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Abstract 

Pre-thickened hot orogenic crust is often considered a necessary condition for the formation of 

continental metamorphic core complexes (MCCs). However, the discovery of MCCs in the Liaodong 
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Peninsula, where the crust has a normal thickness (~35 km), challenges the universality of this 

scenario. Therefore, we implement a series of 2-D numerical thermo-mechanical modeling 

experiments in which we investigate the conditions of MCC formation in normal crusts, as well as 

the relationships between the underlying mechanisms and the syn-rift basin evolution. In these 

experiments, we explore the impact of the lithostratigraphic and thermo-rheological structure of the 

crust. We also examine the lithosphere thickness, strain softening, extension rate and surface erosion/ 

sedimentation processes. The experiments demonstrate that high thermal gradients and crustal 

heterogeneities result only in a symmetric spreading dome, which is geometrically incompatible with 

the observations of the MCCs in the Liaodong Peninsula. According to our further findings, the 

strain softening should play a key role in the development of asymmetric strain localization and 

domal topography uplift, while synchronous surface erosion controls the polarity of the syn-rift basin. 

The synthetic model data are compatible with the geological observations and cooling history based 

on the thermo-chronology for the eastern part of the East Asia during the late Mesozoic to the early 

Cenozoic. The model-predicted P-T-t paths are essentially different from those inferred for the other 

known MCCs, confirming the exceptional character of the MCC formation in the wide rift system of 

the East Asia. 

 

 

1. Introduction 

The concept of the Metamorphic Core Complex (MCC) was introduced during the late 1970s 

based on tectonic surveys in the Basin and Range Province (USA) (Coney, 1974; Coney and Harms, 

1984; Davis and Coney, 1979; Proffett, 1977). MCCs develop in extensional settings characterized 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

3 
 

by significant amounts of crustal stretching and are regarded as distinctive structures, different from 

those associated with, for example, wide or narrow rifting (e.g., Buck, 1991). A typical MCC 

comprises the following: (1) a lower unit of metamorphic and/or plutonic rock exhumed from the 

lower crust into the upper crust; (2) a shallow unit of upper crustal rocks that do not undergo any 

metamorphic changes during extension; (3) a detachment structure localized between the lower and 

upper crustal units that corresponds to a shallow dipping and strongly sheared mylonitic zone, which 

absorbs much of the movement during the exhumation of the lower crust rocks; and (4) differently 

from “usual” rifts, the Moho below an MCC is nearly horizontal or only slightly uplifted(Buck, 1991; 

Coney and Harms, 1984; Davis and Coney, 1979; Lister and Davis, 1989; Wernicke, 1981). The 

upper units behave as brittle blocks and experience rather limited stretching during extension. 

High-angle normal faults rooted in the detachment typically develop within these domains, and their 

dynamics largely condition the deposition of sediments into the half graben structures. The lower 

units, having low viscosity and flowing from the lower to upper crustal levels, display penetrative 

ductile deformation with foliations during extension. A dome is underlined by the bended shape of 

foliation envelope within the lower crust where carries imprints of the extensional shear zone 

localized along the detachment and on top of the dome.  

Some well-known MCCs have been identified in the Aegean Sea domain (Gautier et al., 1990; 

Gautier et al., 1993; Jolivet et al., 2013; Lister, 1984), West Antarctica (Richard et al., 1994), East 

Asia (Li, 2000; Wang et al., 1998; Wu et al., 2000; Wu et al., 2005a; Wu et al., 2005b; Wu et al., 

2007), the Norwegian Caledonides (Steltenpohl et al., 2004) and Iran (Verdel et al., 2007). A 

particular appellation of “Cordilleran style metamorphic core complexes” (Lister, 1984; Liu et al., 

2005; Verdel et al., 2007) is also widely applied to metamorphic features of the Cordilleran realm, 
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although the related kinematic and thermo-mechanical conditions are not completely identical to 

those associated with the description of the conventional MCC. A remarkably common feature of 

most of the described MCCs is that they form in orogenically pre-thickened crust (crustal 

thickness >50 km, Moho temperatures >800°C) (Buck, 1991; Tirel et al., 2008). This observation is 

therefore often treated as a crucial condition for the formation of MCCs, either during post-orogenic 

extensional collapse (North American Cordillera) (Foster and Raza, 2002; Gebelin et al., 2011; 

Mulch et al., 2007) or in back-arc extension settings during ongoing plate convergence (Aegean Sea) 

(Jolivet and Faccenna, 2000). MCC domes have also been identified in East Asia (EA) in relation to 

the large-scale continental extension that took place during Mesozoic times. There are strong debates 

about the thickness of the continental crust before extension in the East Asia. Previous shortening 

event is argued to drive the extension (Liu et al., 2005; Wang et al., 2011). However, the Songliao 

basin can provide direct evidence for the crustal thickness in Liaodong Peninsular before MCC 

exhumation from the shape of faults and the sequential cross-section restoration (Ge et al., 2012). 

While the major features and kinematics of these structures perfectly correspond to the canonical 

features of MCCs, no high-pressure metamorphism and no trace of the pre-existing crustal 

thickening or of a suture zone have been reported in the north eastern part of China (Charles, 2010; 

Gumiaux et al., 2012). Indeed, the latest event responsible for crustal thickening happened at the 

boundary between the North China Craton (NCC) and the South China block (SCB) during the 

Triassic, which represents a nearly 100-Ma time lag with the Meso-Cretaceous extension episode. It 

is therefore unreasonable to relate the MCC formation in the Liaodong Peninsula (EA) to this 

post-orogenic extension (Lin et al., 2013a). This atypical tectonic context of the MCCs in the 

Liaodong Peninsula raises the new question of whether it is possible for an MCC to develop in 
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non-thickened continental crust.  

