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Abstract

Due to its sensitivity to climate changes, south Greenland is a particularly suitable area
to study past global climate changes and their influence on locale Human settlements.
A paleohydrological investigation was therefore carried out on two river-fed lakes: Lake
Qallimiut and Little Kangerluluup, both located close to the Labrador Sea in the historic5

farming center of Greenland. Two sediment cores (QAL-2011 and LKG-2011), span-
ning the last four millennia, were retrieved and showed similar thin laminae, described
by high magnetic susceptibility and density, high titanium and TOC/TN atomic ratio,
and coarse grain size. They are also characterized either by inverse grading followed by
normal grading or by normal grading only and a prevalence of red amorphous particles10

and lignocellulosic fragments, typical of flood deposits.
Flood events showed similar trend in both records: they mainly occurred during

cooler and wetter periods characterized by weaker Greenlandic paleo-temperatures,
substantial glacier advances, and a high precipitation on the Greenlandic Ice Sheet and
North Atlantic ice-rafting events. They can therefore be interpreted as a result of ice and15

snow-melting episodes. They occurred especially during rapid climate changes (RCC)
such as the Middle to Late Holocene transition around 2250 BC, the Sub-boreal/Sub-
atlantic transition around 700 BC and the Little Ice Age (LIA) between AD 1300 and
AD 1900, separated by cycles of 1500 years and driven by solar forcing. These global
RCC revealed by QAL-2011 and LKG-2011 flood events may have influenced Human20

settlements in south Greenland, especially the paleo-Eskimo cultures and the Norse
settlement, and have been mainly responsible for their demise.

1 Introduction

The Holocene appears to be a steady climatic period in comparison with older glacial
episodes, as climate evolution was not linear but showed several oscillations (O’Brien25

et al., 1995; Mayewski et al., 2004; D’Andrea et al., 2011; Larsen et al., 2012), result-
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ing from various forcing mechanisms such as solar activity (Bond et al., 2001; Magny,
2013) volcano emissions (Miller et al., 2012; Sigl et al., 2013) and/or ocean/atmosphere
interactions (Hurrell and Denser, 2010; Knudsen et al., 2011). It is of prime importance
to establish their spatial influence and phasing in order to understand natural climate
oscillations and their influence on past Human societies and thus to create better pre-5

dictive climatic models. Indeed, even if current global warming is mainly the result of
an anthropogenic pressure, the contribution of natural climate variability cannot be ex-
cluded and may explain the recent rapid rise in temperatures (Chylek et al., 2004;
Solanki et al., 2004).

Projected climate scenarios predict a rise in surface temperature associated to an10

increase in the frequency and intensity of flood events in the coming decades (IPCC,
2013), especially in the Arctic region, which is very sensitive to climate changes (Ser-
reze and Barry, 2011). Due to its proximity to the Greenlandic Ice Sheet (GIS), the polar
front and the adjacent North Atlantic oceanic currents, south Greenland is a particularly
suitable area to record in natural archives past global climate changes and their asso-15

ciated forcing mechanisms at high resolution (Fig. 1a). While numerous proxy records
have been used to infer past temperature in the Arctic (D’Andrea et al., 2011; McKay
and Kaufman, 2014; Millet et al., 2014), few records have been used to infer past
hydrological activity (Sundqvist et al., 2014) despite the extreme importance of hydro-
logical conditions for Arctic ecosystems and their potential feedback on global climate20

(MacDonald et al., 2000).
To assess of past hydrological conditions during the Holocene, a sedimentological

multiproxy approach was performed, compiling physical (magnetic susceptibility, den-
sity and grain size) and geochemical (X-ray fluorescence, X-ray diffraction, elemental
analyses and organic geochemistry) measurements, on two lacustrine cores. They25

were retrieved from two river-fed lakes: Lake Qallimiut and Little Kangerluluup located
between the GIS and the Labrador Sea in the Vatnahverfi, known as the archeological
farming center of Greenland where two agropastoral phases settled (the Norse period
between AD 986 and ca. AD 1450 and over the last century, since the 1920s). Thus,
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this study reconstructs at high resolution the global climatic variations and the large
scale drivers of Greenlandic climate though hydrological changes in lacustrine catch-
ments that may have influenced past Human settlements (i.e. vulnerability, adaptation
strategies, demise, etc. . . ) during the last four millennia.

2 Settings5

2.1 Localization and climate

The study area is located between the GIS and the Labrador Sea (Fig. 1a and b). Due
to this geographical position, the local climate is mainly influenced by oceanic currents,
such as cold polar waters (< 0 ◦C) of the eastern Greenland current and warm waters
(+ 4 ◦C) of the Irminger current, which mix to the west of Kap Farvel (Bond et al.,10

1997). The area is also windy with strong and relatively warm foehn winds blowing
from the ice cap throughout the year, that are responsible for dryness. Meteorological
data of the last 60 years are characteristic of a sub-oceanic climate, with a mean annual
temperature of 0.9 ◦C, a yearly precipitation of 907 mm, 211 days with frost and 61 days
of snow per year (Cappelen et al., 2001; Cappelen, 2014).15

2.2 The Qallimiut lake system

Lake Qallimiut (60◦43′27′′N; 45◦23′12′′ E; 40 ma.s.l.) is a proglacial lake located close
to the hamlet of Qallimiut ca. 2 km to the south, near the Alluitsup Kangerlua fjord
(Fig. 1c). It is aligned through a north-west/south-east axis with a surface of ca. 82 ha
and a maximum depth of 26 m. Two main tributaries feed it (on the north-west and the20

east shores respectively) while a single outlet drains it directly in the Alluitsup Kanger-
lua fjord (Fig. 1c). Its catchment, composed of granites (geological survey of Denmark
and Greenland; http://www.geus.dk), has a surface of 112 km2 and a catchment to lake
ratio around 137. It includes around twenty upstream lakes, making Lake Qallimiut the
last sediment trap of this catchment (Fig. 1c). Less than ten ruins, dated from the Norse25
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period, were inventoried in the catchment with only two sites directly found around the
lake (Madsen et al., 2009). These two Norse archaeological sites have already been
surveyed. Ruins group E77, a medium-sized farmstead, is located in the north-west
part of the lake and was formerly excavated in AD 1880 (Holm, 1883; Madsen, 2014),
and ruins group E77a, near the coast, seems to be a large, highly eroded farmstead5

(Madsen, 2014). Nowadays, two recent farms can be found on the north and south
shores of the lake (the largest one is located near the lake outlet).

