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Abstract Hubble Space Telescope and Mars Express observed unexpected rapid changes in the Martian
hydrogen exosphere involving a decrease in scattered Lyman α intensity in fall 2007 (solar longitude,
Ls= 331°–345°). These changes detected were speculated to be a combination of seasonal variation and/or
dust storms and lower atmospheric dynamics. Here we present Hubble Space Telescope observations of Mars
in 2014 over a broad range of heliocentric distances and seasons (Ls=138°–232°) which indicate a factor of
~3.5 change inMartian Lyman α brightness associated with a factor of ~5.4 variation of hydrogen escape flux in
the absence of global dust storms and significant solar variability. We thus conclude that seasonal effects have
a strong influence on the hydrogen exosphere, which in turn has major implications for the processes that
control water supply to the Martian upper atmosphere and the history of water escape from Mars.

1. Introduction

Mars is believed to have beenmore Earth-like early in its history than it is today. There is considerable geological
evidence that the planet’s volatile inventory and climate have changed markedly throughout its evolutionary
period [Jakosky and Philips, 2001; Baker, 2001]. Elevated ratios of atmospheric D/H at Mars arising from the
difference in atomic mass between D and H provide evidence of escape of substantial amounts of hydrogen
and thuswater into space [Owen, 1992; Bertaux andMontmessin, 2001; Villanueva et al., 2015]. However, the rela-
tive amounts of water that have escaped Mars or that remain frozen in its crust today are not well known. Early
analysis of photochemistry of the planet suggested that most of the atmospheric water vapor is present below
an altitude of 20 km, wherein it is photodissociated by solar ultraviolet (UV) radiation into its constituents,
atomic hydrogen, and oxygen [Hunten and McElroy, 1970; McElroy and Donahue, 1972; Parkinson and Hunten,
1972]. The hydrogen thus created diffuses upward slowly in the form of H2, a by-product of the recombination
reaction producing a stable CO2 atmosphere at Mars [Hunten and McElroy, 1970; McElroy and Donahue, 1972].
Once H2 arrives in the ionosphere, it can be promptly dissociated by reactions with O2

+ and CO2
+ to form H,

which then migrates upward forming the Martian exosphere [Krasnopolsky, 2002]. This exosphere was first
detected by Mariner 6 and 7 through UV measurement of resonantly scattered solar Lyman α (121.57nm)
photons by hydrogen, at altitudes up to 30,000 km or ~8.8Rmars [Barth et al., 1969, 1971]. The high-energy tail
of the thermal population of hydrogen atoms has enough energy to escape the gravitational pull of the planet,
a phenomenon known as Jeans escape. This escape is substantial for H atoms comparedwith heavier atoms like
oxygen, which mostly escape via nonthermal mechanisms like dissociative recombination [McElroy, 1972]. The
slowdiffusion of H2 and its longer chemical lifetimewould give rise to a stable escape flux over the course of the
Martian year and seasons [Hunten and McElroy, 1970; Hunten, 1973].

The majority of H atoms in the Martian exosphere likely come from a population in thermal equilibrium with
the collisionally dominated atmosphere (below 200 km) from which they originate. Therefore, an accurate
determination of the mean temperature and exobase number density of the H population is essential for
calculating its Jeans escape flux and is ascertained bymodeling the resonantly scattered Lyman α emission from
the exosphere of Mars. This Lyman α emission line is optically thick at the Martian line center (121.57 nm)
leading to multiple scattering [Anderson, 1974]. Hence, analysis of the Mariner 6 and 7 Lyman αmeasurements
was done using a radiative transfer model, coupled with a Chamberlain exosphere [Anderson and Hord, 1971].
The model results suggested an exobase density of 3 ± 0.5 × 104 cm�3 and a temperature of 350 ± 100 K
for median solar activity. The calculated temperature was higher than bulk atmospheric temperaturesmeasured
by other orbiting spacecraft and landers (temperature, T=145–220K) under different solar conditions [Bougher
et al., 2000; LeBlanc et al., 2007], a disparity which could be explained by the presence of a two-component popula-
tion of H in the Martian exosphere. The SPICAM and ASPERA instruments on MEX hinted at the presence of such a
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population, with a thermal (cold)
component at 200 K mixed with a
superthermal (hot) component at
T> 500 K formed by nonthermal
processes like charge exchange with
the solar wind, atmospheric sputter-
ing, and molecular photodissociation
among others, but had difficulties
with absolute calibration [Barabash
and Lundin, 2006; Galli et al., 2006;
Chaufray et al., 2008]. However, recent
observations of exospheric Hmade by
the Rosetta spacecraft (Ls=189°) have
been analyzed using a modeled tem-
perature of 260 K and no hot popula-
tion [Feldman et al., 2011]. This paper
fit the optically thin Lyman β emission
with a thermal component, supporting
the presence of a “cold” component
of H at the temperature of the neutral
atmosphere. Their modeling of the
Lyman α emission was uncertain since
they did not take into account multi-
ple scattering. Nevertheless, there
still remains a poor understanding of
the characteristics of the Martian
exosphere and the actual escape flux
of H from it.