Many analog and numerical experiments have been performed to understand the mechanisms of 

MCC formation, addressing a number of key conditions leading to MCC development (Brun, 1999; 

Burov et al., 2014; Huet et al., 2011a; Huet et al., 2011b; Lavier et al., 1999; Tirel et al., 2008; Tirel 

et al., 2013). Strain localization and weakening (Buck, 1993; Gessner et al., 2007; Lavier et al., 

1999), a pre-existing density and/or weak rheological/compositional heterogeneities in the lower 

crust (e.g.,Brun, 1999; Brun and Sokoutis, 2007; Burov et al., 1994; Petit et al., 1997) are thought to 

be essential for rift localization and, in particular, for MCC formation (Brun, 1999; Brun and 

Sokoutis, 2007; Tirel et al., 2008). Later experiments that have tested the impact of the depth, length 

and position of the compositional heterogeneity (Tirel et al., 2008) showed, however, that the 

presence of compositional heterogeneities is not essential for the occurrence of a MCC. The 

extensive parametric study by Tirel et al. (2008) demonstrated that in the case of an orogenic crust 

with a commonly inferred rheological structure, three conditions should be satisfied: (1) the initial 

temperature of the Moho must be greater than 800°C, (2) the crustal thickness must be greater than 

45 km, and (3) the initial effective viscosities of the lower crust and the underlying mantle should be 

lower than 10
20   and 10

22
 P , respectively. Rey et al. (2009) additionally demonstrated that the 

extension rate partitioning (with respect to the rift axis) may have a major effect on the asymmetry of 

the crustal detachment faults that characterize most MCCs. Thermal gradients due to collisional 

thermal heritage or asthenospheric heat sources are also considered in some of the previous studies 

showing the non-negligible impact on the P-T-t paths of the exhumed metamorphic material 

(Schenker et al., 2012). Even if the initial thermal gradient remains a first-order parameter for 

structural heritage, the rheological structure might strongly influence the conditions of MCC 
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development. Huet et al. (2011a, 2011b) showed, in particular, that an unusual “inverted” rheological 

structure resulting from orogenic nappe stacking may result in acceleration of the growth rate of the 

extensional instabilities, enabling MCC formation even in relatively cold crust (Moho temperature 

~600°C–700°C). Finally, Tirel et al. (2013) developed a model where MCC forms as a result of 

stacking and exhumation of continental terrains in a back-arc extension context. Moreover, 3D 

models testing the impact of kinematic extensional boundary conditions demonstrate geometrical 

disparities between the extensional and transgressive domes, yet without major modifications in the 

mechanisms of formation of the detachment fault systems (Le Pourhiet et al., 2012). It is still 

noteworthy, however, that all previous mechanical and thermo-mechanical experiments are based on 

a common implicit assumption that the MCCs form as a result of the extensional collapse of a 

thickened crust, either in a post-orogenic intracontinental context or within the framework of 

subduction-driven burial and back-arc exhumation of crustal units (Tirel et al., 2013). Most of these 

studies were enlightened by the Aegean Sea either with thickened crust or fast extension rate. None 

of these geological settings directly correspond to the case of the Liaodong Peninsula.  

In this study, we therefore examine the particular conditions for the thermal and mechanical 

evolution of MCCs in “normal” crustal thickness settings. With this goal, we implement a series of 

2D thermo-mechanical numerical experiments assuming a normal 35-km-thick crust. We further try 

to elucidate some additional key factors of MCC formation, such as the extension rate, initial thermal 

gradient, strain softening, erosion/sedimentary rates, initial litho-rheological stratification of the crust, 

and lithospheric thickness. Finally, after incorporating all available geological and geophysical data, 

the models are applied to the natural case of the Liaodong Peninsula. 
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2. Geological Settings 

2.1 The wide rift system of the East Asia 

East Asia mainly comprises the Central Asian Orogenic Belt (CAOB), the North China Craton 

(NCC) and the South China Block (Figure 1a) (Charles et al., 2012; Wang et al., 2011). The NCC is 

an old and relatively small craton dated to approximately 1.85 Ga (Zhao et al., 2001) that locates 

in-between the CAOB and the SCB bordered by the Permain Solonker Suture Zone (Xiao et al., 2003; 

Yin and Nie, 1996) and Triassic Qinling-Dabie Orogen (Mattauer et al., 1985) separately. After the 

final amalgamation of these three tectonic units, the whole tectonic collage experienced an intensive 

reactivation. A pervasive extension event occurred over ~1500km wide from South China up to the 

Baikal Lake. The geological features associated with the extension are characterised by the opening 

of large-scaled extensional basins and the emplacement of numerous plutonic and volcanic massifs 

in East Mongolia and East China (Figure 1a). Mesozoic Sedimentation is characterized by graben or 

half graben such as in the region of Songliao, Yingen, Erlian, Hailar and East Gobi (Graham et al., 

2001; Meng, 2003; Ren et al., 2002). For the rather large intracontinental Songliao basin (~260 000 

km
2
), both paleontological (Li, 2001) and radiochronological (Chen et al., 1999; Wang et al., 2002) 

dating show that its opening began in the Late Jurassic in the north and progressed southwards until 

the latest Cretaceous. Several intensively deformed metamorphic domes and associated granitic 

intrusions underlying a large extensional shear zone have been identified during late Mesozoic, 

including Buteel and Zagan (South Lake Baikal, Donskaya et al., 2008; Sklyarov et al., 1997), 

Yagan-Onch Hayrhan (Southern CAOB, Webb et al., 1999), Hohhot, Louzidian and Yumengshan 

(Northern NCC, Darby et al., 2001; Davis and Zheng, 1988; Wang et al., 2002; Wang et al., 2004) 

Linglong (Jiaodong Peninsula, Charles et al., 2011a, b), Yiwulüshan, Liaonan and Gudaoling 
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(Liaodong Peninsula, Charles et al., 2012; Lin et al., 2013a, b; Liu et al., 2005; Xu et al., 1994), 

