were dried in an oven at 60°C for 72 hours. Dry weights of roots, stems and leaves were 

measured. Dry samples were finely ground (propeller mill, IKA, Staufen, Germany) before 
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mineralization, and metal(loid) concentrations were measured in the different organs, using 

the same protocol as the one used for soil samples. The mineral mass of the different 

metal(loid)s was calculated as follows: 

Mineral mass (μg) = [metal(loid)s] x organ dry matter 

The stocks of metal(loid)s in different parts of S. viminalis and S. purpurea were calculated by 

multiplying metal(loid) concentrations in each compartment by its biomass. Stocks of 

elements in vegetation are expressed in μg per pot. 

 

2.7 Statistic analysis 

  All statistical analyzes were performed with R Version 2.10 (Development 

Core Team, 2009) software. The tests used are non-parametric because of the non-normality 

of the data (tested by the Shapiro-Wilk test). The samples were compared to the control 

condition which corresponded to the garden soil (G). To test the treatment effect (t) and the 

genotype effect (g) on different variables, the Kruskal-Wallis test was used. To test the 

treatment  effect x genotype (txg), the adonis test was used.  

 

3. RESULTS 

The garden soil (G) was used as a reference soil (Control). Results for the different treatments 

were compared to G modality results. 

 

3.1 Physico-chemical properties of constructed soil from soil pore waters (SPW) 

investigations 

 Physico-chemical parameters of the SPW are displayed in Table 2. The water content 

of the garden soil (G) corresponds to 13% whereas for technosol (T) this value was twice as 
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high. For the litter (L) as well as for the different LT mixtures, water contents were three 

times higher than the value of G. The calculated values for the GT mixtures were close to the 

control soil (G). The pH of the garden soil SPW was 7.4 ± 0.1, whereas the Technosol (T) and 

Litter (L) pH were significantly more acidic, with values of 6.9 and 5.6 respectively. The 

addition of 12.5% of garden soil to the technosol (T) and the litter (L) increased the pH to 7.5, 

which makes them significantly equivalent to the values of the garden soil. A higher addition 

of soil garden (25 and 50%) to T and L provided no significant changes in pH, which 

stabilized around 7.5. Finally, for the LT mixtures we observed that the addition of 12.5% of 

Technosol to L did not change the pH compared to L. However the addition of 25 and 50% of 

Technosol increased the SPW pH gradually by 0.6 unit to reach 6.6 for the LT50 mixture 

which stayed significantly lower than G. 

 The Dissolved Organic Carbon concentration (DOC) in the SPW showed no 

significant differences between G and T. However L had a DOC concentration of 74.1 ± 9 

mg.l
-1

, which was about twice as high the values for the T and G soils. Thus the addition of 

litter to the technosol (T) significantly increased the DOC. 

The analysis of concentrations of major cations and anions in the SPW showed a 

higher concentration of K
+
, NO3

-
, SO4

2-
, and PO4

3-
 in the litter (L). For the litter and for these 

four ions, the concentrations were 2.8, 6, 2.4 and 22 times higher than in the control garden 

soil respectively. Ca
2+

, NO2
-
, NO3

-
 and PO4

3-
 concentrations in technosol were lower than the 

one calculated in G. They were 1.9, 68, 22.5 and 12 times lower respectively. 

 The GT mixture had major cation and anion concentrations close to the values 

measured in the soil garden. In contrast the LT mixtures had always K
+
, Mg

2+
, NO3

-
, SO4

2-
, 

and PO4
3 

concentrations higher than for garden soil. 

 

3.2 Metal(loid)s concentrations in the bulk soils and soil pore waters. 
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3.2.1 Metal(loid)s total concentrations in bulk soils 

As, Sb and Pb concentrations in the soil and SPW are shown in Table 3. Total 

metal(loid) concentrations in the garden soil G were 45.5, 0 and 35.1 mg.kg
-1

 for As, Sb and 

Pb respectively. For the technosol T, the concentrations of As and Pb were respectively 35 

times and 6 times higher (1593 and 210 mg.kg
-1

 respectively; Table 3) than those measured 

for the control soil (G). Sb concentration in the technosol was 66.6 mg.kg
-1

 whereas in the 

garden soil no Sb was observed. 

