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Abstract

The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess

the lateral diffusivity in the coastal waters of the western part of the Gulf of

Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment

(September 2010). Immediately after the release, the spreading of the patch

is associated with a strong decrease of the SF6 concentrations due to the gas

exchange from the ocean to the atmosphere. This has been accurately quanti-

fied, evidencing the impact of the strong wind conditions during the first days

of this campaign. Few days after the release, as the atmospheric loss of SF6

decreased, lateral diffusivity coefficient at spatial scales of 10 km has been com-

puted using two approaches. First, the evolution of the patch with time was

combined with a diffusion-strain model to obtain estimates of the strain rate

(γ=2.5 10−6 s−1) and of the lateral diffusivity coefficient (Kh=23.2 m2 s−1).

Second, a steady state model was applied, showing Kh values similar to the

previous method after a period of adjustment between 2 and 4.5 days. This
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implies that after such period, our computation of Kh becomes insensitive to

the inclusion of further straining of the patch. Analysis of sea surface temper-

ature satellite imagery shows the presence of a strong front in the study area.

The front clearly affected the dynamics within the region and thus the temporal

evolution of the patch. Our results are consistent with previous studies in open

ocean and demonstrate the success and feasibility of those methods also under

small-scale, rapidly-evolving dynamics typical of coastal environments.

Keywords: Lateral diffusivity coefficient, SF6 tracer, Lagrangian referential,

Coastal area
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1. Introduction

One of the major challenges in the study of ocean dynamics and mixing lies

in estimating the dispersion of particles by turbulent processes. To describe

it, classic theoretical studies have introduced the eddy diffusion coefficient, Kh,

which parametrizes the effects of small scale turbulence. This coefficient is5

analogous to the one in Fick’s first law of diffusion; however, it is associated

to the mixing induced by small turbulence, rather than to molecular diffusion.

The early study of [1] has showed that Kh depends on the length scale of the

parametrized turbulent processes, introducing the concept of scale-dependent

dispersion. In the following years, this scale dependence was confirmed by sev-10

eral experiments at sea by [2, 3, 4].

Kh is a key parameter for the turbulent closure schemes of both global and re-

gional numerical models. The simplest closure schemes usually assume isotropic,

constant horizontal eddy diffusivity; more complex ones are based on spatio-

temporally varying Kh, which depends on the dynamical characteristics of the15

resolved large scale processes [e.g. 5, 6, 7]. The accurate tuning of the values of

eddy diffusivity is a key aspect for numerical experiments, since they strongly

control the dispersion of physical and biogeochemical tracers [8]. Thus, in situ

estimates of Kh provide crucial information for improving the performance and

accuracy of ocean models.20

Within the last decade the number of quantitative estimates of the scale-dependent

Kh from in situ observations have increased with technological advancements.

However, such quantifications still represent an observational challenge due to

the small dimensions and short duration associated with turbulent processes.

Estimates of Kh can be obtained from Eulerian or Lagrangian approaches. Gen-25

erally, Eulerian estimates are obtained from remote sensing analysis [9, 10], while

Lagrangian studies have been developed to calculate this coefficient in situ.

Lagrangian-based estimates of Kh can be derived from the trajectories of freely

drifting instruments, like surface drifters and subsurface floats [11] (for a exten-

sive overview of the methods, see [12]). Eddy dispersion coefficients derived from30
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these methods are characteristic of oceanic mesoscale processes (length scales

of ∼10-100 km). In the last years, advancements in drifter technology, have

favored the development of Lagrangian studies specifically designed to investi-

gate coastal dynamics at smaller temporal and spatial scales [e.g. 13, 14, 15].

Such studies have helped improving our understanding of the contribution of35

local and non-local processes in regulating relative dispersions at scales below

the Rossby radius of deformation. Furthermore, the quantification of Kh at

the submesoscale has been recently investigated by [16] using trajectories of

hundreds of tracked surface drifters.

The determination of Kh associated with the smaller scales, has been usu-40

ally developed from experiments based on inert tracers. Among various types

of tracer, fluorescent dyes, especially Rhodamine B, have been largely used to

study turbulent diffusion [17]. Although numerous dye experiments have also

been performed in coastal environments or fresh water lakes, very few of these

studies have been made in stratified coastal areas with strong mesoscale ac-45

tivity. Noteworthy exceptions include the rhodamine dye experiments in the

Massachusett Bay [18] and the Coastal Mixing and Optics (CMO) project [19].

Dye experiments have been also deployed in the stratified thermoclines of the

Celtic Sea on the NW European Shelf by [20] and [21] and in the northern Mon-

terey Bay, California by [22].50

The sulfur hexafluoride (SF6), a stable and inert gas detectable at concentra-

tions a million times lower than dyes, has been mainly used for open ocean tracer

experiments. The main advantage of the SF6 is that, due to its low background

concentration in seawater, it can be used via small injections of SF6 saturated

seawater [23]. Nevertheless its low solubility in water makes it more difficult to55

inject than dye tracers. Since the mid 1980s, SF6 has been widely employed in

horizontal turbulent processes studies. More recently CF3SF5 (trifluoromethyl

sulfur pentafluoride), with same properties and behavior, has emerged as a

viable alternative to SF6 for large scale experiment [24, 25, 26]. Since the

successful test release of CF3SF5 had not yet been undertaken during the im-60

plementation of the project, we used SF6 rather than CF3SF5.
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Lateral diffusivities at scales smaller than 100 km have been obtained during

various SF6 tracer experiments (NATRE, [23] ; IronEx-I, [27] ; SOIREE, [28] ;

PRIME, [29]). Such estimates are based on the hypothesis that, under local

mesoscale stirring (which can be approximated, to a first order, as 2-dimensional65

and divergence-free), the initial shape of the tracer patch will elongate along one

direction while thinning along the other. The width of the patch will keep de-

creasing until the effects of mesoscale stirring are balanced by smaller scale

diffusion and an equilibrium is reached. Thus, lateral diffusivity can be com-

puted by combining estimates of the strain rate with in situmeasurements of the70

patch width. Strain rate is usually estimated from successive in situ mappings

[23] or from the analysis of satellite imagery of surface tracers (e.g. chlorophyll-

a concentration [28]). Lateral diffusivities computed using this approach range

from 0.5 to 25 m2 s−1 for tracer filaments with widths between 1 and 10 km.

At similar scales but in lower energetic systems, lateral diffusivities have also75

been estimated (from SF6 in the Santa Monica Basin Tracer Experiment, [30]

and from CF3SF5 in the BATRE one, [26]) by neglecting the strain and mea-

suring the growth of the roughly circular tracer patch. Following this method,

the lateral diffusivities were of the order of 10 m2 s−1 for the interior of the two

basins at scales on the order of 10 km.80

Estimates of lateral diffusivity can be used to understand the dynamics and mix-

ing within specific water patches, and therefore to assess the rates of some bio-

geochemical processes. In the case of biogeochemical applications, SF6 has been

used to estimate deep-water ocean ventilation, pathways, and anthropogenic

CO2 uptake [31, 32, 33]. During the PRIME project (Plankton Reactivity In85

the Marine Environment), the evolution of an SF6 patch has allowed a quantita-

tive understanding of the nutrient supply into the mixed layer of an anticyclonic

eddy in the North Atlantic [29, 34]. Combined with iron enrichment, the SF6

tracer has provided the potential to assess ecosystem responses to added iron

[35, 36, 37, 38, 39].90

As mentioned before, SF6 has been rarely used in coastal areas, where the

circulation is usually complex due to the influence of different forcings (local

5
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atmospheric conditions, tides, freshwater inputs) and the constraints imposed

on the flow by its coastline and bathymetry [40]. Coastal dynamics is criti-

cal for regulating the cross-shore exchange of materials between continents and95

oceans. The study of its functioning is therefore of considerable interest for

understanding the coupling of terrestrial and oceanic biogeochemical cycles.