2.3 The Little Kangerluluup lake system

Lake Little Kangerluluup (60◦38′32′′N; 45◦38′11′′ E; 10 ma.s.l.) is also a proglacial
lake, located close to Kangerluluup Qaqaa hill and Lake Kangerluluup, near the Tor-10

sukattak fjord (Fig. 1c). It is quite circular with a tiny surface of 6 ha and a maxi-
mum depth of 6.4 m. Lake Little Kangerluluup is fed by only one major tributary and
is drained directly into the Torsukattak fjord by one outlet (Fig. 1c). Like Lake Qallimiut,
its catchment is composed of granites (geological survey of Denmark and Greenland;
http://www.geus.dk). It has a relatively small area (8 km2) with a catchment to lake ratio15

of ca. 133, quite similar that of Lake Qallimiut. The lake catchment is aligned along
a north-east/south-west axis with a very steep gradient slope, reaching 900 to 10 m
within only 2 km (Fig. 1c). Unlike Lake Qallimiut, only one upstream lake flows into
Lake Little Kangerluluup (Fig. 1c). Norse ruins (E178) are located on the isthmus of the
far side of the river and were surveyed by Madsen et al. (2009) and Madsen (2014).20

This large farmstead with barns, enclosures and irrigation systems, attests to agropas-
toral activities in the catchment during the Middle Ages. Nowadays, there are no farms
around the lake, indicating that no human activities took place during the last century
around Lake Little Kangerluluup and more generally, at the end of the Torsukattak fjord.
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2.4 Archaeological context

Human occupation began around 2500 BC with the Saqqaq culture in the southern
half of Greenland (Meldgaard, 2004; Jensen, 2009). These small populations of nomad
hunters were replaced around 800 BC by the sea-ice hunters of the Greenlandic Dorset
culture, who disappeared abruptly around 250 BC (Meldgaard, 2004; Jensen, 2009).5

Greenland remained unpopulated until the Norse colonization in 986 AD (Jones, 1986).
This society, established during the medieval warm period (MWP), was mainly marked
by agropastoral activities (Buckland et al., 2009; Arneborg et al., 2012; Guillemot et al.,
2015) and ended around AD 1450 (Dugmore et al., 2009, 2012). The ancestors of the
modern Greenlandic, the Thule (neo-Eskimos), settled throughout Greenland around10

AD 1100 and still present today (Gulløv 1983, 2004). Due to recent global warming,
sheep farming was established in the area by Danish in the 1920s (Austrheim et al.,
2008). Several paleo-environmental studies revealed that farming by the Norse and
during the last century, corresponding to the only two agropastoral phases in south
Greenland, had a strong impact on the ecosystems through vegetation changes (Gau-15

thier et al., 2010; Schofield et al., 2011), soil erosion (Massa et al., 2012a) and changes
in the lake trophic state (Perren et al., 2012; Millet et al., 2014).

3 Materials and methods

3.1 Fieldwork

In the deepest part of each lake basin (26 m for Lake Qallimiut and 6.4 m for Lake Little20

Kangerluluup), two cores were retrieved during the summer 2011: QAL-2011 (118 cm
long) and LKG-2011 (109.5 cm long), using a UWITEC gravity corer.
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3.2 Non-destructive laboratory analyses

Initial core analyses of QAL-2011 and LKG-2011 included macroscopic description,
digital photographs and X-ray radiographs (Scopix system, EPOC laboratory, Univer-
sity of Bordeaux, France), providing high-resolution imaging. X-ray radiographs are
based on 256 grey levels corresponding in value to X-ray densities (Migeon et al.,5

1998). γ-ray attenuation density and magnetic susceptibility (MS) measurements were
performed with a GEOTEK multi-sensor core logger in a millimeter resolution (Chrono-
environnement laboratory, University of Bourgogne/Franche-Comté, France). Elemen-
tary analysis was performed with an X-ray microfluorescence core scanner (XRF,
AVAATECH system, EDYTEM laboratory, University of Savoie/Mont Blanc, France) at10

a resolution of 2 mm in two distinct runs. The first one, with a counting time of 20 s and
a 10 kV acceleration intensity, was followed by a second with a exposure time of 45 s
and a 30 kV acceleration intensity to obtain the relative abundance of elements from
Al to Bi. Titanium (Ti), a conservative element and a marker of detrital fluxes (Cohen,
2003; Arnaud et al., 2012), is expressed here in peak area counts. Usually, elements15

counts are normalized so as to correct drifts coming from variations in the water content
or the grain size (Tjallingii et al., 2007; Revel et al., 2010). However, since the normal-
ization of Ti by another chemical compound only smooths the Ti content trends, we
used raw Ti counts directly in the present study. To determine the mineralogical com-
position of the sediment, X-ray diffraction (XRD) analyses were carried out in whole20

sediment using a D8 Advance Brucker diffractometer equipped with a LinxEye detector
(Utinam laboratory, University of Bourgogne/Franche-Comté, France). The crumbled
sediment is placed in the specimen holder where a step-scan of 0.5◦ in the 2–52◦ inter-
val during a step time of 0.05 s is realized using a parallel beam geometry and CuKα
radiation at 1.54184 Å.25
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3.3 Destructive analyses

QAL-2011 and LKG-2011 were sampled every 0.5 cm slices, based on X-ray images
in order to respect lithological boundaries and provide homogenous samples.