Arsenic concentration in the litter (L) was not significantly different from G. Pb 

concentrations were 10 times lower than those observed in G. However we noted in the litter  

the presence of Sb at low concentration (0.18 mg.kg
-1

). Concentrations measured in the 

reconstituted soils were related to the ratio in the prepared mixtures. 

 

3.2.2 Metal(loid) concentrations in the soil pore water 

For all studied soils, pure (T or L) and mixture (GT or LT), total dissolved Pb 

concentrations in the SPW were not different to those observed in the control soil G (0.088 

μg.L
-1

). As concentrations of litter (L) were about 1000 times higher than those of G. For T, 

this value was 1200 times higher than the one observed for G. For GT12.5, GT25 and GT50 

mixtures, As concentrations were respectively 216, 524 and 970 times higher than for the 

control soil G. For LT mixtures, regardless of the volume of litter, concentrations were about 

2100 times higher than in the garden soil (G). Sb concentrations in SPW of T were 680 times 

higher than those measured in L. Technosol addition to the garden soil at 12.5, 25 and 50% 

induced an increase in Sb concentrations which reached 60.5, 82.5 and 122.1 μg.l
-1

 

respectively. Moreover the addition of technosol to the litter at 12.5, 25 and 50% led to an 

increased in Sb concentration which reached 0.92, 16.1 and 43.7 μg.l
-1

 respectively. 
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3.3 Biomass production 

Figure 1 shows the biomass produced by Salix viminalis and Salix purpurea for the 

different soils tested. S. viminalis (Figure 1A) showed a biomass production on the litter twice 

as high as the biomass of the control plants, while the biomass of the plants grown on the T 

technosol were 3 times lower than that of the G garden soil. S. purpurea biomass production 

on G (Figure 1B) was twice higher than that of S. viminalis (Figure 1A). 

The decrease of biomass observed for S. purpurea on the substrate T was similar to the one 

observed in S. viminalis under the same conditions. In contrast, the growth of S. purpurea on 

the litter decreased by 5 times compared to the plants grown on G, whereas for S. viminalis, 

the litter soil increased the biomass production by 2 fold in comparison to garden soil. GT 

mixtures did not induce any reduction of biomass production in S. purpurea (Figure 1B), 

whereas for S. viminalis, the progressive supply of technosol induced progressive reduction of 

biomass, approximately by a factor 3, for the GT50 mixture (Figure 1A). For the LT mixtures, 

the biomass produced by S. viminalis was the same as that for garden soil, whereas for S. 

purpurea, they were systematically three times lower compared to G. 

 

3.4 Metal(loid)s concentrations in the different organs of the two willow species. 

3.4.1 Arsenic 

Figure 2(A-B) shows the metal(loid) concentrations in the different organs of the two 

willow species which grew on the different soil mixtures. A higher concentration of As, 

whatever the treatment or the species was found in the root system. For S. purpurea (Figure 

2B), T and L soils showed a 10-fold increase in the concentration of As in roots compared to 

G. The GT and LT treatments also showed a significant As increase in roots: 3.5 to 10 times 

compared to G. For S. viminalis (Figure 2A), we observed the same As concentration 
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variation as the one observed for S. purpurea. In S. purpurea (Figure 2B) As concentrations in 

aerial organs of plants growing on GT mixtures showed an increase by three fold compared to 

G. On the contrary, in S. viminalis, As concentration in the upper organs (Figure 2A) did not 

show an increase on GT mixtures compared to G. However, for this species, As concentration 

in the aerial parts was doubled for the all LT soils. Conversely this increase was not observed 

for S. purpurea (Figure 2B). 

 

3.4.2 Antimony 

 For the two Salix species the highest concentrations of Sb were found in the roots 

(Figure 2C-D). The highest concentrations in these organs were obtained for the technosol. 

