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Abstract. Polar ice cores provide exceptional archives of

past environmental conditions. The dating of ice cores and

the estimation of the age-scale uncertainty are essential to in-

terpret the climate and environmental records that they con-

tain. It is, however, a complex problem which involves dif-

ferent methods. Here, we present IceChrono1, a new prob-

abilistic model integrating various sources of chronological

information to produce a common and optimized chronology

for several ice cores, as well as its uncertainty. IceChrono1 is

based on the inversion of three quantities: the surface accu-

mulation rate, the lock-in depth (LID) of air bubbles and the

thinning function. The chronological information integrated

into the model are models of the sedimentation process (ac-

cumulation of snow, densification of snow into ice and air

trapping, ice flow), ice- and air-dated horizons, ice and air

depth intervals with known durations, 1depth observations

(depth shift between synchronous events recorded in the ice

and in the air) and finally air and ice stratigraphic links in

between ice cores. The optimization is formulated as a least

squares problem, implying that all densities of probabilities

are assumed to be Gaussian. It is numerically solved using

the Levenberg–Marquardt algorithm and a numerical eval-

uation of the model’s Jacobian. IceChrono follows an ap-

proach similar to that of the Datice model which was recently

used to produce the AICC2012 (Antarctic ice core chronol-

ogy) for four Antarctic ice cores and one Greenland ice core.

IceChrono1 provides improvements and simplifications with

respect to Datice from the mathematical, numerical and pro-

gramming point of views. The capabilities of IceChrono1 are

demonstrated on a case study similar to the AICC2012 dating

experiment. We find results similar to those of Datice, within

a few centuries, which is a confirmation of both IceChrono1

and Datice codes. We also test new functionalities with re-

spect to the original version of Datice: observations as ice

intervals with known durations, correlated observations, ob-

servations as air intervals with known durations and obser-

vations as mixed ice–air stratigraphic links. IceChrono1 is

freely available under the General Public License v3 open

source license.

1 Introduction

Polar ice cores provide continuous records of key past

features of the climate and the environment, with local,

regional and global relevance (e.g., PAGES 2k consor-

tium, 2013; EPICA community members, 2004; NorthGRIP

project members, 2004; WAIS Divide Project Members,

2013). Tracers of polar climate (e.g., Jouzel et al., 2007), ice

sheet topography (NEEM community Members, 2013), wa-

ter cycle (e.g., Schoenemann et al., 2014; Stenni et al., 2010;

Winkler et al., 2012), aerosol deposition (e.g., Lambert et al.,

2012; Wolff et al., 2006) and global atmospheric composition

(e.g., Ahn and Brook, 2014; Loulergue et al., 2008; Marcott

et al., 2014) measured in ice cores unveil sequences of events

on seasonal to glacial–interglacial timescales.
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However, prior to the interpretation of polar ice core

records is the complex task of building two robust time–

depth relationships, one for the tracers measured in the ice

phase (e.g., water isotopes, particulates and chemical impuri-

ties) and one for those measured in the air phase (e.g., green-

house gas concentration, isotopic composition of gases). The

firn, where snow is gradually compacted into ice, constitutes

the upper 50–120 m part of ice sheets. The firn is permeable

and air is only locked in at its base, at a depth level called the

lock-in depth (LID). As a result, the entrapped air is always

younger than the surrounding ice at any depth level. Through

gravitational fractionation processes, LID is closely related

to the isotopic composition of δ15N of N2 in air bubbles data

(e.g., Buizert et al., 2015; Goujon et al., 2003; Parrenin et al.,

2012a; Schwander et al., 1993). The temporal evolution of

the age difference between ice and air at a given depth must

therefore be estimated using firn densification modeling and

air δ15N. This age difference is essential for clarifying the ex-

act timing between changes in atmospheric CO2 concentra-

tion and Antarctic surface temperature during deglaciations

( e.g., Caillon et al., 2003; Landais et al., 2013; Monnin et

al., 2001; Parrenin et al., 2013; Pedro et al., 2011). However,

glacial–interglacial Antarctic firn changes remain poorly un-

derstood (e.g., Capron et al., 2013).

Several strategies have been developed to build ice and

gas chronologies. We briefly describe these methods, their

strengths and caveats hereafter.

– Annual layer counting (e.g., Rasmussen et al., 2006;

WAIS Divide Project Members, 2013; Winstrup et al.,

2012). Only applicable when accumulation rates are

sufficiently high to make this annual layer identifica-

tion possible, this method provides accurate estimates

of event durations and small uncertainties on the abso-

lute age of the upper ice sections. However, the cumu-

lative nature of the errors, associated with the increas-

ing number of counted layers, leads to a decrease of the

accuracy of absolute age with depth. For instance, the

GICC05 (Greenland Ice Core Chronology 2005) com-

posite timescale for Greenland ice cores (Rasmussen et

al., 2006; Seierstad et al., 2014; Svensson et al., 2008) is

associated with a maximum counting error of only 45 yr

at∼ 8.2 kyr B1950 (before 1950, current era). This error

increases progressively with depth, reaching more than

2500 yr at ∼ 60 kyr B1950. Annual layer counting tech-

niques cannot be applied when the annual layer thick-

ness is too small to be resolved visually, e.g., in ice cores

from central East Antarctica.

– Use of absolute age markers in ice cores. Well-dated

tephra layers identified in ice cores during the last mil-

lennia provide valuable constraints (e.g., Sigl et al.,

2014). Beyond that period, absolute age markers are

very scarce. The links between 10Be peaks and well-

dated magnetic events (Raisbeck et al., 2007) have pro-

vided an age marker for the Laschamp event (Singer

et al., 2009). Promising results have recently been ob-

tained using radiochronologic dating tools (Aciego et

al., 2011; Buizert et al., 2014; Dunbar et al., 2008).

– Orbital dating in ice cores. Because there are few abso-

lute constraints in ice cores beyond 60 kyr B1950 (limit

for the layer counting in the NGRIP ice core), orbital

tuning is the most effective method to provide chrono-

logical constraints on an ice core’s deepest sections. In

the first orbital dating exercises, tie points were deter-

mined from the tuning of water isotopic records on in-

solation curves (e.g., Parrenin et al., 2004), which limits

further investigations of polar climate relationships with

orbital forcing. More recent chronologies tried to cir-

cumvent this assumption and focused on non-climatic

orbital markers. Three complementary tracers are cur-

rently used: the δ18O of atmospheric O2 (δ18Oatm) (e.g.,

Bender et al., 1994; Dreyfus et al., 2007), δO2 /N2

(e.g., Bender, 2002; Kawamura et al., 2007; Suwa and

Bender, 2008) and the total air content (e.g., Raynaud

et al., 2007). While the link between δ18Oatm and pre-

cession is explained by variations in the water cycle of

the low latitudes, relationships between δO2 /N2, air

content and local summer insolation are understood to

arise from changes in the surface snow energy budget

influencing its metamorphism. Without a precise under-

standing of mechanisms linking these tracers to their re-

spective orbital targets, the associated uncertainties re-

main large, 6 kyr for δ18Oatm and 3–4 kyr for δO2 /N2

and air content (Bazin et al., 2013, 2014; Landais et al.,

2012).

– Ice core record synchronization. Inter-ice core matching

exercises are undertaken to transfer absolute or orbital

dating information from one ice core to another one. It

generally relies on the global synchroneity of changes in

atmospheric composition (CO2, CH4 concentration, and

δ18Oatm) (Bender et al., 1994; Blunier and Brook, 2001;

Monnin et al., 2004), the identification of volcanic sul-

fate spikes within a given area (Parrenin et al., 2012b;

Severi et al., 2007) or the hypothesis of synchronous re-

gional deposition of aerosols recorded as ice impurities

(Seierstad et al., 2014). In the first case, limitations are

associated with the smoothing of atmospheric compo-

sition changes through firn air diffusion. In the second

case, mismatches may arise through incorrect identifi-

cation of events in different ice cores.

