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Abstract. A realistic circulation model of the North At-

lantic ocean at 0.25◦ resolution (NATL025 NEMO config-

uration) has been adapted to explicitly simulate model un-

certainties. This is achieved by introducing stochastic pertur-

bations in the equation of state to represent the effect of un-

resolved scales on the model dynamics. The main motivation

for this work is to develop ensemble data assimilation meth-

ods, assimilating altimetric data from past missions Jason-1

and Envisat. The assimilation experiment is designed to pro-

vide a description of the uncertainty associated with the Gulf

Stream circulation for years 2005/2006, focusing on frontal

regions which are predominantly affected by unresolved dy-

namical scales. An ensemble based on such stochastic per-

turbations is first produced and evaluated using along-track

altimetry observations. Then each ensemble member is up-

dated by a square root algorithm based on the SEEK (singu-

lar evolutive extended Kalman) filter (Brasseur and Verron,

2006). These three elements – stochastic parameterization,

ensemble simulation and 4-D observation operator – are then

used together to perform a 4-D analysis of along-track al-

timetry over 10-day windows. Finally, the results of this ex-

periment are objectively evaluated using the standard prob-

abilistic approach developed for meteorological applications

(Toth et al., 2003; Candille et al., 2007).

The results show that the free ensemble – before starting

the assimilation process – correctly reproduces the statisti-

cal variability over the Gulf Stream area: the system is then

pretty reliable but not informative (null probabilistic resolu-

tion). Updating the free ensemble with altimetric data leads

to a better reliability with an information gain of around 30 %

(for 10-day forecasts of the SSH variable). Diagnoses on

fully independent data (i.e. data that are not assimilated, like

temperature and salinity profiles) provide more contrasted re-

sults when the free and updated ensembles are compared.

1 Introduction

One of the challenges in ocean data assimilation is to faith-

fully describe the uncertainty of the ocean state estimates us-

ing observations and models. Another challenge is to deal

with a wide range of spatial and temporal scales (Haines,

2010). On the one hand, the models cannot resolve all the

small scales that may have a significant impact on the larger

scales in the ocean circulation. On the other hand, this com-

plex system is sparsely constrained – in space and time – by

the observations network, e.g. the spatial observation only

monitors the surface of the ocean. This situation results in

a very partial description of the chaotic processes character-

izing the ocean circulation. These conditions tend to invali-

date the theoretical assumptions of linearity and Gaussianity

(Nichols, 2010) on which classic data assimilation methods

(Talagrand, 2010; Kalnay, 2010) are based on. To improve

the efficiency of data assimilation in geophysics, ensemble-

based methods have been developed (e.g. Evensen, 1994;

Burgers et al., 1998; Evensen, 2003). Ensemble methods are

designed to describe the evolution of the probability density

function (pdf) of the ocean and thus provide a useful way to

represent the uncertainties associated with complex systems.

These uncertainties mainly come from the unresolved scales

by the model, and from the interactions between the model

and the external forcings (e.g. the atmospheric forcing). To
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account for these uncertainties, the model cannot be consid-

ered as deterministic and must be transformed into a proba-

bilistic model. To be more explicit, let us denote A the space

of the scales resolved by the model and B the space of all the

unresolved scales and all the interactions between the model

and the external forcings. The probabilistic approach allows

objective comparisons between the model (in A) and the ob-

servations (in A∪B) by providing sufficient conditions to

invalidate the model. This approach also considers the model

as a weak constraint to data assimilation problems by includ-

ing the explicit description of model uncertainties.

Stochastic parameterizations are one of the most conve-

nient ways to explicitly introduce the uncertainties in the

models. This approach has been commonly used for 15 years

in weather ensemble forecasting (Buizza et al., 1999) as

well as in other atmospheric fields (Palmer et al., 2005). In

oceanography, the models are still usually considered as de-

terministic and the stochastic/probabilistic approach is pretty

new in this domain (Brusdal et al., 2003; Sakov et al., 2012;

Kitsios et al., 2013; Porta Mana and Zanna, 2014; Yan et al.,

2014). A previous study on a realistic model (Brankart, 2013)

shows that the explicit stochastic parameterization of the un-

resolved scales in the computation of the equation of state

has a clear impact on the larger dynamical circulation scales.

Following the results from Brankart (2013), the current

study relies on the stochastic parameterization of the equa-

tion of state to perform an ensemble simulation and to design

a data assimilation system based on altimetric observations.

The main goal of this experiment is to provide a characteri-

zation of the uncertainty associated with the eddy dynamics

observed in the Gulf Stream area (North Atlantic basin). The

use of altimetric data for that purpose is motivated by the

positive impact on the description of the oceanic circulation

obtained by integrating altimetric data (like Jason-1 along-

track data) into a deterministic assimilation process with a

previous SEEK filter (e.g. Verron et al., 1999; Testut et al.,

2003). However, the new feature here is the probabilistic as-

pect of the experiment, which is central to this paper. As al-

ready mentioned, considering an ensemble can be an efficient

way to describe uncertainties related to the ocean circulation.

But to extract useful information from this ensemble, val-

idation must also be performed in a probabilistic way. For

that purpose the reliability and resolution properties are in-

troduced, following the approach developed in the meteoro-

logical community (e.g. Toth et al., 2003). This will enable

objective comparisons between the ensemble simulation and

observations.

Section 2 describes the realistic oceanic model configu-

ration as well as the design of the stochastic perturbations

used to build the ensemble. Preliminary qualitative diagnos-

tics of the ensemble are also presented in this section. Sec-

tion 3 introduces probabilistic validation concepts and prob-

abilistic measures – also called scores. At this stage, first ob-

jective comparisons are performed between the model and

the observations, and the uncertainty is quantified. Section 4

presents the ensemble 4-D assimilation scheme using the al-

timetric along-track data from Jason-1 and Envisat satellites,

and shows probabilistic evaluation of the assimilation pro-

cess. Finally, some concluding remarks and discussions are

presented in Sect. 5.