Beidabie and Xiaoqinling (Qinling-Dabie Orogen, Wang et al., 1998; Zhang et al., 1997), Lushan 

and Hongzhen (South China, Zhu et al., 2010; Lin et al., 2000) MCCs. All these MCCs record 

common NW-SE crustal stretching, and they satisfy all the above-mentioned conditions to join the 

Cordilleran-type MCC‟s family. Coincident with the formation of MCC, the Yanshanian 

tectono-magmatic activity occurred with a peak period at around ~120-130Ma in eastern and north 

eastern China (Wang et al., 2006). Numerous I-, A-type and alkaline granitic and plutonic rocks, 

breccia pipes, felsic and alkali basaltic lavas occupy large areas of the EA (Wang et al., 1998; Wu et 

al., 2005a; Wu et al., 2005b), emphasizing the possibility of lithospheric weakening. With all features 

involved so far, a wide rift system is an incontrovertible fact in East Asia during Late Mesozoic. Also 

noteworthy is that the NCC coevally experienced enigmatic cratonic deconstruction. It has been 

proposed that the eastern part of the NCC experienced significant lithospheric thinning during the 

Mesozoic to Cenozoic (Wu et al., 2005a; Wu et al., 2005b; Zhu et al., 2012), from a thick (~200 km) 

Archean or Paleoproterozoic lithosphere to a current thickness of only ~80 km (Chen et al., 2006; 

Chen et al., 2008; Griffin et al., 1998; Menzies et al., 1993). High-resolution seismic tomography and 

shear wave splitting data (Zhao et al., 2009; Zhao et al., 2012; Zhao et al., 2013) suggest that 

interactions between the cratonic lithosphere and the underlying mantle flow have played an 

important role in the evolution of the NCC and likely linked to the Paleo-Pacific subduction. 

2.2 Crustal thickness and thermal structure of the lithosphere 

The Liaodong Peninsula is located in the north eastern part of China off the north coast of Bohai 

Bay and Songliao basin, where massive regional work has been launched since twenty century. 

Receiver function studies and deep seismic sounding data show an East-West trend in crustal 
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thinning, with the Moho depth reduced from ~40 km in the western part of the NCC to ~28-32 km 

around the Bohai Bay (Hao et al., 2007; Li et al., 2006; Wei et al., 2012; Zheng et al., 2008; Zheng et 

al., 2009). Recently, Ge et al. (2012) inferred a two-stage scenario of extension based on a sequential 

restoration of lithospheric cross-sections derived from 2D seismic and borehole data across the 

region of the Songliao basin (Figure 1b). Most of the Sonliao basin sits on the CAOB, whereas the 

southernmost part is on the northern margin of the NCC and close to the Liaodong Peninsula (Figure 

1). Although Songliao Basin spatially belongs to the CAOB from the tectonic frame‟s point of view, 

but its rifting episode (130-ca. 102 Ma) is temporally consistent with the development of MCCs in 

the north eastern NCC. Crustal thickness before and after the two-stage rifting episode are estimated 

at 50-30 km. In particular, the crustal thickness and average strain rate are approximately 35 km and 

0.85*10
-16

 s
-1

, respectively, at the beginning of the second stage of rifting. At this stage, crustal 

deformation is characterized by localized faulting relevant to the detachment zones that coincide 

with the exhumation of adjacent MCCs. This work, therefore, provides direct evidence linking the 

initial crust thickness before the exhumation of the MCC in Liaodong Peninsula. The geothermal 

history suggests a thermal lithosphere thickness of only ~65-70 km, as supported by vitrinite 

reflectance studies, which document an exceptional high paleo-surface heat flow (>80 mW/m
2
) 

during late Mesozoic to early Cenozoic times (Fu et al., 2005; Hu et al., 2000; Zhai et al., 2004).  

 

2.3 Deformation of core complexes 

Several Cretaceous MCCs are reported here such as Liaonan MCC and Yiwulushan MCC that 

exhibit NW-SE extensional event in Liaodong Peninsula. However, the early Triassic northward 

back-thrusting developed in Liaodong peninsular that likely related to the Triassic Sulu orogenic belt 
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may connect to the final stage of the intracontinental collision between the North China and South 

China Blocks (Lin et al., 2007). Post-orogenic collapse is therefore sought-after mechanism for 

extension. It is worth noting that the transition from contraction to extension may not last up to 

100Ma while maintaining over-thickened crust (Lin et al., 2013). UHP metamorphic units (dated at 

220-210 Ma) are only recognised in the Dabieshan (e.g., Cong, 1996; Faure et al., 2003 and 

references therein). This tectono-metamorphic event is clearly far older than the late Mesozoic 

history and far away from Liaodong Peninsular, and therefore, it excludes itself from the rank of 

post-collisional extension with thickened crust. 

The Yiwulüshan massif (Figure 1c) is an extensional structure separated from the Fuxin-Yixian 

basin by a well-developed detachment zone to the west and by the localised Xia–Liaohe Depression 

to the east. The Yiwulüshan massif is made of metamorphic and granitic rocks, mostly occupied by 

weakly or non-foliated Jurassic (160.4±1.8 Ma) granitoid plutons in the central part. Xenoliths of 

orthogneiss and amphibolites lying between the pluton and country rocks exhibit a NW-SE-oriented 

foliation. The western deformed border of the dome exhibits a low-angle ductile shear zone that is 

composed of strongly mylonitized rocks, formed at ~126 Ma according to geochronological 

constraints. 