In the course of constraining the H
escape flux, observations of Mars by
Hubble Space Telescope (HST) in
October–November 2007 identified
a 40% decrease in intensity of scat-
tered solar Lyman α by Martian exo-
spheric hydrogen in ~4weeks [Clarke
et al., 2014]. This trend, also observed

by Mars Express over several months yielded up to an order-of-magnitude change in hydrogen escape flux
[Chaffin et al., 2014]. This variability was not accompanied by changes in solar flux or solar wind activity near
solar minimum. It was concluded that the observed changes in H density and escape flux were brought about
by intrinsic changes within the Martian atmosphere.

The process of resupplying hydrogen to the Martian exosphere through diffusion of molecular H2 from below
is slow (~10 to 500 days between altitudes of 10 and 100 km) and is not likely to produce the short-term
changes observed during October–November 2007 [Clarke et al., 2014]. Atmospheric models indicate that
the increase in solar EUV flux in the upper atmosphere near perihelion could also lead to changes in the H
escape flux [Chaufray et al., 2015]. However, during the HST 2007 observations, Mars was moving away from
the Sun (Ls= 331°–345°) coming out of southern summer, and the solar incident flux at Mars varied by ~5%,
not enough to cause the observed decrease in ~4weeks.

The presence of unexpectedly elevated levels of water vapor at high altitudes, higher than those predicted by
Martian climate models, was found in the MEX data [Maltagliati et al., 2011, 2013; Fedorova et al., 2006, 2009].
Water vapor at high altitudes will undergo direct photodissociation by solar UV and bypass the slow diffusion
process, which could lead to rapid changes in the hydrogen population in the Martian exosphere. SPICAM
water vapor profiles obtained during the southern summer of Mars in year 29 (December 2007 to May
2009) showed densities of 50–100 ppm at altitudes of 60–80 km in both hemispheres, more than 10 times

a

b

Figure 1. Radial brightness profiles in kilo Rayleighs with altitude for ± 45°
from the subsolar point for the HST 2014 and 2007 observations along with
their best two-component model fits. The level of Lyman α emission from
exospheric hydrogen at Mars is observed to steadily increase with time in
2014 and decrease with time in 2007 at all altitudes.
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higher than predicted by models
[Maltagliati et al., 2011, 2013; Fedorova
et al., 2006, 2009]. Changes in water
vapor quantities at high altitudes
could be brought about by seasonal
effects or Martian dust storm activity,
which is season dependent [Fedorova,
2009;Maltagliati, 2013]. A major global
dust storm occurred in June 2007 at
Mars, with the dust opacity decreasing
from ~0.8 to 0.2 through the following
months overlapping with the HST
and MEX observations [Montabone
et al., 2012]. The 2007 observing cam-
paign followed this storm and showed
a decrease in H density that could
have been caused by either seasonal
changes or the dust storm or a combi-
nation of both.

2. Observations

To resolve the effect of seasons and/or
dust storms, a series of HST observa-
tions were undertaken in 2014 over a
broad range of Ls values and helio-
centric distances (Figure 1). These
images were obtained in the far ultra-
violet with the ACS-SBC instrument on
board HST in five separate visits. The
first observation was taken on 30 May
2014 (Ls=138°) when Mars was com-
ing out of northern summer solstice
(Ls=90°). The next set of observations
were conducted during September–
November 2014 (Ls=197°–232°) with
Mars close to perihelion (Ls=251°) and
approaching southern summer solstice
(Ls=271°) (Figure 2a). Dedicated HST
observations of Lyman α emission from

the geocorona and interplanetary hydrogen were used to obtain an accurate background subtraction and
zero level. The reduction pipeline is detailed in Clarke et al. [2009], and the adaptation to Mars is elaborated
in Clarke et al. [2014]. The incident solar flux at Mars increased by 31.5% from 30 May to 12 November due
to Mars’ position in its orbit (Table 1).