84 samples from QAL-2011 and 85 samples from LKG-2011 were therefore used for
grain size (GS) analyses, respectively. Around one cm3 of wet sediment was immersed5

in a solution of distilled water and hydrogen peroxide (H2O2, 30 %) to digest organic
matter. Residual mineral fractions were then treated in an ultrasonic bath with a solution
of sodium-hexametaphosphate to disperse aggregates. Finally, the GS of each sample
was determined using a laser diffraction particle analyzer (LS230 Beckman-Coulter)
and represented by GS classes, according to granulometric scales (< 4, 4–16, 16–10

63, > 63 µm). Regions of interest (ROIs) for sedimentary micro-structure identification
were selected based on the initial sedimentary description of the split cores as well
as on the results of geophysical and geochemical core logging. The selected ROIs
cover sediment transitions, including larger laminae (at 32.2 cm in core QAL-2011 and
at 41.3 cm in core LKG-2011). Thin sections (one for each core) were sampled from15

these ROIs and examined using a polarized light microscope.
Total carbon (TC), nitrogen (TN) and sulfur (TS) contents were measured on 161 and

187 selected samples, in QAL-2011 and LKG-2011 respectively, using a vario MAX
CNS analyzer (Elementar). As the carbonate fraction was negligible in the sediments
because of the Arctic climate and the granitic catchments, the total carbon measured20

corresponds to the total organic carbon (TOC). It was thus possible to access the
relative contribution of lacustrine and terrestrial organic matter (OM) in the sediments
via the TOC/TN atomic ratio (Meyers and Ishiwatari, 1993). To identify and quantify the
composition of the organic fraction, quantitative organic petrography (QOP), developed
by Graz et al. (2010), was performed on the ROIs described above. After elimination25

of the mineral phases by hydrochloric and hydrofluoric attacks, particles were invento-
ried and counted according to their shape, color and reflectance using a transmitted
and reflected light microscope (Combaz, 1964). Red amorphous particles (rAP), grey
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amorphous particles (gAP) and lignocellulosic fragments (LCF), in particular, were de-
scribed following the classification frequently used in lake sediments (Simonneau et al.,
2013a, b, 2014; Foucher et al., 2014).

3.4 Core chronology

The chronology of each core was based on six AMS radiocarbon datings of terrestrial5

plant macrofossils (Fig. 2a and b; Table 1a and b) conducted in the Lyon radiocarbon
laboratory (Lyon, France) and Beta Analytics laboratory (Miami, United States). For the
last 150 years, the chronologies of Qal-2011 and LKG-2011 were established thanks
to short-lived radio-isotopes (210Pb, 137Cs, 241Am) measured by gamma spectrometry
in the underground laboratory in Modane (LSM-CNRS/CEA, France; Fig. 2a and b).10

Measurements were made on contiguous 0.5 cm-thick samples of 0.8 to 1.7 g dried
sediment, using a high efficiency, well-type Ge detector, during 24 to 72 h (deepest
samples with lowest activities). The excess 210Pb (formed in the atmosphere by the
decay of 222Rn) was calculated as the difference between the activities of total 210Pb
and 226Ra (supported 210Pb; Appleby, 2001). 210Pb chronology was derived for both15

lakes using the Constant Rate of Supply Model (CRS; Appleby and Oldfield, 1978).
This type of model was chosen because it allows the sedimentation rate to vary. Re-
sults from radiocarbon and short-lived radio-isotopes were then combined with Clam
(Blaauw, 2010) to produce two age-depth models using linear interpolation between
date points (Fig. 2a and b). The age-depth models were corrected for instantaneous20

flood event layers by subtracting the thickness of these layers before computation.
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4 Results

4.1 Chronology

Lake Qallimiut

Core QAL-2011 covers the last four millennia. The age-depth model is quite linear
(Fig. 2a) and shows steps, especially in the first thirty cm, due to an increased number5

of instantaneous events (see below, Sect. 5.1). The mean sediment accumulation rate
(SAR) is 0.3 mmyear−1 and the average age error is 160 years, not considering the
extrapolated section of the model which is unconstrained by a radiocarbon date (below
90 cm, in black dotted lines; Fig. 2a). The last century is contained in the top three
cm, as indicated by the peak of 137Cs between 1.5 and 2.5 cm, corresponding to the10

maximum fallout consecutive to atmospheric nuclear weapon tests around AD 1963
(Fig. 2a).

Lake Little Kangerlulup

Similarly, the age-depth model of LKG-2011 covers the last four millennia. It is quite
linear, shows several steps due to instantaneous events and has a mean SAR of15

0.3 mmyear−1 (Fig. 2b). A slight rise in the SAR up to 0.4 mmyear−1 is recorded dur-
ing the last millennium, which is not visible in the QAL-2011 age-depth model. The
average age error of LKG-2011 age-depth model is ca. 200 years, not considering the
extrapolated section of the model, below 90 cm (in black dotted lines; Fig. 2b). The last
century is recorded in the first 4 cm with the AD 1963 peak of 137Cs located at 2–2.5 cm20

(Fig. 2b).
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4.2 Lithology, physical and chemical properties of the laminated facies

Lake Qallimiut

Three stratigraphic units (SU1 to SU3) were identified in core QAL-2011 (Fig. 3a).
The first one (SU1, from 118 to 95 cm) is characterized by a brownish silty sediment