2 Model configuration and ensemble simulation

2.1 Model configuration

For this study, we need a model able to reproduce the eddy

dynamics in a realistic context that can be observed by the

altimetric measurements. Moreover, the model computer cost

must be tractable to enable ensemble experiments.

The realistic model used for this experiment is the North

Atlantic DRAKKAR configuration of NEMO (Nucleus for

European Modelling of the Ocean) version 3.4 (called

NATL025, Barnier et al., 2006). This model has a free sur-

face formulation and the prognostic variables are tempera-

ture, salinity, zonal and meridional velocities, and sea sur-

face height. The model domain covers the North Atlantic

Basin from 20◦ S to 80◦ N and from 98◦W to 23◦ E. The

horizontal resolution is 0.25◦, which is considered as eddy-

permitting in the mid-latitudes where the Rossby radius of

deformation is about 50 km. Lateral mixing of momentum

and tracers is modelled with a biharmonic operator. Verti-

cal mixing is modelled by the TKE (turbulence kinetic en-

ergy) turbulence closure scheme, and convection is param-

eterized with enhanced diffusivity and viscosity. The forc-

ing fluxes are calculated through bulk formulations, using

the ERA40 atmospheric forcing fields (Uppala et al., 2005).

Buffer zones are defined at the southern, northern and east-

ern boundaries (which are closed), with restoring to Levitus

climatology (Levitus et al., 1998).

The presented study covers years 2005/2006 (when two

altimetric satellites, in situ observations and external forc-

ings are simultaneously available) and is mainly focused

on the description of the Gulf Stream dynamics. For com-

parisons against observations and for assimilation process,

the NEMO_OBS module (Bouttier et al., 2012; Lea et al.,

2012) is used to compute the model equivalent at observa-

tion time and location. Actually, NEMO_OBS projects – by

linear interpolations – the model outputs into the observation

space at the exact observation time and location. The obser-

vations are the Argo profiles (temperature and salinity vari-

ables, hereafter denoted T/S) provided by the UK-MetOffice

(Ingleby and Huddleston, 2007) and the along-track altimet-

ric data from Jason-1 and Envisat satellites (produced by

Ssalto/Duacs and distributed by AVISO, with support from

CNES). In order to get comparable data between the SLA

(sea level anomalies) observations provided by the satellites

and the SSH (sea surface height) model output, NEMO_OBS

removes the 7-year mean sea surface – averaged from 2002 to

2008 – computed using one integration of the stochastic ver-
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sion of the model simulation (see next Sect. 2.2). In the fol-

lowing, SSH denotes both SLA observations and SSH model

outputs which are both anomalies computed with their own

mean sea level.

2.2 Model uncertainties

Before building a NATL025-based ensemble required for

data assimilation, we have to wonder how to represent the

uncertainties in the model and how to simulate the impacts

of the unresolved small scales on the larger-scale circulation.

Brankart, 2013, has shown that the unresolved scales in the

nonlinear seawater equation of state represent a major source

of uncertainties in the computation of the large-scale hori-

zontal density gradient (from T/S large scale fields), and the

impact of these uncertainties can be simulated by random

processes representing unresolved T/S fluctuations.

Following these conclusions, the NATL025-based ensem-

ble is built by introducing stochastic perturbations in the

equation of state. In practice, a single nonperturbed integra-

tion is first performed from Levitus (1998) to 1 January 2005

to spin up the model state. Then a 96-member ensemble of

perturbed simulations is run for 6 months with the following

stochastic formulation of the equation of state:

ρ =
1

2

{
ρ
[
T +1T,S+1S,po(z)

]
(1)

+ρ[T −1T,S−1S,po(z)]
}
,

where po(z) is the reference pressure depending on the

depth, and 1T and 1S are a set of T/S perturbations de-

fined as the scalar product of the respective local T/S gradi-

ents with random walks ξ :

1T = ξ · ∇T and 1S = ξ · ∇S, (2)

ξ are produced by first-order autoregressive processes (AR-

1) with a 10-day decorrelation timescale, and horizontal and

vertical standard deviations σs equal to 1.4 and 0.7 grid

points, respectively. ξ are uncorrelated over the horizontal

and fully correlated along the vertical. These stochastic pa-

rameters are chosen to produce an ensemble spread that is

large enough for our purpose while keeping the model nu-

merically stable. Nevertheless, in order to avoid numerical

instabilities, limiting factors are introduced (1.5 σs) on the

perturbations and the time step of the stochastic model is di-

vided by 4 compared to the time step of the classical model

(600 s instead of 2400 s). Such an ensemble is thus built to

spread mostly over areas with strong gradients and where

the equation of state is strongly nonlinear, for instance in

the Gulf Stream area. In practice, the ensemble simulation is

performed on a massively parallel computer, which enables

to produce a relatively large ensemble within a reasonable

clock time. The size of the ensemble (96 members) is chosen

in order to satisfy several factors. Without considering the

numerical cost, the larger the size of the ensemble, the more

accurate the descriptions of the pdfs and the covariance ma-

trices. The ensemble size is then a compromise between the

numerical constraints and the accuracy of the pdfs and co-

variance matrices associated with the ensemble. Moreover,

we also have to take into account the saturation – depend-

ing on the ensemble size – of the probabilistic measures (see

Sect. 3) with which the ensemble is evaluated.

These perturbations are designed to represent the major

part of the uncertainties on the large-scale horizontal density

gradient. We thus expect an impact on the mesoscale circu-

lation that is observable by altimetric data. But we cannot

reasonably expect that these perturbations can simulate all

kinds of uncertainties that significantly influence the thermo-

haline circulation of the North Atlantic. This ensemble is de-

signed to well-describe the mesoscale circulation with alti-

metric data, not to compensate for any model deficiencies in

the description of the thermohaline structure of the ocean.

We now present a qualitative description of the 96-member

ensemble running for 6 months (without any assimilation

process). Figure 1 shows the variability of the dynamical

fields (SSH) depending on the stochastic perturbations (only

6 members are shown here). This figure illustrates that the

large-scale patterns are similar in all members, but every

member presents a different eddy pattern: as expected, the

largest variability of the ensemble is mostly located around

the Gulf Stream front. Note that the introduction of the

stochastic perturbations can produce gravity waves as ob-

served on the right bottom panel.