Similarly, the Liaonan Massif is associated with strong NW–SE horizontal crustal stretching 

(Figure 1d). Geometrical analysis infers an elliptical core (Lin et al., 2013a; Ren et al., 2002) that 

consists of Archean metamorphic rocks and Jurassic to Cretaceous granitoids exhibited along the 

Jinzhou detachment and surrounded by the weakly deformed Neoproterozoic, Paleozoic and 

Cretaceous upper plate (Liu et al., 2005). Volcanic rocks are recorded in the base of the small 

Cretaceous half-graben (LBGMR, 1994). Emplacement of syntectonic plutons took place at ca. 
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130–120 Ma, which is prior to the development of a mylonitic and gneissic sequence, marking the 

last increments of movement along the detachment, with cooling ages dated at 120–110 Ma.  

 

3. Numerical Model 

We used a fully coupled numerical thermo-mechanical modelling approach to investigate the 

different conditions allowing for the formation of MCCs in non-over-thickened continental crust. 

The numerical code implemented in this study is FLAMAR-v12 (e.g. Burov and Cloetingh, 2010; 

Toussaint et al., 2004; Yamato et al., 2009;Appendix in supplementary material), which has been 

widely used in numerous previous studies of extensional systems and MCC formation (Burov, 2007; 

Burov and Poliakov, 2001, 2003; Huet et al., 2011a; Huet et al., 2011b; Le Pourhiet et al., 2004; Tirel 

et al., 2004; Tirel et al., 2008; Tirel et al., 2013; Watremez et al., 2013). The code accounts for 

elastic-brittle-ductile rheologies and implements passive-markers and dynamic remeshing to handle 

large strains and displacements (Yamato et al., 2007). Passive markers also allow for tracing the 

cooling rates and P-T paths. 

The 2-D model box (Figure 2, Table 1, Appendix) has a homogeneous spatial grid resolution of 1 

km and is 200 km wide, with vertically stratified 35-km-thick normal crust (in supplementary 

experiments, we also tested models with a 0.5-km spatial resolution and a width up to 500 km to 

ensure the results are not crucially affected by grid resolution and model width). The mechanical 

boundary conditions correspond to those used in the previous MCC studies (Huet et al., 2011a; Huet 

et al., 2011b; Tirel et al., 2008) and correspond to a unilateral extension velocity applied at the right 

lateral boundary (the left boundary is fixed). The upper boundary condition corresponds to a free 

surface, and the lower boundary is represented by a Winkler basement that corresponds to a 
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hydrostatic pliable interface that deflects proportionally to the density contrast between the 

lithosphere and the underlying asthenosphere (Burov and Poliakov, 2001). The modelled continental 

crust has a density of 2800 kg/m
3
, while the mantle lithosphere density is 3300 kg/m

3
. 

The initial thermal state of the lithosphere is defined from an unstationary plate cooling model 

with internal radioactive heat production (e.g. Burov and Diament, 1995 andAppendix in 

supplementary material). In this study, only „hot‟ lithosphere structures are taken into consideration. 

Therefore, we vary the initially high surface heat flux values (   = 75, 80 and 85     ) to 

compute the initial geotherm. These conditions yield elevated initial temperatures at Moho depths 

(  ) of 767°C, 837°C and 907°C, respectively (Figure 2). The thermal bottom of the lithosphere is 

initially set at 1330°C, while the thermal gradient below the lithosphere is adiabatic (e.g. Burov, 

2011). The surface temperature is kept at 0°C. The lateral thermal boundary conditions correspond to 

zero heat outflux. 

Because most MCCs exhibit partial melting at the occurrence of rheologically weak migmatites 

and granitic plutons, two contrasting rheological parameter sets of the lower crust are adopted (Table 

1): one represents the commonly inferred crustal rheology and is used for homogeneous crust; the 

other is used for rheologically weak units and corresponds to rheological properties of wet diorite, 

which implies a one-order lower effective viscosity than the crust (Figure 2b). A density anomaly is 

introduced in the lower crust and represents an intrusion of magmatic rocks that are widely observed 

in NCC. 

 

4. Results 

4.1 Predicted rifting modes 
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We have implemented a detailed experimental numerical study of crustal deformation and 

evolution under different assumptions on rheological stratification, thermal structure and boundary 

velocities. Focusing on the impact of a “hot Moho” (in terms of the conventional rift classification by 

R. Buck (1991)), we subdivided the rifting styles reproduced in our experiments into two types: (1) 

wide rifting, the dominant mode observed in the case of homogeneous crust, and (2) core complexes,  

formed in the case of higher thermal gradients (Moho temperature>800°C), slow extension rates 

(<1cm/y) and stratified crust with rheologically weak lower crust. Figure 3 shows variations in 

extension dynamics and topography for homogeneous and stratified models, for a unilateral 

extension rate of 0.33 cm/yr. 

In the experiments with quartz-diorite homogeneous crust (yielding a two-layer yield strength 

envelope, Figure 2b), the mechanical strength of the lithosphere is mainly concentrated in the crust. 

During the early stages, brittle deformation results in the formation of several faults (Figures 3b and 

3d) and then leads to the appearance of symmetrical half-grabens at the upper crustal scale (Figure 

3f). The final width of the extended lithosphere reaches to ~270 km (~34% stretching). Crustal and 

mantle lithospheric thinning is simultaneous and is roughly equivalent. No dome forms in this 

situation, although a small density anomaly produces some vertical motion of the lower crust, and 

the resulting surface deformation exhibits deep depression (Figure 3f). Doming does not occur in any 

of the experiments with a normal homogeneous crust. It is also noteworthy that, throughout the entire 

extension process, the accumulated shear strain is rather low, even in the vicinity of the Moho 

boundary, and the overall rifting style corresponds to a wide rifting mode. 

