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Abstract

We describe a project to model the microphysics of
Venusian clouds. The goal of the project is to complete
the IPSL Venus 3D GCM with a cloud microphysics
module.

1. Introduction
Venus is a terrestrial planet, which is enshrouded by
clouds. The thickness of this cloud layer is more or
less 20 km. The clouds are thin, like cirrus on Earth
but they are stratified and create a large opacity.
The cloud layers are surrounded by haze above and be-
low. Moreover, this cloud system is divided by prop-
erties of particle size distribution into three layers: the
upper cloud deck (56.5 to 70 km), the middle cloud
deck (50.5 to 56.5 km) and the lower cloud deck (47.5
to 50.5 km) [2]. The aerosols that constitute the clouds
are composed of a H2SO4-H2O solution. The solid
state of aerosols is still debated [2,8]. There is only one
complete in-situ profile on cloud droplets measured by
Pioneer Venus during its descent [2]. The upper cloud
deck and the upper haze were studied by several mis-
sions like Venus Express [11]. The droplet radii dis-
tributions can be divided in several size modes. The
mode 1 (mean radius r ' 0.2µm) is the smallest
but has the largest number concentrations. Modes 2
(r ' 1.0µm) and 3 (r ' 3.5µm) hold most of the con-
densed mass [2]. The division in modes 2 and 3 of the
largest particles and the existence of mode 0 and 2’ are
still debated [2,12,10].
The cloud top and base and the thickness change with
latitude and the particle size has a latitudinal depen-
dence [12,5]. In addition, an unknown UV absorber
is present in the cloud layers and may be related to
clouds.
At last, the clouds affect the radiative balance, the sul-
fur chemical cycle, the dynamics and the atmospheric
structure of Venus.

2. Modelling
2.1. The IPSL Venus GCM
The Venus Global Climate Model has been developed
at the Laboratoire de Météorologie Dynamique (LMD,
France) [4]. The characteristics of this model include
radiative transfer, dynamics, atmospheric chemistry,
diurnal cycle and a full topography defined by Magel-
lan mission’s data. With this full GCM, the Venusian
atmosphere is simulated between 0 and 150 km.

However, there are still some problems with vertical
temperature description and with the representation of
the cold collar. They may be due to the simple de-
scription of the cloud layers in the model [4]. Thus,
to achieve better simulations of the Venus climate, the
GCM needs a microphysical model.

2.2. VenLA
The Venus’ cloud model VenLA is developed at LAT-
MOS [6]. It is a 1D sectional microphysics model
based on [3]. VenLA is computationally too demand-
ing to be integrated in the IPSL Venus GCM, which is
why we need to develop another method.

2.3. The moment method
The moment method is a statistical method to describe
a distribution function with few parameters called mo-
ments. On the I interval (I = R+) with the nth mo-
ment, the distribution f(x) is defined with the moment
scheme by:

Mn(f) =
∫

I

xnf(x)dx (1)

When applied to a particle size distribution, each mo-
ment Mn is associated with a meaningful parameter
of the distribution. With the equation (1), the moment
of order 0 is the total number of particles N and the
moment of order 3 is the total volume of the particle
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population.
In our case, we consider a log-normal size distribution
function (2) [9]:

f(x) =
N√
2πσx

exp
(
− (x− x)2

2σ2
x

)
(2)

Where x is a radius, x is the mean radius of the aerosol
distribution and σx is the variance.
The moments will be the tracers in the 3D GCM. A
tracer is a quantity that we follow in the modeling cal-
culation. The calculation time of a simulation is pro-
portional to the number of tracers in the model: with
few tracers is faster than lots of tracers. With a sec-
tional model like VenLA, each bin is a tracer, which
means tens or hundreds of tracers would be added to
the GCM. This is why the moment method with two or
three moments may be a good method to develop a mi-
crophysical module for a global model like the Venus
GCM.

2.4. Modeling approach
We are developing a 1D cloud model with the equa-
tions of microphysical processes solved with the mo-
ment scheme.
Then we will make comparison between our model
and the high and low resolution VenLA simulations.
With these tests, we will study the ideal number of mo-
ments that we need in the model and the moments that
we will use: the mean radius, the variance or/and the
total number of particles in the distribution.
We will present the first results of our 1D model with
the moment scheme and a comparison with the results
of high and low resolution VenLA 1D.

3. Summary and Conclusions
The moment method is already used in the IPSL Mars
GCM [7] and the IPSL Titan GCM [1] to describe the
cloud microphysics. Therefore, it is interesting to use
it also in the Venus GCM.
Here we present a status report on the development of
the moment method cloud module. The development
of this model will allow us to have a better under-
standing of Venusian climate with a complete GCM.

4. Perspectives
The goal of this model development is to simulate in
three dimensions the formation and the evolution of
clouds on Venus. It will be integrated in the IPSL

Venus 3D GCM to obtain the more complete Venusian
climate model.
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