Two SF6 experiment have been conducted in the Florida shelf [41] and near

South Georgia [42]. Given the success of these first SF6 tracer experiments, our

study explores the application of SF6 in a coastal area of the North Western100

Mediterranean Sea where several in situ data have been collected within the

framework of the LATEX project (LAgrangian Transport EXperiment, 2007-

2011 ; http://www.mio.univ-amu.fr/LATEX).

The LATEX project aimed to investigate the role of coupled physical and bio-

geochemical dynamics at the mesoscale in regulating the exchanges of matter105

and energy between inshore and offshore areas. One of the goals of the project

was to analyze transport patterns and diffusion rates in the western part of

the Gulf of Lion (GoL). The GoL is located in the northwestern Mediterranean

Sea and is characterized by a relatively large continental margin (Fig. 1-a).

Its hydrodynamics is complex and highly variable in space and time [43]. Its110

circulation is strongly influenced by the southwestward along-slope Northern

Current (NC). This density current flows in a cyclonic way and constitutes an

effective dynamical barrier isolating the coastal waters of the continental shelf

from the open northwestern Mediterranean Sea [44, 45, 46]. Cross-shore ex-

changes between the GoL and offshore waters are mainly regulated by wind115

induced dynamics [47, 48], and by processes associated with the NC, such as in-

trusion into the continental shelf, barotropic and baroclinic instabilities arising

along its internal and external borders and seasonal modulation of its intensity

and position [49, 50, 51].

Two of the four LATEX field campaigns were dedicated to the SF6 tracer re-120

lease experiment. The first one, the Latex00 campaign (9-11 June 2007, aboard

the R/V Téthys II), was part of a pilot project that aimed to measure the back-

ground concentration of SF6 and to test the Lagrangian navigation software

6
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[LATEXtools, 52]. The last one, the Latex10 campaign (1-24 September 2010,

aboard the R/V Le Surôıt and the R/V Téthys II), investigated the transport125

structures in the western GoL with an adaptive sampling strategy, which com-

bined satellite data, ship-based ADCP measurements, and iterative Lagrangian

drifter releases. The sampling strategy enabled the identification of a frontal

jet, 10 km-wide, roughly parallel to the coast, along which waters from the

continental shelf left the gulf towards the Catalan Basin [53].130

The aim of the present work is to use the observations from the Latex10 pas-

sive tracer experiment to evaluate the lateral diffusivity coefficient in a coastal

area (between depths of 100 and 1000 m), marked by the presence of an ener-

getic small scale dynamical feature. The methods to release and measure the

SF6 data are described in Section 2, while the analysis and evolution of the135

SF6 patch are showed in Section 3. Air-sea gas exchanges are described in Sec-

tion 4. In Section 5, the different methods for calculating the lateral diffusivity

coefficients, their limits and their applications in the GoL are presented. The

estimated coefficients, the temporal evolution of the patch and the air-sea gas

exchanges are discussed in Section 6.140

7



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2. SF6 release and measurements

A satured SF6 solution was prepared at the beginning of the Latex10 cam-

paign. A 7000 L steel tank was filled with sea water in the afternoon of Septem-

ber 2. An acrylic cylinder was placed on the top of the tank, making a headspace

of about 5 L for effective bubbling. Pure SF6 gas was injected into the seawa-145

ter in the tank for 48 h to obtain a saturated SF6 solution. For determining

SF6 concentrations in the tank before injection, a headspace extraction and a

classical gas chromatograph (GC) equipped with a thermal conductivity detec-

tor (TCD) were used. The GC/TCD analysis of extracted gas were based on

the [54] method. The measured SF6 concentration was 1.63 10−4 mol L−1 for150

the first 4000 L released. Due to a technical problem, the SF6 concentration

decreased to 0.69 10−4 mol L−1 for the remaining 3000 L. Lateral and vertical

homogeneities in the distribution within the area are still a primary assumption,

with or without this technical problem. Such hypothesis was likely respected,

since the analysis of the lateral diffusivity was performed after a period of 2155

days after the release, as in [55].

In order to release the tracer as homogeneously as possible in the horizontal

and, thus, study the lateral diffusivity of the tracer patch while minimizing the

contribution due to the advection, it was necessary to coordinate the release of

the SF6 in a Lagrangian reference frame. This task was accomplished using the160

software package LATEXtools [52], that provided information to direct the ship

route during the tracer release. The center of the Lagrangian reference frame

was defined by the position of a buoy (which is hereafter referred to as the “ref-

erence buoy”) drogued at 11.5 m depth and deployed at 42◦45,01’N - 3◦30,11’E

at the beginning of the tracer release on September 11 (Fig. 1-b). The refer-165

ence buoy was equipped with an Iridium transmitter/receiver which ensured

the acquisition of its position every 15 minutes. The position of the Lagrangian

reference frame and, accordingly, the ship trajectory were adjusted after each

acquisition. From the R/V Le Surôıt, the satured SF6 solution was released at

a ship speed of 4 knots for a period of 14 h (Table 1). The reconstructed vessel170

8
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track in the Lagrangian reference frame matched almost perfectly the planned

route [See Figure 6 in 52]. Unfortunately, during the cruise the atmospheric

conditions were particularly rough (wind gust exceeding 30 m s−1, Fig. 5-a). In

order to prevent as much as possible a quick loss and dispersion of the tracer,

the location of the release has been chosen on the basis of the information com-175

ing from the weather-forecast model Aladin and a 10-year realistic simulation

from a high-resolution ocean circulation model [56]. Indeed, we chose to release

the SF6 during the predicted period of low winds (which indeed turned out to

be lower than 10 m s−1, Fig. 5-a) and at the point of current speed minimum

as determined in the historical archive of our numerical simulations for similar180

dynamical and meteorological forcings.

Figure 1: (a) Bathymetry of the Gulf of Lion (200 and 500 m isobaths). Black arrows indicates

the Northern Current, and the Tramontane and Mistral winds. The red rectangle indicates

the region of focus of the Latex10 campaign. (b) Map of the SF6 patch, color-coded by SF6

concentrations [fmol L−1] and marked on selected dates. Isobaths at 100, 200 and 1000 m are

plotted with thin lines. (c) Vertical profiles of density [kg m−3] and SF6 concentrations [fmol

L−1] on September 14, September 16 and September 18.