Figures 3g-3l illustrate the next set of the experiments, with stratified crustal rheology, where 

two-stage MCC development occurs following the same evolution pattern as described in Tirel et al. 
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(2004): (1) an “upper crustal necking” phase and (2) a “dome amplification” phase. In these model 

settings, higher temperatures of the Moho (i.e., higher geothermal gradient) contribute to the low 

initial viscosity of the lower crust (10
19

Pa·s) and result in decoupling from the upper crust and mantle 

lithosphere (Figure 2c). Accordingly, horizontal ductile flow becomes dominant in this scenario. The 

overall structure shows a lower crust progressively arching upward until it pierces the overlying 

upper crustal layer, creating a ductile dome. At 4.8 Ma, dominant strain localization (Figure 4a) 

occurs above the compositional anomaly and thus gives rise to two localized surface uplifts inside 

the main basin. The experiments with high thermal gradient (907°C at the Moho) produced the 

expected flat Moho surface (with an inclination of <10°) (Tirel et al., 2008). This naturally requires 

large-scale ductile flow to feed the exhuming metamorphic dome. However, unlike in the model of 

Tirel et al. (2008), where the ductile flow is characterized by progressive unilateral channel flow, our 

models always show relatively symmetrical flows converging from both sides of the lower crust 

(Figure 4b). Two prominent shear bands format each flank of the surface depression and migrate 

apart with the amplifying dome. For lower thermal gradients, strong necking at the Moho level 

occurring during the earlier phases of extension prevents its flattening at later stages. 

4.2 Formation of asymmetric MCCs 

In all of the experiments described above, a dome can occur if the lower crust is weak. However, 

there is no asymmetric detachment zone localized along one dome limb. It is widely demonstrated 

that asymmetric structures are favoured by strain softening (Huismans and Beaumont, 2003; 

Huismans et al., 2005; Lavier and Buck, 2002) that may be produced by phase changes and by fluids 

and melts pumped by shear bands. In particular, Scherker et al. (2012) argued, by integrating the 

different patterns of brittle strain softening, that MCCs can even develop within “cold Moho” 
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settings and with small initial crustal thickness. We have therefore performed additional experiments 

in which we have incorporated a brittle strain-softening mechanism. We used a common strain 

softening scheme with a progressive linear reduction of friction angle from 30° to 5° (Figure 4g) and 

of cohesion from 20 MPa to 0 (Figure 4h) over the strain range of 0 to 2.The other parameters are 

identical to the model with a stratified crust and an initial Moho temperature of Tm=907°C. 

A model with a 0.33-cm/y extension rate depicts a rapid transformation from the initial 

cross-conjugated fault pattern to asymmetric strain localization (Figures 4c-e). An apparent 

preferential limb of the conjugate fault dominates the asymmetric crustal necking due to the 

strain-dependent strength reduction, and consequently the surface undergoes asymmetric uplift. 

Therefore, the introduction of strain softening results in brittle-ductile transitions within an initially 

ductile shear zone. With further extension, the shear zone gradually rotates in an anticlockwise 

direction and accommodates viscous channel flow from the ductile crust. 

Expectedly (e.g. Huismans et al., 2005), in the case of a faster rifting rate, relatively symmetric 

brittle deformation occurs. However, because the boundary velocity partitioning is asymmetric in the 

models, faster extension also promotes heat advection and hence accelerates the symmetric lateral 

migration of ductile material as well as the exhumation rate, which induces a preliminary narrow 

dome with strong relief (Figure 4f). In contrast, a slow extension rate enhances lower crustal flow, 

resulting in enhanced dome development. This asymmetric evolution stems from a 

strain-rate-dependent brittle-ductile lithospheric strength where fast far-field extension favours brittle 

behaviour, while slow extension favours ductile deformation and gravitational instabilities (e.g. 

Huismans and Beaumont, 2003).  

4.3 Relationships between the dome and syn-rift basins 
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The experiments predict that a supradetachment basin forms simultaneously with the exhumation 

of metamorphic rocks and accounts for a considerable part of the hanging wall dynamics. These 

results are incompatible with the observations, although it must be kept in mind that the temporal and 

spatial relations between the dome and coeval basins are poorly constrained. It is reasonable to 

suggest that both the formation of the supradetachment basin and the exhumation style and rates may 

be significantly affected by syn-rift erosion and sedimentation. Therefore, to explore the effect of 

syn-extensional erosion and deposition, we implemented a surface erosion/sedimentation model 

based on a diffusion equation (see Appendix in supplementary material). The experiments show that 

because the erosion rate is higher in the areas of active topography, two elevated flanks at the sides 

of the basin (e.g., Figure 4e) undergo faster erosion and produce sufficient amounts of sedimentary 

matter that progressively fill the adjacent depressions. During the crustal „necking‟ stage, the major 

asymmetric syn-rift basin (B1 ~50 km) is located above the rifting neck and is slightly offset with 

respect to the localized shear zone (Figure 5a). Several shallow (1 km) basins/grabens of different 

size develop at both sides of the major depression and eventually join each other during the extension. 

At a later stage, during the „dome amplification‟ phase (Figure 5b), the exhumation of the ductile 

lower crust continues, and a third locus of uplift emerges and splits the initially continuous basin 

onto two sub-basins. Zone B2l (Figures 5a, b) remains in place, with a stagnation of subsidence 

characterized by an invariant width and depth of the basin (dashed black line in Figures 5c, e). Zone 

B2r (Figures 5a, b) is active and migrates to the right and is subject to the upwarp and counter 

clockwise rotation of the dominant detachment, followed by continuous deepening (solid black line 

in Figure 5e). Flow in the lower crust may inhibit both lateral deposition and crustal thinning, thus 

highlighting the importance of coupling between surface processes and the response of ductile flow 
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in the lower crust. 

