
HAL Id: insu-01250039
https://insu.hal.science/insu-01250039

Submitted on 10 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High resolution evolution of terrigenous sediment yields
in the Provence Basin during the last 6 Ma: relation

with climate and tectonics
Estelle Leroux, Marina Rabineau, Daniel Aslanian, Christian Gorini, Stéphane

Molliex, F. Bache, Cécile Robin, L. Droz, M. Moulin, Jeffrey Poort, et al.

To cite this version:
Estelle Leroux, Marina Rabineau, Daniel Aslanian, Christian Gorini, Stéphane Molliex, et al.. High
resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: relation
with climate and tectonics. Basin Research, 2017, 29 (3), pp.305-339. �10.1111/bre.12178�. �insu-
01250039�

https://insu.hal.science/insu-01250039
https://hal.archives-ouvertes.fr


High resolution evolution of terrigenous sediment yields in the Provence Basin during 

the last 6 Ma: relation with climate and tectonics. 

 

E. Leroux
(1,2,3)

, M. Rabineau 
(2)

, D. Aslanian 
(3)

,  C. Gorini 
(1)

, S. Molliex 
(2,3)

, F. Bache 
(4)

, C. Robin 
(5)

, L. 

Droz 
(2)

,
 
 M. Moulin 

(3)
, J. Poort

(1)
, J.-L. Rubino

(7)
 & J.-P. Suc 

(1,6)
 

 

1. Sorbonne Universités, UPMC, Univ. Paris 06, UMR 7193,  Institut des Sciences de la Terre de Paris (iSTeP), 

F-75005, Paris, France 

2. CNRS, UMR6538, Domaines Océaniques, IUEM, 29280 Plouzané, France 

3. IFREMER, DRO/GM/LGG, BP 70, 29280 Plouzané, France 

4. Santos Ltd, GPO Box 2975,  Melbourne VIC 3001,  Australia 

5. Université Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex 

6. CNRS, UMR 7193,  Institut des Sciences de la Terre de Paris (iSTeP), F-75005, Paris, France 

7. CSTJF, Centre Scientifique et Technique Jean Feger, TOTAL, Avenue Laribau, 64018 Pau, France 

Abstract 

Basin-wide correlation of Messinian units and Plio-Quaternary chronostratigraphic markers (5.3 Ma, 2.6 Ma, 0.9 

Ma and 0.45 Ma), the mapping of total sediment thickness, and the determination of overall sedimentary 

volumes enabled us to provide a high resolution quantitative history of sediment volumes for the last 6 Ma along 

the Gulf of Lions margin. The results point to (i) a dramatic increase in terrigenous sediment input during the 

Messinian Salinity Crisis. This increased sedimentation reflects enhanced regional fluvial erosion related to the 

dramatic fall of Mediterranean base-level. Stronger weathering due to a regional wetter climate probably also 

increased erosional fluxes. (ii) A sediment input three times higher during the Plio-Quaternary compared to the 

Miocene seems in agreement with published measurements from World’s ocean. However, the timing of this 

increase being uncertain, it implies that the trigger(s) also remain(s) uncertain. (iii) A decrease of detrital volume 

around 2.6 Ma is attributed to a regional change in the drainage pattern of rivers in the northwestern Alps. (iv) 

This study also highlights the Mid-Pleistocene Revolution around 0.9 Ma, which resulted in an almost doubling 

of sediment input in the Provencal Basin. 
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INTRODUCTION 

 

The large worldwide increase in denudation rates during the Pliocene-Quaternary has been evidenced by 

sedimentary records in a variety of settings (Hay et al., 1988; Molnar and England, 1990; Hay et al., 2002; 

Kuhlemann et al., 2002). This major increase is suggested to start in the late Messinian (5.5 Ma) and accelerates 

towards present day (e.g. Zhang et al., 2001; Molnar, 2004; Herman et al., 2013). Those studies present 

compelling evidence that enhanced climate variability beginning in the Late Cenozoic has continually 

destabilized landscapes and led to increased erosion in upland environments. However, the effect of cooling on 

global erosion rates remains unclear. The uncertainty arises mainly from a lack of consensus on the use of the 

sedimentary record as a proxy for erosion and the difficulty of isolating and quantifying the respective 

contributions of tectonics and climate on erosion (e.g. Herman et al., 2013).  

Quantification of erosion rates are typically interpreted from exhumation rates obtained by provided by low-

temperature thermochronological analyses of crystalline rocks exposed in mountainous regions, or by 

sedimentary budget studies of the sedimentary rocks of the adjacent sedimentary basin (Baran et al., 2014). 

However, Willenbring and von Blanckenburg (2010) have challenged the validity of sediment budget records, 

based on aliasing effects. Sediment-flux studies would be inherently flawed because of the Sadler effect (Sadler, 

1981; Schumer and Jerolmak, 2009, Willenbring and von Blanckenburg, 2010), i.e. an apparent increase in 

sediment fluxes toward the present because sedimentary hiatuses are poorly dated and often ignored altogether in 

older sediments due to increasingly inaccurate and imprecise chronologies. 

The Alps case study has played a prominent role in this debate. As with many mountain belts worldwide, the 

Alps have undergone a large increase in sediment yield in the late Neogene. Sediment budget calculations 

suggest a more than twofold increase in erosion rates since ca. 5 Ma (Kuhlemann, 2000; Kuhlemann et al., 2001) 

coeval with regional climate change and backstepping of the active deformation front (e.g. Willett et al., 2006). 



This suggests the occurrence of a series of climatic changes that increased erosion rates, even as tectonic 

processes appear to have slowed or stopped. At present, tight correlations in time are difficult to establish and 

open questions remain about the role of tectonics in the coupled system (Willett, 2010). 

Available detrital thermochronological data from Alpine foreland also imply unchanged orogen-wide 

exhumation rates from Miocene to Pliocene time (Bernet et al., 2001; Glotzbach et al., 2011a), apparently 

contradicting these sediment budget calculations. But other regional-scale studies (Vernon et al., 2008; Herman 

et al., 2013; Fox et al., 2015b) show that exhumation rates in the Western Alps have increased since Late 

Miocene times. 

Moreover, although climate may influence denudation rates in the Alps, especially since the beginning of the 

Quaternary glacio-eustatic cycles, several authors have emphasized the importance of lithospheric-scale 

processes beneath the Alps, (e.g., Lyon-Caen and Molnar, 1989; Andeweg and Cloetingh, 1998; Kissling, 1993; 

Lippitsch et al., 2003; Genser et al., 2007; Sue et al., 2007; Kuhlemann, 2007; Wagner et al., 2010; Fox et al., 

2015b). Denudation rates would correlate more satisfactorily with the surface uplift (Wittmann et al., 2007; 

Willett, 2010). Some of this may be isostatic rebound in response to rapid erosion (Champagnac et al., 2009, 

Vernant et al., 2013) or a deep geodynamic ("dynamic uplift") component (e.g. Calais et al., 2002; Serpelloni et 

al., 2013). 

In this paper, we will focus on the quantitative evolution of sedimentation in the Provence Basin for the last 6 

Ma and try to identify the main factors (at global, and regional scales) controlling this evolution in a source to 

sink approach. This basin is mainly fed by sediments from the Alps, we will thus discuss our results within the  

Alpine evolution context, along with uncertainties and limits of this sediment-based study. 