The concentrations for this element reached 70 mg.kg
-1

 for S. viminalis and 120 mg.kg
-1

 for S. 

purpurea. We did not measure Sb in the aerial parts of S. purpurea (Figure 2D) for any of the 

soil mixtures tested. For both species when grown on T, Sb concentrations in the aerial parts 

reached 2 mg.kg
-1

. Moreover when S. viminalis was placed on GT mixtures the Sb 

concentrations in the aerial parts reached also around 2 mg.kg
-1

. 

 

3.4.3 Lead 

 

 Similarly to observations made for As and Sb and for both species the highest Pb 

concentrations were measured in the root system (Figure 2E-F). Indeed, in S. purpurea 

(Figure 2F), Pb concentrations reached 400 mg.kg
-1 

on T and L, whereas for G the Pb 

concentrations were 27 times lower (15 mg.kg
-1

). For S. viminalis (Figure 2E) and for T and 

L, Pb concentrations in the roots were about 2.8 times lower than for S. purpurea (Figure 2F). 

In S. viminalis and for all treatments Pb concentrations in stems and leaves were between 2 

and 15 mg.kg
-1

. For S. purpurea (Figure 2F) and for all treatments, Pb concentrations in aerial 
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parts were not at detectable levels except for T in which Pb concentration in stems reached 2.5 

mg.kg
-1

. 

 

3.5 Mineral mass and stocks 

3.5.1 Arsenic 

 Mineral mass (Figure 3A) and stocks were calculated to determine the total amount of 

metal(loid)s accumulated in various organs of S. viminalis and S. purpurea. S. viminalis 

generally had a higher amount of As in its roots compared to the shoots whatever the 

treatment. On the contrary, S. purpurea showed a higher amount of As in its shoots than in its 

roots for the GT mixture. Indeed, the amounts of As in the upper organs reached 100 µg for S. 

purpurea, whereas for S. viminalis they did not exceed 30 µg. 

 

3.5.2 Antimony 

 For S. viminalis, the highest calculated Sb mineral mass in leaves were found for the 

GT and T treatments (Figure 3B) and were in the range of 0.2 µg. For S. purpurea, only plants 

placed on the T treatment presented Sb in the upper organs (0.4 µg). The highest amounts of 

Sb were found in roots for this species. 

 

3.5.3 Lead 

 S. purpurea only accumulated Pb in its roots (Figure 3C), up to 12 µg for the T 

technosol. In contrast for S. viminalis, Pb was found in both roots (up to 6 µg on litter) and 

aerial parts (from 0.5 to 2 µg). 
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4. DISCUSSION 

 The presence of anthropogenic metal(loid)s in soils at concentrations that exceed trace 

levels is a concern for the environment and human health. Indeed, the mobility of these PTTE 

within an ecosystem is a risk because of their potential propagation to all trophic levels. To 

prevent metal(loid)s (i) lateral and vertical transfer, (ii) runoff into surface water, (iii) 

infiltration into the groundwater or (iv) export by erosion, the use of willows as a tool for the 

in-situ stabilization of contaminants was investigated in this work. The first goal of this study 

was to characterize soils and SPW of reconstituted technosols from a former mining site. 

These characterizations were used to determine the physico-chemical parameters and PTTE 

concentrations in soil and in SPW in contact with the rhizosphere of the two willow species 

studied (S. viminalis and S. purpurea). In plants metal(loid)s accumulation is associated to 

uptake of metals by roots from the soil pore water. This absorption and accumulation into the 

vacuole is improved by the plant exudation of a class of organic compounds able to enhance 

the bioavailability of metal(loid)s. Whereas the transport across a cellular membrane is 

mediated by proteins with transport functions such as ZIP proteins family before chelation 

and transport into the vacuole for sequestration (Clemens, 2002). 