(with a principal GS mode of ca. 30 µm, Fig. 3a) and interrupted by five thin white5

laminae closely spaced at 117, 113.9, 113.4, 110.4 and 100.9 cm (Table 2a). The MS
is the only parameter that remains constant (around 100×10−5 S.I.) all along SU1
(Fig. 3a). The density and the Ti content show a slight reduction at the base (from
1.3 to 1.1 gcm−3 for the density, and from 10 000 to 9 000 peak area for Ti, Fig. 3a)
whereas the TOC increases slightly (from 4 to 8 %; Fig. 3). Finally, the mean value of10

the TOC/TN is 13 (Fig. 3a).
The second stratigraphic unit (SU2, from 95 to 32.5 cm) is the darker part of the QAL-

2011 sequence due to its higher organic carbon content (around 8 %). It is defined by
a dark brown silty sediment (with a principal GS mode of 30 µm, Fig. 3) interrupted by
four white laminae at 81, 77.2, 66.8 and 36.7 cm (Table 2a). As previously, MS values15

remain stable at ca. 100×10−5 S.I. except for a peak at 66.8 cm (Fig. 3a). The density
shows little variation around 1.1 gcm−3 (Fig. 3a). In spite of slight variations centered
on the white laminae, the mean Ti and TOC contents, as well as the mean TOC/TN
ratio, 9 000 peak area, 8 % and 13 respectively (Fig. 3a).

The last sedimentary unit (SU3, from 32.5 cm to the top of the sequence) is charac-20

terized by a light brown sandy silt sediment (with a principal GS mode twice as high
as that of the other two SUs at ca. 60 µm, Fig. 3a). It is interrupted by a maximum of
18 white laminae spread all over SU3. These laminae generate abrupt shifts in all the
measured parameters. MS rise to a mean value of125×10−5 S.I., density, Ti content
and TOC/TN ratio also increase slightly to values of 1.2 gcm−3, 10 000 peak area and25

13.5, respectively (Fig. 3a), whereas TOC drops to 6 % (Fig. 3).
The white laminae, present all along the QAL-2011 record, are globally infra-

centimetric, making naked-eye identification difficult in most cases (Table 2a). X-ray
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radiography is very helpful because the laminae are particularly well-defined in the
high-resolution image, appearing in intense black, corresponding to high X-ray density
values, whereas the background sediment is represented by light-grey color. Regard-
less of the SU, white laminae are characterized by higher MS (with a maximum value
of 450×10−5 S.I. at 5 cm, Fig. 3a), density (maximum value of 1.7 gcm−3, Fig. 3a)5

and TOC/TN ratio (maximum value of 16, Fig. 3a). They are also rich in Ti (maximum
value of 20 000 peak area, Fig. 3a) and in coarse fraction (maximum value of 25 %
in the > 63 µm massic class, Fig. 3a). Inversely, they are distinguished by much lower
TOC (minimum value of 1.5 %, Fig. 3a). XRD tests indicated a similar mineralogical
composition, composed of quartz, feldspaths and phyllosilicates, not different from the10

background sedimentation. The thicker lamina (1.8 cm thick, between 32.2 and 34 cm)
showed a normal grading (fining upward, Fig. 3b) and was mainly composed of rAP
and LCF, coming from soil and upper vegetation debris (Simonneau et al., 2013a), as
part of other organic particles (Fig. 3b). On the basis of their similar physical and geo-
chemical properties, the results obtained on the thicker lamina were then extrapolated15

to the other laminae.

Lake Little Kangerlulup

Core LKG-2011 is also divided into three distinct stratigraphic units (SU1 to SU3,
Fig. 4a).

The first one (SU1, from 108 to 74 cm) is characterized by a light brown sandy silt20

background sediment (with a principal GS mode of 30 µm, Fig. 4a), interrupted by three
thick brownish laminae (at 94.8, 81.6 and 79.7 cm) and by two thin white laminae (at
107.7 and 104.9 cm; Table 2b). MS values are much lower than in core QAL-2011,
with background values of 10×10−5 S.I (10 times less than in SU1 in core QAL-2011,
Fig. 4a). Density, Ti content, TOC and TOC/TN ratio are quite similar to those observed25

in QAL-2011 SU1 (mean values of 1.2 gcm−3, 6000 counts, 7 % and 14, respectively,
Fig. 4a).
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The second stratigraphic unit (SU2, from 74 to 51 cm) is composed of a dark brown
silty sediment with the same principal GS mode as SU1 (30 µm, Fig. 4a), and is not
interrupted by any laminae. All the measured parameters are particularly steady: MS
has a value of 5×10−5 S.I.; density, a value around 1.1 gcm−3; Ti content, a value of
6000 peak area; TOC, a mean value of 10 % and TOC/TN ratio, a value around 145

(Fig. 4a).
The last sedimentary unit (SU3, from 51 cm to the top of the core) corresponds to

the darker and coarse part of core LKG-2011 with a black sandy silt sediment and
a principal GS mode of 50 µm (Fig. 4a). Five thick dark grey laminae, only visible in
the X-ray radiographs, were identified at 49.2, 41.3, 29.2, 17, and 4 cm (Table 2b).10

The background MS value is 5×10−5 S.I. and density is 1.2 gcm−3 (Fig. 4a). There
is also a pronounced rise in Ti content to 8000 peak area in SU3 (Fig. 4a). TOC has
a background value around 9 % and the TOC/TN ratio, a value of 14 (Fig. 4a).