– Correlation with other well-dated climatic records. In

some cases, high-resolution calcite δ18O records and

precise U /Th dates on speleothems have been used

to adjust ice core chronologies (Barker et al., 2011;

Buizert et al., 2015; Parrenin et al., 2007a). Pinning ice

core and speleothem records is attractive to reduce ab-

solute age uncertainties especially during past abrupt

climatic events of glacial periods. However, these ex-
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ercises rely on the assumption of simultaneous abrupt

climatic changes recorded in ice core (e.g., water iso-

topes, CH4) and low-latitude speleothem δ18O records

(mostly reflecting changes in regional atmospheric wa-

ter cycle). A main limitation of this method lies in the

validity of this assumption.

– Modeling of the sedimentation process: snow accumu-

lation, snow densification into ice, air bubbles trap-

ping and ice flow (Goujon et al., 2003; Huybrechts et

al., 2007; Johnsen et al., 2001). Glaciological model-

ing provides a chronology derived from the estimate of

the annual layer thickness and, therefore, leads to more

realistic event durations when the accumulation history

and thinning function are well constrained. A side prod-

uct of glaciological modeling is the quantification of

changes in surface accumulation rates and the quan-

tification of the initial geographical origin of ice. This

additional information is necessary to convert measure-

ments of concentrations of chemical species in ice cores

into deposition fluxes and to correct ice core records

from upstream origin effects (e.g., EPICA community

members, 2006; Röthlisberger et al., 2008). Caveats are

caused by unknown parameters of such glaciological

models, such as amplitude of accumulation change be-

tween glacial and interglacial periods, the basal melting

or the vertical velocity profile, which have a growing

influence at depth.

A common and optimal chronology for several ice cores can

be built through the combination of several of these methods

in the frame of a probabilistic approach. The first attempts

used absolute and orbitally tuned age markers along one ice

core to constrain the unknown parameters of an ice flow

model (e.g., Parrenin et al., 2001, 2004; Petit et al., 1999).

This method had however several limitations. First, the un-

certainties associated with the ice flow model could not be

taken into account, resulting in underestimated uncertainties.

Second, the stratigraphic links between ice cores were not

exploited, each ice core was dated separately, resulting in in-

consistent chronologies.

A new probabilistic approach based on a Bayesian frame-

work was subsequently introduced. The first tool, Datice,

was developed by Lemieux-Dudon et al. (2010a, b). It intro-

duced modeling errors on three canonical glaciological quan-

tities of the dating problem: the accumulation rate, the LID

of air bubbles and the thinning function (i.e., ratio between

the in situ annual layer thickness on its initial surface verti-

cal thickness). This method starts from a priori (also called

“background”) scenarios for the three glaciological parame-

ters corresponding to a prior chronology for each ice core.

These scenarios, deduced from a modeling of the sedimen-

tation process, are associated with an uncertainty related to

the degree of confidence in these prior scenarios. A mini-

mization approach is then applied to find the best compro-

mise between the prior chronological information for each

ice core as well as absolute and relative age markers in the

ice and in the air phases. This approach has been validated

through the Datice tool and applied to build the Antarctic

Ice Cores Chronology 2012 (AICC2012), producing coher-

ent ice and air timescales for five different ice cores (Bazin

et al., 2013; Veres et al., 2013): EPICA Dome C (EDC), Vos-

tok (VK), Talos Dome (TALDICE), EPICA Dronning Maud

Land (EDML) and NorthGRIP (NGRIP). Further develop-

ments of Datice were performed to incorporate additional

dating constraints such as the depth intervals with known du-

rations and correlation of errors (Bazin et al., 2014). Datice

provides an excellent reference for this Bayesian approach.

Still, because Datice has been developed over a long-term

period with a continuous effort in calculation optimization

through methodological improvement, the final code is dif-

ficult to access for a non-expert and cannot easily be used

as a community tool. We thus identified the need for an open

and user-friendly program with a performance similar to Dat-

ice but more easily used and implemented by different users

within the ice core community.

In this paper, we present a new probabilistic model,

IceChrono1, based exactly on the same approach as Dat-

ice but with improvements and simplifications in the math-

ematical, numerical and programming aspects. We first de-

tail the IceChrono1 methodology highlighting the differences

to Datice (Sect. 2). We then perform dating experiments de-

scribed in Sect. 3 using IceChrono1. We first replicate the

AICC2012 experiment, and perform four additional experi-

ments to test new functionalities of IceChrono1. The results

of these experiments are discussed in Sect. 4. We summarize

our main findings in the conclusions, and describe perspec-

tives for future developments of IceChrono in Sect. 5.

2 Method

The table in the Appendix B lists all symbols used to describe

the IceChrono1 methodology.

2.1 Method summary

The true chronology of an ice core, i.e., the ice and air ages

at any depth, is a function of three variables (also functions

of the depth): the initial accumulation rate (the accumulation

rate when and where the particle was at surface), the lock-in

depth of the air and the thinning function (the ratio between

the thickness of a layer in the ice core to the initial accumu-

lation rate). This is what we call the forward model. These

variables are unknown and to find our optimal chronology

we estimate them based on

– prior information about their values on each ice core

– chronological observations, such as (see Fig. 1) the ice

or air age at a certain depth, the time elapsed between

two depths, the synchroneity between two ice or air

www.geosci-model-dev.net/8/1473/2015/ Geosci. Model Dev., 8, 1473–1492, 2015
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Ice Core 1

Ice Core 2

Ice Core 3

ice dated horizons

air dated horizons

ice dated intervals

air dated intervals

Ice-ice strati. links

air-air strati. links

ice-air or air-ice strati. links

Δdepth observations

Figure 1. Scheme illustrating the different kinds of observations

used to constrain the chronologies of the ice cores in the IceChrono1

model.

depths within two different ice cores or the depth shift

between synchronous ice and air depths within the same

ice core.

All these different types of information, mathematically de-

scribed as probability density functions (PDF), are assumed

to be independent and are combined using a Bayesian frame-

work to obtain posterior estimates of the three input vari-

ables (accumulation, LID and thinning) and of the resulting

chronologies. Uncertainties on the prior estimates and on the

observations are further assumed to be Gaussian and the for-

ward model is linearized, which allow using the Levenberg–

Marquardt (hereafter LM) algorithm (Levenberg, 1944; Mar-

quardt, 1963) to solve this least-squares optimization prob-

lem. The philosophy of the method is similar to that of the

Datice method (Lemieux-Dudon et al., 2010a, b).

2.2 The forward model

For each ice core denoted by its index k, given three quan-

tities (initial accumulation rate, air LID and incompressible

ice thinning function), the model computes at any depth zk
the age for the ice matrix χk (in years relative to the drilling

date) and the age for the air/hydrates contained in the ice ψk
(which, for simplicity, are assumed unique; we do not con-

sider the age distributions due to gas diffusion and progres-

sive lock in with depth) using the following formulas:

χk (zk)=

zk∫
0

Dk
(
z′k
)

ak (z′k)τk (z′k)
dz′k, (1)

ψk (zk)= χk (zk −1d (zk)) , (2)

zk∫
zk−1dk(zk)

D
(
z′k
)

τ (z′k)
dz′k ≈

lk(zk)D
firm
k (zk)∫

0

1

τk

(
z′iek

)dz′
ie
k , (3)

where zk is the depth in the ice core (0 is the surface), Dk
is the relative density of the material with respect to pure ice

(treated as a known time series), ak is the initial accumula-

tion rate (expressed in meters in ice equivalent per year), τk
is the incompressible thinning function, 1dk is the 1depth

(the depth shift between synchronous events in the ice and

air phases, taken as dependent on the air depth, by conven-

tion), lk is the LID (taken as dependent on the air depth, by

convention), Dfirn
k is the average relative density of the firn

when depth zk was at LID (treated as a known time series,

dependent on the air depth, by convention) and zie
k is the ice

equivalent depth:

zie
k =

zk∫
0

Dk
(
z′k
)

dz′k. (4)

Note that in our convention inherited from glaciology, ac-

cumulation ak is expressed in ice equivalent per year and the

thinning function τk is expressed with respect to this ice-

equivalent accumulation rate, hence the appearance of Dk
in Eq. (1). We used this convention because most of the ice

flow models, which give prior estimates on the thinning func-

tion (see below), only consider pure ice; i.e., they assume the

snow is instantaneously densified into ice when it falls at the

surface of the ice sheet.