 

4.1 Characterization of original soils and mixtures 

 Among the different studied soils, L was the substrate which retained the greatest 

amount of water, which was the most acidic and had the highest amount of organic matter and 

nutrients, particularly in terms of nitrogen, phosphate and potassium. In the lower horizon, the 

technosol had a pH close to neutral and the lowest nutrient levels. As expected, nitrate content 

in this soil horizon was under the level observed in the garden soil. Technosols studied 

present low fertility properties. The addition of L to the technosol allowed the increase of the 

nutrient contents of the SPW. Thus, in such conditions the litter addition could contribute to 
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improving Salix growth. Moreover, the litter addition allowed the increase of the water 

content of the technosol from 27% to 47% when no litter or 50% of litter was added 

respectively. This increase of water retention produced by the litter addition is an important 

point considering the necessity for Salix species to grow under moist soil conditions to create 

a greater amount of biomass (Aasamaa et al., 2010; Toillon et al., 2013). The addition of G to 

the technosol allowed the recovery of nutrient contents close to that of G. 

 The metal(loid) concentrations determined in SPW (Table 3) correspond 

approximately to the PTTE concentrations potentially available for the root system, although 

dependent on metal(loid)s speciation. As, Sb and Pb concentrations in SPW were not 

proportional to total measured concentrations in the corresponding soils, and the same results 

have been observed by Qasim and Motelica-Heino (2014). However, metal(loid) mobility in a 

soil and soil pore water is able to change during time, depending on several factors, such as 

pH, water content, mineral and organic content (Bolan et al., 2014). pH is one of the main 

factors affecting the transfer of metal(loid)s from the solid to the liquid phase (Leschber et al., 

1984; Gandois et al., 2010), the availability of metal cations increasing in acidic conditions 

whereas anion availability (e.g. As and Sb) increases when the pH increases (Bolan et al., 

2014). Subsequently for GT mixtures, which had a slightly basic pH (7.5), the highest total 

dissolved concentrations of Sb in SPW was observed (except in technosol). Moreover, in LT 

mixtures Sb concentrations were lower because of the acidity brought by the litter. However 

As concentrations in SPW were higher for the LT mixtures (until 13506.8 µg.L
-1

) compared 

to the technosol (7243 µg.L
-1

). This was due to the acidity of the LT soil produced by the 

addition of L and because of the higher concentrations of organic matter (DOC), probably 

competing with As for sorption sites such as those on iron-oxide surfaces, causing increased 

As mobility (Redman et al., 2002). On the other hand, strong content of soluble P and fulvic 

acids could displace As from organic/inorganic binding sites (Beesley et al., 2010; Businelli et 
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al., 2009; Kunhikrishnan et al., 2012; Wang and Mulligan, 2006). Pb concentration in 

technosol was about 210 mg.kg
-1

, which is within the range of concentrations commonly 

found in the case of strong natural anomalies values (Baize, 1997). However, concentrations 

in SPW for all studied soil mixtures were less than 1.83 μg.l
-1

, a value which was significantly 

lower than the EU Directive 98/83, which tolerates a maximum concentration of this element 

in drinking water at 10 μg.l
-1

 level. We conclude that this element, though present in large 

quantities in the soil, is probably not mobile and does not represent a proven health risk. 

For the LT mixture, the mobility of Sb corresponding to the concentration of this metal(loid) 

in the SPW was lower compared to the technosol and on the other hand As mobility was 

increased by the addition of litter. We can conclude that the addition of amendments in a 

phytoremediation strategy to improve the development of plants can produce different effect 

on metal(loid) bioavailability. Indeed, the contribution of litter when mixed with technosol 

promotes the growth of S. viminalis but at the same time induces a strong release of As in the 

soil pore water.  

 

4.2 Behavior of Salix viminalis and Salix purpurea toward organs PTTE accumulation 

None of the willow plants during the experiment period showed visible signs of toxicity. For 

both Salix species tested, the biomass production dropped on the technosol in comparison to 

the control garden soil. This was probably due to the high content of metal(loid)s in SPW, 

especially As (7243 µg.L
-1

) and Sb (554.71 µg.L
-1

) and the lower content of nutrients. The 

biomass production on litter increased for S. viminalis whereas it decreased for S. purpurea. 