Globally, the different types of laminae present within SU1 and SU3 (Table 2b), have
similar physical and geochemical characteristics (Fig. 4a). The brownish, light-grey and15

dark-grey laminae reach the highest values in MS (maximum value of 110×10−5 S.I,
Fig. 4a), density (maximum value of 1.7 gcm−3, Fig. 4a), Ti content (maximum val-
ues of 15 000 peak area, Fig. 4a), coarse fraction (maximum of 60 % for the massic
class > 63 µm, Fig. 4a) and TOC/TN ratio (maximum of 19, Fig. 4a). Laminae are also
systematically marked by a strong decrease in TOC (minimum value of 3 %, Fig. 4a).20

XRD analyses conducted on these laminae showed a similar mineralogical composi-
tion composed of quartz, feldspaths and phyllosilicates, comparable to the background
sedimentation. These physical and geochemical characteristics are similar to those
observed within the laminae in core QAL-2011 (Fig. 3a), even if LKG-2011 laminae
are larger (> 1 cm, Table 2b) than in QAL-2011. Moreover, the observations of the thin-25

sections and the QOP analysis made on the brownish and dark-grey laminae from core
LKG-2011, revealed the presence of an inversely graded bed followed by a normal one
and the predominance of rAP and LCF in the OM content (Fig. 4b). On the basis of the
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similar physical and geochemical properties of LKG-2011 laminae, these results were
extrapolated to other laminae.

5 Discussion

5.1 Sedimentary events (SEs)

The white laminae observed within core QAL-2011, as well as the brownish, light-5

grey and dark-grey laminae within LKG-2011, showed similar sedimentological prop-
erties, clearly contrasting with the background sedimentation except for the mineralog-
ical composition. Generally, they are characterized by high values of MS and density,
higher Ti content and a rise in the massic class over 63 µm (Figs. 3a–4a). All these
properties are characteristic of terrestrial inputs (Chapron et al., 2005; Arnaud et al.,10

2012). Moreover, the laminae composition from core QAL-2011 is also characterized
by normal grading, high TOC/TN ratio, a predominance of rAP and LCF particles pro-
duced in soils (Fig. 3b; Di-Giovanni et al., 1998) and a mineralogical composition of
granite, both resulting from the reworking of detrital inputs from the catchment area in
lake sediments (Simonneau et al., 2013a, b; Foucher et al., 2014). This organic sig-15

nature therefore confirms the terrestrial origin of these laminae. Associated with the
fining upward, both organic and granulometric results from core QAL-2011 are typical
of hyperpycnal flood deposits (Mulder and Alexander, 2001; Simonneau et al., 2013a).
The fining upward sequence can therefore be correlated to the falling limb of the flood
hydrograph (Simonneau et al., 2013a). However, because Lake Qallimiut is the last20

sediment trap of the catchment with many lakes upstream, flood event records are thin
and do not show the coarsening upward of the deposit, characteristic of the rising limb
of the flood hydrograph (St-Onge et al., 2004). This suggests that the 27 white laminae
described within core QAL-2011 can be related to exceptional hyperpycnal flood events
associated with heavy rainfall and/or snowmelt events occurring all over the drainage25

basin and essentially reworking terrestrial materials.
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Within core LKG-2011, thin-section and QOP analyses of the dark-grey and brownish
laminae showed that the deposits are successively inversely and normally graded grain
size, mainly constituted of rAP and LCF organic particles and composed of minerals
present in granites (Fig. 4b). All these characteristics indicate that, as for core QAL-
2011, the 10 laminae described within core LKG-2011 (Table 2b) also correspond to5

hyperpycnal floods deposits too. Because there is only one lake upstream Lake Little
Kangerluluup, and because of the elongated shape and the high gradient slope of its
catchment with increases detrital inputs, the LKG-2011 flood event deposits are thicker
and coarser than those identified within core QAL-2011.

5.2 Flood frequencies during the Late Holocene10

Flood event records from both sites were smoothed over a 250 year moving window
(K1D software, Gavin et al., 2006). QAL-2011 and LKG-2011 flood frequencies are
globally synchronous during the last four millennia, considering age-depth models un-
certainties (Fig. 5).

In more detail, a total of five high flood frequency periods were identified (Fig. 5;15

Table 2a and b):

– between ca. 2300 BC and ca. 1600 BC;

– between ca. 1100 BC and ca. 900 BC;

– between ca. 600 BC and ca. 200 BC;

– between ca. AD 1050 and ca. AD 1200;20

– between ca. AD 1350 and ca. AD 1650.

These episodes of increased flood events are synchronous with low Greenlandic lake
temperatures (correlated to the air temperatures; D’Andrea et al., 2011), Arctic glacier
advances (Kelly et al., 2008; Briner et al., 2009, 2011; Larsen et al., 2011, 2012; Winsor
et al., 2014) and North Atlantic ice-rafting events (Bond et al., 2001; Fig. 5). Thus, over25
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the second half of the Holocene, QAL-2011 and LKG-2011 flood deposits seemed to
occur especially during cooler and wetter periods, associated to increased summer ice
and snow-melting episodes. During colder and wetter periods, intense rainfall episodes
created a sufficient stock of snow and ice. After short warming episodes in spring and
summer (such as several accumulated positive degree days or hot spell melt events5

caused by foehn winds), ice and snow melting events increased river discharge, some-
times inducing sporadic flood events (Mernild and Hasholt, 2009). In glacial areas, ice-
melting episodes might also be sometimes associated to the rupture of a glacier ice
dam (Mayer and Schuler, 2005; Carrivick et al., 2013). In addition, high flood frequency
also appeared synchronously with weak solar irradiance phases (Bond et al., 1997,10