The first equation integrates along the depth axis the num-

ber of annual layers per meter from the surface. The second

equation means that the air age at depth zk is equal to the ice

age at depth zk-1dk . This is the definition of 1depth. The

third equation means that if one virtually unthins a depth in-

terval between an ice depth and the synchronous air depth,

one gets the unthinned lock-in depth in ice equivalent (ULI-

DIE; see Fig. 2). The right-hand side of the third equation

is an approximation, since we assume that the incompress-

ible thinning function in the firn is constant through time.

But because the incompressible thinning function is usually

very close to 1 in the firn (the ice flow is almost negligible

in the first ∼ 100 m of the ice sheet), this assumption is al-

most verified. No other approximation is introduced in this

set of equations. However, there are additional approxima-

tions in the sedimentation models that provide the values of

ak , lk and τk and we will discuss the errors linked to these

approximations below.

Let us assume we have prior estimates of the accumulation

(denoted ab
k ), of the LID (denoted lbk ) and of the ice thinning

function (denoted τ b
k ). The prior information can come from

a combination of models and data. Typically, ice flow mod-

els can give an estimate of the thinning function, ice δD and

δ18O are often used to deduce accumulation rates (e.g., Par-

renin et al., 2007b), and firn densification models or δ15N

measurements in air bubbles are used to deduce the LID and

the average firn relative density. We now define logarithmic

correction functions:

cak = ln
(
ak/a

b
k

)
, (5)
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Lock-In Depth Unthinned Lock-In Depth
in ice-equivalent

Δdepth

Figure 2. Scheme of different representations of a firn column.

(Left) When the firn column is at surface, its height is equal to

the lock-in depth. (Middle) If one virtually converts the firn col-

umn into cumulated ice-equivalent accumulations, one gets the un-

thinned lock-in depth in ice equivalent (ULIDIE). (Right) When the

firn column is buried down into the ice sheet and encounters vertical

thinning, its height decreases to 1depth.

clk = ln
(
lk/l

b
k

)
, (6)

cτk = ln
(
τk/τ

b
k

)
, (7)

so that the forward model effectively takes as inputs the

three logarithmic correction functions instead of the three

raw glaciological quantities. This change of variable allows

us to transform Jeffreys variables into Cartesian variables

(Tarantola, 2005) so as to express our problem into a least-

squares problem and will allow us to reduce the number of

variables to be inverted (see below).

The three prior quantities ab
k , lbk and τ b

k as well as the rela-

tive densityDk are discretized onto the same fine-depth grid:

zk,i (i being the index of the node), called the age equation

grid, which may not be regular. This allows us to compute

prior ice and air age scales. Then, we discretize the correc-

tion functions cak , clk and cτk onto coarser grids, which also

may not be regular and which depend on the age for a and l

and on the depth for τ : tak,i , t
l
k,i , z

τ
k,i (i being the index of the

node). We note Ca
k = (c

a
k,i)i , Cl

k = (c
l
k,i)i and Cτ

k = (c
τ
k,i)i

as the correction vectors. These grids are coarser than the age

grid to limit the number of variables to be inverted. The cor-

rection functions are then transferred to the age equation grid

using a linear interpolation (for a and l, this step requires us-

ing the prior age scale). This allows us to compute the three

glaciological quantities ak , lk and τk onto the age equation

grid. We note X as the state vector, that is, the vector con-

taining all the correction vectors on the coarse grids for all

the ice core sites.

Equation (1) for the ice age is solved first. Then, Eq. (3)

for 1depth is solved, which allows us to deduce the air age

from Eq. (2). To solve Eq. (3), we first integrate Dk/τk from

the surface down to every depth in the age equation grid;

i.e., we have a correspondence table between real depths and

unthinned-ice-equivalent (UIE) depths. Then, for every air

real depth in the age equation grid, we obtain the air UIE

depth from the correspondence table. We then subtract the

second member of Eq. (3) from this air UIE depth to get the

ice UIE depth. Finally, we use the correspondence table to

obtain the ice real depth and the 1depth. When we need to

compute the ice age, air age or 1depth at depths which are

not nodes of the age equation grid (for example when com-

paring the model with observations, see below), we use a lin-

ear interpolation.

2.3 The cost function

In probabilistic terms, one combines different sources of in-

formation which are assumed to be independent (the prior

and the observations) and one looks for the most proba-

ble scenario, i.e., the most probable X (Tarantola, 2005). In

mathematical terms, it corresponds to multiplying the PDFs

of the prior and of the observations, the result of this mul-

tiplication being called the likelihood function L. Here, we

assumed the PDFs to be independent multivariate Gaussian

distributions. The posterior likelihood function L can there-

fore be written as

L= exp

(
−

1

2
J

)
, (8)

where J , the cost function, is a sum of least-squares terms,

each corresponding to an independent multivariate Gaussian

PDF. Maximizing the likelihood function therefore corre-

sponds to minimizing the cost function. In this case, we as-

sume the information on each ice core and on each ice core

pair to be independent. The cost function can therefore be

written as a sum of terms:

J =
∑

Jk +
∑

Jk,m, (9)

where Jk is the term related to ice core number k and Jk,m is

the term related to the ice core pair (k, m).

Jk measures the misfit of the model with respect to the

prior and the observations for ice core number k. It is written

as the sum of independent terms:

Jk = J
a
k + J

l
k + J

τ
k + J

ih
k + J

ah
k + J

ii
k + J

ai
k + J

1d
k , (10)

where J ak , J lk and J τk are the prior terms for respectively a,

l and τ , J ih
k is linked to ice-dated horizons, J ah

k is linked to

air-dated horizons, J ii
k is linked to ice intervals with known

duration, J ai
k is linked to air intervals with known duration

and J1dk is linked to 1depth observations.

Jk,m measures the misfit of the model with respect to the

stratigraphic links in between ice cores k andm. It is the sum

of four independent terms:

Jk,m = J
ii
k,m+ J

aa
k,m+ J

ia
k,m+ J

ai
k,m, (11)

where J iik,m is linked to ice–ice stratigraphic links, J aa
k,m is

linked to air–air stratigraphic links, J ia
k,m is linked to ice–air

www.geosci-model-dev.net/8/1473/2015/ Geosci. Model Dev., 8, 1473–1492, 2015
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stratigraphic links and J ai
k,m is linked to air–ice stratigraphic

links.

We first describe the prior terms:

J ak =
(
Ra
k

)T(
Pak
)−1 (

Ra
k

)
, (12)

J lk =
(
Rl
k

)T(
Plk

)−1(
Rl
k

)
, (13)

J τk =
(
Rτ
k

)T(
Pτk
)−1 (

Rτ
k

)
, (14)

where Pak , Plk , Pτk are the correlation matrices of the prior and

where Ra
k , Rl

k , Rτ
k are the residual vectors:

Ra
k =

(
cak,i

σ ak,i

)
i

, (15)

Rl
k =

(
clk,i

σ lk,i

)
i

, (16)

Rτ
k =

(
cτk,i

σ τk,i

)
i

, (17)

with (σ ak,i)i , (σ lk,i)i , and (σ τk,i)i the standard deviation vec-

tors for respectively the prior accumulation, LID, and thin-

ning function. These three terms J ak , J lk and J τk bring the

“glaciological constraints” of the problem given by the sed-

imentation models. For example, they ensure that the opti-

mum values for a, l and τ will be close to the prior values

and also that their rates of change with respect to depth will

be close to the rates of change of the prior values. That means

the model giving the prior scenario for the accumulation, the

LID, and the thinning function should have a quantified er-

ror. The correlation matrices define the correlation of uncer-

tainties of the correction functions at different depth levels

or ages. In practice, the IceChrono code is flexible, and any

standard deviation vector and correlation matrix can be pre-

scribed.