 

1. GENERAL SETTINGS 

The Mediterranean area is one of the most appealing natural laboratories in the world to study recent 

geodynamic and paleoclimatic processes. The Gulf of Lions continental margin and its prolongation with the 

Provencal basin in the Western Mediterranean (Fig.1) results from the Late Oligocene-Aquitanian rifting and 

later south-eastward drift of the Corsica-Sardinia block (Séranne, 1995). They are subject to strong post-rift 

subsidence (Réhault et al., 1984; Bessis, 1986; Burrus, 1989) and high sedimentation rates (mostly supplied by 

one major river, the Rhône), which facilitates high-resolution sedimentary studies. This area has been intensively 

explored for decades, providing a particularly large amount of seismic data (Fig.1) and detailed onland studies 

on its catchment (e.g. Kuhlemann, 2000;  Kuhlemann et al., 2002; Willett, 2010). Hence, the Provence Basin is 



well-suited to study the detailed evolution of detrital budgets and to understand the climatic and/or tectonic 

events driving sedimentation. 

The stratigraphy of the Gulf of Lions and the Provence Basin has been studied at variable timescales from syn-

rift series (e.g. Gorini, 1993; Guennoc et al., 2000), Oligo-Miocene (Mauffret et al., 1995; Bache, 2008), 

Pliocene and Quaternary (e.g. Lofi et al., 2003; Droz et al., 2006; Rabineau et al., 2014) to the last 500 kyr (e.g. 

Rabineau et al., 2005; Bassetti et al., 2008) (see Fig. 2 for an example on the shelf). The data bases were 

sometimes limited and the stratigraphic continuity between the shelf and the basin is hampered by the presence 

of numerous canyons incising the upper slope (e.g. Baztan et al., 2005). This is why these studies have focused 

on specific areas of the margin (the shelf or the deep basin) and the correlation along the entire margin had never 

been completely elucidated for Pliocene to Quaternary times. As a consequence the detailed sedimentary budgets 

remained largely undefined until now. In this study, we therefore propose for the first time a high-time resolution 

quantification of sedimentation volumes across the entire basin margin during Miocene, Pliocene and Quaternary 

times. 

Shortly after 6 Ma, the Mediterranean region underwent rapid and dramatic paleo-environmental changes known 

as the Messinian salinity crisis (MSC) (Hsü et al., 1973). This short-term event at the geological scale (~5.96-

5.32 Ma Krijgsman et al., 1999a) results from the progressive closure of the connection between the Atlantic 

Ocean and the Mediterranean sea (e.g. Benson et al., 1991; Ryan, 2011). Many previous studies have focused on 

particular aspects of the Messinian Salinity Crisis (MSC): the Messinian Erosional Surface (e.g. Gorini et al., 

2005), salt tectonics (e.g. Dos Reis et al., 2005), eroded and deposited volumes (e.g. Lofi et al., 2005; Bache et 

al., 2009), or reflooding (Garcia-Castellanos et al., 2009; Estrada et al., 2011; Bache et al., 2012). In the 

Provence basin, two different interpretations for the base of the MSC (Lofi and Berné, 2008; Bache et al., 2009) 

result in two different estimates of the amount of detrital Messinian sediments. In this study, we also further 

examined the competing Messinian scenarios in the light of our new quantitative calculation of sediment 

volumes. 

 

2. MATERIAL AND METHODS 

2.1. DATA 

For this study we used an extensive set of seismic reflection and drilling data available for the Provence Basin 

(Fig.1) and made available through the “Actions-Marges” program involving a consortium of institutions 

(CNRS, IFREMER, IFPEN, BRGM and TOTAL).  



The seismic data can be subdivided into three groups according to their resolution and penetration 

characteristics: (i) the highest resolution Multi Channel Seismic (MCS) surveys (HR 80 and 81, MARION and 

CALMAR) allow detailed observations but provide little penetration; (ii) industrial seismic surveys performed 

since 1980 (LIGO, GL, MF, LRM, RM, SW, MDT, MAP, MEDS) and the seismic reflection data of the 

SARDINIA survey image the top of the sedimentary column to the base of the basin; (iii) the seismic survey 

ECORS (De Voogd et al., 1991) and the seismic survey refraction of SARDINIA provide deep penetration 

profiles throughout the crust. The wide-angle seismic data from Expanding Spread Profiles (ESP) (Le Douaran 

et al., 1984; Pascal et al., 1993) and Ocean Bottom Sismometers (OBS) (SARDINIA: Aslanian et al., 2012; 

Moulin et al., 2015; Afilhado et al., 2015) also allow to quantify the velocities and thicknesses of sediment series 

and the crust in the deep basin. 

Nine petroleum wells drilled between 1969 and 1985 in the Gulf of Lions have been used to calibrate seismic 

interpretations. Seven of them are located on the shelf. Two others, Autan1 and GLP2, are located on the upper 

and mid-slope, respectively (Fig.1). Stratigraphic, sedimentological and micropaleontological studies (Cravatte 

et al., 1974) for the Autan, Mistral, Tramontane and Sirocco boreholes provide information on the depositional 

environments and chronostratigraphy of the drilled series. 

 

2.2. METHODS 

Several successive steps are needed for the quantification of detrital sediment volumes. First, the application of 

the seismic stratigraphy principles (Mitchum and Vail, 1977; Vail et al., 1977) allowed us to define stratigraphic 

discontinuities and remarkable stratigraphic surfaces on seismic profiles (Figs. 2-7 and Tab.1). Ages of these 

surfaces were provided by well data (Figs. 4, 5, 8) updated using the IUGS timescale for the Cenozoic (Gibbard 

et al., 2010). Our interpretations were then integrated into the "Kingdom Suite" software and mapped using 

GMT (Generic Mapping Tool) software (Wessel and Smith, 1995). Interpolated isobath and isopach grids (ms 

twtt) of each chronostratigraphic marker and unit were calculated. All these grids were built with the same 

resolution and geographical limits (resulting in the same number of nodes, see Figs. 9 and 10).  

The seismic velocities vary strongly in space within the same stratigraphic interval, with important differences 

between the shelf, the slope and the deep basin. Therefore, the ESP velocities and wide-angle data from the 

Sardinia cruise in the basin and sonic logs of the drillings on the shelf were jointly analyzed and used to establish 

a 3D map of seismic velocities for each stratigraphic interval (Tab.2). The interpolation of these velocities with a 

regular and relatively restricted step (each 100 ms twtt) allowed us to avoid abrupt velocity transitions. We then 



depth converted isochore maps of all our stratigraphic units (Fig. 10a-c) and drawn all isopach maps in meters as 

shown in Leroux, 2012 (Fig. 10d-e). At this stage we calculated volumes for compacted sediments with GMT 

software (Tab. 4). 

Afterwards we defined the proportion of dominant facies from wells and mean burial depths for each unit from 

seismic profiles. The wells are mainly located on the shelf, except GLP2 (on the slope), and are not 

representative to define a regional mean compaction law. We therefore built our law using the GLP2 borehole 

data and assuming that the sonic velocity roughly represents the porosity versus depth (a sonic log provides a 

formation interval transit time, which typically varies lithology and rock texture but particularly porosity). The 

sonic velocity curve images the evolution of the seismic velocities with depth of the sediment, including all 

lithologies, but the GLP2 well exhibits mainly shale facies. The superimposition  of GLP2 sonic velocity curve 

fits the median curve of the compaction interval given by Allen and Allen’s (2005) curves for shale (Fig.11). 

Assuming that this median curve can be used for the other lithologies (sand and carbonate) and that the decrease 

in volume is equal to the reduction of porosity, we estimated the porosity loss for each unit and calculated the 

compacted (zero porosity) and decompacted volumes. These volumes were finally assigned to a time-span and 

sediment fluxes were calculated with their uncertainties using the numerical code of J. Braun (see Results section 

and Guillocheau et al., 2012 for more explanation). 

 

3. RESULTS 

3.1. Seismic markers and their chronostratigraphic attribution 

The chronostratigraphic seismic markers and units are shown in Figures 2 to 8 and their main characteristics 

summarized in Tab.1 together with their chronostratigraphic correlation. 