These contrasting observations on the biomass production for these two species are mainly in 

relation to the high nitrate levels observed in litter and are consistent with the results obtained 

by tree producers in nurseries for these two species when growing on a soil containing high 
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nitrate content. Indeed, it is well known that S. viminalis is recommended for planting on rich 

soil whereas S. purpurea is a poor soil species. Indeed, we observed for GT mixtures that S. 

purpurea was better at dealing with lower nitrate concentrations in SPW even with an 

increase of metal(loid) elements concentration. In contrast, for S. viminalis, a decrease in 

biomass production was observed in the GT mixtures with a higher amount of technosol. This 

is likely to be related to a decrease of nitrate concentrations in the SPW, and an increase in the 

concentration of metal(loid) elements. On the LT mixture, S. viminalis was able to produce 

the same biomass as on garden soil G thanks to high level of nutrients brought by litter while 

As concentration in SPW was higher. Though As concentration measured on SPW was very 

high (until 13506.8 µg.L
-1

), As could be chelated by fulvic and humic acids, which could 

reduce the toxic effects of As on the plants (Saada et al., 2003; Redman et al., 2002). 

Although, humic acid (HA) and fulvic acid (FA) have mainly negative charges, they have a 

few positively charged functional groups, such as sulfhydryl and amine, which form the 

oxyanions -OM complexes (Saada et al., 2003). Moreover, As can be associated with FA and 

HA by metal cation bridges (Redman et al., 2002). 

These results are in agreement with data from previous literature (Sander and Ericsson, 1998; 

Meers et al., 2007; Otones et al., 2011), indeed S. viminalis and S. purpurea both accumulate 

significant amounts of As in roots and in the aerial parts. For several species of willow, 

including hybrid S. viminalis x S. miyabeana, it was shown that As accumulation was higher 

in plants growing on a soil with high phosphorus concentrations (Puckett et al., 2012; Purdy 

and Smart, 2008). In our case, on the LT mixture, which has the highest concentrations of 

phosphorous (provided by the litter, Table 2), we observed the highest As accumulations in all 

the organs for S. viminalis. However, the same result was not observed for S. purpurea on LT 

mixture. Therefore levels of available phosphate have different effects depending on the 

species. Indeed, Puckett et al., (2012) showed that the increase of As accumulation in hybrids 
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of S. viminalis was linked to an overexpression of the phosphate transporter (PHT), which 

also supports As. For GT mixtures, which are the easiest to implement in in situ revegetation 

strategies, S. purpurea, presents a greater accumulation of As without loss of biomass. 

Conversely, a drop in the biomass production and a lower accumulation of arsenic were noted 

for S. viminalis. For S. purpurea, Pb and Sb were detected only in the root system, whatever 

the soil treatment. Consequently, S. purpurea could be considered as an excluder for these 

two elements. Conversely, S. viminalis transferred some Pb and Sb to its aerial parts, and 

therefore allows them to be extracted. These results had already been shown for Pb during 

experiments in hydroponics with S. viminalis (Zhivotovsky et al., 2010). However for Sb 

previous literature had no data about the phytoremediation ability of willow species in real 

conditions as far as we know. 

 

5. CONCLUSION 

 Despite high concentrations of metal(loid)s in technosol notably As, both willow 

species tested were able to develop a root system and aboveground biomass. However, we 

note that only S. purpurea is really efficient in terms of vegetalization of the mining site when 

comparing the biomass produced in the mixture control garden soil and technosol (GT) 

compared to the control garden soil. In addition, this species showed a strong accumulation of 

As, which was four times higher than that observed for S. viminalis. However, given 

metal(loid) concentrations measured on the site, using an SRC, thousands of years would be 

necessary to extract all the metal(loid)s present in this technosol. Given the biomass 

production of Salix purpurea on the GT mixture and its high accumulation of metal(loid)s in 

its root systems this species can be used as a successful phytostabilization plant in such 

situations.   
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Fig. 1. Biomass (dry weigth) of the different organs (    leaves,     stems,     roots) of S. 