The other terms of Jk are simply comparisons to observa-

tions, assumed independent:

RTP−1R, (18)

R =

(
mi − oi

σi

)
i

, (19)

where R is the residual vector, (mi)i are the model realiza-

tions of the observations, (oi)i are the observations, (σi)i
are their standard deviations and P is their correlation ma-

trix. These terms are given in more details in the Appendix.

Again, the IceChrono model is flexible, and whatever stan-

dard deviation vectors and correlation matrices can be pre-

scribed.

For J ih
k and J ah

k , one prescribes depth, age and standard

deviation of ice- and air-dated horizons and the correlation

matrix. For J ii
k and J ai

k , one prescribes the top depth, bottom

depth, duration and standard deviation of ice and air inter-

vals with known durations and the correlation matrix. For

J1dk , one prescribes air depth, 1depth and standard devia-

tion of 1depth markers and the correlation matrix. For J ii
k,m,

J aa
k,m, J ia

k,m, J ai
k,m, one prescribes the depth in the first core, the

depth in the second core and a standard deviation in years of

ice–ice, air–air, ice–air or air–ice stratigraphic links and the

correlation matrix.

The determination of the standard deviation vectors and of

the correlation matrices of the prior (resp. the observations)

can be a difficult problem which requires an in-depth anal-

ysis of the methods used to determine the prior (resp. the

observations).

2.4 Optimization

We now try to find the X input vector that minimizes the cost

function defined in Eq. (9). This least-squares optimization

problem is solved using a standard LM algorithm (Leven-

berg, 1944; Marquardt, 1963). The LM algorithm iteratively

converges toward a minimum of the cost function and stops

when a convergence criteria is met. To converge, the LM al-

gorithm uses the Jacobian of the observation operator (the

operator which output all the residuals from the X vector),

which is here calculated using a finite difference approach.

The LM algorithm gives as a result the optimized values of

the model input variables vector Xopt (containing the cor-

rection functions defined on the coarse grids) as well as an

approximate estimation of its a posteriori error covariance

matrix CX: the algorithm approximates the model by its lin-

ear tangent around the solution.

We note G(X) as the forward model vector containing

all the variables for which we want to compute the opti-

mal values and the uncertainties (in particular the ice and air

ages on the age equation grids). The optimal model is there-

fore G(Xopt). From the model Jacobian G′ at Xopt, which is

calculated using a numerical finite difference approach, and

from CX, one can compute an approximated value of the er-

ror covariance matrix for the model as

CG ≈
(
G′
)
CX
(
G′
)T
. (20)

The diagonal elements of CG give the variance of the

model’s variables. In practice, the matrix CG is never com-

pletely formed to limit the memory size of the program. Only

diagonal bloc elements corresponding to a particular variable

(e.g., ice age) on a particular ice core are calculated.

To ensure that the LM algorithm converges toward a global

minimum of the cost function, we initialize it with differ-

ent initial conditions X0 all taken randomly according to the

prior density of probability. We then check that the LM algo-

rithm always converges toward the same solution.

2.5 Programming aspects

IceChrono1 is entirely coded in the python v2 programming

language. IceChrono1 both resolves the optimization prob-

lem and provides figures to display the results. The core of
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the code is entirely separated from the experiment setup di-

rectory which also contains the results of the run and which

is composed of general parameter files, a directory for each

ice core (which contains the parameters and observations for

the given ice core) and a directory for each ice core pair

(which contains the observations for the given ice core pair).

Only a basic understanding of python and an understanding

of the structure of the experiment setup directory are needed

to run IceChrono1. A detailed tutorial on how to use the

IceChrono1 software is also available within the code.

The core of the code is about 1000 lines long (includ-

ing white lines and comments) and is built using an object-

oriented paradigm. In such an object oriented language, apart

for the classical type of variables (integer, real, characters,

etc.), one can define his or her own classes of objects, con-

taining variables and functions. In IceChrono1, a class exists

for the ice core objects. It contains the variables related to

this ice core: the age equation grid, the correction function

grids, the prior scenarios and their associated standard devi-

ations and correlation matrices, the relative density profile,

the correction functions, the observations and their associ-

ated standard deviations and correlation matrices and the re-

sulting calculated variables (accumulation, LID and thinning,

ice and air ages, 1depth, ice and air layer thickness, etc.). It

also contains functions performing the following tasks: the

initialization of the ice core (i.e., reading of the parameters,

priors and observations), the calculation of the age model, the

calculation of the residuals, the calculation of the forward

model Jacobian, the calculation of the standard deviations,

the construction of the figures (for ice age, air age, accumu-

lation, LID, thinning, ice layer thickness and 1depth) and

the saving of the results. A class also exists for the ice core

pair objects. It contains all the stratigraphic links and their as-

sociated standard deviation and correlation matrices relative

to this ice core pair. It also contains functions that perform

the following tasks: the initialization of the ice core pair, the

calculation of the residuals, and the construction of the fig-

ures (for ice–ice links, air–air links, ice–air links and air–ice

links). The main program is kept as simple and straightfor-

ward as possible.

We used the LM algorithm as implemented in the leastsq

function from the scipy.optimize library, which also provides

an automatic convergence criteria. It does not try to mini-

mize directly the cost function but rather a residual vector,

the components of this residual vector being supposed inde-

pendent from each other and with a unit standard deviation.

Inside each term of the cost function

RTP−1R. (21)

We allow defining a correlation matrix P so that the resid-

uals can actually be correlated. We thus used a Cholesky de-

composition of P,

P= P1/2P1/2, (22)

and a change of variable,

R′ =
(
P1/2

)−1

R, (23)

to transform the residual vector into a vector composed of

independent variables with unit standard deviation. The as-

sociated term of the cost function can now be written as(
R′
)T

R′; (24)

that is, the residuals are now independent and with a unit

standard deviation.

3 Dating experiments

In this section, we describe the setups and the results of var-

ious dating experiments.

3.1 Standard AICC2012 experiment

IceChrono1 is similar in scope to the Datice model

(Lemieux-Dudon et al., 2010a, b). Datice has been used

to build AICC2012, the most recent official chronology

for the four Antarctic ice cores EPICA Dome C (EDC),

Vostok (VK), Talos Dome (TALDICE), EPICA Dronning

Maud Land (EDML) and the Greenland ice core North-

GRIP (NGRIP) (Bazin et al., 2013; Veres et al., 2013).

The AICC2012 experiment was based on a previous ex-

periment (Lemieux-Dudon et al., 2010a) on three Antarc-

tic ice cores (EDC, VK, EDML) and one Greenland ice

core (NGRIP) but with updated chronological information.

All chronological information is available in the supple-

mentary material of Bazin et al. (2013) and Veres et al.

(2013). This experiment integrates orbital tuning constraints

based on the δ18Oatm, O2 /N2 and air content records

(Bazin et al., 2013; Dreyfus et al., 2007, 2008; Landais

et al., 2012; Lipenkov et al., 2011; Raynaud et al., 2007;

Suwa and Bender, 2008), layer counting on NGRIP back

to 60 kyr B1950 (Svensson et al., 2008, and references

therein), a tephra layer (Narcisi et al., 2006) dated indepen-

dently at 93.2± 4.4 kyr B1950 (Dunbar et al., 2008), the

Laschamp geomagnetic excursion at 40.65± 0.95 kyr B1950

(Singer et al., 2009) and the Brunhes–Matuyama geomag-

netic reversal at ∼ 780.3± 10 kyr B1950 and its precursor

at 798.3± 10 kyr B1950 (Dreyfus et al., 2008) identified in

the 10Be records (Raisbeck et al., 2006, 2007; Yiou et al.,

1997), a Holocene 10Be-dendrochronology tie point on Vos-

tok at 7.18± 0.1 kyr B1950 (Bard et al., 1997; Raisbeck et

al., 1998), 1depth observations at NGRIP obtained by com-

paring the δ18Oice and δ15N records (Capron et al., 2010;

Huber et al., 2006; Landais et al., 2004, 2005), air synchro-

nization tie points using the CH4 records (Buiron et al., 2011;

Capron et al., 2010; Landais et al., 2006; Lemieux-Dudon et

al., 2010a; Loulergue et al., 2007; Schilt et al., 2010; Schüp-

bach et al., 2011) the δ18O records (Bazin et al., 2013) and
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ice synchronization tie points using the volcanic records (Par-

renin et al., 2012b; Severi et al., 2007, 2012; Svensson et al.,

2013; Udisti et al., 2004; Vinther et al., 2013) and the 10Be

records (Raisbeck et al., 2007).