Figure 2 summarizes the ensemble spread observed in

Fig. 1 by showing the standard deviation after 6 months of

growing stochastic perturbations: as expected, the ensemble

spread is larger in the most active areas, especially around

the Gulf Stream front.

Figure 2 also shows the verification areas and local points

we used for the diagnostics in the rest of the paper. The main

verification area (colour hexagon) focuses around the Gulf

Stream. Most of the subtropical gyre is removed from the

verification area because ensembles have almost no spread

there and very weak altimetric signals are observed (com-

pared to the signals in the Gulf Stream area). A smaller

area is defined in the eastern Gulf Stream region (poly-

gon Z) where the free-run ensemble spread is the largest

after 6 months of integration. Finally, two points are se-

lected to illustrate local diagnostics: A = 291.5◦ E, 35.5◦ N

and B = 321.25◦ E, 45.5◦ N.

Local examples (points A and B) of time series of the en-

semble spreads are shown in Fig. 6 (cyan curves) in next

section. On that figure we mainly see differences in ampli-

tudes and saturation times between the two locations: large

spread and fast saturation in A, and smaller spread and slower

saturation in B. Globally, the ensemble spread saturation

over the whole Gulf Stream area is not really reached after

6 months. Nevertheless, the free run has been stopped be-

cause the global amplitude of the standard deviation is of the

same order of magnitude as the unbiased RMSE (root mean

www.ocean-sci.net/11/425/2015/ Ocean Sci., 11, 425–438, 2015
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Figure 1. Six members from the free-run 96-member ensemble SSH (in m); snapshots for 9 July 2005.

Figure 2. SSH standard deviation (in m) for 9 July 2005. The figure

also shows the verification area (in colour) used for the numerical

diagnostics together with the smaller focus area Z. Points A and B

are particular locations used for diagnostics discussed elsewhere in

the paper.

square error; not shown) between the ensemble mean and

the GLORYS2V1 reanalysis. The GLORYS2V1 reanalysis

is produced for the 1992–2009 period with NEMO global

configuration at 0.25◦, assimilating the T/S profiles, sea

surface temperature (SST) and along-track SSH data (Ferry

et al., 2012). This provides an estimation of the true state of

the oceanic circulation that can be directly compared to the

NATL025 outputs. In this way, we obtain a first estimation

of the (stochastic) model error (ensemble mean against re-

analysis) that is approximatively equal to the ensemble stan-

dard deviation after 6 months of simulation. For instance, av-

eraged over the eastern Gulf Stream region (polygon Z on

Fig. 7) and the sixth month of the integration, the model er-

ror is equal to 0.17 m and the standard deviation to 0.16 m.

Now, the impact of the stochastic perturbations on 3-D

variables – T/S profiles – is investigated. Figure 3 shows

an example of ensemble profiles at locations A and B. As

expected, a larger spread is observed at location A, as com-

pared to location B. In all cases, the spread decreases with

depth and becomes negligible below 1000 m depth. More-

over, the spread on T and S mostly corresponds to a lifting

and lowering of the water column which is certainly appro-

priate to assimilate altimetric observations in eddy active re-

gions (Cooper and Haines, 1996). As a result, we can also an-

ticipate that this ensemble is not appropriate to control other

features of the vertical structure of the ocean.

To conclude this section, it is important to stress that such

an ensemble simulation contains a lot of useful information

about the model dynamics. Many other diagnostics could di-

rectly benefit from a probabilistic point of view, as for in-

stance the local fluxes through the main straits, the local

mixed layer depth, and the meridional overturning circula-

tion. This is however out of the scope of this overview which

aims at introducing the ensemble assimilation experiment.

More important to us is the comparison between this ensem-

ble simulation and the real-world observations (as provided

by Jason-1, Envisat satellites and Argo floats). The purpose

of the next section is thus to provide a quantitative probabilis-

tic evaluation of the ensemble against these observations.

3 Ensemble validation

3.1 Probabilistic concepts

The ensemble evaluation issues are well-known and refer-

enced in other communities like atmospheric sciences and

meteorology (e.g. Toth et al., 2003), but are quite new in the

Ocean Sci., 11, 425–438, 2015 www.ocean-sci.net/11/425/2015/
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(A): 291.5E 35.5N

(B): 321.25E 45.5N

Figure 3. Local profiles, 96-member ensemble for temperature (left

column) and salinity (right column), 9 July 2005.

field of oceanography. This subsection first introduces the ba-

sic concepts of probabilistic validation.

The main concern here is to introduce the specific crite-

ria for evaluating the quality of a probabilistic system. Let

us consider the following statement produced by an example

of probabilistic system: “there is 30 % probability that the

Northern Sea Route is free of ice”. Assuming the event “free

of ice” is unambiguously defined, neither its observed occur-

rence nor its nonoccurrence can be legitimately used to vali-

date or invalidate the produced ensemble. Unlike a determin-

istic system, the validation of a probabilistic system cannot

be performed over a single case (or realization). One must

use a statistical approach, based on a sufficiently large set of

realizations. Meaning this validation requires an aggregation

of a large set of independent realizations of the considered

process. After accumulating independent realizations of the

probabilistic system, two probabilistic properties (attributes)

can be measured: the reliability and the resolution.

In the example cited above, one has to wait until the 30 %

probability is produced by the system a number of times.

Then one can first check the proportion of actual observed

occurrences of “free of ice”. If that proportion is equal or

close to 30 %, the probabilistic system can be considered as

statistically consistent. If, on the contrary, that proportion is

significantly different from 30 %, the system is statistically

inconsistent. One condition for the validity of a probabilistic

system is therefore the statistical consistency between pro-

duced probabilities and observed frequencies of occurrence

of the event under consideration. This property of statisti-

cal consistency is called reliability. More generally, the reli-

ability is the system’s ability in producing pdfs in agreement

with the associated observed pdf, i.e. the distribution of the

observed variable when a given pdf is produced.