9
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A SF6 background value of about 1.35 fmol L−1 (fmol=10−15 mol) was esti-

mated during the Latex00 campaign. Such value was used as a reference to

design the Latex10 release system and the sampling strategy. Further measure-

ments performed during the Latex10 campaign confirmed that, although slightly

higher, background SF6 concentrations at the time of the experiment were of185

the same order of magnitude (average equal to 1.72 fmol L−1). In total, 7000 L

of SF6-saturated seawater were released at 7 m depth inside a square area of

∼30 km2. Based on the volume of injected seawater and the SF6 concentration

inside the tank, the total quantity of SF6 initially released in the water has been

estimated as 0.89±0.12 mol. Assuming a rapid vertical redistribution of SF6190

inside the mixed layer, characterized by a depth of about 23 m on September 14

(Fig. 1-c), this release assured the formation of a patch with SF6 concentrations

of about 1250 fmol L−1, 727 times higher than the background value.

After the release, the horizontal evolution of the tracer patch was monitored

for 7 days (Fig. 1-b) during a series of 4 successive horizontal mappings at 3 m195

depth (Table 1). The analytical system used for the measurements of SF6 was

based on continuous flow purge and trap (PT) extraction followed by gas chro-

matography separation and detection by electron capture detector (GC/ECD ;

See Appendix A for a detailed description). This system is different from the

previous ones developed by [57] and [58], since it is not based on vacuum sparge200

sample extraction, but on continuous flow of purified nitrogen for extraction of

dissolved gases. The samples were analyzed at a frequency of 6 samples per

hour, analogous to previous studies [57]. The uncertainty has been estimated

at 5 % for concentrations above the detection limit (0.8 fmol L−1). Moreover,

three profiles (six samples per profile) were performed at different stations to205

ensure the homogeneity of the mixed layer (Fig. 1-c). These profiles revealed a

bottom depth of the mixed layer constant with space and time, between 23 and

26 m depth. Concentrations of SF6 in the mixed layer are reasonably homoge-

neous (Fig. 1-c). In the presence of a strong gradient, as it is the case at the

bottom of the mixed layer depth, the error due to the low resolution of vertical210

sampling of SF6 (Niskin bottle) can explain an intermediate value as the one of

10
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78 fmol L−1 measured on September 14 at 21 m depth.

In our analysis, the surface SF6 concentration data have been re-mapped in a

Lagrangian reference frame in which the origin moves with the center of mass

of the tracer [19]. The spatially irregular data along the ship track are inter-215

polated onto a regular grid using natural neighbor interpolation. This local

method, based on the Voronoi diagram [59, 60], has the advantage of accommo-

dating the resolution to the spatial distribution of the initial scattered data.

Table 1: Start and end dates of the release and mapping of the tracer.

Beginning End Time intervals

Day Hour (GMT) Day Hour (GMT)

Release Sept. 11 04h02 Sept. 11 18h00 14 h

Mapping 1 Sept. 11 22h11 Sept. 12 15h49 17.6 h

Mapping 2 Sept. 13 18h40 Sept. 14 12h50 18.2 h

Mapping 3 Sept. 15 18h17 Sept. 16 15h55 21.6 h

Mapping 4 Sept. 18 05h48 Sept. 18 22h03 16.2 h

In the remainder of the study, our analysis of the SF6 patch is based on the

advection-diffusion equation, governing the evolution of the Reynolds-averaged,220

passive tracer concentration C (mol m−3) in an incompressible fluid. Generally,

it is based on the hypothesis of a two-dimensional linear strain field in which

the strain rate (γ = ∂u
∂x = −∂v

∂y ) varies with time but is homogeneous in space,

and the horizontal diffusivity is constant and isotropic. It follows that, the

advection-diffusion equation can be written as:225

∂C

∂t
+ γx

∂C

∂x
− γy

∂C

∂y
= Kh(

∂2C

∂x2
+

∂2C

∂y2
) +

∂

∂z
F (1)

with F = Kz
∂C
∂z is the vertical flux of tracer (mol m−2 s−1), and Kh and Kz

are the horizontal and vertical diffusivity coefficients (m2 s−1), respectively.

3. SF6 evolution

To evaluate the extension of the patch, we have estimated the SF6 patch area

using two methods. Both are based on the hypothesis that, after the release,230
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SF6 concentrations within the patches can be approximated by a Gaussian dis-

tribution [e.g. 28, 19, 39, 61].

Following [39], we performed a first estimate of the total area of the patch based

on the contour lines concentrations of SF6. We defined ACL as the area inside

the contour lines [SF6]maxe
−2, with [SF6]max the maximum concentration of235

the in situ mapping. Thus, for an idealized Gaussian patch, ACL represents the

area where 95.4 % of the total concentration is present. The ACL for the four

mappings are shown in Fig. 2 (red lines).

−40

−30

−20

−10

0

10

20

(a)

Y
 [

k
m

]

0

500

1000

1500

2000

(b)
0

50

100

150

200

250

300

−20 −10 0 10
−40

−30

−20

−10

0

10

20

(c)

X [km] 

Y
 [

k
m

]

0

10

20

30

40

50

60

−20 −10 0 10

(d)

X [km]

0

5

10

15

20

25

30

Figure 2: Lagrangian maps of SF6 concentration [fmol L−1] for Mapping 1 (a), Mapping 2 (b),

Mapping 3 (c) and Mapping 4 (d). The plots are referenced to the position of the center mass.

Note that the color bar maximum varies with each mapping. The [SF6]maxe
−2 contour lines

are shown in red in each plot indicating the patch area with the contour line technique (ACL).

Gaussian ellipsoids are shown in black in each plot indicating the fitting patch area (AGE).

The locations of SF6 measurements are indicated by the white dots.

For the second method, Gaussian ellipsoids (black ellipsoids, Fig. 2) have been

12
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fitted to the horizontal mapping of SF6 using an unconstrained non-linear op-240

timization. The Gaussian ellipsoids fit are obtained by minimizing the function

for each distribution, starting at an initial estimate and using the Optimization

Toolbox routines, which are based on the Nelder-Mead simplex search algo-

rithm [62]. The Gaussian ellipsoids fit can be sensitive to the initial estimate.

To better address this aspect, we have varied the initial estimates of the Gaus-245

sian ellipsoid, and hence the total number of fits. We have then calculated the

averaged values and the standard deviations of the length of the major and mi-

nor axis, the center of the ellipse and the angle. With this technique, the area

inside the Gaussian ellipsoid (AGE = πσlσw) can be used to calculate a second

estimate of the SF6 patch total area, with σl and σw the estimated lengths of250

the semi-major and the semi-minor axis of the SF6 patch area respectively.

Successive estimates of the SF6 patch area based on the two techniques (ACL,

AGE) are used to analyze the temporal evolution of its spreading (Fig. 3-a).

The lengths of the two semi-axis of the patch for each mapping are represented

as a function of time in Fig. 3-b and listed in Table 2. For further characterizing255

the patch geometry, the perimeter of the Gaussian ellipsoid has been calculated

with the common Ramanujan method:

P = π(3(σl + σw)−
√

(3σl + σw)(σl + 3σw)) (2)

If the strain induced by the current remains constant and uniform, the aspect

ratio of an initially circular patch, estimated as the ratio Area/Perimeter2 and

scaled using a factor of 4π, would start at 1 and decreases as the patch stretches260

into a filament. This ratio is represented in Fig. 3-c as a function of time.