In this AICC2012-VHR (AICC2012 very high resolution)

experiment, IceChrono1 is tested on the exact same setup, us-

ing the same observations and the same definition of the prior

information as Datice was used. Only one aspect is modified:

in AICC2012, the prior correlation matrices for the thinning

function and LID are supposed to have an across-diagonal

Gaussian decrease in amplitude. This Gaussian shape leads

to a too high correlation for neighboring points. As a conse-

quence, these matrices are numerically very difficult to invert

(with a poor conditional state). We therefore opt for correla-

tion matrices with an across-diagonal linear decrease in am-

plitude. We use regular grids with a time step of 1 kyr for the

accumulation and LID correction functions and with 1001

nodes for the thinning correction functions. For the age equa-

tion grid, we use a step of 0.55 m for EDC, 1 m for VK, 1 m

for TALDICE, 1 m for EDML and 1 m for NGRIP.

The IceChrono1 AICC2012-VHR experiment results are

provided as a Supplement. This also includes all the figures

produced by the IceChrono1 model.

3.2 Sensitivity test to resolution

In this experiment AICC2012-V2HR (AICC2012 very very

high resolution), we test the impact of the resolution of the

correction functions on the results of the optimization. We

use exactly the same setup as for the AICC2012-VHR exper-

iment, except for the resolution of the correction functions

which is twice as high: we use regular grids with a time step

of 0.5 kyr for the accumulation and LID correction functions

and with 2001 nodes for the thinning correction functions.

Figure 3 compares the AICC2012-V2HR and AICC2012-

VHR experiments for the ice age. The differences are minor

and do not exceed 60 yr.

Figure 4 compares the resulting chronologies for the

EDC ice core using the IceChrono1 (experiment AICC2012-

V2HR) and Datice codes, as well as their uncertainties. Note

that we did not use the official AICC2012 uncertainties for

the ice and air ages (Bazin et al., 2013; Veres et al., 2013),

but rather the raw uncertainties as calculated by the Dat-

ice code. The difference in both chronologies is less than

200 yr for the last 600 kyr and less than 500 yr all along the

record. The uncertainties also show comparable shapes. We

remark a few noticeable differences, though. There is a high

frequency noise in the air age difference, especially for the

most recent periods. This is due to the fact that the δ15N data

which are used to infer the LID contain high-frequency varia-

tions and that Datice uses a higher resolution than IceChrono

for these periods (1.65 m for EDC, 2 m for VK, 3 m for

EDML, 1 m for TALDICE and 1 m for NGRIP). For the last

60 kyr, the uncertainties are almost always smaller in Datice

than in IceChrono for the ice and almost always smaller in
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Figure 3. Sensitivity of the AICC2012-like experiment to a change

of resolution of the correction functions. The black line is the age

difference between the AICC2012-V2HR and AICC2012-VHR ex-

periments (see text).

IceChrono than in Datice for the air ages. For example, be-

tween 15 and 60 kyr B1950, the uncertainty on the air age

often decreases below 1000 yr in IceChrono1 but never in

Datice. Also, the uncertainties of Datice are smaller in the

ice phase than in the air phase.

3.3 Test experiment for ice intervals with known

durations

We now perform a simplified dating experiment to test the in-

clusion of ice intervals with known durations. This is a new

type of observation introduced in IceChrono, not available in

the initial version of Datice (Lemieux-Dudon et al., 2010a,

b) and not used in the AICC2012 experiment. It has only re-

cently been developed in Datice (Bazin et al., 2014). This ex-

periment is called “test-ice-intervals-with-known-durations”.

The experiment only contains the NGRIP ice core. The res-

olution chosen for the correction functions is 200 yr for the

accumulation and LID correction functions and 501 nodes

for the thinning correction function.

The prior accumulation is deduced directly from the deu-

terium content of the ice using an exponential relationship:

ab
= a0exp

(
8β1δ18O

)
, (25)

where a0
= 0.256 ice m yr−1 and β = 0.0193. The accumu-

lation covariance matrix is defined by a uniform variance

value of 20 % and with a correlation matrix with an across-

diagonal linear decrease duration of 4000 yr. The prior thin-

ning is deduced using the so-called pseudo-steady assump-

tion (Parrenin et al., 2006):

τ b
= (1−µ)ω+µ, (26)
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Figure 4. Comparison of IceChrono and Datice chronologies of the

EDC ice core in the AICC2012 experiment. IceChrono is the black

plain line and its standard deviation is the black dashed line. The

AICC2012 standard deviation is represented by the grey area. (top)

Ice chronologies. (bottom) Air chronologies.

with µ= 11 % being the ratio between melting and accumu-

lation assumed constant through time and with ω being the

flux-shape function (Parrenin and Hindmarsh, 2007), defined

using a Lliboutry analytical model (Lliboutry, 1979),

ω = 1−
p+ 2

p+ 1
(1− ζ )+

1

p+ 1
(1− ζ )p+2, (27)

with p =−0.61. The covariance matrix of the thinning func-

tion is defined as a variance, which is assumed linearly re-

lated to the ice-equivalent depth zie:

σ τ = k
zie

H ie
, (28)

where H ie is the ice-equivalent ice thickness and k = 0.5.

The value of a0, β, µ and p were adjusted to obtain a good
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Figure 5. Comparison of IceChrono and Datice chronologies of

the EDC ice core in the AICC2012 experiment, for the last 60 kyr.

IceChrono is the black plain line and its standard deviation is the

black dashed line. The AICC2012 standard deviation is represented

by the grey area. (top) Ice chronologies. (bottom) Air chronologies.

fit with the layer-counted GICC05 (Svensson et al., 2008)

age markers sampled every 5 kyr along the core.

Here we include only one type of observations, ice in-

tervals with known durations, which result from the layer-

counted GICC05 chronology (Svensson et al., 2008, and ref-

erences therein) covering the last 60 kyr. This information is

sampled every 1 kyr. The standard deviation of each obser-

vation on every 1 kyr interval is taken as half the variation

of the maximum counting error (MCE) on this interval. All

observations are assumed independent, i.e., the error on one

1 kyr interval is not correlated with the error on another 1 kyr

interval.

The NGRIP ice age results of IceChrono1 on this opti-

mization experiment are plotted in Fig. 6. As expected, the

timescale is tightly constrained by the GICC05 ice intervals

with known durations down to 60 kyr. The uncertainty of the
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Figure 6. Experiment test-ice-intervals-with-known-durations.

NGRIP prior (blue) and posterior (black) chronologies and the

posterior confidence interval (grey area) when using independent

1 kyr long intervals with known durations from the GICC05 layer-

counted timescale (green rectangles; Svensson et al., 2008). The

1σ uncertainty of the posterior timescale is also shown on the left

(pink). This figure is automatically produced by IceChrono1.

optimized timescale is smaller than half the MCE: for ex-

ample, at 60 kyr B1950, the uncertainty of the optimized age

scale is 230 yr while half the MCE is 1300 yr. This is because

the MCE is cumulative while the uncertainties of the 1 kyr

long intervals with known durations are assumed to be inde-

pendent and thus tend to cancel out. Indeed, the squared stan-

dard deviation of the sum of independent Gaussian variables

is the sum of the squared standard deviation of the indepen-

dent Gaussian variables. Beyond 60 kyr, when there are no

ice interval constraints anymore, the uncertainty of the opti-

mized age scale then increases quickly to reach∼ 7 kyr at the

bottom of the core.