2001; Steinhilber et al., 2009), probably suggesting a solar forcing for these events.
Four of the five Greenlandic flood-event phases were already defined at a global

scale as rapid climate change periods (RCC) by Mayewski et al. (2004), separated by
ca. 1500 year cycles and likely driven by the solar activity too (Bond et al., 1997, 2001;
Mayewski et al., 1997, 2004). For example, the period of high flood frequency between15

ca. 2300 BC and ca. 1600 BC may correspond to the Middle to Late Holocene transition
(ca. 2250 BC), defined as a cooler period by Walker et al. (2012). Then, the period
between ca. 1100 BC and ca. 900 BC, as well as the one between 600 BC and 200
BC, could match to the bipartite cooler Sub-boreal/Sub-atlantic transition (Van Geel
et al., 1996; Martin-Puertas et al., 2012; Magny, 2013). Surprisingly, no flood events20

were recorded during the RCC corresponding to the Dark-Ages (DA) cooling (between
ca. AD 200 and ca. AD 900; Bianchi and McCave, 1999; McDermott et al., 2001; Sicre
et al., 2008). This could be explained by the fact that the DA was a drier climatic episode
and/or it did not really impact the study area, especially the hydrological systems of
Lake Qallimiut and Little Kangerluluup. Finally, the period between ca. AD 1000 and25

ca. AD 1650 revealed a maximum of flood deposits over the last four millennia, partly
corresponding to the cooling of the Little Ice Age (LIA). With a maximum of flood events,
the LIA cooling, occurring between AD 1300 and AD 1900, can be defined as the
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main episode of climatic pejoration recorded in south-west Greenland over the Late
Holocene.

5.3 High-resolution flood frequency during the last 1000 years

During the last millennium, flood events are especially recorded between ca. AD 1050
and AD 1200, and between AD 1350 and AD 1650 (Fig. 6).5

The time interval between ca. AD 1350 and AD 1650 corresponds to the climatic pe-
joration of the LIA. A major decrease in Arctic temperatures (Sicre et al., 2008; Andrea
et al., 2011; McKay and Kaufman, 2014; Millet et al., 2014; Figs. 5–6), a maximum of
Arctic glacier advances (Kelly et al., 2008; Briner et al., 2009, 2011; Larsen et al., 2011,
2012; Winsor et al., 2014; Fig. 6), a maximum rate of ice accumulation (Andersen et al.,10

2006; Fig. 6) and a solar minimum (Spörer minimum; Bard et al., 2000; Fig. 6) were
identified during this period, confirming that these flood events likely resulted from ice
and snow-melting episodes and were potentially driven by solar forcing.

The highest flood frequency occurred between ca. AD 1050 and ca. AD 1200 dur-
ing the Oort solar minimum (Bard et al., 2000) and the Norse settlement (Arneborg15

et al., 2012; Fig. 6). It was the only time over four millennia that flood events took place
during a warmer and drier period: the Medieval Warm Period (MWP; Andersen et al.,
2006; McKay and Kaufman, 2014; Millet et al., 2014; Fig. 6). During this phase, flood
deposits are thick (Fig. 6), attesting to the increase of detrital inputs probably induced
by Norse farming activities in the lake watersheds. Indeed, around lakes Qallimiut and20

Little Kangerluluup, archaeological sites attested to agropastoral practices during the
Norse settlement (Madsen et al., 2009; Madsen, 2014). They are likely responsible for
enhancing the detrital inputs due to the reduction in the vegetation cover and to live-
stock trampling (Gauthier et al., 2010; Massa et al., 2012a), making the remobilization
of soil material easier during flood events and less intense hydrological events. Indeed25

a similar sedimentological response was observed, regardless of the intensity of the
hydrological events, because of soil remobilization due to agropastoral activities in the
catchment. The highest flood deposit thickness was recorded in Lake Little Kangerlu-
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luup (Fig. 6), potentially explained by a larger number of archaeological sites identified
around this lake (Madsen et al., 2009).

In south-west Greenland, there were two main agropastoral phases: the Norse settle-
ment and the last century with higher impacts on ecosystems in recent decades (Massa
et al., 2012a). Thus, we can expect enhanced flood deposits in the last decades. How-5

ever, thicker flood deposits occurred before the 1930s when the anthropogenic impacts
were low (Massa et al., 2012a). It should be pointed out, though, that Lake Qallimiut
and Little Kangerluluup are not proper lakes to trace recent agropastoral impacts since
around Lake Qallimiut, few herds are grazing and the recent farm is located at its outlet
probably rejecting its effluents directly into the fjord. Concerning Lake Little Kanger-10

luluup, there has been no human occupation or pastoral activities in the catchment
during the last century (Madsen et al., 2009).

5.4 Climatic influences on Human settlements

A compilation of ca. 200 calibrated radiocarbon dates (2σ ranges) from south Green-
land Norse sites was made (Arneborg, 2007; Edvardsson et al., 2007; Schofield et al.,15

2007; Arneborg et al., 2012; Walker et al., 2012; Ledger et al., 2013, 2014) to illus-
trate the patterns of occupation across time and especially its relative magnitude (Rick,
1987; Fig. 6). For example, a maximum of radiocarbon dates could reveal a period
of maximum occupation (Kuzmin and Keates, 2005; Rick, 1987; Kuper and Kröpelin,
2006). Here, two periods of maximum occupation were therefore inventoried between20

AD 1000-AD 1100 and between AD 1250-AD 1350 (Fig. 6). From AD 850, the radio-
carbon dates increased progressively until ca. AD 1050 because of the establishment
of the settlement since AD 986. After ca. AD 1050, synchronously with a drop in radio-
carbon dates, flood frequency rose, potentially indicating some short cooler and wetter
episodes during the MWP in spite of a global warm and dry trend. These periods are25

associated to a short demise of the Norse, recorded by a drop of radiocarbon dates,
probably linked to these climatic perturbations. Radiocarbon age frequency rose again
after ca. AD 1200 when flood events ceased, indicating repopulation by the Norse or
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a renewal of their activities, possibly linked to the improvement in the climate. Around
AD 1300, the maximum frequency of radiocarbon dates was synchronous with the peak
of the estimated Norse population (Madsen, 2014). Radiocarbon dates fell to zero in
AD 1450, with the progressive and definitive demise of the Norse settlement in Green-
land, approximately dating from the mid to late 15th century (Dugmore et al., 2009).5