We can identify two phases in the temporal evolution of the SF6 patch. Ini-

tially, between September 12 to September 14 (Mappings 1 and 2), the patch of

tracer spreads slowly in both directions with a small increase of its length and

width. During this first phase, the area increases according to both methods:265

about 38±2 km2 for AGE and 6 km2 for ACL (no errors have been defined in the

literature for this method). Within the same period, the SF6 concentrations de-

crease of one order of magnitude. Starting from September 14, the semi-major
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Figure 3: (a) Temporal evolution of the surface area [km2] of the patch estimated by Gaussian

ellipsoids (gray circles - AGE) and [SF6]maxe
−2 contour lines (gray squares - ACL) fitted to

the mapped SF6 data. (b) The lengths of the semi-major (σl, white circles) and semi-minor

(σw, black circles) axis of the Gaussian ellipsoids fitted to the mapped SF6 data. (c) Aspect

ratio of the patch total area (AGE) as area/(perimeter)2. The ratio is normalized to 1 for

an idealized circular patch by multiplying it by 4π. The vertical black lines over the circles

(a,b) represent the estimated uncertainties on the calculation of σland σw . They are always

calculated for the Gaussian ellipsoids calculations, and thus they are negligible when not

visible.

axis of the patch (σl) increases quickly, while the semi-minor axis (σw) remains

approximately constant. During this second phase, the spreading of the patch is270
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Table 2: Estimates of the lengths of the semi-major axis and the semi-minor axis of the SF6

patch for each mapping.

σl (km) σw (km)

Mapping 1 3.3 ± 1.2 3.2± 1.7

Mapping 2 5.6 ± 2 4± 0.6

Mapping 3 18.4 ± 5.4 6.5± 2.1

Mapping 4 20.5 ± 4.3 5.9± 0.7

anisotropic, with σl as much as 3 times the length of σw. Strong area increases

are observed by both estimates: between Mapping 2 and Mapping 3 AGE (ACL

respectively) increases from 70±4 (46) km2 to 376±90 (292) km2, corresponding

to an area increase of 306±16 (246) km2, one order of magnitude larger than

during the first period. A decrease of the area to perimeter ratio (Fig. 3-c) is275

observed during both phases, indicating that the patch is progressively stretched

into a filament.

Further evidence of this stretching event is obtained by superposing the in situ

SF6 concentrations on AVHRR (Advanced Very High Resolution Radiometer)

channel 4 imagery provided by Météo-France (Fig. 4). AVHRR channel 4 mea-280

surements are usually inaccurate in estimating the absolute values of the sea

surface temperature (SST). However, AVHRR channel 4 (hereafter pseudo-SST)

imagery has shown to accurately identify the spatial distribution of SST gra-

dients [e.g. 63]. Therefore, pseudo-SST can be successfully used to reconstruct

the dynamics of the waters surrounding the patch. On September 12, the tracer285

patch extends southwestward over the continental shelf, which is character-

ized by colder surface waters with pseudo-SST around 16◦C (Fig. 4-a). After

two days, a front between warmer waters from the Northern Current (pseudo-

SST∼19◦C) and colder waters from the shelf is formed along the western con-

tinental slope of the gulf (at 4◦E - Fig. 4-b). By that time, the tracer patch290

has slightly drifted eastward toward the western boundary of the front. The

dynamical characteristics of the frontal structure detected during the Latex10

campaign have been fully described in the study of [63]. On September 15,
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the contour line of the total patch area shows a distribution of the tracer elon-

gated along a tongue of colder coastal waters (Fig. 4-c). On September 18, no295

pseudo-SST satellite image was available due to cloud coverage, when the tracer

is located in front of Cape Creus after a significant southward drift (Fig. 4-d).

The analysis of pseudo-SST reveals that the second phase of evolution of SF6,

identified from Fig. 3, is associated with the intense stirring induced by the

dynamics of the strong thermal front.300

4. Air-sea gas exchange

Other than changes in area and geometry, the patch evolution included vari-

ations in SF6 maximum concentration due to air-sea gas exchange. The maxi-

mum concentration of SF6 decreases from 3000±150 fmol L−1 on September 11

(Mapping 1), to 50±2.5 fmol L−1 on September 18 (Mapping 4, Fig. 1-b). The305

SF6 is an inert tracer, and therefore its dynamics has no internal sources or

sinks. To investigate the evolution of SF6 concentration within the mixed layer

after its release, two vertical boundary conditions are required: one at the bot-

tom of the mixed layer, and one at the ocean-atmosphere interface.

We can consider the exchanges that occur between the mixed layer and the un-310

derlying waters to be negligible since in late summer (the cruise took place in

September) the GoL is characterized by a strong stratification. Thus, the flux

at the bottom of the mixed layer (depth equal to −zmix) can be defined as:

F |z=−zmix
= 0 (3)

Regarding the second boundary condition, the flux of SF6 across the air-sea

interface (negative when the flux is from atmosphere to ocean) can be expressed315

as:

F |z=0 = k(Cw − αCa) (4)

where k ≡ k(t) is the transfer velocity (m s−1, see details on its dependence

on wind in subsection 4.1), Cw is the tracer concentration few cm below the

water surface (mol m−3), Ca the tracer concentration in air just above the
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Figure 4: Pseudo-SST satellite image (data from Météo-France) on September 12 (a), Septem-

ber 14 (b), September 15 (c) and Lagrangian contour lines representing the patch area (ACL)

for each mapping. On September 18 (d), no pseudo-SST satellite image was available due to

the cloud coverage, therefore only Lagrangian contour lines are represented. The small red

square (a) represents the initial area of SF6 release. The black squares correspond to the

areas of Fig. 2 for each mapping. Isobaths at 100, 200 and 1000 m are plotted with thin lines.
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interface (mol m−3) and α the dimensionless Ostwald solubility coefficient. In320

our experiment the patch is supersaturated with respect to the atmosphere.

Therefore, the second term can be neglected compared the first one and we can

write the boundary condition as:

F |z=0 = k(Cw) (5)

Performing the analysis in a Lagrangian reference frame allows us to neglect

the contribution due to the advection term in equation (1). Moreover, the325

horizontal diffusivity flux terms should be similar or of smaller magnitude than

the loss due to gas transfer because the horizontal gradient of C is small. [55]

shows that dropping the horizontal flux terms is necessary for the analysis, and

it can be a valid assumption if the samples are taken well within the tracer

patch. Then, the evolution of C confined in the mixed layer can be strongly330

simplified as by [64] in the following form:

∂C

∂t
=

∂

∂z
F (6)

Using equation (3) and equation (5) as boundary conditions, the vertical integral

of equation (6) inside the mixed layer (from 0 to -zmix) gives:

∂C̄

∂t
=

−kCw

zmix
(7)

with C̄ the average concentration of SF6 in the mixed layer.