The effect of the surface erosion/sedimentation rate is illustrated in Figures 5c and 5e. The size of 

the basin steadily evolves with the increasing diffusion coefficient. During the first stage, a wider 

basin is favoured by a higher erosion rate because the rapid denudation of the elevated flanks 

broadens the scope of necking and contributes to the necessary increase in the amount of sediment 

(Figure 5c). However, rapid erosional unloading does not have a strongly negative impact on lower 

crustal flow, as the ductile lower crust separates the broad basin into two sub-basins at a similar 

depth (~2500 ± 500 m, the shadow part in Figure 5e) and eventually pulls them apart at similar 

points in time (~13 ±1 My, shadow part in Figure 5c). In contrast, during the second stage, the 

asymmetric distribution of the basin vanishes while greatly increasing the erosion rate (e.g. 1000 

m
2
/y), as shown in Figure 5c, 5e, where the difference of the size (Width  Depth) between the two 

sub-basins lessens gradually. 

Figures 5d and 5f further illustrate the impact of the extension rate on the surface processes. The 

filling of the basin requires supply of the eroded matter from both vertical and horizontal directions. 

If the extension is rapid, horizontal widening due to extension generates a flatter and shallower basin 

(Figure 5d). If the extension is slow, vertical filling along the steepest hillslope is more pronounced 

(Figure 5f). 

4.4 Effect of lithospheric thermal thickness 

In our experiments, thermal lithospheric thickness, ht, is defined according to the common 

definition, i.e., as the thickness of the conduction-dominated upper layer, different from the 

convection-dominated asthenosphere (Jaupart and Mareschal, 1999). We used surface heat flux 

values recorded by vitrinite reflectance to calculate the initial values of ht. To test model sensitivity 
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to this parameter, additional experiments were implemented (Figure 3l), where ht values were varied 

from 60 km (reference experiment) to 85 km. The results show that MCCs form even for the largest 

of the tested values of the lithospheric thickness. No significant difference is found in temporal 

distribution and exhumation rates and styles except for some slight differences in Moho topography 

(Figure 6). In all of these experiments, the continental lithosphere mantle extends homogeneously 

and remains mechanically decoupled from the lower crust with no noticeable impact on Moho 

geometry.  

 

5. Discussion 

5.1 Geometrical comparison with the observations 

The Liaonan and Yiwulüshan MCCs are studied and described by several regional scaled 

geological surveys (Charles et al., 2012; LBGMR, 1994; Lin et al., 2013a; Lin et al., 2013b; Liu et 

al., 2005; Yin and Nie, 1996).Long-lasting multi-phase deformation are documented or suggested for 

this region in the geological literature (Lin et al., 2013a). Here, we focused on the final stage of the 

MCC deformation and did not consider the hypothetic relation between the Liaonan and Yiwulüshan 

MCCs that may involve crustal rotation (Liu et al., 2005).  

One of the experiments developed in this study (q0=85 mW/m
2
, V=0.33 cm/y, kero=500 m

2
/y, 

strain softening) (Figure 5b) is in good agreement with the characteristic features of the Liaonan 

MCC structure, with a ~30-km-wide dome and moderate dipping angles of detachment (ca. 30° to 

50°). A well-foliated mylonite/ultramylonite zone formed as a result of progressive grain size 

reduction and preferential strain reorientation reasserts the importance of strain softening in the 

formation of this MCC. For the Yiwulüshan MCC, the geometry of the syn-rift basin left-bounded by 
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the detachment has been interpreted based on seismic data (Wang et al., 1998). This interpretation 

depicts a 30-km-wide and 5-km-deep depression that is largely identical to that reproduced by the 

numerical model, although the latter has insufficient spatial resolution to reproduce the sedimentary 

sequences and the internal faults. The other side of the dome is covered by modern Eocene sediments, 

with identified early Cenozoic strata at the bottom (Qi and Yang, 2010). Thus, a small amount of the 

sedimentary deposits coeval to the MCC deformation is not excluded. For the Liaonan MCC, a 

bi-vergent crustal detachment is found at the south end. This detachment extends in a V-shape toward 

the north. However, its right limb may be below present sea level (Lin et al., 2008), and the affinity 

between the small basin and detachment is rather complex. Our synthetic simulations provide two 

possible conditions. One may be due to the extremely low rates of surface erosion. Another is that 

the small-scale basin represents a further denudation or late reformation at the surface that ultimately 

results in an exposure of a deeper level of the whole crust, where volcanic rocks are directly 

observable within the basin. 

The Moho is situated at a depth of 27 km in our model, with a relatively small deflection (slope 

value <10°). Present-day topography data indicate a slightly greater depth (30 km), which can be 

related to additional flattening of the Moho boundary during post-rift thermal subsidence. Because 

all previous numerical models (e.g. Huet et al., 2011a; Tirel et al., 2008) have shown that thick crust 

favours MCC formation, we also carried out a series of experiments with a thicker initial crust to 

account for the eventual uncertainties of its estimation suggested by Ge et al. (2012) as well as for 

possible crustal thinning due to thermal erosion or other poorly constrained processes. These models 

did not show any significant differences from the experiments based on the assumption of an initially 

normal crustal thickness. 
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5.2 Geochronological comparison of model results with the observations 

Previous geophysical and geological studies have provided a series of geochronological 

constraints based on closure temperatures of various minerals. A high heat flux (Fu et al., 2005) 

during the late Mesozoic proves the presence of hot crust (Moho temperature >800℃). Throughout 

this period, a “giant igneous event” is deemed a genetic link to lithospheric thinning. Several 

generations of Mesozoic plutons intrude in metamorphic rocks. Instead of addressing such timescales, 

we restrict the comparison to the metamorphic state of the dome. For the Liaonan MCC, the granitic 

intrusions were emplaced at 125-118 Ma, as shown by U-Pb zircon ages (Guo et al., 2004; Wu et al., 

2005a). 
40

Ar/
39

Ar ages of muscovite, hornblende, biotite and k-feldspar obtained from mylonite and 

migmatites are within 120-107 Ma (Yang et al., 2007). The synthetic cooling rate calculated from the 

thermo-mechanical models (Figure 7a) is in good agreement with experimental results, with a 

closure temperature of hornblende at 500 °C (Harrison, 1981), muscovite at 350 °C (Hames and 

Bowring, 1994), biotite at 300°C (Harrison et al., 1985), and K-feldspar at 200 °C (Lovera et al., 

1989). A fast cooling rate is derived from the thermal gradient of approximately 40-55 °C/my (Figure 

7b), which is consistent with syn-tectonic granites reported in the eastern part of the NCC (Lin et al., 

2011; Ratschbacher et al., 2000; Wang and Li, 2008; Yang et al., 2007; Yang et al., 2008). The 

Yiwulüshan MCC, with a two-phase „fast‟ cooling rate (Lin et al., 2013a) is not compared here 

because strong constraints for geochronological work are lacking. The occurrence of rapid cooling in 

migmatite-cored complexes is attributed to high geothermal gradients generating convective fluid 

flow and exhumation-driving heat advection. 