The reliability attribute is a necessary condition to have a

skillful probabilistic system, but it is not a sufficient prop-

erty. Actually, every system can be calibrated, i.e. it can be

transformed into a reliable system by replacing the produced

pdfs by the associated observed pdfs over a given verifica-

tion set, and by applying this correction to the pdfs produced

by the system over the subsequent verification set (under sta-

tionary assumption of the system). Also, if one knows the

climatological distribution of the observed variables over a

given verification data set, a system producing this distribu-

tion for each realization of the verification data set would be

obviously reliable but it would provide no other useful infor-

mation than the climatology (no need to integrate a complex

numerical model to obtain this result). Here, the term “cli-

matology” refers to either the distribution of the observations

accumulated over a long past period or the distribution of the

observations associated with the considered verification data

set (in practice, the climatology often refers to the second op-

tion). For instance, one knows the climatological frequency

of an ice-free Northern Sea Route is 2 months a year (occur-

rence ≈ 16 %). If a probabilistic system produces the 16 %

probability every day, it is reliable if one can evaluate its per-

formance over a year, but it cannot provide any information

about the seasonal (for instance) variability of that probabil-

ity of occurrence. In other words, a climatological system

would be perfectly reliable without providing any additional

useful information. To determine if one has a skillful proba-

bilistic system, another attribute is then needed.

The resolution is the system’s ability to discriminate the

distinct observed situations; this property is closely related

to the information content and the entropy (e.g. Roulston and

Smith, 2002). If the system is reliable, the resolution is also

referred to as the sharpness which measures the spread of the

produced pdfs. The resolution can then be seen as the spread

of the associated observed pdfs. The sharper the associated

observed pdfs compared to the climatological pdf, the better

the resolution. In other words, the resolution is the additional

information, compared to the climatology, that can be poten-

tially extracted from the probabilistic system.

In summary, a skillful probabilistic system must satisfy

both reliability and resolution criteria.

3.2 Practical probabilistic validation

Before introducing the different scores used to evaluate the

reliability and the resolution, we briefly describe the way the

probabilistic systems are validated in practice.

www.ocean-sci.net/11/425/2015/ Ocean Sci., 11, 425–438, 2015
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Figure 4. SSH Jason-1 tracks, local rank of the observations over 10-day Jason-1 cycle from 29 June to 9 July 2005 (left panel) and rank

histogram over the Gulf Stream verification area (right panel).

As mentioned in the previous section, the validation of a

probabilistic system must be statistically performed by accu-

mulating large enough independent realizations of this sys-

tem. For instance, in the following, the monthly diagnostics

are computed by aggregating the data – for each variable –

over the whole month and the chosen area for the same di-

agnosis. In this case, the climatology is the distribution of

the available observations over this month and this area. This

could lead to a meaningless diagnosis if the aggregated data

are too heterogeneous over the chosen period and/or region.

To evaluate the same probabilistic system, considering one

verification data set or two separate sub-data sets could lead

to very different conclusions in terms of reliability due to

possible bias compensations, and in terms of resolution due

to different climatological distributions (Hamill and Juras,

2006; Candille et al., 2007).

3.3 Probabilistic scores

We first check the reliability of the ensemble described in

Sect. 3.1 by introducing the rank histogram (Anderson, 1996)

and the reduced centred random variable (RCRV; Candille

et al., 2007). Let us consider that the simulated pdf is rep-

resented by an ensemble of size N . For each realization of

the system, the N ensemble members are ranked in increas-

ing order, thereby defining N + 1 intervals (or bins). Then

we compute the rank of the verification (observation) within

these bins, and the rank histogram is built by accumulation

over all available realizations – assumed independent – of

these ranks. The ensemble is reliable, i.e. the verification is

statistically indistinguishable from the ensemble if it falls

with equal probability in each of the N + 1 intervals and

then shows a flat rank histogram (uniform distribution of the

ranks). A nonuniform rank histogram characterizes a lack

of reliability of the system. For instance, an ensemble with

many outliers, meaning that the verification values fall out-

side the ensemble, presents a U-shape rank histogram and is

called underdispersive. On the other hand, an overdispersive

ensemble, presenting a bell-shape rank histogram, means the

verification values too often fall inside the ensemble. Also,

a positive (negative) bias is characterized by the fact that the

bins of the left (right) side of the histogram are overpopulated

compared to the bins of the right (left) side of the histogram,

i.e. the ensemble tends to over(under)estimate the verifica-

tion value.

In Figure 4, the reliability of SSH is verified against along-

track altimetric observations from Jason-1 during the 10-day

cycle from 29 June to 9 July 2005. The left panel shows the

observation ranks. Many outliers are observed, especially in

the subtropical gyre. This is mainly due to the very small

spread of the ensemble in this area (see Fig. 2) combined

to an important bias in the simulation (ensemble mean minus

observation). Actually, the ensemble spread is so small in this

area that the outliers only reflect this local model bias. For

the rank histogram construction (right panel), the statistics

are only accumulated over the Gulf Stream verification area

(see Fig. 2) to avoid aggregating too heterogeneous data from

the frontal region and the gyre. Graphically, we observe a

weak positive bias (asymmetric rank histogram to the left)

and a slight underdispersion. Note that observational error

is taken into account in the rank histogram construction by

adding a Gaussian random noise to the ensemble members

(with standard deviation consistent with the observation error

used in the assimilation process, σo = 10 cm; see Sect. 4).