viminalis (A) and S. purpurea (B) after 45 days of growth on the different soils, (n=12, ± SE). 

t= treatment effect, g= genotype effect, (gxt)= genotype x treatment effect. Significantly 

different values by comparison with the garden soil (G), * p <0.05; ** p <0.01; *** p <0.001. 
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Fig. 2. Concentration of metal(loid)s (A and B = As, C and D= Sb, E and F = Pb) in the 

different organs (    leaves,     stems,     roots) of the two willow species (A, C and E= Salix 

viminalis. B, D and F= Salix purpurea) after 45 days of growth on the different soils, (n=4, ± 

SE). t= treatment effect, g= genotype effect, (gxt)= genotype x treatment effect. Significantly 

different values by comparison with the garden soil (G), * p <0.05; ** p <0.01; *** p <0.001. 
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Fig. 3. Mineralomass of metal(loid)s (A and B= As, C and D= Sb, E and F= Pb) in the 

different organs (    leaves,     stems,    roots) of the two willow species (A, C and E = Salix 

viminalis. B, D and F= Salix purpurea) after 45 days of growth on the different soils, (n=4, ± 

SE). t= treatment effect, g= genotype effect, (gxt)= genotype x treatment effect. Significantly 

different values by comparison with the garden soil (G), * p <0.05; ** p <0.01; *** p <0.001. 
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Table 1

Code % garden soil % technosol % litter

G 100

T 100

L 100

GT12.5 87.5 12.5

GT25 75 25

GT50 50 50

LT12.5 12.5 87.5

LT25 25 75

LT50 50 50

Codes and volumes (%) of the different reconstructed

soils. L = litter, T = technosol, and G = garden soil. Final

volume = 2 Liters.



 

 

 

  

Table 2

G T L GT12.5 GT25 GT50 LT12.5 LT25 LT50

w (t***) 13 ± 7 27 ± 0.7* 43 ± 3* 14 ± 0.4 16 ± 0.6 18 ± 0.6* 47 ± 6* 42 ± 2* 39 ± 2*

pH (t***) 7.36 ± 0.11 6.91 ± 0.07* 5.6 ± 0.02* 7.59 ± 0.03 7.57 ± 0.02 7.5 ± 0.03 5.44 ± 0.02* 6.03 ± 0.04* 6.59 ± 0.1*

DOC (t***) 42.59 ± 3.12 33.39 ± 6.66 74.1 ± 9* 31.61 ± 2.08* 45.01 ± 5.61 39.52 ± 7.61 61.23 ± 3.68* 55.79 ± 2.07* 47.8 ± 4.42

Cations

Na+ (t*) 31.7 ± 4.92 21.55 ± 2.42 32.69 ± 7.11 26.83 ± 4.12 26.66 ± 2.7 23.07 ± 1.19 40.67 ± 1.97 37.12 ± 3.48 29.81 ± 0.09

K+ (t***) 17.25 ± 1.46 26.33 ± 1.78* 47.58 ± 8.55* 16.15 ± 2.18 20.23 ± 1.94 23.4 ± 0.35* 130.72 ± 3.66* 112.84 ± 12.57* 85.51 ± 9.65*

NH4
+ (t**) 0.87 ± 0.32 1.79 ± 0.14 1.34 ± 1.03 1.44 ± 0.15 1.67 ± 0.38 1.78 ± 0.06* 0.3 ± 0.15 0.49 ± 0.2 0.61 ± 0.13

Mg2+ (t***) 20.26 ± 1.74 15.92 ± 1.68 27.92 ± 3.45 19.56 ± 1.23 20.40 ± 2.24 17.51 ± 0.27 45.86 ± 0.82* 38.05 ± 4.62* 32.63 ± 3.87*

Ca2+ (t***) 125.23 ± 13.39 66.35 ± 8.53* 133.16 ± 3.95 116.83 ± 8.97 109.07 ± 13.09 83.9 ± 2.19* 224.86 ± 25.17* 110.9 ± 5.55 91.83 ± 3.43