5.3 Predicted P-T-t paths of MCC 

To trace the thermal and pressure trajectory of MCCs, we used passive markers (500 markers in 
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the lower crust) whose P-T conditions are systematically stored at each model step during the 

computations. The initial P-T conditions of the “exhumed” markers are found in the lower crust 

within the supra-solidus range, suggesting that the corresponding lower crustal units ever 

experienced partial melting due to their relatively high temperature at the onset of the extensional 

process. The markers are mostly located in the medium to low P/T metamorphic facies series 

characterized by granulite-amphibotite facies (Figure 8). These do not cross the P-T domain of 

eclogite or blueschist facies, which typically represent HP to UHP rocks undergoing an orogenic 

collisional event or that would be expected in subduction zones. The results of our experiments (with 

normal crust) are rather inconsistent with the evidence from “common” MCCs (Huet et al., 2011a; 

Schenker et al., 2012) for either isobaric heating or isothermal decompression close to the 

metamorphic peak. In contrast, our models predict a rapid cooling at a rate of >30°C/My on average. 

We propose that such a P-T path may be applicable to rocks originating from extremely high 

temperature but low pressure regions. Moreover, the predicted P-T-t paths are very sensitive to the 

extension rate. At a slow extension rate, the trajectory exhibits linear decompression and cooling so 

that a preferentially solid-state metamorphism occurs in the case of a slow strain rate. At a fast 

extension rate, a nearly isothermal decompression occurs, which is consistent with the most common 

MCC scenarios (Rey et al., 2009; Schenker et al., 2012). 

5.4 Melting and phase changes 

 An elliptical migmatitic core lithologically consists of well-developed metatexites, with either 

leucosome or melanosome layering that exhibits significant partial melting. However, following 

Huet et al. (2011a, 2011b), we did not implement partial melting and phase changes in our 

experiments, even though the numerical code used in this study can account for these processes 
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(Angiboust et al., 2012; Burov and Gerya, 2014). Instead, in this study, we only estimated the initial 

melt fraction at a maximum of ~35% (Figure 8, inset) in the lower crust following the treatment from 

Schenker et al. (2012). This simplification is made due to the huge uncertainties of parameterization 

of the corresponding phenomena in crustal conditions. In particular, the metamorphic phase changes 

become largely metastable at temperatures below 500°C and largely depend on the amounts of free 

fluids. Similarly, the conditions for partial melting and melt migration are controlled by an 

abundance of poorly known factors, including fluid content, and dynamic strain and strain-dependent 

matrix permeability and porosity (Angiboust et al., 2012). In the absence of sufficient information in 

the NCC area, we have merely accounted for the effect of melting and phase changes by introducing 

strain-dependent brittle softening and varying the rheological properties of the ductile rocks. 

 

6. Conclusions 

Close similarities between the predictions of our numerical experiments, geological observations 

and cooling history evolution support the hypothesis of the possible development of a large-scale 

extension and MCCs in a non-over-thickened crust in the eastern NCC during the Late Mesozoic 

(Charles, 2010; Gumiaux et al., 2012; Lin et al., 2013a). In contrast with most previously published 

studies, we suggest that over-thickened orogenic crust is not a mandatory condition for MCC 

development. In particular, our study demonstrates the following: 

1). There are two major modes of extension of hot non-over-thickened normal crusts: wide rifting 

and core complexes. The numerical thermo-mechanical models show that, under certain conditions, 

MCCs can develop on normal and non-over-thickened continental crust. These conditions basically 

indicate a high local geothermal gradient in the lithosphere, a rheologically stratified crust with a 
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weak ductile lower crust and a slow extension rate. MCC formation is consistently reproduced in the 

case of rheologically stratified crust with a weak lower crust and elevated Moho temperature 

(T>800℃). 

2). The thickness of the mantle lithosphere only has a second-order effect on MCC development. 

In contrast, the crustal structure plays an important role in MCC development.  

3). Strain softening provides an efficient mechanism for the development of crustal detachments 

rooted in the lower crust. The corresponding models demonstrate asymmetric deformation and 

topography evolution, while keeping the Moho surface nearly flat (compatible with the conventional 

definition of MCCs). 

4). Surface erosion/sedimentation may induce separation of the syn-rift basin onto two basins: an 

“inactive” basin and an active supradetachment basin. 
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Table 1 

Parameters applied in this study 

 Rock ρ(kg m
-3

) A(MPa
-n

s
-1

) n H(kJ mol
-1

) 

Upper Crust 
1
Quartz-diorite 2800 1.26×10

-3 
2.4 219 

Lower Crust 
1
Quartz-diorite 2800 1.26×10

-3
 2.4 219 

2
Wet diorite 2800 3.2×10

-2 
2.4 212 

Mantle Lithosphere 
3
Olivine 3300 1×10

4 
3 520 

Compositional 

anomaly 
4
Granite 2600 3.2×10

-2
 2.4 212 

Sediment Sediment 2300 1.26×10
-3

 2.4 219 

Gravity constant g (m s
-1

) 9.8 

Friction angle φ (°) 30 

Cohesion C0 (MPa) 20 

Young‟s modulus E (GPa) 80 

Poisson ratio 0.25 

Thermal conductivity k (W m
-1 

K
-1

) 2.5(kc)/3.3(km) 