To numerically assess the lack of reliability graphically

observed on the rank histogram, we introduce the RCRV as

follows. For each realization of the system, the RCRV is de-

fined as

y =
o−m

σ
, (3)

where m and σ are the mean and the standard deviation of

the simulated pdf and o the observed value. Note that the ob-

servation error σo is simply introduced in y by considering

σ =
√
σ 2

ens+ σ
2
o . The system is reliable if the mean of y over

all realizations of the probabilistic system is null and its stan-

dard deviation is equal to 1. In this way, the reliability is de-

composed into a (normalized) bias b = E[y] and a dispersion

Ocean Sci., 11, 425–438, 2015 www.ocean-sci.net/11/425/2015/
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Figure 5. Global rank histogram of 0–200 m layer for temperature (left panel) and salinity (right panel); same period and same area as in

Fig. 4.

d2
= E[y2

] − b2. For the example in Fig. 4, the normalized

bias and the dispersion from the RCRV are equal to b =−0.1

and d = 1.15, respectively, i.e. the system has a weak posi-

tive bias (10 %) and a slight underdispersion (15 %).

These two diagnostics – the RCRV and the rank histogram

– only measure the reliability of the system. We need to use

other scores evaluating the resolution to get a full probabilis-

tic assessment of the skill of the ensemble.

The continuous rank probability score (CRPS; introduced

by Stanski et al., 1989) measures the global skill of a prob-

abilistic system by evaluating both reliability and resolution.

It can be seen as a generalization of the absolute error. It is

based on the square difference between the produced cumu-

lative distribution functions (cdfs) of a univariate variable x

and the corresponding cdf of the observation:

CRPS= E

[∫
R

(
Fp(x)−Fo(x)

)2
dx

]
, (4)

where Fp is the cdf associated with the produced pdf, Fo the

cdf associated with the observation (a simple Heaviside dis-

tribution if no observation error is considered), and E [·] is

the average of the integrals over the whole verification data

set. Unlike the reliability scores presented above, the CRPS

has the dimension of the verification variables (for instance

expressed in metres for SSH, in Kelvin for temperature, etc).

The CRPS can be decomposed into the reliability/resolution

parts in many different ways. Here for practical and numer-

ical reasons (see Candille and Talagrand, 2005), the decom-

position described by Hersbach, 2000) is chosen:

CRPS = Reli + Resol. (5)

The term Reli can be seen as the expected value of the

absolute error and the term Resol as a correction factor

that measures the sharpness of the probabilistic system.

These scores are negatively oriented, i.e. the reliability part

(Reli) is null for a reliable system and the resolution part

(Resol) goes from 0 for a perfect deterministic system to

Unc =
∫
RFc(x)(1−Fc(x))dx for a useless and noninforma-

tive system. Fc is the climatological cdf associated with the

verification data set, and Unc – called uncertainty part of the

CRPS – is the reference value of the CRPS only based on the

variability of the verification data set. A value of Resol larger

than Unc indicates that the system is poorer than climatology.

Evaluated through the CRPS, a skillful probabilistic system

must satisfy two criteria: Reli = 0 and Resol�Unc. From the

resolution criterion, a measure of the potential gain compared

to the climatology can be defined as follows:

G = 1−
Resol

Unc
. (6)

Considering the case in Fig. 4, the uncertainty associated

with the along-track SSH of Jason-1 is Unc = 0.07 m, and the

CRPS and its decomposition are equal to 0.076= 0.005+

0.071. This indicates that the system is poorly informative

with G > 1 in this example. We can then conclude that – af-

ter 6 months of stochastic perturbations integration – the en-

semble produced by the system tends to the climatology of

the verification data set: pretty good reliability but poor reso-

lution. In summary, we have here an example of a full proba-

bilistic diagnosis on the SSH produced by the system against

Jason-1 along-track observations. Of course, such SSH diag-

nostics can be performed against Envisat or both satellites.

The goal of the assimilation (next section) is then to im-

prove the information contained in the system (i.e. improve-

ment of the resolution), while keeping the system as reliable

as possible (i.e. without deteriorating reliability).

Now, we evaluate the skill of the system for the T/S pro-

files against Argo observations. In this case, the statistics are

accumulated during 10 days (Jason-1 cycle), over the Gulf

Stream verification area and over the first 0–200 m layer of

the ocean (observations from different depths are consid-

ered independent). The observation error is estimated from

0–200 m observation errors based on the Ingleby and Hud-

dleston (2007) study about the quality control of T/S profile

data: σo = 0.9 K for temperature and σo = 0.17 psu for salin-

ity (these values take measure and representativeness errors

into account).

Figure 5 shows the rank histograms for both temperature

and salinity. Unlike the SSH rank histogram, a strong under-
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Table 1. RCRV scores for 0–200 m layer temperature and salinity;

same period and area as in Fig. 4.

Bias Dispersion

Temperature −0.07 1.9

Salinity 0.50 2.5

Table 2. Same as Table 1 for CRPS.

CRPS Reli Resol Unc

Temperature 1.12 0.28 0.84 3.44

Salinity 0.32 0.13 0.19 0.86

dispersion is here observed for both variables and a negative

bias is noticeable for salinity (asymmetry to the right side of

the rank histogram).

The diagnostics related to the RCRV, shown in Table 1,

numerically confirm the graphical diagnostics from the rank

histograms. The system is strongly underdispersive for both

profile variables and salinity is also strongly negatively bi-

ased.

Table 2 shows the global CRPS score, its reliabil-

ity/resolution decomposition and the uncertainty associated

with each verification data set. The potential gain compared

to the uncertainty is G = 76% and G = 78% for temperature

and salinity, respectively. These large values of the gain are

mainly due to the large heterogeneity of these variables (hor-

izontal and depth) over the verification domain. This leads

to a very large spread of the climatological pdf used to com-

pute the uncertainty, while the ensembles are able to capture

this spatial variability, even with a very poor reliability. This

highlights one of the crucial points of the statistical verifi-

cation (see Sect. 3.2): in order to get a verification data set

large enough, we sometimes need to aggregate many hetero-

geneous data.

Even if the potential reduction of uncertainty seems impor-

tant (verification sample size issue), the system can hardly be

considered as skillful for T/S profile variables considering

the strong lack of reliability, especially the large underdis-

persion.

This kind of diagnostics for T/S profiles was expected

since the stochastic perturbations of the model were not de-

signed to explore the major uncertainties of the vertical struc-

ture of the ocean (see Sect. 2.2). On the other hand, it has

been shown that the perturbations nevertheless produce a

good representation of the uncertainties in the surface cir-

culation, which is something that we can expect to be well-

described with altimetric observations.