By making the hypothesis that the water is well mixed over the timescale of335

concentration decrease due to gas exchange (order of a day), we assumed that

Cw = C̄. C̄ can be assimilated to the measured concentration of SF6 within

an 8% error [64]. Then, equation (7) can be time integrated and rearranged to

yield:

C̄ = C̄0e
−k

zmix
t

(8)

340

In case the SF6 patch remains all exposed to exchanges with the atmosphere

(i.e. no subduction of the upper mixed layer), equation (8) can be expressed as:

M̄ = M̄0e
−k

zmix
t

(9)
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with M̄ the total amount of moles of SF6.

4.1. Parameterizations of the air-sea transfer velocity

To model the SF6 loss with equation (9), five different parameterizations of345

the air-sea transfer velocity k can be found in literature. All of them express k

as a function of the wind speed at 10 m above the sea level (U10, m s−1). The

proposed parameterizations vary depending on the time scales considered. In

this work, we use kshort for parameterizations based on time scales shorter than 1

day (which also assume steady wind conditions), and klong for parameterizations350

based on time scales longer than 1 month (which usually use climatological

data). In our analysis, we have used hourly U10 measured from the ship (Fig. 5-

a).

The first formulation of k has been derived in a wind-tunnel experiment

by [65] [LM-86 relationship] and then validated by various fields studies. LM-355

86 relationship is based on short-term winds but involves three sets of values

depending on the dynamics regime. These equations propose a piecewise linear

parameterization of kshort on wind speed:



















kshort = 0.17 U10 (Sc38/600)
−2/3 for 0 m s−1 < U10 ≤3.6 m s−1

kshort = (2.85 U10 − 9.65) (Sc38/600)
−1/2 for 3.6 m s−1 < U10 ≤13 m s−1

kshort = (5.90 U10 − 49.3) (Sc38/600)
−1/2 for U10 >13 m s−1

(10)

where Sc38 is calculated with a linear extrapolation of the Schmidt number for

seawater with salinity of 35 (Sc35) and fresh water (Sc0):360







Sc0 = 3255.3− 217.13 T + 6.8370 T 2 − 0.086070 T 3

Sc35 = 3531.6− 231.40 T + 7.2168 T 2 − 0.090558 T 3
(11)

with T (◦C) the hourly sea surface temperature data measured by the ship ther-

mosalinometer. The coefficients of equation (11) come from the relationship of

[66].

A second parametrization was proposed by [67], who used global 14C calcula-

tions to obtain a quadratic dependence of k on either short-term or long-term365
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winds (W-92 relationship):







kshort = 0.31 U2
10 (Sc38/660)

−1/2

klong = 0.39 U2
10 (Sc38/660)

−1/2
(12)

More recently, [68] have also developed a quadratic parameterization (Ho-06

relationship) for high short-term wind conditions (U10 >15 m s−1) in the western

Pacific:

kshort = 0.266 U2
10 (Sc38/600)

−1/2 (13)

A dependency of k on wind speed stronger than a quadratic relationship has370

been suggested. For instance, [69] suggested a cubic dependency of k on either

short-term or long-term mean winds conditions (W-99 relationship):







kshort = 0.0283 U3
10 (Sc38/660)

−1/2

klong = (1.09 U10 − 0.333 U2
10 + 0.078 U3

10) (Sc38/660)
−1/2

(14)

Finally, a formulation of k based on coastal ocean data has been also developed

(N-00 relationship, [70]). [70] express the k vs wind speed relationship for data

from the North Sea experiments. These were also combined with the data375

of two other studies on Georges Bank and on the West Florida Shelf using

the same method to cover a wider range of wind speeds. Such multi-tracer

experiment study lead to a second-order polynomial relationship for short-term

wind conditions:

kshort = 0.222 U2
10 + 0.333 U10 (Sc38/660)

−1/2 (15)

Our time scales between two mappings (order of a day) suggest that the380

relations with short-term wind are likely to be the more appropriate. However,

these relations assume steady wind conditions. In our case, the wind speed

variability over the time period considered might be important. The average

ship wind for the period from September 11 to September 18 is equal to 13.3 m

s−1 from the hourly data (Fig. 5-a) with a standard deviation of 6.7 m s−1,385

showing a significant wind speed variability. In order to evaluate the impact of

wind variability and asymmetry, following [71], we can derive two “enhancement
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factors”:

ǫ2 = U2
10/U10

2

ǫ3 = U3
10/U10

3
(16)

For each time period and for any given gas exchange-wind speed relationship,390

these enhancement factors can be used to assess the contribution of nonlinear

dependencies in yielding higher or lower air-sea transfer velocities due to highly

variable instantaneous winds (kinst = kobs/ǫ) compared to steady ones. The

values of ǫ2 range from 0.46 (between the release and Mapping 1) to 1.27 (be-

tween Mapping 3 and Mapping 4). This implies that, if a quadratic dependency395

is assumed, the variation of the wind can reduce the gas exchange by 54 % or

enhances it by 27 % during these time periods compared with a steady wind.

The values of ǫ3 range from 0.74 to 1.87 for the same periods, respectively. This

indicates that, if a cubic dependency is assumed, the asymmetry of the wind

can reduce the gas exchange by 26 % or enhances it by 87 % compared with a400

steady wind.

4.2. Applications

We can now evaluate the evolution of the quantity of SF6 calculated with the

proposed parameterizations. The value M̄0 in equation (9) is the total amount of

SF6 initially added to the surface mixed layer (0.89± 0.11 mol). The numerical405

integration of the modeled loss has been performed with a time-step ∆t = 1 h,

as we have used hourly measurements of the wind speed U10 to calculate k. In

this case, the assumption of the SF6 patch remaining all exposed to exchanges

with the atmosphere seems to be reasonable. To compare this modeled loss of

SF6 to in situ data, we have estimated the total quantity of SF6 in moles by410

integrating the concentration of SF6 observed at each mapping over the corre-

sponding total patch area and until the depth of the bottom of the mixed layer

(−zmix).

Only two relationships are applicable to both short and long wind conditions

(equation (12), W-92 relationship and equation (14), W-99 relationship). We415
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have evaluated the performance of these relationships by comparing the sum of

squared residuals (RMS), computed as the difference between the observed and

the modeled quantity of SF6. Moreover, we computed a second estimate of the

RMS in which an estimate of the standard deviation, associated with the error

affecting each measure of SF6 (±5 %), is used to “weight” the contribution of420

each term within the sum. In both cases the minimum RMS is found for the

short-term wind relationships (data not shown). Hence, we can compare the

evolution of the quantity of SF6 only with the five parameterizations based on

short-term wind conditions (lines - Fig. 5-b).

The observed atmospheric loss (black squares - Fig. 5-b) is estimated at about425

0.27 mol d−1 between the release and Mapping 1. The calculated evaporation

rate suggests that ∼31 % of the released SF6 is lost during this period, due

to the observed increase of wind speed (Fig. 5-a). Between Mapping 1 and 2,

∼57 % of the initial amount of SF6 is further lost with a rate of 0.27 mol d−1

due to the persistent strong winds (20-25 m s−1 wind speed). Between Mapping430

2 and 3, as wind speed decreases to ∼4 m s−1, the atmospheric loss declines to

0.01 mol d−1. The temporal evolution of the wind speed (Fig. 5-a) clearly shows

the link between the increase of wind and the decrease of total SF6 within the

patch.