Thermal expansion α (K
-1

) 3×10
-5 

Adiabatic compressibility β (Pa
-1

) 8.065×10
-12

 

Radiogenic production decay depth hr (km) 10 

Internal heat production at surface Hs (W kg
-1

) 10
-9

 

Surface temperature T0 (°C) 0 

Bottom temperature Tb (°C) 1330 

Surface heat flux q0 (mW m
-2

) 75, 80, 85 

Extension velocity V (cm y
-1

) 0.33, 0.66, 1 

Coefficient of erosion kero (m
2
a

-1
) 0, 100, 250, 500,750,1000 

 

A, n, H are ductile flow laws parameters of lithospheric materials inherited from 
1
Ranalli and 

Murphy (1987), 2Ranally (1995) 
3
Brace and Kohlstedt (1980), 

4
Kirby and Kronenberg (1987). 
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Figure captions 

Figure 1.(a) Structural map of the eastern part of China characterizing the NW-SE wide rift systems 

during the Late Mesozoic and Cenozoic. The MCC distribution is divided into two categories by 

UHP rocks constraints. See reference from Charles et al., (2012) and Lin et al., (2013a). HH: Hohhot; 

YM: Yunmengshan; FS: Fangshan; YW: Yiwulüshan; GD: Gudaoling; LN: Liaonan; LL: Linglon; 

LU: Lutian; HZ: Hongzhen; LS: Lushan; (b) Kinematic extension processes interpreted in the 

restoration of a crustal cross-section accounting for the possible contribution of thermal erosion (the 

pink line indicates the average lateral strain rate, the orange dot shows the initial crustal thickness of 

35 km before the MCC exhumation and the long-term strain rate of the K1s period (modified from 

Ge et al., 2012); (c) Cross-sections through the Yiwulüshan massif and Fuxin–Yixian basin (modified 

from Fig.3B from Lin et al., 2013a and see profile location therein); (d) Cross-sections within the 

Liaonan massif and Wafangdian half-graben (modified from Fig. 3c from Lin et al., 2008 and see 

profile location therein). 

Figure 2. (a) Model setup (see description in the text, Table 1 and Appendix in supplementary 

material). Three initial thermal profiles corresponding to different tested values of lithospheric 

thickness. q0 is the surface heat flux. Unilateral extension is applied at the right boundary (tested 

velocity range 0.33 to 1 cm/y). A prescribed initial intrusion (lower density) is located at a depth of 

26-30 km. Bottom panel: rheological yield strength envelopes for different thermal gradients for (b) 

homogeneous crust and (c) stratified crust. Note the significance differences between the 

corresponding (e) effective viscosity profiles and the presence of a strong viscosity jump in the case 

of stratified crust (this jump results in an enhanced growth rate of extensional instabilities). 

Figure 3. Snapshots of homogeneous (left column) and stratified (right column) models at times of 
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4.8, 9.6, and 22 Ma and q0=85 mW/m
2
. (b, d, f, h, j, l) Topography (a, c, e, g, i, k, colours refer to 

models with different thermal gradients shown in Figure 2). Note that the velocity is the same (0.33 

cm/yr) in all experiments of this section. 

Figure 4. Snapshots of the total shear stain distribution: formation (a-b) of a symmetric dome in the 

case of no strain softening and (c-d) formation of strongly asymmetric MCCs in the case of strain 

softening. Surface heat flux q0=85mW/m
2 

and boundary velocity V=0.33 cm/y. (e) Sequential 

topography variation of asymmetric MCCs. (f) Influence of the extension velocity (0.33, 0.66, 1cm/y) 

on the topography evolution.  

Figure 5. (a-b) Snapshots of the results of the experiments with stratified crust, strain softening and 

surface erosion. Black solid lines represent shear zones whose geometries are obtained from total 

shear strain profiles. B1: Initial basin at the first stage of evolution. B2l: the left inactive basin and 

B2r: the right supradetachment basin, both at the second stage of evolution. The scale of the basin is 

characterized by the width and depth of continuously deposited sediments. Panels (c, e): Influence of 

the diffusion coefficient on the temporal variations in basin width. The one with 750 m
2
/y which 

exhibits constant growth, may be caused by the abnormal insensibility to the surface load. In this 

scenario, the enlarged markers indicate the time of the superficial rupture of the basin within a 

narrow range of 2 Myrs (the grey shadow). Panels (d, f): Influence of the extension velocity on the 

temporal variation in the depth of the basin. In this scenario, the enlarged markers indicate the 

emergence of a third locus of uplift due to the ductile flow in the lower crust.  

Figure 6. Effect of the lithospheric thickness on Moho undulation during the MCC deformation. 

Figure 7. Model-predicted cooling rate compared with the experimental geochronological data from 

the Liaonan MCC. Flow paths of the passive markers are shown as pink lines in the phase diagrams. 
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Figure 8. Predicted P-T-t paths of the MCC. The passive markers are the same as those shown in 

Figure 7. The inset indicates the initial melt fraction at the crustal scale. Aluminium silicate stability 

diagram (dashed red line): Ky-kyanite, And-Andalusite, Sil-Sillimanite. PWS: politic wet solidus 

(Thompson, 1976), MS: muscovite + plagioclase + quartz = aluminumsilicate+ K-feldspar + liquid 

dehydration melting reaction (Thompson and Tracy, 1979), Pressure-temperature fields of 

metamorphic facies (dashed black line). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Highlights 

 

Models of development of metamorphic core complex in normal continental crust. 

Relationships between metamorphic core complexes and syn-rift basins. 

Comparisons with observations in an atypical metamorphic core complex. 