3.4 Test experiment for correlated errors of

observations

We now perform a simplified dating experiment to test the

inclusion of correlated uncertainties. This is a new func-

tionality in IceChrono with respect to the first version of

Datice (Lemieux-Dudon et al., 2010a, b) and which has

not been used in the AICC2012 experiment. It has only re-

cently been developed in Datice (Bazin et al., 2014). This ex-

periment is called “test-ice-intervals-with-known-durations-

with-correlation”. Again, this experiment contains only the

NGRIP ice core. The resolution chosen for the correction

functions is 200 yr for the accumulation and LID correction

functions and 501 nodes for the thinning correction function.

The prior information is exactly the same as the previous

experiment. Only one type of observations is included: ice in-

tervals with known durations. Again, this information comes

from the layer-counted timescale GICC05 (Svensson et al.,

2008, and references therein) and is sampled every 1 kyr. The

standard deviation of each observation on every 1 kyr inter-

val is taken as half the variation of the MCE on this interval.

Contrary to the previous experiment, the observations are not

assumed independent: the correlation matrix is assumed to

contain ones on its diagonal and 0.5 outside of it.

The NGRIP ice age results of IceChrono1 on this opti-

mization experiment are plotted in Fig. 7. As expected, the

timescale is well constrained by the GICC05 intervals with

known durations of observations down to 60 kyr and ex-

plodes beyond this age. Contrary to the previous experiment,

the uncertainties of the intervals with known durations do

not cancel out since they are correlated. Indeed, the standard

deviation of the sum of completely dependent Gaussian vari-

able is the sum of the standard deviations of the completely

dependent Gaussian variables. As a consequence, the a pos-

teriori uncertainty of the optimized timescale increases to

∼ 900 yr at 60 kyr, comparable to a MCE equal to ∼ 2600 yr

at this age.

3.5 Test experiment for air intervals with known

durations

We now perform a simplified dating experiment to test the in-

clusion of air intervals with known durations, which is a new

type of observation in IceChrono with respect to the first ver-

sion of Datice (Lemieux-Dudon et al., 2010a, b), not used in

AICC2012. This experiment is called test-air-intervals-with-

known-durations. The experiment contains only the EDC ice

core. The resolution chosen for the correction functions is

200 yr for the accumulation and LID correction functions and

501 nodes for the thinning correction function. We perform

the dating experiment only down to a depth of 1400 m (age

of ∼ 100 kyr B1950).

The prior information is the same as for the AICC2012-

VHR experiment. We include observations as air intervals

with known durations. This information comes from the

layer-counted timescale GICC05 of NGRIP (Svensson et al.,

2008, and references therein) and is transferred onto EDC

through a NGRIP-δ18Oice /EDC-CH4 synchronization. Each

air-dated interval is defined by the onsets of DO events (in-

cluding the Younger Dryas/Preboreal – YD/PB – transition)

down to DO12 (∼ 46.8 kyr B1950). The top and bottom

depths of the air intervals with known durations are directly

taken from fast CH4 transitions (Loulergue et al., 2007, Ta-

ble 2). The durations of the air intervals with known dura-

tions are directly taken from the GICC05 timescale (Svens-

son et al., 2008, Table 1). The standard deviation of each in-

terval observation is taken as half the MCE on this interval.

The observations are assumed uncorrelated: the correlation

matrix is assumed to be equal to the identity matrix. We also

add the GICC05 age of the CH4 YD/PB transition as an air-

dated horizon. This is equivalent to using an air interval from

the LID to the CH4 YD/PB transition with known duration,
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Figure 7. Experiment test-ice-intervals-with-known-durations-

with-correlation. NGRIP prior (blue) and posterior (black)

chronologies and the posterior confidence interval (grey area) when

using correlated 1 kyr long intervals with known durations from

the GICC05 layer-counted timescale (green rectangles; Svensson

et al., 2008). The 1σ uncertainty of the posterior timescale is also

shown on the left (pink). This figure is automatically produced by

IceChrono1.
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Figure 8. Experiment test-air-intervals-with-known-durations.

EDC prior (blue) and posterior (black) chronologies and the pos-

terior confidence interval (grey area) when using independent CH4

intervals with known durations from the GICC05 layer-counted

timescale (green rectangles; Svensson et al., 2008). The 1σ uncer-

tainty of the posterior timescale is also shown on the left (pink).

This figure is automatically produced by IceChrono1.

but it is numerically more stable since the LID is not fixed

during the iterative optimization procedure.

The EDC air age results of IceChrono on this optimization

experiment are plotted in Fig. 8. As expected, the timescale

is well constrained by the GICC05 intervals with known du-

rations of observations down to DO12 and explodes beyond

this age. The uncertainty on the absolute age also tends to

increase inside intervals with known durations. This is ex-

pected since the total duration of an interval is constrained,

but inside this interval only the prior information constrains

the variation of the age. This feature is more visible here than

in the two previous experiments because of the uncertainty

on the LID which has a direct impact on the uncertainty of

the air age from Eq. (2). By comparison, the uncertainty of

the accumulation rate only has an impact on the uncertainty

of the derivative of the ice age from Eq. (1).

3.6 Test experiment for mixed ice–air stratigraphic

links

We now perform a simplified dating experiment to test the

inclusion of mixed ice–air stratigraphic links, which is a new

type of observation in IceChrono1 with respect to the first

version of Datice (Lemieux-Dudon et al., 2010a, b), not used

in the AICC2012. This experiment is called test-mixed-strati.

The experiment contains only the EDC and NGRIP ice cores.

The resolution chosen for the correction functions is 200 yr

for the accumulation and LID correction functions and 501

nodes for the thinning correction function. We perform the

dating experiment only down to a depth of 1400 m for the

EDC ice core (age of ∼ 100 kyr B1950).

The prior information for both the NGRIP and EDC ice

cores are the same as for the test-ice-dated-intervals and

test-air-dated-intervals experiments respectively. Only one

type of observations is included: mixed ice–air stratigraphic

links. This information comes from the synchronization of

the EDC CH4 record with the NGRIP δ18O record. Each

stratigraphic link is the onset of one DO event (includ-

ing the Younger Dryas/Preboreal transition) down to DO12

(∼ 46.8 kyr B1950). The EDC CH4 depths are taken from

Loulergue et al. (2007, Table 2). The NGRIP δ18O depths are

taken from Svensson et al. (2008, Table 1). The standard de-

viation of each observation is taken as 100 yr for simplicity.

The observations are assumed uncorrelated: the correlation

matrix is assumed to be equal to the identity matrix.

The NGRIP air age vs. EDC ice age results of IceChrono1

on this optimization experiment are plotted in Fig. 9. While

the prior scenario is in poor agreement with stratigraphic ob-

servations the optimized chronology agrees with the obser-

vations within their confidence intervals.

4 Discussion

4.1 Robustness to a change of resolution

It is important to assess whether the formulation of

IceChrono1 is robust to a change of resolution: when the

resolution increases, the simulations should converge toward

a meaningful result. IceChrono1 uses two different types of
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Figure 9. Experiment test-mixed-strati. NGRIP air age vs. EDC

ice age for the prior (blue) and posterior (black) scenarios for the

stratigraphic observations. The 1 : 1 perfect agreement line (red)

is shown for comparison. This figure is automatically produced by

IceChrono1.

grids to optimize the ice cores age scales: the age equation

grids and the correction function grids.

The age equation grids are used to solve Eqs. (1), (2) and

(3). Equation (2) is the value of the ice age function at a given

depth, so it is clearly robust to a change of resolution. Equa-

tions (1) and (3) are integrals and are therefore also robust to

a change of resolution.