Using the prior ensemble described in this section, an as-

similation scheme was implemented for the altimetric along-

track observations from Jason-1 and Envisat missions. A sig-

nificant improvement in the surface circulation (SSH) is ex-

pected, without negative impact on the thermohaline struc-

ture of the ocean.

4 4-D ensemble data assimilation experiment

The prior ensemble built in the previous section tends to re-

flect the climatological SSH variability of the flow over the

Gulf Stream area. What could be the benefit from an assimi-

lation process with altimetric data?

4.1 Methodology

In this study, only altimetric data are assimilated and the

focus is on the eddy dynamics over the Gulf Stream. The

observations are along-track data coming from two differ-

ent satellites: 10-day cycle Jason-1 mission (≈ 350 km inter-

track distance at the Equator) and 35-day cycle Envisat mis-

sion (≈ 80 km inter-track distance at the Equator). The as-

similation cycles are defined to fit with the 10-day cycle of

Jason-1 and are then performed within 10-day assimilation

windows [tk, tk+10]. The update (see details below) is per-

formed at the middle of the assimilation window tk+5 with

all the observations and the model equivalent (i.e. model out-

puts projected to the exact observation times and locations)

contained in the 10-day assimilation window. Increments are

then computed for each ensemble member as explained be-

low. The increment is then introduced into the model using

the incremental analysis update (IAU) algorithm (Ourmières

et al., 2006): a 10-day integration run from tk by injecting

fractions of the increment step by step all along the assimila-

tion window. The full increment is thus introduced in the sys-

tem at the final time tk+10 of the assimilation cycle. The IAU

ensemble at the final time of the cycle provides the initial

conditions for the forecast ensemble of the next cycle. The

forecast ensemble trajectories are thus discontinuous from

one cycle to the next, while the IAU ensemble trajectories re-

main continuous (and avoid possible numerical shocks which

would occur if the increments were fully injected at one sin-

gle time).

The assimilation scheme is a Kalman-filter-based method.

The SEEK filter (Brasseur and Verron, 2006) is applied with

a localization (equivalent to LETKF; Bishop et al., 2001).

This is a square root algorithm mixed with an ensemble

methodology (Burgers et al., 1998) where each member is in-

dividually updated. The ensemble approach enables bypass-

ing the linearity assumption because each ensemble member

is propagated by the nonlinear model M and directly pro-

jected into the observation space by operator H (via mod-

ule NEMO_OBS) for the update. On the other hand, the

Gaussian assumption still remains for the ensemble update

but could easily be relaxed by anamorphosis transformations

(not done here; Brankart et al., 2012).
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Each member i of the forecast ensemble of vector state x

is written as

xf
i = xf+ δxf

i, (7)

where xf is the ensemble mean and δxf
i the associated

anomalies which define the columns (with factor 1/
√
N − 1)

of the forecast square root covariance matrix Sf (covariance

matrix Cf
= SfSfT ). Each ensemble member is projected into

the observation space byH so thatHxf is the forecast ensem-

ble mean in observation space and δ
(
Hxf

i

)
are the associated

anomalies defining the columns (with factor 1/
√
N − 1) of

the forecast square root covariance matrix in the observation

space HSf.

The ensemble mean is then updated with a square root al-

gorithm (Brankart et al., 2011), without requiring observa-

tion perturbation. The update is therefore computed in the

eigenspace of

0 = (HSf)TR−1(HSf)= U3U−1, (8)

where U and 3 are, respectively, the unitary matrix and the

diagonal matrix with the eigenvectors and eigenvalues of 0

(with no truncation). Note that the observation error covari-

ance matrix R is diagonal: R= σ 2
o ∗ I with σo = 0.1m (value

taking account of both measure and representativeness er-

rors). The transformation into the eigenspace of 0 is needed

to make the algorithm compatible with the localization pro-

cess (see localization parameters below). The analysis en-

semble mean xa is then updated as follows:

xa = xf+SfU(I+3)−1UT (HSf)TR−1
(
yo−Hxf.

)
. (9)

xa thus depends on the innovation yo−Hxf, the observa-

tion error covariance R, and the anomalies expressed both in

model and observation spaces: δxf
i and δ

(
Hxf

i

)
.

In a second time, each ensemble anomaly i is updated as

follows:

δxa
i =
√
N − 1

(
SfU(I +3)−

1
2 3

1
2 UT

)
i
, (10)

so that each updated ensemble member xa
i can be rebuilt

from the updated ensemble mean and its associated updated

ensemble anomaly:

xa
i = xa+ δxa

i . (11)

The increments δxi = xa
i −xf

i are then computed and are in-

troduced into the model using the IAU method in order to

produce a continuous updated ensemble. It is also important

to mention that the stochastic version of the model is used

for the assimilation cycle (same as for the free-run integra-

tion). Actually, the stochastic perturbations are sufficient to

avoid the collapse of the ensemble by ensuring an appropri-

ate spread.

Figure 6. SSH time series of the ensemble (free run, forecast and

IAU) at locations (a) and (b).

To avoid the spurious effect of inaccurate long-range cor-

relations the update is also performed with a localization al-

gorithm: the local assimilation areas are limited by a radius

of 4.5◦ (≈ 450 km at 30◦ N) and the observations’ influences

are defined by Gaussian functions with standard deviation of

1.5◦ (≈ 150 km at 30◦ N). The localization is applied on a

state vector as described in Brankart et al., 2011.

As an illustration of the assimilation process described

above, local time evolutions of the 96-member ensemble are

shown in Fig. 6 for 18 months (6 free-run months and 12

assimilation months).

As already mentioned, we observe the saturation of the

spread of the free-run ensemble (the cyan curves stop spread-

ing) with different amplitudes and saturation timescales de-

pending on the locations. This saturation shows that the local

climatological variabilities are reached. The updated ensem-

bles (blue dots for the forecast ensemble and green curves

for the IAU ensemble) present a noticeable spread reduction.