This abandon is still a controversial issue (Barlow et al., 1997; Dugmore et al., 2012).
However, it is generally assumed that the climatic deterioration played an important role
in their abandon (D’Andrea et al., 2011; Massa et al., 2012a). Here, the radiocarbon
dates decreased around AD 1300, synchronous with the beginning of the cooling of the
LIA and the second major rise in flood frequencies, supporting the idea of a progressive10

Norse demise mainly linked to the climatic deterioration of the LIA.
Global cooler and wetter episodes, revealed by the flood frequency within core QAL-

2011 and LKG-2011, revealed a potential impact on the Norse settlement. However,
they were not the only society present in south Greenland during the last four millen-
nia. The paleo-Eskimo culture named the Saqqaq, established from ca. 2500 BC to15

850 BC, experienced cold and warm episodes during their settlement (D’Andrea et al.,
2011; Fig. 5), showing a global adaptation to climate changes. For example, techno-
logical tool changes and inventions were observed around 1450 BC (Møbjerg, 1999),
possibly revealing an adaptation to climate change (Sørensen, 2010), as this period
corresponds to a solar minima phase (Steinhilber et al., 2009), characterized by cold20

temperatures (D’Andrea et al., 2011), an increase in North-Atlantic ice-rafted debris
(Bond et al., 2001) and high flood frequencies (Fig. 5), potentially related to the be-
ginning of the Sub-boreal/Sub-atlantic transition. Globally, the Saqqaq were defined
as open water hunters (Meldgaard, 2004) in response to the relatively warm tempera-
ture trend occurring during their settlement (Moros et al., 2006; D’Andrea et al., 2011;25

Fig. 5). Thus, when the greatest decrease in temperatures (D’Andrea et al., 2011), in-
crease in North-Atlantic ice-rafted debris (Bond et al., 2001) and south Greenlandic
glacier advances (Kelly et al., 2008; Larsen et al., 2011, 2012; Winsor et al., 2014;
Fig. 5) occurred at the end of the Sub-boreal/Sub-atlantic transition around 850 BC,
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they disappeared abruptly. Contemporary to their abandon, the Greenlandic Dorset,
defined as sea-ice hunters because of their equipment (sledge shoes, soapstone ves-
sels for burning seal fat and snow knives; Jensen, 2009) settled in Greenland. At the
beginning of the Roman climate warming (RCW) when sea-ice cover diminished (Mo-
ros et al., 2006; Sicre et al., 2008; D’Andrea et al., 2011), the Dorset, who were ill-5

adjusted to warm conditions, left Greenland around 50 BC (Jensen, 2009). Finally, the
Thule culture, present from the 12th century in Greenland, did not seem to be espe-
cially affected by the LIA. They just migrated in response to this cooler event and did
not modify their diet or their tools, allowing them a long-term persistence in Greenland
(Sørensen, 2010).10

Thus, the RCC, occurring during the second half of the Holocene and recorded
through QAL-2011 and LKG-2011 flood deposits, seem to have influenced Greenlandic
Human occupation since the first colonization in ca. 2500 BC.

6 Conclusion

To reconstruct past Holocene climatic variations in south-west Greenland, a multiproxy15

study was performed on two lacustrine cores retrieved from Lake Qallimiut and Lake
Little Kangerluluup, covering the last four millennia (QAL-2011 and LKG-2011). This
study, including physical (magnetic susceptibility, density and grain size) and geochem-
ical (X-ray microfluorescence, elemental analyses and organic petrography) analysis,
has evidenced a total of 37 flood events in both sequences. They fall into five dis-20

tinct phases: between 2300 BC and 1600 BC, 1100 BC–900 BC; 600 BC–200 BC;
AD 1050–AD 1200; AD 1350–AD 1900 synchronous with high negative temperature
anomalies, global glacier advances and an increase North-Atlantic in ice-rafted debris.
High flood frequencies probably resulting from ice and snow-melting, coincide with so-
lar minima and could be matched with global RCC such as the Middle to Late Holocene25

transition (ca. 2250 BC), the Sub-boreal/Sub-atlantic transition (ca. 700 BC) and the
LIA (from ca. AD 1300 to ca. AD 1900). The RCC with a maximum of flood events
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recorded was the LIA, suggesting major climate deterioration in south Greenland at this
time. Climatic deterioration revealed by QAL-2011 and LKG-2011 flood deposits may
have potentially impacted local Human societies. Indeed, the Sub-boreal/Sub-atlantic
transition might be responsible for the demise of the Saqqaq and the colonization of the
Dorset. Moreover, the climatic deterioration of the LIA, marked by two major successive5

rises in flood frequencies, seems to be one of the main reasons for the Norse abandon,
illustrated by the radiocarbon dates frequency measured in archaeological sites. Lakes
Qallimiut and Little Kangerluluup are proper sites to reconstruct past climate changes
during the last four millennia and their impact on past Human societies except during
the Middle Ages, when Norse agropastoral activities enhanced the detrital inputs and10

disturbed their sedimentological responses.

The Supplement related to this article is available online at
doi:10.5194/cpd-11-5401-2015-supplement.
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Table 1. Radiocarbon dates made on terrestrial remains and the age calibrations obtained
from a linear model, using R program and the calibration curve of IntCal13 (Reimer, 2013). (a)
Radiocarbon dates on Lake Qallimiut core. (b) Radiocarbon dates on Lake Little Kangerluluup
core.