Radial profiles of brightness (in kilo Rayleighs) versus altitude (670–35,000 km) were constructed for each
of the HST observations over ±45° from the subsolar point. The calibration factor used for the HST data
is specific for Lyman α (0.002633 counts/pixel s kR), an update from the band-pass-averaged value
(0.002103 counts/pixel s kR) used in Clarke et al. [2014]. This value was determined by modeling the sensi-
tivity of ACS with wavelengths within the band pass [Avila et al., 2015; Gustin et al., 2012] (supporting infor-
mation). The intensity of Lyman α emission increased steadily with decreasing heliocentric distance, the
same trend with distance observed in October–November 2007 (Figure 1) when Mars was receding from
the Sun. The optically thick Lyman α emission has been modeled using a radiative transfer code to include
multiple scattering effects.

b

a

Figure 2. (a) This figure shows the position of Mars at different solar long-
itudes (Ls) as well as the position of Mars around the Sun when the HST
images were obtained (original image: http://www-mars.lmd.jussieu.fr/
mars/time/solar_longitude.html). (b) This figure shows variation of hydro-
gen escape flux from Mars at various solar longitude positions. The single-
component and the two-component escape fluxes have been fitted with
a first-order relation to provide an approximation of the seasonal variation
of hydrogen escape flux from Mars.
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3. Modeling and Analysis

The radiative transfer model used in this analysis is coupled with a Chamberlain exosphere [Chamberlain,
1963] and is based on Chaufray et al. [2008]. It utilizes the assumptions of Thomas [1963] and has two free
parameters, exospheric density, and temperature. The model simulates the effect of multiple scattering in
an optically thick atmosphere of τ< 200 at line center. Themodeled intensities are convolved with the instru-
ment Point Spread Function for comparison with the HST data (supporting information).

3.1. Single-Component Model

The altitude profiles were first modeled assuming a single thermal hydrogen population in the Martian
exosphere. Simulations were done using various combinations of temperatures ranging from 170 to
440 K and exobase number densities from 104 to 5 × 105 cm�3, the two free parameters of the model.
The best fit to all the HST observations was obtained by minimizing χ2 deviations between data and model.
It is difficult to ascertain the modeling uncertainties due to various undetermined inherent assumptions
about the characteristics of the Martian exosphere, like spherical symmetry of the density profile, a single
Maxwellian distribution, and isothermal conditions in the day and night sector. Ignoring modeling uncer-
tainties while calculating χ2 values increases it beyond 1 (supporting information). For example, a modeling
uncertainty 10 times larger than the observed uncertainty allows χ2< 100 to be acceptable.

The best fit modeled temperatures for the 2007 observations at low solar activity (F10.7 ~ 70 at 1AU) and the 2014
observations at high solar activity (F10.7 ~ 144) ranged from 360 to 440K (Table 2), close to the values obtained by

Table 1. Observations and Modeled H Escape Flux Valuesa

Observation Date
(Day of Year) Ls

F0 × 1011

(photons/cm2/s/Å)
Distance to Sun

(AU)
Single-Component

ϕjeans (× 108 cm�2 s�1)
Two-Component

ϕjeans (× 108 cm�2 s�1)

10/15/2007 331° 1.325 1.49 2.99 ± 0.12 5.98 ± 0.3
288
10/27/2007 337° 1.293 1.50 1.94 ± 0.08 4.25 ± 0.1
300
11/09/2007 345° 1.255 1.52 1.6 ± 0.06 3.77 ± 0.07
313
05/30/2014 138° 1.398 1.57 1.28 ± 0.2 2.35 ± 0.22
150
09/15/2014 197° 1.707 1.43 3.36 ± 0.25 6.06 ± 0.55
258
10/05/2014 208° 1.709 1.41 5.23 ± 0.37 9.36 ± 0.84
278
10/20/2014 217° 1.752 1.40 6.6 ± 0.37 12.2 ± 1.0
293
11/12/2014 232° 1.838 1.39 8.35 ± 0.37 15.0 ± 1.0
316

aLine-integrated flux obtained from the SORCE database [Rottman et al., 2006] have been corrected for solar rotation
and converted to line center flux [Emerich et al., 2005].