Anions

Cl- (t*) 95.58 ± 22.84 64.85 ± 3.76 60.67 ± 5.82 68.89 ± 11.45 68.7 ± 3.87 64.51 ± 5.48 80.24 ± 2.84 80.67 ± 5.21 66.94 ± 2.68

NO2
- (t***) 4.75 ± 1.52 0.07 ± 0.02* 0* 1.03 ± 0.18* 0.75 ± 0.28 0.48 ± 0.13* 0* 0.1 ± 0.02 0.09 ± 0

NO3
- (t***) 69.27 ± 27.88 3.07 ± 0.71* 416.92 ± 27.36* 9.14 ± 2.14* 10.77 ± 4.86 10.09 ± 3.35* 584.75 ± 37.95* 336.58 ± 24.95* 218.1 ± 33.89*

SO4
2- (t***) 35.83 ± 6.98 38.26 ± 3.01 84.59 ± 7.17* 27.01 ± 1.48 42.21 ± 5.64 35.89 ± 3.03 193.23 ± 5.12* 137.35 ± 7.97* 114.25 ± 2.66*

PO4
3- (t***) 2.09 ± 0.37 0.17 ± 0.04* 46.35 ± 25.2* 1.65 ± 0.2 1.54 ± 0.13 0.86 ± 0.09* 27.73 ± 1.05* 14.52 ± 0.55* 5.23 ± 5.67*

Physico-chemical  parameters of the different soil pore water solutions (n=4, ± SE).  W = water content of soil mass (%), pH,  DOC= Dissolved Organic Carbon (mg.l -

1) , major cations and anions (mg.l -1). Significant difference with garden soil (G) at level * p<0.05; ** p<0.01; ***p<0.001. t = treatment effect.



 

 

Table 3

G T L GT12.5 GT25 GT50 LT12.5 LT25 LT50

[As] (t***) 45.5 ± 18.1 1593 ± 280.3** 24.6 ± 14.5 212.4 ± 59.4 440.9 ± 18.8* 561 ± 32.4*** 949.3 ± 39.7** 1119.7 ± 46.8*** 1436.1 ± 130.6**

[As]spw (t***) 5.9 ± 0.9 7243 ± 1785* 5431 ± 2334.1* 1279.4 ± 143.6* 3093.3 ± 600.9* 5719 ± 1044.9* 13506.8 ± 737.1* 13780.1 ± 752.3* 10298.9 ± 809.5*

[Sb] (t***) 0 66.57 ± 1.45** 0.18 ± 0.004** 15.33 ± 3.82** 25.22 ± 2.05** 34.92 ± 1.99** 46.47 ± 2.53** 62.05 ± 2.14** 83.04 ± 2.53*

[Sb]spw (t***) 0 554.71 ± 88.15* 0.81 ± 0.81 60.51 ± 16.94* 82.56 ± 37.48 122.16 ± 25.05* 0.92 ± 0.55 16.1 ± 2.26* 43.7 ± 6.52*

[Pb] (t***) 35.1 ± 3.3 210.6 ± 45.5* 3.6 ± 0.8** 80 ± 20.9 101.2 ± 5.7* 109.9 ± 5.9* 169 ± 4.6* 199.1 ± 7.2** 221 ± 27.9**

[Pb]spw (tns) 0.088 ± 0.084 1.17 ± 0.39 1.67 ± 0.28 0.23 ± 0.14 0.32 ± 0.15 0.79 ± 0.2 1.8 ± 0.75 1.4 ± 0.59 1.83 ± 1.45

Total concentrations of metal(loid)s in soils ( mg.kg-1), n = 4 ± SE and total dissolved concentrations of metal(loid)s in the soil pore water (spw), (µg.l -1), n = 4 ± SE. Significant 

difference with garden soil (G) at level * p<0.05; ** p<0.01; ***p<0.001. t = treatment effect. ns = no significant.