 

3.1.1. Identification of Pliocene and Pleistocene seismic markers and units 

Very high resolution profiles interpreted in Rabineau (2001) and Rabineau et al. (2005) (Fig.2) showed that the 

last five erosional surfaces (D70, D60, D50, D40, D30) correspond to the last five glacial maxima of 100,000 yr 

cycles, with preservation of the shoreline on the outer shelf. The fifth surface D30 (also called Q5) was 

interpreted as MIS12.2 (Rabineau et al., 2006) and therefore dated at 434,000 yr, according to the orbitally tuned 

isotopic Specmap curve (Imbrie et al., 1984). This dating has been further validated by further direct dating on 

Promess borehole (Bassetti et al., 2008). Other erosional surfaces are evident below D30: surface Q10 (red on 

Fig.2) is a major erosional surface that lies around 450 ms (or 400 m after time-depth conversion) below present 

day sea-level and seals a strong incised unit on the outer shelf at around 60–64 km from the coast.  The well-



known Messinian Erosional Surface (MES) (pink on Fig.2) is a prominent erosional surface at the base of the 

Pliocene series. Between the MES and the upper two surfaces (Q5 and  Q10), the seismic profiles display a 

complex set of large prograding clinoforms (around 500 m high) with a typical topset-foreset-bottomset 

organisation (see the positions of the shelf-slope breaks and toeset breaks) and buried submarine canyons (Figs. 

2 and 4). These clinoforms show a gently dipping linear topset and a highly dipping foreset curving more or less 

progressively to a gently dipping bottomset. Topsets are preserved through time and show an increased topset-

slope with increasing age. On the shelf, Pliocene-Quaternary strata show a clear change in stacking pattern 

(shelf-slope breaks are indicated by black circles and shelf-edge trajectory is drawn by black line on Fig.2), from 

Late Pliocene prograding clinoforms to prograding-aggrading Quaternary clinoforms after another remarkable 

erosional surface (P11, yellow on Fig.2) (Leroux et al., 2014). On the shelf, this surface erosionally truncates the 

topset of earlier clinoforms (dark green and red clinoforms on Fig.2) and the first canyons occur above it (Figs. 2 

and 4). A PXX discontinuity (blue on Fig.2 and Tab.1) is present between P11 and Q10 and corresponds to a 

major erosive surface on the slope. 

Several prograding prisms are present on the shelf between the MES and P11. The oldest prisms downlap onto 

the MES (Figs. 2 and 4), the sediment are mostly trapped on the shelf until P7 marker (brown on Fig.2) which is 

the first Pliocene surface that can be prolonged onto the upper slope and down to the basin. 

Pliocene and Pleistocene reflectors can be followed from the shelf to the basin, even if their seismic amplitude 

may vary laterally (Figs. 6 and 7). The proximal to distal spatial distribution of sediments for the last 5.3 Myr  is 

strongly controlled by the front of salt tectonics linked to the halite unit deposited during the MSC (Figs. 6 and 

7). From undeformed upstream of the front (km 110 on Fig.7), they are affected by listric faults downstream and 

pinch out on the footslope. In the basin (downstream of ESP207 on Fig.6), salt diapirs strongly disrupt the 

tabular stacking of Pliocene and Pleistocene sediments and reach locally the seafloor. 

 

3.1.2. Identification of seismic markers and units of the Messinian Salinity Crisis (MSC) 

On the shelf, the rough topography of the MES (Fig. 2, 3) results from incision of the Messinian fluvial network 

due to a major sea-level fall exceeding 1500 m (e.g. Ryan and Cita, 1978). The pre-Messinian shelf deposits 

were exposed to major erosion at that time, with very limited Messinian fluvial deposits occurring on the shelf. 

The MES can be followed from the shelf to the slope. At around 80 km from the present day coast the surface 

branches into two surfaces (Fig.3) with a Basal Erosional Surface truncating Miocene deposits identified as BES 

using the terminology defined in Lofi et al. (2011).  



 

This surface  has been interpreted as the base of the MSC that correlates seaward to a conformable surface called 

Basal Surface (BS) or the MES-CC* (MES Correlative Conformity) in Gorini et al., 2015 above which is 

described (from bottom to top) the Messinian trilogy in the deepest basin: (i) the Lower Unit (LU) is identified 

by a group of continuous high amplitude reflections. At the present time, the age, lithology and depositional 

environment are still speculative but Lofi et al. (2005) proposed that LU deposited in a fully subaqueous 

environment and may contain a large part of sediments eroded from the margins at the beginning of the 

drawdown and accumulated as giant turbidites above the abyssal plain. (ii) the Mobile Unit (MU) corresponds to 

a thick layer of transparent seismic facies associated to a homogeneous salt layer (halite); it is overlain by (iii) 

the Upper Unit (UU), that is identified by a group of parallel and relatively continuous reflections of relatively 

high amplitude. Its top has been sampled during DSDP Leg XII (Hsü et al.,1973), revealing layers of dolomitic 

marls and anhydrite.  

A competing interpretation from Bache et al. (2009, 2012) described a much deeper discordance corresponding 

to the base of the MSC (Bache_BES). Above this latter, the authors identified an earlier (below Lofi_LU) thick 

(up to 1000m) terrigenous (turbiditic) serie (Bache_M1) and ascribe it to the subaerial erosion linked to the MSC 

drawdown.  It would therefore correspond to a major sediment transfer, which built detrital wedges of thickness 

as much as 1000 m at the outlet of the Messinian Rivers, and in the order of 800 m in the basin. In contrast, Lofi 

and Berné (2008) attributed this unit to submarine slope erosional canyons that pre-date the initiation of the 

MSC. Bache_M1 is partly prolonged in the distal part of the margin by a thick (up to 800 m) unit (Bache_LU0) 

of probably deep marine deposits; a thick (1500 m) presumed alternation of terrigenous and evaporitic deposits 

(Bache_LU1) overlies Bache_LU0 below the MU (Fig.3). Gorini et al. (2015) recently imaged Messinian dual 

lowstand megasequences of both the eastern and western Mediterranean agreeing with the position of the base of 

MSC from Bache et al. (2009, 2012). This implies that the total thickness of Messinian deposits in the basin, 

including LU0, LU1, MU & UU), would be as much as 3500 m. So, in the two competing interpretations, the 

respective sediment volumes related to MSC will strongly differ. 

Bache et al. (2009, 2012) distinguished also a chaotic sub-unit overlying Bache_M1 on the slope and interpreted 

it as late detrital products of the MSC (Bache_M2). A smooth and straight surface at its top is also observed on 

the slope, in the prolongation of the rough MES on the shelf. It is locally either conformable with the underlying 

pre-crisis series or erosional as it truncates the underlying syn-crisis series. This surface, called RS (ravinement 

surface), would be the result of a transgressive ravinement during a first relatively slow refilling at the end of the 



MSC (Bache et al., 2012) but prior to the very drastic increase of sea-level suddenly drowning the Mediterranean 

Sea and  preserving the rough morphology of the MES (Figs. 6 and 7). 

In this study, we identified and mapped a new unit on the slope of the Gulf of Lions that (also described in Bache 

et al. (2015)). It is located either above Bache_M2 unit from which it is distinguished by a chaotic and more 

transparent seismic facies or in lateral correlation with MU and UU (Tab.1). Given its stratigraphic position, we 

called it M3. In the next section, informations from borehole data will be detailed to show how we can integrate 

this unit in the scenario of the MSC. 

 

3.1.3. Attribution of ages from borehole data and previous works 

The dating of Q5 at ~434,000 years (Rabineau et al., 2006) is now fully confirmed thanks to multiproxy analysis 

of the sedimentary succession of the two PROMESS drillsites (PRGL1 and PRGL2). Indeed, chronostratigraphy 

established by estimates of the abundance of biostratigraphically significant coccolith taxa and correlations with 

the 
18

O isotopic curve (Bassetti et al., 2008; Sierro et al., 2009) is coherent with previous stratigraphic modelling 

(Rabineau et al., 2005). 