Table 2. Model Fits to the Data

Date of Observation

Single-Component Model Two-Component Modela

Texo (K) nexo (cm�3) χ2red Tcold (K) ncold (cm�3) nhot (cm
�3) χ2red

10/15/2007 440 24,000 ± 1,000 5.69 170 105,000 ± 3,000 12,300 ± 600 7.6
10/27/2007 380 25,000 ± 1,000 6.73 170 96,000 ± 2,000 8,700 ± 200 17
11/09/2007 360 25,000 ± 1,000 5.65 170 91,000 ± 1,000 7,700 ± 200 16
05/30/2014 365 19,000 ± 3,000 2.23 200 47,000 ± 1,000 4,600 ± 400 4.1
09/15/2014 440 27,000 ± 2,000 3.48 200 71,000 ± 4,000 12,200 ± 1,100 2.3
10/05/2014 440 42,000 ± 3,000 7.10 230 66,000 ± 5,000 18,500 ± 1,500 2.6
10/20/2014 440 53,000 ± 3,000 20.36 240 85,000 ± 5,000 23,800 ± 2,000 7.8
11/12/2014 440 67,000 ± 3,000 20.71 240 97,000 ± 7,000 29,400 ± 2,000 5.1

aTemperature of the hot component is taken to be a constant, Thot = 800 K.
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Anderson and Hord [1971], Dostovalov and Chuvakhin [1973] for high solar activity (F10.7 ~ 180), and Babichenko
et al. [1977] for low solar activity (F10.7 ~ 60). These temperatures aremuch higher than the bulk atmospheric tem-
peratures estimated fromUV CO2

+, Cameron bands, N2 Vegard-Kaplan bands and aerobraking measurements at
low solar activity [LeBlanc et al., 2006, 2007; Bougher et al., 2000]. Such high temperatures obtained for the hydro-
gen population do not agree with Lyman β measurements (260K) by Feldman et al. [2011] around solar mini-
mum. They also do not agree with spacecraft drag measurements [Forbes et al., 2008], which, however, have
their own challenges [Krasnopolsky, 2010]. Martian global circulation models (MGCM) cannot explain tempera-
tures greater than 440K in the exosphere as this is not supported by the energy balance of the upper atmosphere
[Chaufray et al., 2015; Bougher et al., 1999, 2009, 2015]. Therefore, a two-component population of H, with a small
percentage at a higher temperature, was deemed to be the more likely scenario. Such a population detected at
Venus has a similar effect of broadening the Martian Lyman α line like a single component at a high temperature
[Anderson, 1976; Bertaux et al., 1977; Hodges, 1999; Chaufray et al., 2012].

3.2. Two-Component Model

The two-component model is a combination of a cold component at thermal equilibrium with the lower
atmosphere (below 200 km) and a “hot” superthermal component created by nonthermal processes which
dominate at higher altitudes. The superthermal component is taken to exist only beyond the exobase and
approximated by a Maxwellian. For each observation the mean temperature of the thermal component is
determined based on the conditions of the lower atmosphere simulated by an MGCM [Forget et al., 1999;
Gonzalez-Galindo et al., 2009]. Different exobase number density combinations (1 × 104 to 5 × 105 cm�3)

a

b

Figure 3. The plot above show the comparison between best fit model runs to the HST data with a single population of H
atoms and a hot + cold population of H atoms (two components).

Geophysical Research Letters 10.1002/2015GL065804
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within ranges predicted by photochemical models [Krasnopolsky, 2002; Fox, 2003] for H at Mars have been
used to find the best fit modeled density by minimizing the χ2 deviations to simulate the data for the prede-
termined thermal temperature. The temperature of the hot component was derived by assuming an optically
thin atmosphere above 10,000 km dominated by superthermal atoms. Different combinations of exobase
density (1 × 102 to 5 × 104 cm�3) and temperature (500–1000 K) within ranges predicted from MEX data
[Chaufray et al., 2008] were used to generate radial intensities, which were then fit to the data beyond
10,000 km. A series of best fit temperatures were obtained for all the HST observations through χ2 minimiza-
tion, and the temperature of the hot component was fixed to be the lowest temperature (800 K), common to
all observations. Then the exobase number density for the superthermal component at 800 K was derived by
minimizing χ2 values for the model fits to the data (Table 2). The total number density profile (hot + cold),
generated from the exobase temperature and density values for both the components, was then run through
the RT model at the temperature of the cold component, deemed to be the majority, to obtain the final fit to
the data (Figure 1). The discrepancies between data and model are smaller than the increasing trend in H bright-
ness and are likely due to inherent model assumptions about the exosphere of Mars. Other combinations of hot
and cold temperatures may provide good fits to the data, but given the lack of knowledge on the actual velocity
distribution of hydrogen, arbitrary combinations of temperature and density were not modeled.