The temporal variability of the measured total SF6 is in good agreement with435

the empirical curves. Between the release and Mapping 1 (Mapping 3 and Map-

ping 4), the empirical curves show generally an underestimate (overestimate)

of gas exchange. This can be explained by the enhancement factors due to the

variance of the wind, which, as shown before, can substantially reduce (increase)

the gas exchange. The N-00 relationship is the most accurate relationship for440

our data, closely followed by the Ho-06 one. The results show that two of the

commonly used parameterizations, the piecewise linear relationship of LM-86

and the cubic relationship of W-99, are inconsistent with measurements of gas

transfer velocities at high and variable wind speeds for the coastal area of our

study. The quadratic relationship of W-92 is better than the previous two.445
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(a)

Figure 5: Temporal evolution of (a) the wind speed at 10 m above the sea level (U10, [m s−1])

as measured from the ship and (b, black squares) observed total SF6 [mol]. The horizontal and

verticallines over the black squares represent the estimated uncertainties on the calculation

of total SF6 associated to the wind variability, the depth of the mixed layer and the time

dependence. They are always calculated but negligible when not visible. The different lines

in (b) show the total SF6 as predicted using the five different parametrization of the air-sea

transfer velocity k. See text for details.

5. Lateral diffusivity coefficients

The temporal evolution of the SF6 patch can be used to quantify the lateral

diffusivity coefficient. Various methods have been proposed to obtain this coef-

ficient.

We have seen that, between the release and Mapping 2, the sink term rep-450

resenting the atmospheric loss (last term in equation (1)) cannot be neglected.

However, after Mapping 2, this sink term becomes very small and linear. Hence,
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neglecting it becomes a valid assumption (personal communication, Wanninkhof

and Ledwell). The time between the release and Mapping 2 is likely sufficient

for the complete mixing of SF6 within the mixed layer (i.e. consistent with [55]455

who suggested a period of 48 h). Therefore, after two days, equation (1) can be

reduced to an effective horizontal diffusivity plus a large-scale horizontal strain.

As noted in Section 3, the tracer patch does not spread isotropically in the ma-

jor and minor axis directions. Hence, only the methods based on anisotropic

spreading are outlined. If we assume a Gaussian distribution, as considered in460

section 3, the concentration C as a function of space and time can be expressed

as:

C =
M

σlσw
e−[(x2/2σ2

l
)+(y2/2σ2

w
)] (17)

with M , the total mass of tracer. Using this relation, the equations of the

lengths of the major (σl) and minor (σw) axis of the SF6 patch can be found by

multiplying equation (1) by x2, or by y2, neglecting the atmospheric loss, and465

integrating over all x, or over all y [72, 23, 73]. σl and σw are thus governed by:

dσ2
l

dt
− 2γσ2

l = 2Kh (18)

dσ2
w

dt
+ 2γσ2

w = 2Kh (19)

These equations can be solved considering different stages of the dispersion

of the patch [74]. For a small initial patch, (σ2
l , σ

2
w) << Kh

γ , the strain effects

are negligible and equations (18) and (19) can be reduced to the simple Fickian470

horizontal diffusion model (Fickian model):

Kh = ∆σ2
l /2∆t = ∆σ2

w/2∆t (20)

where ∆t is the difference between the central times of the different mappings.

So far, this calculation has been used in areas with different dynamical charac-

teristics than our region of study (e.g. interiors of wide shelf sea), usually less

energetic and/or away from coastal boundaries, shelf break and frontal features475

[20, 41]. Furthermore, in our case this method cannot be applied due also to the

importance of the atmospheric loss term at the beginning of the patch evolution.
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For longer times, the strain of the patch cannot be neglected anymore, so

that equations (18) and (19) have, respectively, the following solutions:

σ2
l = (σ2

l0 +
Kh

γ
)e2γt −

Kh

γ
(21)

480

σ2
w = (σ2

w0
−

Kh

γ
)e−2γt +

Kh

γ
(22)

with σl0 and σw0
the initial length of the patch along the directions of the major

and minor axes, respectively This set of equations, known as the diffusion-strain

model, allows us to calculate the strain rate (γ) and the effective horizontal

diffusivity (Kh) using the values of σl and σw estimated in Section 3 [e.g. 19].

At later stages of the patch dispersion, its width can be hypothesized to be485

in a near-steady state, i.e. the thinning effect of the strain balances the widen-

ing tendency of diffusion (steady state model). This equilibrium can be reached

when the time has been long enough so that the transient term, defined in the

study of [23] as e−2γt, is negligible. This balance between the strain rate and

the lateral diffusivity is based on the assumption that the currents in the surface490

ocean are approximately two-dimensional and divergence-free at scales greater

than O(1) km, conditions typical for regions without intense sub-mesoscale fea-

tures. In our case, the presence of a front is clearly identified. Nevertheless the

assumptions may still hold because of its thermohaline characteristics. Indeed,

[63] evidenced the compensated nature of the front, i.e., the horizontal gradient495

of temperature is balanced by the salinity gradient inducing small horizontal

variation of density. Because of that, we can assume the dynamics associated

with the front to be dominantly horizontal. At the near-steady state (
∂σ2

w

∂t = 0),

the equation for the minor-axis (19) can be written as:

Kh = σ2
wγ (23)

In contrast, along the major axis, the length of the patch still increases expo-500

nentially at the rate γ and so:

γ =
ln(σl(t+∆t)

σl(t)
)

∆t
(24)
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As shown by [28] and [23], this calculation is valid until the horizontal scale of

the tracer patch exceeds that of mesoscale eddies. Afterwards the exponential

growth stops and the rate of dispersion of the patch can be modeled again505

as a diffusive process (as in equation (20)). In the area, the Rossby radius

of deformation for typical stratified late-summer conditions is around 6 km,

and mesoscale eddies are usually characterized by diameters between 20 and 30

km [75, 76].

In order to quantify the lateral diffusivity coefficients with both the diffusion-510

strain model and the steady state model, the lengths of the patch defined in

section 3 are used. Two distinct conditions are required to apply these dispersal

models. Both occurred during the second phase of the temporal evolution of

the SF6 patch discussed in section 3: a) starting at the beginning of Mapping 2,

the sink term becomes negligible and the exponential growth of the patch is515

observed (stretching of the patch into a filament) ; b) the horizontal scales

of the tracer patch (σw) for all mappings remained within the range typically

observed for mesoscale features in the region. Therefore, the rate of dispersion

can be adequately evaluated using the two models.

For the diffusion-strain model, the initial σl0 and σw0
have been defined with the520

characteristic of Mapping 2 (Table 2). Two σl and σw have been determined,

one for Mapping 3 and one for Mapping 4. We do not consider the case between

Mapping 3 and Mapping 4 because the time range between these two mappings

was too short. Given these conditions, we can estimate the values γ and Kh

corresponding to the intersection of the two curves representing, the solutions525

of equation (21) and equation (22), respectively (Fig. 6-a,b). γ is estimated

as 4.4 10−6 s−1 and Kh as 54.3 m2 s−1 between Mapping 2 and Mapping 3

(Fig. 6-a). Between Mapping 2 and Mapping 4 (Fig. 6-b), γ is estimated as

2.5 10−6 s−1 and Kh as 23.2 m2 s−1.