Older remarkable erosional discontinuities were observed on the Pliocene and Quaternary shelf, in particular 

Q10, P11 and P7. Ages of 0.9 Ma, 2.6 Ma and 3.8 Ma, were respectively suggested for them (Rabineau, 2001) 

by extrapolation of Q5 dating to older series taking into account the sediment thicknesses on the shelf and tilting 

of erosional surfaces as subsidence was shown to be constant through time during the entire Pliocene and 

Quaternary (Leroux et al., 2014; Rabineau et al., 2014). (Tab.1 and Fig.2). 

In the Autan 1 well (Fig.4) the Q10 discontinuity is included in an unit younger than 1.8 Ma (Cravatte et al., 

1974). In the same well, the position of the P11 discontinuity corresponds to the appearance of 

Neogloboquadrina atlantica. This planktonic foraminifer species lived around 11 Ma during a first short time-

span, but showed large specimens. This same species, but with a much smaller size and sinistral coiling, 

appeared again between 2.72 Ma and 2.41 Ma (Lourens et al., 2004), so that it is used to detect the base of the 

Gelasian (2.588 Ma), i.e. of the Quaternary as defined by Gibbard et al. (2010) in marine environments (Suc et. 

al, 1992). P11 is therefore consistency dated at about 2.6 Ma within this well.  

The surface PXX fits with a seismic marker previously interpreted on the slope and all over the area by Dos Reis 

(2001). This reflector was dated around 1.6 Ma-1.8 Ma by this author (it was identified in borehole GLP2 as the 

Pliocene-Quaternary transition using the definition at that time, i.e. at 1.8 Ma). This age is consistent with the 

chronostratigraphy proposed by Rabineau (2001). 



A rough estimate using thicknesses of Pliocene and Pleistocene series suggested a date around 3.8 Ma for P7 

(Rabineau et al., 2014) in concordance with the age estimated from biostratigraphic data (3.6 Ma-3.8 Ma in Lofi 

et al., 2003). In the well Autan1, the surface P7 corresponds to the top of the Lower Pliocene as defined by 

Cravatte et al. (1974) at the extinction level of Globorotalia puncticulata (3.57 Ma: Lourens et al., 2004). This 

age is close to a major climatic change marked by the appearance of the Mediterranean climatic rhythm (summer 

drought) causing the individualization of the modern Mediterranean floral elements (Cravatte and Suc, 1981; 

Suc, 1984; Suc et al., 1992). This event is precisely dated at 3.37 Ma in the Black Sea (Popescu et al., 2010).  

The MES is a diachronous surface that results from erosion and incision of the Messinian fluvial network during 

the MSC. The end of the crisis is astronomically dated at 5.33 Ma according to the GSSP of the Lower Pliocene 

Zanclean Stage (Van Couvering et al, 2000). Most authors therefore agreed to date the end of the Salinity crisis 

at 5.33 Ma (CIESM, 2008) although some studies suggested that reflooding preceded the base of the Zanclean 

(Cavazza and DeCelles, 1998; Carnevale et al., 2006) and took place before the GSSP, at 5.46 Ma (Bache et al., 

2012). Given that sedimentation rates estimates will not change significantly between these both ages (they will 

remain within error bars), in this study we will use the consensual value of 5.33 Ma for the end of the crisis. 

At present, no definitive data are available for the timing of initiation of the deep basin Lower Unit (LU), the 

massive salt (MU) and the base of Upper Unit (UU), as no drilling has sampled these layers. In this paper, we 

will consider the beginning of the crisis at 5.96 Ma, which is the age of lower evaporites in peripheric basins 

(Krijgsman et al., 1999a). 

Above the BES (base of the Messinian), Autan 1 shows a thick unit (500 m) comprising two sub-units: sandy 

marls and carbonated clays (Fig.5). The first sub-unit may correspond to the early Messinian detrital unit (LU0) 

according to Bache et al. (2012). The GLP2 well shows a heterogeneous lithology at depths corresponding to the 

M3 unit (between 3385 and 3703 m bsf). The top of this interval is characterized by a 52-m thick alternation of 

sands and clays. Below, the unit consists of an alternation of halite, clays and anhydrite. Moreover, the thin 

clayey layers contains 80 % of planktonic foraminifera (Brun et al, 1984), testifying to marine inflows into the 

basin. Laterally, on both sides of GLP2, M3 seems to directly overlie either unit M2 or unit LU. The 

stratigraphic connections of M3 with other Messinian units (Tab.1), its position on top of the abrasion surface 

(Fig.10b) and its microfossil content, suggest that it corresponds to a terminal deposit of the MSC in marine 

condition. The M3 unit is always located downstream from the limit between the MES and the RS (Fig.10b).This 

limit is interpreted as the position of the shoreline at the end of a first slow step of reflooding (Bache et al., 



2012). M3 unit can therefore be interpreted as a late product of the MSC, related to reflooding; its sandy facies 

would result from marine abrasion by waves (Bache et al., 2012).  

 

We also checked the stratigraphic position of the MES from the seismic data in the wells and the reconstruction 

of depositional environments deduced from Cravatte et al. (1974), based on detailed biostratigraphic analyses 

(planktonic and benthic foraminiferas and calcareous nannoplankton). Autan1 shows a slight transgressive trend 

below the MES which might be related to the first step of a slow sea-level rise as suggested by Bache et al. 

(2012). Depositional environments deduced from micropaleontological analyses by Cravatte et al. (1974) 

indicate a transgressive trend during the Late Oligocene - Early Miocene with a maximum flooding that may 

correspond to the Miocene Climatic Optimum in the Late Burdigalian-Early Langhian or to the maximum 

flooding surface predating the Tortonian sea-level fall at about 12 Ma (Haq and Schutter, 2008). It is followed by 

a regressive trend during the Late Miocene, including the Messinian, and an abrupt increase in depth in the Early 

Pliocene. This pattern is the same for all wells (although it cannot be established for Sirocco1 due to lack of 

data), which gives consistency to the overall interpretation.  

The entire shelf underwent intense erosion during the MSC so that none of wells on the platform shows MSC 

deposits. Only Autan1, located on the upper slope, shows a regressive trend above the base of the MSC from 

Bache et al., 2009 (Fig.8). This interval corresponds to a mega-forced regression also described in Gorini et al., 

2015 which would be the result of instabilities triggered by rapid sea level drop. These deposits would derive 

from the cannibalization of the Miocene margin as shown by the presence of Serravallian and Langhian faunas 

(Cravatte et al., 1974). Miocene margin exhibit also a particularly carbonate-rich content, as shown on the 

Cicindele well that is located on the inner shelf (Fig.5).  Its dismantling and the downstream transfert of pre-

crisis sediments during the MSC therefore explains the high carbonate content of the regressive sequence 

observed above the base of the Bache’s MSC on Autan 1. This leads us to favour the base of the MSC as pointed 

by Bache et al. (2012). 

 

Finally, the older remarkable surface we picked is the top of the basement (brown on Figs. 2,4,5,6,7). It seals a 

highly reflective and chaotic seismic facies on seismic profiles and corresponds to the top of Mesozoic sediments 

(Bache et al., 2010). Rifting in the Gulf of Lions occurred during Chattian and Aquitanian times (between 30 Ma 

and 20 Ma) but the age of the end of rifting is not very well constrained (20 ± 3 Ma according to different 

authors such as Séranne (1999), Speranza et al.(2002), Ferrandini et al.(2003) and Gattacceca (2007). The 



Basement is thus mainly overlain by the Oligocene/Miocene post-rift sedimentary cover. Since the syn-rift 

deposits are very thin (Bache et al., 2010), we considered this surface as the base of the post-rift sedimentation 

dated around 23 Ma. A global pre-MSC sediment volume will be quantified from the top of the basement to the 

base of the MSC and a mean sedimentation rate will be calculated for the pre-MSC interval. 