Also, they present a temporal variability globally included

in the climatological envelop defined by the free-run ensem-

ble saturation. This kind of ensemble behaviours could fore-

shadow an improvement of the probabilistic resolution with-

out degrading the reliability. We also note the spread reduc-

tion (blue dots outside the green curves area) and a slight bias

correction (asymmetry of the blue dot outliers) with the IAU

ensemble compared to the forecast one.

The examples in Fig. 6 are a first qualitative evaluation of

the updated ensembles. The next subsection presents more

quantitative and probabilistic evaluations of these ensembles.

4.2 Assimilation results

We only focus this study on SSH (Jason-1/Envisat altimetric

data sets) and T/S profiles (Argo buoys network).
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Figure 7. SSH time series of standard deviations for free-run, forecast and IAU ensembles over the Gulf Stream verification area (left panel)

and the Z focus area (right panel).

Figure 8. SSH Jason-tracks coverage for three successive 10-day cycles from 7 September to 7 October 2005.

In order to generalize the first diagnostics suggested by

Fig. 6, Fig.7 shows the time series of the ensembles standard

deviation averaged over the Gulf Stream and Z-focus areas.

In this figure we can see first that the saturation of the stan-

dard deviation is reached in the Z-focus area but not over

the global Gulf Stream area. The main reason for this is that

the Gulf Stream verification area contains locations where

the perturbations grow very slowly (e.g. near the subtropical

gyre). The main point here is the reduction of the standard

deviations observed with the introduction of the altimetric

corrections. This reduction is effective from the first assim-

ilation cycle. After that, the averaged standard deviation of

the forecast and IAU solutions is globally stabilized by the

subsequent assimilation cycles. We also notice the clear re-

duction of the standard deviations of the IAU ensemble as

compared to the forecast. This means that the stochastic per-

turbations are strong enough to produce a significant spread

within 10 days and thus to avoid the ensemble collapse. The

10-day oscillations of the standard deviation is the result of

the discontinuity of the forecast ensembles.

As mentioned just before, the altimetric updates tend to

reduce and stabilize the standard deviation, except the spu-

rious increase observed around September 2005 (especially

over the large verification area). This event is caused by a

lack of observed data resulting from missing Jason-1 tracks

in September 2005, as shown in Fig. 8.

This occasional Jason-1 failure shows the impact of the

satellite coverage on the updated ensembles, resulting in

an increase of the ensembles standard deviation. That may

sound obvious, but it shows that the accuracy of the correc-

tion is very sensitive to the number of available altimetric

data.

The same kind of behaviour is observed on the T/S vari-

ables (not shown): the standard deviation increases with the

free-run ensemble and is reduced and stabilized by means of

altimetric corrections. Nevertheless, the difference between

the IAU and forecast ensembles standard deviations is much

smaller along the T/S profiles, simply because these vari-

ables are not assimilated (unlike in Yan et al., 2014).

4.3 Probabilistic diagnostics for SSH

After studying the general characteristics of the ensemble,

we now present the probabilistic diagnostics introduced in

Sect. 3. We first investigate the reliability property of SSH

through the bias and the dispersion related to the RCRV. In

Fig. 9, three sets of curves are shown: dashed curves for ver-

ification against Jason-1 data, dotted curves for verification

against Envisat data and solid curves for verification against

both satellites’ data. Note also that – for all the presented

probabilistic scores in this section – the statistics are accu-

mulated over 1 month (different from Sect. 3) and over the

Gulf Stream area. In the interpretation of the results, it is also

very important to remark that the IAU ensemble is checked

against observations that have been used to compute the in-

crements. In this case, the ensemble system and the obser-

vations are not independent. For the SSH variable, the 10-
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bias dispersion

Figure 9. SSH bias (left panel) and dispersion (right panel) from RCRV.

CRPS reliability CRPS resolution

Figure 10. SSH: reliability (left panel) and resolution components of the CRPS compared to the uncertainty (right panel).

day forecast ensemble and observations are truly indepen-

dent data.

The monthly time series (left panel) show no clear bias

reduction compared to the free-run ensemble with altimet-

ric corrections. The bias seems to present a seasonal cycle

(not explained). Nevertheless, the IAU ensemble reduces the

bias as compared to the forecast. This is due to the inbreed-

ing between the IAU ensembles and the observations in this

case. Regarding the dispersion (right panel), the underdisper-

sion of the free-run ensembles is removed by the altimetric

corrections. The forecast ensemble becomes almost perfectly

dispersive while a slight overdispersion (≈ 85 %) is observed

for the IAU ensemble (mostly due to the inbreeding with the

observations).

Two results look contradictory at first sight: we observe

the spread reduction of the IAU ensembles (Fig. 7) and at the

same time the IAU ensembles overdispersion (Fig. 9 right

panel). Actually, the spread of the ensemble is reduced, but

also the bias against the observations so that the dispersion is

finally degraded down to an overdispersive system.

We now investigate the global CRPS measure for the SSH

variable. Figure 10 shows the reliability (left panel) and the

resolution (right panel) components of the CRPS. The reso-

lution part is compared to the uncertainty associated with the

verification data set (this represents the climatological vari-

ability over the verification area and period).

The reliability – as measured by the CRPS – of the en-

sembles is improved by the altimetric corrections compared

to the free-run ensemble. Also, the system becomes more

informative after assimilation processes (better resolution),

i.e. the ensemble system is more accurate in space and time

for instance by correctly translating the eddies along the Gulf

Stream front. For both components of the CRPS, the IAU

ensemble performs better than the forecast (these scores are

negatively oriented), partially due to the inbreeding between

the IAU ensemble and the observations. The potential gain G
compared to the uncertainty is shown in Table 3.

The resolution curves in Fig. 10 (right panel) show that

the free-run ensemble has no resolution, i.e. G ≈ 0 %. If we

only look at the independent verification data, i.e. the fore-

cast ensemble, the potential gain we get with the assimilation

process is up to 30 %.