Hypothesizing near-steady state conditions, we can also calculate γ and then530

Kh with the second model (equations (23) and (24)). Between Mapping 2 and

Mapping 3, we find values for γ equal to 6.7 10−6 s−1 resulting in a Kh equal
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Figure 6: Graphic representation of possible combination of γ [s−1] and Kh [m2 s−1] that

could explain the observed growth of the tracer variance fromMapping 2 to Mapping 3 (a), and

from Mapping 2 to Mapping 4 (b). The point of intersection of the two curves (equations (21)

and (22) in the text) indicates the best estimates of γ and Kh. The shaded area represents

the uncertainties.

to 70.6 m2 s−1. Between Mapping 2 and Mapping 4, γ is equal to 3.4 10−6 s−1

and Kh equal to 29.0 m2 s−1. These different calculations, with associated

uncertainties, are summarized in Table 3.535

Our results show large uncertainties in the diffusion-strain model results for

Kh as well as large differences between the values of Kh obtained from the 2

methods between Mapping 2 and Mapping 3. We interpret these discrepancy as

an indication that, at this stage, the filament has not yet reached a near-steady

state, as also supported by a non negligible transient term. Moreover, the large540

uncertainties come from the larger errors associated with the Gaussian ellipsoids
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fits for Mapping 3.

Between Mapping 2 and Mapping 4, the transient term decreases to 0.15 and

the estimate of Kh is similar for the two models with lower uncertainties. This

implies that, although the adjustment has not taken place after two days (time545

interval between Mapping 2 and Mapping 3), it has occurred by Mapping 4, 4.5

days after Mapping 2. Thus the period of adjustment is in the range between

2 and 4.5 days. For this time scale, the transient term becomes negligible and

the steady state model can be reasonably used.

Table 3: Estimates of the horizontal diffusivity coefficients and their variation ranges in square

brackets with two models with the initial time corresponding to Mapping 2.

Diffusion-Strain model Steady state

γ (10−6 s−1) Kh (m2 s−1) γ (10−6 s−1) Kh (m2 s−1)

Mapping 2 to Mapping 3 4.4 [2.6-5.3] 54.3 [11.1-114.0] 6.7 [6.4 - 7.3] 70.6 [34.7-119.0]

Mapping 2 to Mapping 4 2.5 [1.5-3.2] 23.2 [11.4-36.2] 3.4 [3.0 - 4.0] 29.0 [26.5-32.8]
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6. Discussion and Concluding Remarks550

The dynamics of a passive tracer has been studied in a coastal environment

during the Latex10 campaign with a Lagrangian approach. Several studies have

previously addressed the differences between an Eulerian approach and a La-

grangian one for the calculation of lateral diffusivity coefficient [77]. Generally,

the results suggest that an Eulerian approach to calculate lateral diffusivities555

is most useful for satellite-derived velocity fields or for model outputs. On the

other hand, if the measurements and the Lagrangian statistics are adequate,

the calculation of lateral diffusivities from drifters trajectories or passive tracer

release are the most accurate for in situ estimates. Nevertheless, obtaining

adequate sampling of the tracer remains a crucial issue in coastal waters.560

In our experiment, the tracer patch was followed for seven days, demonstrat-

ing the adequacy of the developed LATEXtools for tracer studies in a coastal

environment. During and immediately after the release, the weak wind velocity

(4 m s−1) led to an initial slow atmospheric loss. Therefore a good quantifi-

cation of the total amount of SF6 initially added to the surface mixed layer565

(0.89±0.11 mol) is possible. We have tested different parameterizations of the

ocean-atmosphere gas exchange. The good match between the empirical curves

of the atmospheric loss and the total SF6 mapped (Fig. 5-b) indicates a good

coverage of the patch during the various mappings. The largest difference is

observed for the total amount of SF6 measured during Mapping 1. This un-570

derestimate of gas exchange in the empirical models can be due to the variance

of the wind between the release and Mapping 1. Moreover, during that period,

the hypothesis of homogeneity could not be completely respected as the time

between the release and Mapping 1 (<48 h) is not sufficient for the complete

mixing of SF6. Despite this underestimation, the formulation of [70], based on575

data collected in coastal ocean, has proved to be an effective parameterization

of gas exchange in our study area.

The area of the tracer patch has been estimated considering two different

calculations for the total area of the patch: the Gaussian ellipsoid method or
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the contour line method. These methods are both based on the assumption of580

a Gaussian distribution of SF6 concentration within the patch. They provided

consistent results, with the contour line ones generally lower than the ellipsoid

ones. This is probably due to the spatial resolution of the sampling that does

not allow us to find close contour lines for the reference value. Indeed, with this

method, the tracer patch area is calculated summing multiple isolated patches,585

contradicting the Gaussian hypothesis. For this reason, we only summarize the

temporal evolution of the patch on the basis of the results obtained with the el-

lipsoid method and we provide estimates of lateral diffusivity coefficients based

on the lengths of the two axes of the ellipsoids.

Two phases can be distinguished in the temporal evolution of the SF6 patch.590

The first phase corresponds to the time between the release and Mapping 2

(September 11 - 14, ∼67 hours). During this phase, the total patch area initially

spreads slowly to cover an area of 71±4 km2 with a maximum concentration

of SF6 of 300±15 fmol L−1. Furthermore, the patch remains trackable, despite

the sudden increase of wind, starting on September 11 and reaching a maximum595

wind velocity of 25 m s−1 on September 13. The second phase of the temporal

evolution of the patch corresponds to the time between Mapping 2 and Map-

ping 4 (September 14 - 18, ∼105 hours). During that phase, the wind velocity

suddenly decreases then increases again at the end of that period (Fig. 5-a).

We observe that the total patch area increases linearly to eventually cover an600

area of 377±9 km2 (Fig. 3-a). Maximum concentrations of SF6 inside the total

patch area are much smaller, with values between 45-60±3 fmol L−1. In both

phases, the evolution of the patch geometry (Fig. 3-c) shows a stretching of the

patch into a filament.

Superimposing the distribution of the tracer on the pseudo-SST satellite image605

(Fig. 4) evidences the temporal evolution of the patch relative to the surround-

ing waters. Pseudo-SST satellite images were available for Mappings 1, 2 and 3

providing surface information on the dynamical patterns around the patch af-

fecting its evolution. The presence of a front originating from the convergence of

warmer waters from the Northern Current and colder waters from the shelf has610
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been discussed in [53]. The presence of the front clearly affects the patch during

the second phase of its evolution, inducing its south-westward propagation from

the continental shelf of the Gulf of Lion to the Catalan Basin. The presence of

a front could affect the divergence-free assumption made for the calculation of

the lateral diffusivity coefficients. However, this front has been identified as a615

compensated front [63], inducing dominantly horizontal dynamics.