Concerning the correction functions grids, we made two

test experiments with different resolutions: AICC2012-VHR

and AICC2012-V2HR. The fact that the AICC2012-VHR

and AICC2012-V2HR experiments agree well indicates that

the formulation of the optimization problem in IceChrono1 is

robust to a change of resolution of the correction functions.

4.2 IceChrono–Datice comparison on the AICC2012

experiment

The fact that IceChrono1 and Datice agree fairly well on this

AICC2012 experiment indicates that both codes, which have

been developed independently using different programming

languages and different numerical schemes, are correct. But

one has to keep in mind that both codes are based on the

same main principles, so this is not a confirmation of these

principles.

Concerning the differences in the posterior confidence

intervals observed for the last 60 kyr, we note that Dat-

ice uses an approximated version of Eq. (3) and that some

limitations regarding the calculation of the uncertainties in

Datice are known (see SOM, p. 280–289, of Bazin et al.,

2014). These limitations are not present in IceChrono1 and

all the uncertainties are calculated using the same formula

(Eq. 20). Some limitations have been corrected in a more

recent version of Datice (Bazin et al., 2014). During the

last glacial period, there are many CH4 Antarctica–NGRIP

stratigraphic links with uncertainties of a few centuries. With

the NGRIP chronology being tightly constrained to GICC05

within 50 yr, it is expected that the air age uncertainty at EDC

will sometimes decrease below 1000 yr during this time pe-

riod. The posterior uncertainty calculated by IceChrono1 is

therefore consistent with the chronological information used,

in contradiction to that calculated by Datice.

4.3 IceChrono new functionalities

IceChrono1 has four new functionalities with respect to the

initial Datice model (Lemieux-Dudon et al., 2010a, b):

– observations as ice intervals with known durations

– observations with correlated uncertainties

– observations as air intervals with known durations

– observations as mixed ice–air stratigraphic links.

We performed several tests which indicate that these func-

tionalities work correctly. Note that the first two of these

functionalities have also been implemented in a recent ver-

sion of Datice (Bazin et al., 2014). The observations of in-

tervals with known durations will be useful for future dating

efforts to account for the layer counting information. This

information is generally correlated since counting errors on

two different intervals using the same method could be bi-

ased in the same way. Mixed ice–air stratigraphic observa-

tions will also be useful when accounting for the Antarctica-

CH4/Greenland-δ18O synchronization links.

4.4 IceChrono–Datice codes comparison

Although IceChrono1 follows an approach similar to that

of Datice, there are mathematical, numerical and program-

ming differences with the initial version of Datice (Lemieux-

Dudon et al., 2010a, b) that we will detail below.

1. Datice does not solve Eq. (3) but an approximation of

it:

1d (z)=Dfirn (z)× l (z)× τ (z) ; (29)

that is, τ is assumed constant between the synchronous

ice and air depths.

2. There is only one depth grid per drilling in Datice while

the correction functions in IceChrono1 are discretized

on different, coarser grids than the age equation grid.

This allows reducing significantly the number of vari-

ables to be inverted and therefore to decrease the com-

putation time. These coarser grids were not necessary in

Datice since the analytical gradients already reduce the

computation time.
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3. Uncertainties are assumed Gaussian on 1depth obser-

vations in IceChrono1 while they are assumed lognor-

mal in Datice. In practice, if the uncertainty on the

1depth observation is small in front of the value of the

1depth observation, this should make little difference.

4. In IceChrono1, we allow for mixed ice–air and air–ice

stratigraphic links in between ice cores. This is new

with respect to Datice. A concrete example of the use

of mixed ice–air stratigraphic links could be the syn-

chronization of Dansgaard–Oechger events recorded in

the methane records in Antarctica and in the ice iso-

tope records in Greenland, as illustrated in the test-

mixed-strati experiment. This is especially useful when

methane records for some Greenland ice cores are not

yet available at sufficient resolution.

5. IceChrono1 allows for ice and air intervals with known

durations. The functionality of ice intervals with known

durations has also recently been implemented in Dat-

ice (Bazin et al., 2014) to take into account the infor-

mation from layer counting. An example of the use of

air intervals with known durations could be the dating

of one Antarctic ice core using its methane record syn-

chronized to the NGRIP ice isotopic record dated by

layer counting.

6. IceChrono1 allows for correlated errors in observations

for every kind of observation, while the original ver-

sion of Datice does not allow for correlated errors for

observations (Bazin et al., 2013; Lemieux-Dudon et

al., 2010a, b; Veres et al., 2013). Note however that a

new version of Datice implements this new functional-

ity (Bazin et al., 2014).

7. In IceChrono1, the Jacobians of the model and of the

observation operator are computed numerically by a fi-

nite difference approach while they are computed ana-

lytically in Datice. The Jacobian of the observation op-

erator is needed by the minimizer to find the optimal

solution Xopt and its uncertainty CX. When the opti-

mal solution is found, the Jacobian of the model allows

evaluating the uncertainty of the model CG through

Eq. (20). In Datice, analytical expressions of the Ja-

cobians with respect to X have been derived and these

expressions are used to numerically compute the Jaco-

bians for a particular X. In IceChrono, each component

of the X vector is alternatively perturbed and the for-

ward model is run to evaluate how the model G(X) and

the observation operator are modified. In other words,

the Jacobians are evaluated by a finite difference ap-

proach. While a numerical computation of the Jacobian

leads to a slower computation time, it leads to a more

flexible use of the model since, if one modifies the for-

mulation of the cost function or of the model, one does

not need to derive again analytical expressions for the

Jacobians, which is a complex task.

8. IceChrono1 is coded in a simple, flexible and straight-

forward way using the object-oriented python language.

It is very simple in IceChrono1 to modify the parame-

ters of the problem, e.g., the age equation grid and the

correction vectors grids. By comparison, IceChrono1

is about 1000 lines long (including the construction of

the figures) while Datice is about 30 000 lines long of

fortran code (without any figure construction). The re-

duction of the code length in IceChrono is in particular

due to (1) the use of the python programming language,

which was not advanced enough at the time when the

Datice code was developed; (2) the use of the python

leastsq function, which automatically calculates the gra-

dient of the observation operator and the posterior CX

variance–covariance matrix; and (3) the use of a numer-

ical gradient of the model G’. Datice also implements

posterior diagnostics of the data assimilation system

which make its code length larger (Bazin et al., 2014).

The simplicity of IceChrono will make it easy to add

new functionalities to the code.

4.5 Current limitations of IceChrono and possible

perspectives

IceChrono1 is already a useful tool to define a common and

optimized chronology for several ice cores all together. How-

ever, it has several limitations that we will discuss below.

1. All uncertainties are assumed Gaussian. While the

Gaussian probability density functions are the most of-

ten encountered in science, they are not always appro-

priate. For example, the volcanic synchronization of ice

cores (e.g., Parrenin et al., 2012b) is ambiguous: a vol-

canic peak in one ice core can sometimes be synchro-

nized to several other volcanic peaks in the other ice

core. IceChrono1 therefore assumes that the features’

recognition has been performed without ambiguity and

that the only uncertainty remaining is the exact match

of the two features within their durations.

2. The forward dating model is assumed to be “almost lin-

ear” in the plausible vicinity of the solution. Further de-

velopments would be necessary to diagnose if this as-

sumption is justified.

3. IceChrono1 is not appropriate for optimizing the

chronology of many ice cores at a very high resolution:

the computation time would be too high, due to the nu-

merical finite differences approach to evaluate the Ja-

cobian matrices. In practice this is not a problem as a

high resolution is only necessary for recent periods. If,

in the future, the need for a more efficient dating model

appears, we could develop an analytical gradient for the

forward model, as it is done in the Datice software.

4. The age observations on different cores or on different

ice core pairs are not always independent (because the
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dating methods are the same). We might allow in the fu-

ture to take into account the correlation of observations

between ice cores and ice core pairs.

5. IceChrono1 requires the need for external sedimenta-

tion models to infer prior scenarios and their uncer-

tainties. In practice, these sedimentation models also

need to be optimized using age observations. In a next

step, we will incorporate sedimentation models directly

into IceChrono. The uncertainties of these sedimenta-

tion models could be inferred automatically by compar-

ing them to the age observations.