For the SSH variable the assimilation process leads to an

information gain with a reliability improvement. Basically,

the uncertainty (not the uncertainty from the CRPS) on the

10-day forecast is reduced by 30 % and this information is

reliable.

4.4 Probabilistic diagnostics for T and S

We now present the impact of the altimetric corrections on

T/S profiles. The verification is performed against Argo ob-

servations. To investigate the probabilistic attributes of our
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CRPS reliability CRPS resolution

Figure 11. T profiles, reliability (left panel) and resolution components of the CRPS compared to the uncertainty (right panel).

Table 3. Potential gain G compared to the uncertainty from July 2005 to June 2006.

July August September October November December January February March April May June

2005 2005 2005 2005 2005 2005 2006 2006 2006 2006 2006 2006

Forecast 11 % 20 % 22 % 16 % 18 % 19 % 20 % 21 % 25 % 30 % 32 % 27 %

IAU 26 % 32 % 34 % 30 % 31 % 32 % 31 % 32 % 34 % 40 % 42 % 39 %

ensembles along T/S profiles, we show the CRPS reliabil-

ity part and the information gain (CRPS resolution part) for

temperature in the 0–200 m layer depth (Fig. 11).

Regarding T profiles, no noticeable difference can be de-

tected in the score between the free-run ensemble and the

updated ones. Furthermore, there is almost no difference in

the score between the forecast and the IAU ensembles. Con-

sidering the potential gain, the same remark can be done here

as for the free-run ensemble (see Sect. 3, Table 2).

On the other hand, the reliability CRPS part is very vari-

able from month to month compared to the SSH diagnostics.

This can be explained by the spatial distribution of the ob-

served Argo profiles used for the verification: for SSH this

distribution is pretty similar each month for the SSH (three

full Jason-1 cycles and 1 full Envisat cycle) except in excep-

tional situations like the one shown in Fig. 8, but for the T/S

profiles it is very variable depending on the Argo buoy loca-

tions. Actually, from one month to the other, very different

areas are sampled by the Argo moving network. As a result,

we can conclude that it is very difficult for the CRPS to mea-

sure any possible correction on T/S profiles.

The results presented above indicate that the assimilation

process leads to a more skillful probabilistic system for a

SSH 10-day forecast and then for surface currents. The al-

timetric corrections applied to the stochastic ensemble show

clear positive impacts in terms of

– improvement of the reliability of the system forecast,

i.e. the confidence in the description of the uncertainty

associated with the state of the flow increases;

– improvement of the resolution, i.e. reduction of the un-

certainty by 30 %.

5 Conclusions

One important source of uncertainty of the model – not the

only one – is simulated by introducing stochastic parame-

terizations in the formulation of the equation of state (as in

Brankart 2013). The effects of the unresolved scales on the

ocean circulation are thus simulated, and a stochastic pertur-

bations ensemble is produced with the stochastic NATL025-

formulation. This ensemble is then objectively compared

to altimetric observations (Jason-1/Envisat along-track data)

and in situ T/S profile data (Argo buoys network). The

present study shows that this ensemble correctly represents

the climatological variability of the eddy dynamics over the

Gulf Stream area, especially in the frontal regions. The en-

semble system (without assimilation) tends to be reliable in

those regions – even if it is globally underdispersive over the

entire North Atlantic Basin – but provides no useful infor-

mation on the mesoscale circulation (null probabilistic res-

olution associated with climatological system) as a result of

the chaotic nature of the eddy flow. The underdispersion is

also due to the fact that only one aspect of the model error is

considered here. The ensemble is then updated by assimilat-

ing altimetric along-track data (Jason-1 and Envisat) through

a full 4-D ensemble assimilation process: the covariance ma-

trix is propagated by the ensemble and model equivalent of

every member computed at the exact observation time and lo-

cation. The assimilation makes the ensemble more reliable –

the underdispersion is reduced – and more informative com-

pared to climatology. The updated ensemble system is prob-

abilistically more skillful, considering the reliable reduction

of uncertainty by 30 %.

Ocean Sci., 11, 425–438, 2015 www.ocean-sci.net/11/425/2015/



Candille et al.: Stochastic assimilation 437

The experiment presented in this study shows promising

results in terms of uncertainty, simulation and uncertainty re-

duction, but a number of aspects needs still to be improved.

First, the reduction of uncertainty has only been proved for

the SSH analysis and the 10-day forecast. No significant im-

provement could be objectively assessed for observed T/S

profiles (using the RCRV or CRPS measures). A positive ob-

jective assessment is difficult to obtain for T and S because

the observation coverage (Argo floats) is still sparse and

quickly changes with time, because the computation of the

scores thus requires aggregating observations with very het-

erogeneous statistics, and because any possible improvement

of the T and S mesoscale structure is dominated by other

sources of uncertainty (like the large-scale model bias). Other

sources of uncertainty should be introduced to effectively as-

similate these observations, for instance uncertainties in the

atmospheric forcing (as in Yan et al., 2014), and uncertainties

in the initial condition, uncertainties in the model parameter-

izations (like the vertical mixing, the mixed layer dynamics).

Further work should be dedicated to design a probabilistic

model that is already reliable for T and S (or at least quite

dispersive enough) before starting data assimilation, as we

did in this paper for altimetry. This may require spending

considerable time and effort to fine tune the parameteriza-

tion of the various sources of uncertainty. To simplify this

task, automatic procedure to estimate unknown statistical pa-

rameters could be very helpful. Then, after assimilation has

started, these procedures could continue their work, for in-

stance, by using adaptative tuning of the parameters linked to

model uncertainty (i.e. a kind of generalization of the adap-

tative estimator of model error covariances; see Dee, 1995).

As we have tried to show in this paper, a correct simulation

of model uncertainty is indeed necessary to produce consis-

tent probabilistic ocean forecasts, to perform ensemble data

assimilation and, most importantly, to obtain objective veri-

fication scores.

The Supplement related to this article is available online

at doi:10.5194/os-11-425-2015-supplement.
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