In order to evaluate the lateral diffusivity coefficients from the SF6 patch,

we have used the diffusion-strain model and the steady state model. With the

diffusion strain model, we obtained a γ of 2.5 10−6 s−1 and a Kh of 23.2 m2 s−1

between Mapping 2 and Mapping 4, when the atmospheric loss of SF6 can be620

neglected. The use of the steady state model can be limited by the near-steady

state assumptions, which can be particularly constraining in highly dynamical

coastal areas. At the same time, as no processes or structures in the ocean can

truly reach a steady-state, the validity of such hypothesis is always relative to

the scales of interests. In our case, we showed that an equilibrium could be625

reached when the time has been sufficiently long for the transient term to be-

come negligible. After a period of adjustment between 2 and 4.5 days, the two

models considered in this study converge to similar estimates. Therefore, after

such time scale, the order of magnitude of the lateral diffusivity coefficient is

not particularly sensitive to the further stretching of the patch.630

The horizontal scales characterized by our method are defined by the width

(2σw) of the SF6 patch, equal to 11.8±1.4 km. The observed Kh of 23.2 m2 s−1

is in the range of the typical value of 0.5-25 m2 s−1 obtained by previous studies

which combined estimates of the strain rate with in situ measurements of the

patch width in high energetic systems [23, 27, 28, 29]. These estimates lie on635

the canonical diffusion diagram for spatial scales of order 10 km [4].

Our calculation of Kh includes hypotheses that are generally adopted for anal-

ogous experiments: namely, no air-sea loss of SF6, and no vertical variations

both in horizontal currents (shear) and in vertical diffusivity. The omission of

air-sea loss is commonly used in the calculation of lateral diffusivity coefficient640

as in the studies of [41] and [42]. Moreover it has been shown by [78] that the
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omission of air-sea loss and vertical shear in the horizontal currents results in

some biases, but that they are small relative to other errors in the estimation

of the lateral diffusivity coefficient. At the surface, we have assumed that the

loss to the atmosphere does not affect the analysis. This hypothesis is valid645

since under the assumption that the SF6 is homogeneous in the mixed layer the

gas transfer velocity is independent of the position in the patch. Concerning

the estimate of the exchanges at the bottom of the mixed layer, we observed

that the pycnocline, representing the primary barrier to the vertical diffusion of

SF6, was well marked at about 23 m depth and remained constant during all650

the experiment.

Since lateral diffusivity coefficients are strongly influenced by local dynamics,

comparing them with coefficients calculated for the same region represents a

useful test for our estimate. During the Latex10 campaign, the analysis of the

Lagrangian drifters trajectories and transects of surface temperature and salin-655

ity across the front allowed the retrieval of an independent series of estimates

of Kh [63]. Their average Kh is 4 m2 s−1 with 75 % of the values between 0.5

and 5 m2 s−1 for horizontal scales in the order of 1 km. In both approaches,

two assumptions are made: the large-scale strain field is steady and horizontally

uniform, and the effects of cross-front mixing induced by small scale turbulence660

can be parameterized by an effective small-scale diffusivity. Although assuming

similar hypotheses, the two methods differ by their spatial and temporal scales:

the ones associated with the Kh computed in this study are larger (order of

10 km, and between 2 and 4.5 days) than in [63]. That could explain our larger

values of Kh.665

The lateral diffusivity coefficients have been estimated to a first order from

the dynamics of a SF6 patch in a coastal environment marked by the presence of

small-scale dynamical features. The results are consistent with previous studies

in open ocean. Thus, with an adapted sampling strategy, passive tracer exper-

iments can be successfully applied also in coastal environments. Such experi-670

mental studies are crucial for better understanding the role of lateral diffusivity

in coastal areas with important mesoscale and submesoscale activity. They can
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provide critical support for further improving the accuracy of regional numerical

models used for simulating and predicting the propagation of non-conservative

tracers such as nutrients, plankton, and pollutants. Those are key factors in675

regulating the biological and ecological conditions of coastal region. Improv-

ing our understanding of the processes controlling environmental conditions of

coastal regions has significant socio-economical implications, and represents a

fundamental step towards their sustainable development.
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Appendix A. Analytical system used for the analysis of SF6700

The analytical system used for the analysis of SF6 is based on a continuous

flow purge and trap (PT) extraction followed by gas chromatography separation

and detection by electron capture detector (GC/ECD). The analytical system

is detailed in Fig. A1. We did not use vacuum sparge sample extraction, but

continuous flow of purified nitrogen for extraction of dissolved gases. The water705

was sampled with a peristaltic pump in a laboratory sink, where surface water

circulated after pumping by the ship for thermosalinometer measurements. The

ship pump is situated 3 m under the surface. The PT sampling tubing was

installed close to the arrival of the water (in the same bucket), in order to both

prevent the water from degassing and minimize the dilution effect in the sink.710

The water flow entering the degassing system was fixed at 50 ml min−1. This

flow was adjusted manually in order to keep the degassing system full of water

and to insure stability in the extraction efficiency. As the water circulated in

the extractor, purified nitrogen (Alpha2 air liquid purified from oxygen, mois-

ture and organic compounds) purged the water at a flow rate of 50 ml min−1.715

The gas extracted was then desiccated through magnesium perchlorate powder

and circulate in 10.47 ml loop. This volume was then injected every 3 min on

a cold trap (-100◦C ethanol) for three minutes. After 3 min, the trap was iso-

lated (rotation of Va) and immerged in the hot bath (+100◦C boiling water).

The trap used was made in a 10 cm, 1/8e inch diameter inox tube full with720

HayesepD phase. This trap allowed the total trapping of SF6 and CFCs for

more than 15 min at -100◦C. After 20 s, Vb rotated and the gas trapped were

desorbed and injected on a pre-column and on the analytical column for 40 s.

After that time, Vb and Va came back to their initial positions. The gas in-

jected was then separated and quantified by the GC/ECD (Perkin Elmer Clarus725

500). The precolumn is a PLOT molecular sieve 5A, 1 m long and 0.53 mm

diameter. The analytical column is the same but 10 m long. The precolumn

protects the column from heavy compounds (VOCs), which could be difficult

to elute. The GC oven was fixed at 70◦C. The chromatographic analysis was
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3 min long. The SF6 extraction efficiency in continuous flow system was calcu-730

lated and verified by regular analyses of the same water sampled at the same

time by sampling ampoules and analyzed by classical PT-GC/ECD technique.

The yield of extraction usually varied between 70 and 100 %, depending on the

gas and water flow. For one mapping, the flow meter was accidentally partially

blocked and extraction efficiency droped to 17 %. As our analytical system735

could also determine CFC-12 in the same time, our extraction efficiency was

also verified for this parameter, which should stay constant in water (function

of temperature and salinity). Standardization of the chromatographic system

was realized twice a day, with an air standard (NOAA/CMDL standard, 2006

calibrated air) containing 5.76 pptv of SF6. Air standard was injected in loops740

with various volumes (0.05 ml to 10 ml), in order to obtain a calibration curve.

The calibration was linear from 0.2 fmol to more than 35 fmol. Calibration

remained very stable throughout the entire campaign.

Figure A1: Analytical system used for the analysis of SF6, based on continuous flow purge and

trap (PT) extraction followed by gas chromatography separation and detection by electron

capture detector (GC/ECD).
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