6. The stratigraphic observations between the different ice

cores need to be derived externally and imported as

stratigraphic observations into IceChrono1. This step

also requires some prior knowledge about the sedimen-

tation process. Therefore, it would be best to incorpo-

rate it directly into the IceChrono software. Automatic

methods for ice core synchronization would eliminate

this step, which is most of the time done visually, in a

subjective, fastidious and undocumented way.

7. The layer counting dating of ice cores needs to be done

externally and imported as intervals with known dura-

tions of observations into IceChrono1. Again, this step

also requires prior knowledge about the sedimentation

process (e.g., the typical annual layer thickness). There-

fore, it would be best to incorporate it directly into

the IceChrono software. An automatic method for layer

counting has already been proposed (Winstrup et al.,

2012).

8. The definition of realistic prior correlation matrices is

a difficult issue which will be dealt with in details in

future studies.

5 Conclusions

We have developed and made accessible a new open-source

probabilistic model to produce a common and optimized age

scale for several ice cores, taking into account modeling and

observation information. The code is similar in scope to Dat-

ice but has mathematical, numerical and programming differ-

ences: IceChrono1 is simpler to use, more flexible to develop

and more powerful than Datice, although it might be slower

to run depending on the chosen resolution. When compared

to an AICC2012-like experiment, IceChrono1 and Datice

generally produce similar results, which is a confirmation of

both codes but which is not a confirmation of their princi-

ples which are identical. There are some differences in the

evaluation of AICC2012 uncertainties for the last glacial pe-

riod, and IceChrono appears to be more consistent with the

chronological information which have been used. We also

tested four new features of IceChrono1 with respect to Dat-

ice: the use of ice intervals with known duration, the use of

correlated observations, the use of air intervals with known

durations, and the use mixed ice–air stratigraphic links. Al-

though primarily built for ice cores, IceChrono1 can also be

used to date other paleoclimatic archives like marine cores,

lake cores, speleothems, etc.

The flexibility of IceChrono now opens interesting per-

spectives: the allowance of inter-cores and inter-core-pair

correlation, the coupling with sedimentation models, the cou-

pling with automatic synchronization methods, and the cou-

pling with automatic layer counting methods. These develop-

ments will be made available in future versions of IceChrono.
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Appendix A

Below, we describe in detail the terms of the cost function

which are linked to observations.

j ih
k =

(
Rih
k

)T(
Pih
k

)-1

Rih
k , (A1)

Rih
k =

χdk
(
zih
k,i

)
−χobs

k,i

σ ih
k,i


i

, (A2)

where zih
k,i is the depth of the ith ice-dated horizon in the

kth ice core, χobs
k,i is its age, σ ih

k,i is its standard deviation and

where Pih
k is the correlation matrix.

j ah
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Rah
k

)T(
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k

)-1
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k , (A3)

Rah
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(
zah
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k,i


i
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where zah
k,i is the depth of the ith air-dated horizon in the kth

ice core, ψobs
k,i is its age, σ ah

k,i is its standard deviation and

where Pah
k is the correlation matrix.

j ii
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Rii
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Pii
k

)-1

Rii
k , (A5)

Rii
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σ ii
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where z
ii,t
k,i and z

ii,b
k,i are the top and bottom depths of the ith

ice-dated interval in the kth ice core, 1χobs
k,i is its duration,

σ ii
k,i is its standard deviation and where Pii

k is the correlation

matrix.

j ai
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(
Rai
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where z
ai,t
k,i and z

ai,b
k,i are the top and bottom depths of the ith

air-dated interval in the kth ice core, 1ψobs
k,i is its duration,

σ ii
k,i is its standard deviation and where Pai

k is the correlation

matrix.

j1dk =
(
R1d
k

)T(
P1dk

)-1

R1d
k , (A9)

R1d
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1ddk
(
z1dk,i

)
−1dobs

k,i

σ1dk,i


i

, (A10)

where z1dk,i is the depth of the ith 1depth observation in the

kth ice core, 1dobs
k,i is its observed value, σ1dk,i is its standard

deviation and where P1dk is the correlation matrix.

j ii
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where z
ii,1
k,m,i and z

ii,2
k,m,i are the depths in the kth and mth ice

cores of the ith ice–ice stratigraphic link in the (k,m) pair of

ice cores, σ ii
k,m,i is its standard deviation and where Pii

k,m is

the correlation matrix.

j aa
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)
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where z
aa,1
k,m,i and z

aa,2
k,m,i are the depths in the kth and mth ice

cores of the ith air–air stratigraphic link in the (k,m) pair of

ice cores, σ aa
k,m,i is its standard deviation and where Paa

k,m is

the correlation matrix.

j ia
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(
Ria
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)T(
Pia
k,m

)-1
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where z
ia,1
k,m,i and z

ia,2
k,m,i are the depths in the kth and mth ice

cores of the ith ice–air stratigraphic link in the (k,m) pair of

ice cores, σ ia
k,m,i is its standard deviation and where Pia

k,m is

the correlation matrix.
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where z
ai,1
k,m,i and z

ai,2
k,m,i are the depths in the kth and mth ice

cores of the ith air–ice stratigraphic link in the (k,m) pair of

ice cores, σ ai
k,m,i is its standard deviation and where Pai

k,m is

the correlation matrix.
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Appendix B: List of symbols

Symbol Definition

k, m Indices of ice cores

zk Depth

χk Ice age

Dk Relative density

ak Accumulation rate

τk Thinning function

1dk 1depth, depth shift between synchronous ice and air events

lk Lock-in depth of air bubbles

Dfirn
k

Average relative density between surface and lock-in depth

ab
k

Prior accumulation rate

lb
k

Prior lock-in depth of air bubbles

τb
k

Prior thinning function

ca
k

Accumulation correction function

cl
k

Lock-in depth correction function

cτ
k

Thinning correction function

zk,i Discretized depth zk for the solving the age equations

ta
k,i

Discretized time for the accumulation correction function

t l
k,i

Discretized time for the lock-in depth correction function

zτ
k,i

Discretized depth for the thinning correction function

Ca
k

Accumulation correction vector

Cl
k

Lock-in depth correction vector

Cτ
k

Thinning correction vector

X State vector

L Likelihood function

J Cost function

Jk Cost function term for ice core k

Jk,m Cost function term for ice core pair (k, m)

J a
k

Accumulation prior cost term

J l
k

Lock-in depth prior cost term

J τ
k

Thinning prior cost term

J ih
k

Ice-dated horizons cost term

J ah
k

Air-dated horizons cost term

J ii
k

Ice intervals with known durations cost term

J ai
k

Air intervals with known durations cost term

J1d
k

1depth cost term

J ii
k,m

Ice–ice stratigraphic links cost term

J aa
k,m

Air–air stratigraphic links cost term

J ia
k,m

Ice–air stratigraphic links cost term

J ai
k,m

Air–ice stratigraphic links cost term

Pa
k

Accumulation prior correlation matrix

Pl
k

Lock-in depth prior correlation matrix

Pτ
k

Thinning prior correlation matrix

Ra
k

Accumulation residual vector

Rl
k

Lock-in depth residual vector

Rτ
k

Thinning residual vector

(σ a
k,i
)i Accumulation prior standard deviation vector

(σ l
k,i
)i Lock-in depth prior standard deviation vector

(σ τ
k,i
)i Thinning prior standard deviation vector

Xopt Optimized model state vector

CX A posteriori covariance matrix of the state vector

G’ Model Jacobian

CG A posteriori covariance matrix of the model
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Code availability

IceChrono1 is an open source model available under the

General Public License v3. It is hosted on the github fa-

cility (https://github.com/parrenin/IceChrono). A mailing list

exists for general support or discussions (https://groups.

google.com/forum/?hl=_en#!forum/icechrono). The current

code (version 1.4) is also available as a Supplement to this

manuscript.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-1473-2015-supplement.
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