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IASI mission (Infrared Atmospheric Sounding Interferometer) 

Fourier Transform Interferometer 
Measurement of the thermal emission of the 
atmosphere: 
o over a broad spectral range:   650  2700cm-1 

o with a low radiometric noise:  SNR > 300 
o with a good spectral resolution: 0,5 cm-1 

2° Sampling characteristics: 
 

o Medium ground pixel size: 12 km (nadir) 
o Geosynchronous orbit (9.30 AM and 9.30PM) 
o One measurement almost everywhere 2x/j 
o 1,3 millions spectra a day 

 

IASI-A: 10/2006 

IASI-B: 10/2012 

IASI-C: 2018 

1° Instrumental characteristics: 

IASI-NG with improved instrumental performances: 2025 

3° Long-term  perspective: 



Retrieval of δD profiles from IASI [Lacour et al., 2012] 

 

Inverse problem 
With a constraint on log(HDO/H2O) 
[Worden et al., 2006; Schneider et al.,2006]  

δD profiles with 1-2 DOFS 
Limited vertical sensitivity (mainly in the FT) 

o Short spectral range 1195-1253 cm-1  

o Full inversion on the 10 first layers of the 

atmosphere  

o Temperature profiles from EUMETSAT L2  

o cloud flag < 10 %  

Fast inversion  

Inversion setup [Lacour et al.,2012] Error budget  

Total error 

Error due to measurement noise 

Error due to temperature profile error 

38 permil 

Reduced by 𝑁 when using 
averages of N measurements 

Cross-validation (vs TES and FTIRs) 
[Lacour et al., 2015] 



q at 4.5 km [g/kg] 

IASI daily global distributions (1 day) δD at 4,5 km 

2013.04.01  
AM and PM averaged  
IASI-A + IASI-B (1 hour diff) 
IASI-A + IASI-B    ̴2 600 000 spectra  
Clear sky    ̴400 000  observations 

Massive amount of data... Not retrieved  

    Global distributions from IASI ? 



Simple isotopic models in the vapour 
From [Noone 2012] 

Over-depleted -> Rain-
reevaporation 

Advective transport 

Turbulent mixing 

Recycling of water vapour 



Over-depleted Rain-reevaporation ‘Pure’ advection 

Turbulent mixing 

Recycling of water vapour 

Turbulent mixing 

Recycling of water vapour 

Simple isotopic models in the vapour 
From [Noone 2012] 

Advective transport Over-depleted -> Rain-
reevaporation 



Deviation from Rayleigh 

South Pacific: cloud detrainment 
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IASI sampling around clouds 

2D colorscale  
(deviation from a standard Rayleigh) 



Izana: Sources and turbulent mixing 

Formation of the Saharan Heat Low 
Thermal depression wich strongly influences dynamic and hydrologic cycle of the region 



Izana: Sources and turbulent mixing 



Seasonal cycle strongly influenced 
by the SHL formation 
2 distincts airmasses origins: 
Atlantic Ocean – Western Africa 
Summer July-August:  
Turbulent Mixing 
Deep boundary layers 
September: 
Wet convection 
 

Izana: Interpretation of the seasonal cycle 

Strong inter-annual variations of δD, not H2O. Enriched years = more turbulent years  



convection 

subsidence 

Tropics: 1st order control = dynamic (ω500)  

 δD at 4,5 km 
IASI monthly averages 

q at 4,5 km 
IASI monthly averages 



Tropics: Isotopic footprint of convection’s depth 

o Important scatter around the mean 
δD–w relation 

o Isotopic response very different for 
different heights of convection 

o Deep convection associated with 
depleted airmasses 

o Shallow convection  associated with 
enriched airmasses 

Convection’s depth gives to water vapour 
a particular isotopic footprint 

 
Representation of mixing depth suggested 
to be in a great part responsible of climate 

sensitivity uncertainty [Sherwood et al., 
2014]. Difficult to assess from obs 



? Enriching mechanisms Depleting mechanisms 

[Kurita 2013, Risi 2008] 

[Moore 2014, Lee 2007] 

[Worden 2007,Risi 2008] 

Different interpretations of the dominant 
control on the amount effect in the 
precipitations.. 

Tropics: Isotopic footprint of convection’s depth 



Tropics: Isotopic footprint of convection’s depth 

Amount effect in the vapour? « Decrease of δD associated with an increase of q » 
Not the same than the amount effect in the precipitations  

% of anti-correlated 
    δD-q pairs 

The amount effect in water vapour 
is more frequent for deep 

convection 

Rain re-evaporation is often 
associated with deep convection 

Amount effectV is associated with 
the rain re-evaporation but not only 

Analyse of δD-q monthly averages for convective regimes only (w500<0) 
IASI: temporal correlation between daily average for each month 



Conclusions     

o IASI δD profiles contain a lot of information on hydrological processes 
  
o Numerous processes can be inferred directly from IASI observations: 
  - cloud detrainment  
  - different airmasses sources 
  - turbulent mixing 
  - evapotranspiration 
  - depth of convective mixing 
  - amount effect in the water vapour 
 
o Still lot of work to understand the observations 
 
o Need of better interpretating frames than simple models 
  
  
  



o Vertical sensitivity: 

TES/AURA  
IASI  
GOSAT (TIR) 

SCIAMACHY  
GOSAT (SWIR) 

o Precision ( on 1 measurement): 

ACE 
MIPAS  

UTLS 

Free 
tropo. 

Low 
tropo. 

38 ‰ 

30 ‰ 

δD variabilité [‰] 

o Number of measurement by day: 

TES 
IASI 

o Instrument type: 

Visée Limbe IR 

Nadir TIR 

Nadir SWIR 

~ 1 TES measurement for  200 IASI measurements 

    Space remote sensing of δD 

o Only δD can be retrieved from space  