Figure 3 provides a comparison between a single-component and a two-component fit to the data for 30 May
and 12 November 2014. Both models give a good fit to the data on 30 May 2014, when Mars was far from the
Sun, while the two-component fit is better on 12 November 2014, when Mars was closer to the Sun and the
emission was brighter. The reduced χ2 values for the fits in Table 2 also indicate that the two-component
model is better when Mars is closer to the Sun, thereby suggesting that the hot component may be related
to the solar EUV flux or solar wind.

4. Discussion

The presence or absence of a superthermal component can significantly alter the Jeans escape flux of hydro-
gen from the exosphere of Mars as illustrated in Figure 2b. For example, the Jeans escape flux in the presence
of a superthermal component is ~84% higher than a single-component scenario for 30 May 2014 and ~80%
higher for 12 November 2014. Considering the presence of a thermal and a superthermal component of H in
the Martian exosphere to be more likely, the Jeans escape flux calculated from the best fit exobase tempera-
ture and number density increased by a factor of ~5.4 between 30 May and 12 November 2014 (Table 1). No
major changes in solar activity were recorded during the 2014 observations even though the solar cycle was
close to solar maximum except for a medium solar flare (M7 class) during the passage of comet Siding Spring
over 19/20 October 2014. The HST data taken during the comet encounter indicate a negligible change in
Martian exospheric Lyman α intensity (<5%), and most observed changes are consistent with variations in
the solar Lyman α flux. In 2007, the escape flux decreased by 37% within 4weeks as Mars was moving away
from the Sun with no significant changes in solar activity with the solar cycle near its minimum. Even though
a global dust storm was recorded in June 2007 and only regional dust storm activity observed in 2014 (http://
themis.mars.asu.edu/dust_maps), a significant increase in Martian exospheric Lyman α intensity was
observed in 2014 indicating seasonal effects. Seasonal changes have also been observed in pickup ions of
exospheric origin at Mars, as well as reflected solar wind ions at the bow shock [Yamauchi et al., 2015].
Simulations using an MGCM for nonuniform exobase conditions found that the H escape flux was not diffu-
sion limited but was directly dependent on the seasonal increase in incident solar EUV flux at the Martian
upper atmosphere [Chaufray et al., 2015]. However, the H escape flux at solar maximum between
Ls~140°–230° derived from the MGCM showed an increase of a factor of ~2.1 (F10.7 ~ 220), which is less than
the factor of ~5.4 (F10.7 ~ 144) obtained with the HST 2014 data for the same Ls range (Table 1).

To estimate the functional form of these seasonal changes, the variation of H escape flux with Ls determined
from the HST data can be represented by a simple sinusoid;

ϕJeans LSð Þ ¼ 10ASin
2πLS
360° þφð ÞþB (1)

Here A= 0.84, B=8.16, and φ= 3.35 radians from the best fit to the single-component escape flux and
A= 0.91, B= 8.43, and φ= 3.28 radians (Figure 3b) for the best fit to the two-component escape flux. While
the existence of a strong seasonal variation is well established, the shape of the curve is only partially
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constrained due to the thinly sampled data set and includes both solar minimum and maximum conditions.
The observed seasonal variation of a factor of ~5.4 in ~6months greatly exceeds the steady diffusion limited
process previously assumed [Hunten, 1973]. The new observations suggest that seasons are important drivers
of H escape, although the relative contribution of dust storms has yet to be determined. The relative importance
of (a) water in the lower atmosphere and (b) solar EUV flux/dynamics can be found by further observations of H
escape over the northern summer, whenMars moves farther from the Sun, but the surface atmospheric density
shows a second maximum. Finding a second increase in the hydrogen brightness over Ls=0°–90° would impli-
cate surface conditions as the primary driver of the changes in H escape flux, as opposed to control by the solar
EUV flux which would decrease with increasing heliocentric distance.

Geological evidence has indicated that today’s dry and cold Mars was warm and wet when Mars was young
[Jakosky and Philips, 2001; Baker, 2001]. The water lost into space after the loss of its magnetic field [Jakosky
and Philips, 2001] has been estimated from the present hydrogen escape flux for the Martian atmosphere.
Earlier work assumed that this escape flux was diffusion limited and changed slowly over a Martian year
[Hunten, 1973]. Here we present strong observational evidence for a large and persistent seasonal variation
in H escape flux from Mars. Existing estimates of the Martian water reserves will have to be updated to reflect
this, and a simple extrapolation of the present-day escape flux would not suffice to trace the historic escape
of water from Mars and the depth of its primordial ocean.
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