 

3.2. Isobath and isopach maps 

The comparison between the sea-floor topographic map deduced from this study and the bathymetric map drawn 

from multibeam echosounder data (Fig.9) shows the high spatial resolution of this study.  

We computed isochron maps of all stratigraphic markers and isopach maps (in ms twtt) of all seismic units 

defined previously for the Pliocene-Pleistocene and the Miocene (Figs. 10a-b). Thickness maps (in ms twtt) of 

the entire sedimentary cover and for each period (Oligo-Miocene, Messinian, Pliocene and Pleistocene) are 

drawn in Fig.10c and depth-converted thickness maps are provided in Figs. 10d-e. 

Oligo-Miocene sediments are preferentially deposited into basement depressions, such as in the Central Graben 

(where more than 2000 ms twtt of sediments are observed) and in its South-Easternward prolongation (Fig. 10c) 

while high reliefs of basement (where accommodation is reduced) correspond to weak sedimentation areas (less 

than 750 ms twtt). The morphology of the basement strongly constrains the Oligo-Miocene sediment dynamics. 

The comparison between Oligocene-Miocene and Pliocene-Pleistocene maps (Fig.10c) shows an eastward 

migration of depocenters. As the half South-West of the Gulf of Lion is characterized by many basement 

depressions, it received most sediment during Oligo-Miocene. Very weak thickness of Miocene deposits (less 

than 300 ms twtt) on the Eastern shelf suggests that subsidence is here delayed relative to western shelf. Miocene 

subsidence did not create enough space for sedimentation, the Eastern margin being stayed in a high position 

(Bache et al., 2010) probably for a longer time. From thickness map of Oligo-Miocene deposits, we infer also the 

possible location of a proteo-“Rhone” during Oligo-Miocene as indicated in the Fig.10c. Basement depressions 

on the Eastern (rhodanian) side of the margin will not be filled before Pliocene and Pleistocene. The canyons 

incisions and sedimentation on the slope at that time are also particularly notable. 

Pliocene deposits (top-bounded by P11 reflector) on the slope are relatively thin (compare last maps on Fig.10d) 

with a maximum thickness of about 700 m, and the P11 surface locally erodes down to the top of Messinian. 

Conversely, Quaternary deposits are there very thick (mean thickness of about 1500 m) and particularly the last 

500 ka between Q5 (or D30) and the present-day sea-floor (Fig.10d). The development of Quaternary submarine 

canyons (and axial incision) implies thicker deposits on the interfluves.  



 

3.3. Corrections for porosity 

 

The proportion of dominant facies (established from wells, cf Fig. 5) and mean burial depths for each unit (from 

seismic profiles) have been defined (Tab.4). Using porosity versus depth curves from Allen & Allen (2005) we 

then determined initial and final porosities readable on the median curve centred within the compaction interval 

(red curves on Fig.11). This allows us to calculate initial volumes (porous volumes) derived from sediment 

volumes calculated from our isopach maps. Assuming that the decrease in volumes is equal to the reduction of 

porosity, we were able to decompact or compact (zero porosity) the volumes for all units (Tab.4). These volumes 

were finally assigned to a time-span in order to calculate both decompacted and solid (i.e. for zero porosity) 

sediment volumes (Tab.4 and Fig.13). 

 

3.4. Resolution and source of uncertainties 

Numerous uncertainties are associated with the quantification of detrital volumes. These uncertainties result 

from: (i) seismic resolution, (ii) depth conversion of TWTT, (iii) the determination of terrigenous versus 

intrabasinal sediment fractions, (iv) the assumptions used during the decompaction procedure, (v) the 

chronostratigraphic estimates of our seismic markers.  

In order to assess the uncertainties for each time interval, we used five regional dip-sections, which were 

compiled to represent the variability of the stratigraphic architecture of the basin (Fig.12). Based on an 

interpolation between these sections, we calculated the volume of sediments accumulated in the basin for each 

time interval and determined variances associated with each parameter using a statistical approach implemented 

in the numerical code developed by Jean Braun (See Guillocheau et al., 2012 for more explanation). The code 

considers the uncertainties on (i) seismic velocities for the depth conversion (10%), (ii) absolute ages of 

stratigraphic horizons (varying between 0 for Q5, around 0.1 Ma-0.5 Ma for the other Plio-Pleistocene markers 

and 3 Ma for the basement), (iii) carbonate content (varying from 0% to 50% in the different time intervals), and 

(iv) remaining porosities. Because detailed lithologies are too variable to be adequately described at the basin 

scale (they are only known on the platform), we assumed a constant sand/shale ratio within each time interval. 

We then tested a wide range of sand/shale ratios (ranging from pure sand to pure clay) and estimated the 

influence of this sand/shale ratio in the estimation of the accumulated volumes. 

 

3.5. Quantification of the terrigenous sediment volumes 



Estimated solid sediment volumes in the Gulf of Lions and Provence Basin over the last 20 Myr (Fig.13) 

developed as follows:  

(i) relatively low sediment yield (< 2,000 km
3
/Myr) during the pre-Messinian Miocene (from 23 Ma to 5.96 Ma); 

the uncertainties on the absolute age of rifting (20 Ma ± 3 Ma) do not significantly change this trend.  

(ii) a Messinian peak of detrital input (rates higher than 28,000 km
3
/Myr from 5.96 Ma to 5.33 Ma in the 

scenario of Bache et al, 2009; the associated uncertainties in this time interval reach almost 50% due to the 

unknown evaporitic part of the deposits (we have considered up to 50% of evaporites both in the early Messinian 

detrital unit and within the LU1 unit). Regardless of uncertainties, the Messinian peak of detritus remains. In the 

case of the scenario of Lofi and Berné (2008), we observe a clear peak, only if the LU1 contains at least 50 % of 

terrestrial sediments. This point will be tackled in the discussion, in which we will also try to distinguish 

between terrestrial sources and recycled shelf material. 

 (iii) a sedimentary input of around 7,000 km
3
/Myr during the Pliocene (from 5.33 to 2.6 Ma) which is 

approximately four times higher than the Miocene mean rate. This trend is robust despite the uncertainties. 

(iv) a decrease in the sediment volume in the Early Pleistocene (from 2.6 to 1.6 Ma) is also indicated despite the 

uncertainties. This decrease seems to carry on until 0.9 Ma. 

(v) the sediment flux for the last 0.9 Myr is more than double compared to the flux between 1.6 and 0.9 Ma. 

(Note here that the uncertainty in the absolute age of the youngest time interval is null). 

 

4. DISCUSSION 

 

 

4.1. ARE OUR ESTIMATES OF MESSINIAN DETRITAL VOLUMES DISCRIMINATING FOR 

THE IDENTIFICATION OF THE BASE OF THE MSC? 

 

Estimating a minimum detrital volume that should be found in the Messinian sediments is one way to 

discriminate between the two competing models for the base of the MSC. 

Rivers respond to a drop in their base level by incising the topography. Messinian incisions are very deep in the 

downstream part of the valleys (more than 1,000 m for the Rhône) and have propagated very far inland (over 400 

km; Clauzon, 1982). According to Loget et al. (2006), the corresponding incision rate is up to 10 mm/yr in the 

downstream part of the Rhône, i.e. similar to fluvial incision rates in tectonically active mountain belts such as 

the Himalayas (2-12 mm/yr, e.g. Burbank et al., 1996). The upstream propagation of an incision, as usually 

depicted by a knickpoint migration, is thought to depend on several parameters such as the drainage area, 

lithology, and the amplitude of the base level drop (e.g. Loget et al., 2009). Here, the exceptional kilometer-scale 



sea-level fall associated with a large drainage area also seems to have reached very high fluvial erosional rates. 