(a) Qallimiut Depth Material Radiocarbon ages Calibrated ages Lab code
cm AD/BC AD/BC

19.5 wood 1550±30 1480±85 Beta-395 567
51.25 wood 240±30 355±85 Beta-363 187
71.1 wood −530±30 −630±290 Lyon-9888
88.4 wood −1150±30 −1355±145 Lyon-9889
93.25 wood −1425±30 −1660±90 Lyon-9890
95.75 wood −1480±30 −1720±120 Lyon-9891

(b) Little Kangerluluup Depth Material Radiocarbon ages Age AD calibré Lab code
cm AD/BC AD/BC

20.55 wood 1705±30 1655±50 Lyon-9885
31.9 wood 1445±30 1420±50 Lyon-9882
34.5 wood 1345±30 1335±75 Lyon-9886

52.65 wood 735±30 825±125 Lyon-9887
77.75 wood −165±30 −125±155 Lyon-9883
93.75 wood −940±30 −1060±140 Beta-386 534
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Table 2. Depth, thickness and age of the flood deposits. (a) Lake Qallimiut flood deposits de-
scription. (b) Lake Little Kangerluluup flood deposits description. NA indicates that the age error
is not available because the end of the age-depth models is not constrained with a radiocarbon
date.

(a) Qallimiut Top Bottom Thickness Age Age error
cm cm cm AD/BC

1.4 1.9 0.5 1965 35
3.2 5.7 2.5 1904 150
7.5 8 0.5 1835 130
10.2 10.95 0.75 1755 125
15 15.5 0.5 1605 145

16.6 17 0.4 1565 155
17.5 17.75 0.25 1545 160
18.5 19.1 0.6 1515 170
21.8 21.95 0.15 1400 165
22.2 22.35 0.15 1390 160
23.3 23.9 0.6 1350 155
27.4 28 0.6 1195 150
29.5 29.6 0.1 1130 145
29.9 30.1 0.2 1125 145
30.2 30.4 0.2 1115 140
30.6 30.85 0.25 1110 140
31.8 32.05 0.25 1065 140
32.2 34 1.8 1055 140
36.7 37.2 0.5 940 135
66.8 67.8 1 −465 255
77.2 77.7 0.5 −905 200
81 81.5 0.5 −1050 160

100.9 101.3 0.4 −1885 NA
110.4 110.6 0.2 −2145 NA
113.4 113.7 0.3 −2225 NA
113.9 114.2 0.3 −2230 NA
117 117.5 0.5 −2310 NA

(b) Little Kangerluluup Top Bottom Thickness Age Age error
cm cm cm AD/BC

4 6 2 1930 210
17 19 2 1725 370

29.2 30.7 1.5 1455 115
41.3 44.1 2.8 1083 120
49.2 51 1.8 880 160
79.7 81.1 1.4 −275 235
81.6 82.7 1.1 −310 225
94.8 98.5 3.7 −1140 NA

104.9 105.8 0.9 −1580 NA
107.7 109 1.3 −1715 NA
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Figure 1. Localization of Lake Qallimiut and Little Kangerluluup. (a) Map of Greenland. (b) Map
of South Greenland. (c) Catchments outlines (dotted black lines). White points represent Norse
archeological sites and the black ones, recent farms. Number 1 indicates the location of Lake
Qallimiut, number 2 matches Lake Little Kangerluluup and number 3, Lake Kangerluluup.
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Figure 2. Age-depth models based on radiocarbon dates and on short-lived radio-isotopes
measurements. (a) Lake Qallimiut age-depth model. (b) Lake Little Kangerluluup age-depth
model.
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Figure 3. (a) X-radiographs and log representing the Lake Qallimiut core associated to mag-
netic susceptibility, γ-density, XRF, grain size, TOC and TOC/TN ratio measurements. Grey
zones highlight the physical and geochemical responses of the white laminae. (b) The frame
contains photographs of the thin section in polarized light and the piechart shows the composi-
tion of the OM.
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Figure 4. (a) X-radiographs and log representing the Lake Little Kangerluluup core associated
to magnetic susceptibility, γ-density, XRF, grain size, TOC and TOC/TN ratio measurements.
Grey zones highlight the physical and geochemical responses of the laminae. (b) The frame
contains photographs of the thin section in polarized light and the piechart shows the composi-
tion of the OM in pies.
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Figure 5. Flood frequencies expressed in a time step of 250 years in the last four millennia.
In black, flood frequency measured in Qallimiut sequence and in dotted line, flood frequency
observed in Little Kangerluluup core. They are compared to solar irradiance (Steinhilber et al.,
2009), west Greenland lake water temperatures (D’Andrea et al., 2011), global glacier ad-
vances (Briner et al., 2011, 2009; Kelly et al., 2008; Larsen et al., 2011; Winsor et al., 2014),
the main rapid climate changes (Mayewski et al., 2004) and periods of Human occupations
(Dugmore et al., 2009; Gulløv, 2004; Jones, 1986; Meldgaard, 2004).
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Figure 6. Focus on Qallimiut and Little Kangerluluup flood frequencies in the last millennium.
They are associated to their thickness (in black, Qallimiut flood deposit thickness and in dotted
line, Little Kangerluluup flood events thickness). They are also compared to solar irradiance
(Bard et al., 2000), ice accumulation rate (Andersen et al., 2006), Arctic temperature anomalies
(McKay and Kaufman, 2014), PCA score of the Igaliku chironomid samples (Millet et al., 2014)
and the number of radiocarbon dates measured in local archaeological sites (Arneborg, 2007;
Edvardsson et al., 2007; Madsen et al., 2009; Arneborg et al., 2012).
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