The erosion created two main incised valleys onshore: (1) to the East, the first one corresponds to the Rhône 

system together with a network from the region of Montpellier, both joining downstream into a single valley 

(Clauzon, 1982). (2) The other to the West corresponds to the Orb-Hérault system with headwards extending 

from the Languedoc and Roussillon region (Clauzon et al., 2015). A smaller incised valley to the South-West 

corresponds to the Têt-Tech system. Assuming a downstream limit of these incisions that corresponds to the 

present-day coast-line and a mean denudation thickness up to 50 m (estimated from the Pliocene abandonment 

surface), the isobath map of the MES onland allows calculating the onshore volume incised by these two main 

valleys. They are respectively estimated to 1500 km
3
 and 400 km

3
   (Clauzon et al., 2015). The recycled shelf 

material has been estimated to ~3,000 km
3
 in the Languedoc and Roussillon areas (Mauffret et al., 2001 ; Lofi et 

al., 2005) and extrapolated to ~10,000 km
3
 in the whole Rhône Valley and on the entire shelf of the Gulf of 

Lions where the MES has been observed (>20,000 km
2
) (Bache et al., 2009). The incisions do not end at present-

day shelf-break, but occurred also on the slope. This latter volume, hardly quantifiable, is not included in this 

estimate. Finally, this volume does not take into account the direct input from the Rhône River. Considering a 

Messinian Rhône sediment supply similar to that of the Miocene Rhône (~3000 km
3
/Myr), around 2000 km

3
 of 

terrestrial sources sediments should have been discharged during the MSC (630,000 yrs). At least 14,000 km
3
 of 

sediments are thus eroded, transported and deposited into the basin during the MSC. 

The two competing interpretations for the base of the MSC (Lofi & Berné, 2008; Bache et al., 2009) (see section 

3.11 ) result in two different estimates of the amount of detrital Messinian sediments (Fig.14). Given that the 

seismic facies in Lofi_LU (corresponding to Bache_LU1) suggests a significant evaporitic part that is 

unfortunately still  unknown, three cases are considered with respect to its potential (compacted) detrital fraction: 

0% (black), 20% (dark grey) or 50% (light grey). Total amount of detrital units (terrestrial sources and recycled 

shelf material are undifferentiated here) are thus displayed for each interpretation; for Lofi and Berné (2008) 

hypothesis, estimates include the fully detrital volume of the Clastic Unit (CU) and the potential detrital part in 

the Lower Unit (LU), whereas in the Bache et al. (2009) hypothesis, estimates include the fully detrital volumes 

of units LU0, M2, M3 and the potential detrital part in the Lower Unit 1 (LU1).  

If we consider a fully evaporitic Lofi_LU, sediment flux story in Lofi and Berné (2008)’s interpretation shows a 

slight decrease between Miocene and Messinian times (1900 km
3
/Myr), while Bache et al.(2009)’s interpretation 

implies a major detrital peak during the Messinian (19,754 km
3
). Since the strong amount of recycled clastics 

during the MSC (at least 10,000 km
3
), we attempt to observe a detrital peak related to the crisis (red bar on Fig. 



14). In this case, Bache et al (2009)’ interpretation appears to be more consistent. 

For the 20% hypothesis, Messinian detrital volume in Lofi and Berné (2008)’s interpretation only reaches 5,000 

km
3
. This value is half that the minimum recycled volume from Miocene shelf and Rhone valley drawn in red 

bar  in Fig.14 (10,000 km
3 
 from Bache et al., 2009).This hypothesis is thus not conceivable. 

For the 50% hypothesis, Messinian detrital volume in Lofi and Berné (2008)’s interpretation show a clear peak   

that hardly reaches 10,000 km
3
. This value corresponds to the minimum volume of recycled material from 

Miocene shelf and Rhone valley and implies that only re-deposition occurred during MSC, what appears 

unlikely.   

To conclude, estimates of recycled and terrestrial clastics volumes related to the MSC do not allow favouring a 

scenario (and its corresponding position of the base of the event). As long as the detrital fraction of LU is not 

quantified in detail, both Bache et al. (2012) and Lofi and Berné (2008)’s interpretations remain possible. 

However, the latter (with a higher position for the base of the MSC) can be excluded if LU contains less than 

50% of reworked detrital sediments. 

 

 

4.2. FROM OFFSHORE SEDIMENT BUDGET TO  ONSHORE ALPINE DENUDATION RATES  

 

A few limitations prevent a straightforward correlation between our sediment budgets from offshore 

sedimentation to erosion patterns of the catchment area (in particular Alpine denudation rate). Closure of the 

system, onshore trapped sediments, change in drainage area, reworked material, dissolved part and Sadler effect 

are discussed below. 

(i) To be relevant, our estimates from marine sedimentation (extension in thick black line on Fig. 15) need to 

capture most of the deposits from the catchment area (in yellow on Fig.15). A dip line-drawing (located in red on 

Fig.15) displays the sedimentary architecture through the Provençal basin and the Sardinian margin. The Gulf of 

Lions margin exhibits thicker deposits relative to the Sardinian margin that is fed by smaller rivers. The Rhône 

River is 816 km long and has the second largest drainage area (98,800 km
2
) in the Mediterranean Sea (Pont et 

al., 2002). Its watershed includes a lot of  mountainous environments such as the Alps, Massif Central, and Jura. 

Most of the offshore sediments originate from the Rhone River which transports Alpine sediments into the Gulf 

of Lions, compared to smaller inputs from the smaller Pyreneo-Languedocian rivers which mainly drain the 

Pyrenees (Aloisi, 1986).  The Petit-Rhône Fan is the largest turbidite system in the Gulf of Lions. Situated in the 

central part of the gulf, it represents an accumulation of 3,600 m of turbidites and mass-transport deposits, 



mainly fed by alpine inputs through the Rhône River and Delta and the Petit- Rhône Canyon (Droz et al., 2006). 

These Quaternary sedimentary systems (dotted black lines on Fig. 15) are superimposed with our Pleistocene 

thickness map (thickest deposits are here in red) showing that our study integrates almost all these features. Our 

budget forgets the distal lobes of the Petit Rhone fan but their thicknesses appear negligible compared to the 

proximal channel-levee systems. Note that the Valencia fan is mainly fed by the Ebro River through the Valencia 

Basin.  

(ii) Size of catchment areas and sediment pathways from source to sink changed through time. This spatial 

evolution need to be constrained to correctly correlate our sediment budget from sink with spatial denudation 

rate at the source. As argued by Kuhlemann (2000), a partitioning between debris from the Eastern Alps and the 

Swiss and Western Alps is attempted on the base of the varying catchment size.  

 (iii) Our volume estimates take into consideration only marine sedimentation. They do not include the sediment 

volume that is trapped onshore, upstream of the studied marine sedimentary basin. So, they must be considered 

as minimum values, especially if we want to compare them to erosion rate in the onshore drainage area. This is 

especially significant during the Miocene when significant sediments traps existed in the foreland basins 

(Kuhlemann, 2000) and in the Zanclean rias between 5.46 and 4.5 Ma (Suc and Drivaliari, 1991; Suc et al., 

1999; Bache et al., 2012) (pink on Fig. 15). At present day, the Rhône catchment drainage area includes the 

Valence basin, the Bresse graben and a part of the Molasse basin (Fig.15). The accumulation in the Rhône-

Bresse graben, lasting from early Oligocene to recent times, reaches about 21,000 km
3
 in which less than 5 % is 

of non-alpine origin according to Hay et al. (1992). 2,600 km
3
 of the bulk volume were deposited in Pliocene 

and early Pleistocene times. Post Messinian redepositions of sediments from Swiss and French Molassic basins 

account also respectively for about 2,200 km3 and 4,000 km
3
 (Kuhlemann, 2000). It means that considering only 

marine sedimentation minimizes absolute Pliocene and Quaternary erosion rates in the Gulf of Lions drainage 

area of at least 25%. 

 (iv) On the other hand, our measured detrital volumes include recycled sediments. The reworking of Miocene 

sediments from the shelf is particularly important during the MSC. A significant part of the quantified MSC 

volume corresponds to sediments eroded from mountain areas before the crisis. Denudation rates calculated from 

MSC volumes would therefore be over-estimated, whereas pre-crisis Miocene denudation rates would be under-

estimated. Using the geometry of the MES and the seismic Miocene markers, Bache et al. (2009) extrapolated 

the intervals removed by erosion on the Western shelf during the MSC. They estimated a minimal eroded 

volume of ~4000 km
3 

for (compacted) Miocene series and 10,000 km
3
 for the entire shelf and Rhône valley. In 



this paper, we estimated a purely detrital volume deposited or remobilized during the MSC (including the LU0, 

M2 and M3 units and excluding possible detrital within LU1, MU and UU units) of around 19,750 km
3 

(Tab.4). 

Therefore, around 50% of this volume may actually corresponds to pre-MSC Miocene erosive processes and 

remobilization during the MSC. Thus, the compacted Miocene volume previously calculated (Fig.13 and Tab.4) 

can be fixed for this purpose: it actually reaches 39,434 km
3
 equivalent to sediment flux of 2315 km

3
/Myr. So, 

sediment inputs during Pliocene are no more four times higher than those during Miocene but “only” three times.  

(v) Moreover, the measured volumes do not include the dissolved component of erosion, which also contributes 

to continental denudation rates by chemical weathering. The amount of material carried as dissolved load is 

typically much smaller than the suspended load though this is not always the case particularly when the available 

river flow is mostly harnessed for irrigation, industrial, etc. purposes. Today, dissolved load in the Rhône River 

represents 30% of the suspended load (Poulos and Collins, 2002) but this trend has likely changed over the past.  

 (vi) Finally, as we mentioned in introduction, Willenbring & von Blanckenburg (2010) argued that sediment-

flux studies are inherently flawed because of the “Sadler effect” (Sadler, 1981; Sadler & Strauss, 1990). Based 

on the 
10

Be/
9
Be ratios of Late Miocene to modern offshore deposits, they inferred a constant erosional mass flux 

and interpreted the increase sediment discharge between Miocene and Pliocene as an artefact of the age and 

selective preservation of sediments. However, the Western Mediterranean is a closed basin where the potential 

sediment erosion and relabeling is minimal. The Sadler effect is thus not important in our setting.  

 

4.3. SOME INSIGHT INTO THE REGIONAL OR GLOBAL CONTROLLING FACTORS  

 

The evolution of post-rift detrital sediment budget in the Gulf of Lions are summarized and placed in a 

chronostratigraphic framework for comparison with global and local climatic and tectonic events in Fig.16. Is 

this evolution driven by climate change, tectonic component or both of them? 

 

4.3.1. A doubling of sediment budget around 1 Ma driven by a global climate forcing 

The Mid-Pleistocene Revolution is characterized by a major change in terrestrial climatic cyclicity: the obliquity 

forced (41 kyrs) climatic cycles, which were dominant during the Early Pleistocene, were progressively replaced 

by 100 kyr climatic cycles with higher amplitudes. This cyclicity change occurred around 0.9-0.8 Ma in the 

Atlantic Ocean (Ruddiman et al., 1986), as also observed through pollen records in the Mediterranean region 

(Joannin et al., 2011; Popescu et al., 2010). It is also accompanied by a global increase in the ice volume 



(Muttoni et al., 2003, Head and Gibbard, 2005). A significant increase in relief amplitude in the European Alps 

is also measured (Champagnac et al., 2008; Herman et al., 2013) despite diminishing rates of convergence and 

deformation (Calais et al., 2002). 

Thermochronologic data indicate that the upper Rhône Valley has deepened 1-1.5 km since the Mid-Pleistocene 

(Valla et al., 2011). The installation of the 100-ka cycles seems to induce dramatic incision of alpine valleys 

while high topographies were preserved (Haeuselmann et al., 2007; Valla et al., 2011). It implies a link between 

the onset of efficient glacial erosion in the European Alps and the transition to longer, colder glacial periods. 

Enhanced Quaternary erosion of the Alps and isostatic compensation of the removed mass would thus explain 

the significant increase in relief amplitude measured in the European Alps since 1 Ma (Champagnac et al., 2007, 

Fox et al., 2015b). This Late Pleistocene onset of glacial carving is confirmed by Glotzbach et al. (2013) with 

thermochronological AFT and AHe data in the Mont-Blanc Massif, which experienced “[…] valley incision and 

the associated increase in relief at 0.9 ± 0.8 Ma”. 

Besides, longer eustatic cycles with higher amplitudes imply that lowered sea-level allow fluvial systems to 

erode continental shelves. 

So, the enhanced climate variability and alpine glaciation over the last 1 Myr provide a privileged mechanism for 

explaining the increase of alpine erosion rates and the subsequent two-fold increase of sedimentation on the Gulf 

of Lion margin. 

 

4.3.2. A decrease of sediment yield around 2.6 Ma driven by a change in drainage area 

Climatic processes are involved in the increase of detrital sedimentation since the middle of the Pleistocene. The 

first glacial/interglacial cycles began around 2.6 Ma with an increase of ice in the Northern Hemisphere (Lear et 

al., 2000). The decrease of detrital sedimentation between 2.6 Ma and 1 Ma in the Provence Basin could then 

appear paradoxical. But, at that time, the contribution of a part of the Rhine tributaries was cut off from the 

catchment area of the Provence Basin. Indeed, up to 2.6 Ma, a large part of the modern Upper Rhine network 

(Aar present-day catchment) draining the northwestern Alps, was flowing towards the Mediterranean through the 

Doubs, Saône and Rhône valleys (Boyer, 1885; de Lamothe, 1903; Zagwijn and Doppert, 1978; Zagwijn, 1989). 

Near after 2.6 Ma, the Aar-Doubs system, deflected into the Rhine graben, started to flow out the Rhine River 

towards the North Sea (Zagwijn and Doppert, 1978; Zagwijn, 1989; Petit, 1993; Petit et al., 1996). The capture 

of the Aar River by the Rhine River has been evidenced by a drastic change in heavy minerals spectrum into the 

Upper Rhine and Bresse graben (e.g. Berger et al., 2005) and dated using rodents (Chaline, 1984), molluscs 



(Puisségur, 1984) and pollen reconstruction of climate (Farjanel, 1985). Recently, Ziegler and Fraefel (2009) 

proposed that this capture occurred around 1.7 Ma. Without the Aar contribution, the size of the catchment area 

of the Gulf of Lions was reduced by 30% (160,000 km
2
 during Pliocene vs. 125,000 km

2
 at present-day) 

(Fig.17): the discharge in the Gulf of Lions may be strongly reduced. We can infer that the decrease in sediment 

supply from these tributaries prevailed on the potential increase of erosion linked to climate change. This 

emphasizes the importance that a decrease in sediment flux could be controlled by a decrease in catchment size. 

 

 

4.3.3. Increasing sediment yield since Late Messinian 

This study shows a clear peak of sediment input in the Provence Basin related to the MSC during Late 

Messinian, followed by a three times increase of detrital sedimentation between the Miocene (before the MSC) 

and the Pliocene (5.33 Ma-2.6 Ma). 

 

The Messinian salinity crisis is widely regarded as one of the most dramatic episodes of oceanic change of at 

least the past 20 Ma (Hsü et al., 1973). Orogenic uplift closed the Betic corridor through Spain in the latest 

Tortonian/earliest Messinian (Wijermars, 1988), and severely constricted the Rifian corridor through Morocco in 

the Earliest Messinian (Krijgsman et al., 1999b). These tectonic processes obviously isolated the Mediterranean 

basin from the Atlantic Ocean (between 5.59 and 5.33 Ma), limiting their water exchange, and thus probably 

heralded the onset of the MSC (Krijgsman et al., 1999a). The exceptional kilometre-scale subsequent sea-level 

fall associated with a large drainage area led to high fluvial erosional rates. Moreover, as argued by Willet et al., 

(2006), this base-level fall would have triggered a late Messinian (5.8-5.33 Ma) climatic shift to warmer and 

wetter climate in the Mediterranean region (Fauquette et al., 2006) that would have induced weathering and an 

intensification of erosion in the Alps. This may explain that, between 6 and 4 Ma, the orogen record the strongest 

increase of fluxes (from about 11,500 km
3
/Myr to 19,000 km

3
/Myr) (Kuhlemann, 2000) in its history (Hunziker 

et al., 1992; Kuhlemann and Kempf, 2002). At that time, the European Alps ceased outward expansion, and 

tectonic uplift and exhumation shifted into the inner part of the belt (Willet et al., 2006). During the Messinian, 

evidences of intense tectonic reorganization also occurred at a world-wide scale. Sudden spreading rate changes 

in the South-East Indian, Pacific-Antarctic, and Chile ridges have been related to a change in the absolute motion 

of the Pacific plate (Cox and Engebretson, 1985; Pollitz, 1986). This change corresponds to the magnetic 

anomaly C3A that is dated at 5.9 Ma (Cande et al., 1995; Wilson, 1993; Krijgsman et al., 1999a). Cloething et 



al. (1990) highlighted also major reorganizations of spreading direction and rate during the Pliocene along the 

entire Atlantic spreading system, possibly in conjunction with more global changes in plate motions. As already 

argued by Krijgsman et al. (1999a), we suggest that the synchronicity of these events favors the hypothesis of a 

dominantly tectonic origin for the MSC that may be seen as a consequence of a global plate reorganization. 

  

Our results also highlight a three times increase of detrital sedimentation between the Miocene (before the MSC) 

and the Pliocene (5.33 Ma-2.6 Ma). 

It has been proposed that mountainous erosion increased globally around 5 Ma in response to global climate 

change (e.g. Hay et al., 1988; Zhang et al., 2001; Herman et al., 2013), mainly because this increase coincides 

with a cooling trend indicated by global isotopic data (e.g., Zachos et al., 2001). This temporal coincidence is 

also observed in the sediment yield from the Alps (Kuhlemann, 2000; Kuhlemann and Kempf, 2002). Given that 

this increase is not accompanied by tectonic convergence across the Alps during this time period (e.g. Schmid et 

al., 1996), many authors (Cederbom et al., 2004; Willett et al., 2006; Vernon et al., 2008) invoke a climate 

driver. Cederbom et al. (2004) correlated the acceleration of erosional rates in the Alps with the exhumation of 

the North Alpine Foreland Basin at 4.5 Ma, suggesting that this increase in erosion was a response to the onset of 

the Gulf Stream and the resulting wetter and more erosive climate over continental Europe. The net erosional 

unloading would have caused isostatic uplift of the foreland and increased exhumation rates in the Alps via 

flexural accommodation. According to Willet et al. (2006), the onset of acceleration in erosional flux was 

initiated in response to a lowered base level resulting from the Messinian salinity crisis and when a more humid 

climate also increased erosion in the Alps. This resulted in focused exhumation of the Penninic crystalline 

basement. Despite differences in the geodynamic concepts between these studies, both Willett et al. (2006) and 

Cederbom et al. (2004) agree for a climate control and emphasize far-reaching consequences for the 

development of the orogen.  

In contrast, other authors proposed tectonic models that are capable of explaining erosion without any climate 

forcing. According to Schlunegger and Mosar (2011), the earliest Pliocene initiation of enhanced sediment 

discharge reflects the recycling of the Molasse units that occurred in response to a shift in the drainage direction 

of the Alpine rivers. This shift would be controlled by tectonic activity in the Cenozoic European Rift System. 

Other regional-scale tectonic processes may also have driven erosion, such as Eurasian slab unloading beneath 

the Western Alps, as suggested by Baran et al. (2014).  

 



Deciphering between these hypotheses about tectonic or climatic forcing to explain increased sediment budget 

over the last 5 Myr needs to better constrain the timing and resolution of this evolution and to better correlate 

regional and global events.  

 

The global benthic 
18

O record (Lisiecki and Raymo, 2005) spanning the current Pliocene, Pleistocene and 

Holocene Epochs depicts a major change towards heavier values around 4 Ma, interpreted as reflecting the 

beginning of a cooling trend associated with the growth of major Northern Hemisphere ice caps superimposed 

on short-term obliquity-dominated glacial cycles (Shackleton, 1997). At 3.3 Ma a marked cooling event occurs 

during the Mammoth subchron (Prell, 1984; Keigwin, 1986). Approximately at this point the background values 

of the LR04-stacked 
18

O record reach present-day values for the first time. It corresponds to a global climate 

change due to the extension of continental ices in the Northern Hemisphere (Suc, 1984; Lear et al., 2000; Zachos 

et al., 2001). The Early Pliocene was a relatively warm period, showing short-term and weak amplitudes of 

temperatures variations. Although climate proxies from both Pacific (Zachos et al., 2001) and the continental 

records (Cerling et al., 1997; Bruch et al., 2006) do suggest a cooling trend between the Late Miocene and the 

Pliocene, this climate shift was gradual rather than a discrete single event. So, as already noticed by Willett 

(2010) for the alpine sediment budget, the apparent sediment increase in the Provençal Basin at 5.3 Ma occurred 

too early to correspond exclusively to Pleistocene glaciation. However, since the P7 chronostratigraphic marker 

(estimated between 3.8 and 3.4 Ma) has not been extended to the deep basin (Figs.2B and 10a), it is not possible, 

at present, to highlight variations in sedimentary fluxes between the Early and the Late Pliocene (Fig.13). Thus, 

we could consider that the increase did not occurred around 5.3 Ma but later, coinciding with the first global 

cooling episode related to ice extension in the Northern Hemisphere, now precisely dated at 3.37 Ma in the 

Black Sea (Popescu et al., 2010). Such an hypothesis would imply relatively weak sedimentation rates in the 

offshore of the Gulf of Lions margin during early Pliocene while sea-level was high and the Pliocene rias 

trapped most of detrital sediments in the onshore part of the margin until at least 4.5 Ma (Suc and Drivaliari, 

1991; Suc et al., 1999). It would be also consistent with increased sedimentation rates (from two to ten times) 

and grain sizes that were recorded at world-wide scale at ~ 3-4 Myr (e.g. Zhang et al., 2001; Molnar, 2004). 

In the Po Basin, a systematic increase in sediment yield appears in the both Northern and Southern of the Alps 

also during the late phase of the MSC and continues through the Pliocene (Willet et al., 2006). Besides, climate 

studies show that the warm, wet, postglacial climate initiated during Late Miocene would be actually persistent 

until the Early to Middle Pliocene (Fauquette et al., 1999; Fortelius et al., 2002) and could also explain or 



contribute to the strong sedimentation in the Early Pliocene in our study area as also proposed for the Po Basin 

by Willett et al. (2006).  

By 5 Ma, a sustainable strong increase of erosion rates occurred in the Swiss and Western Alps and a much 

weaker increase is detected in the Eastern Alps somewhat later, which makes a regional tectonic trigger more 

reasonable than a climatic trigger (Kuhlemann, 2007). Besides, seismic velocities below the Western Alps and 

Western Swiss Alps suggest asthenospheric upwelling between the lithospheric root of the orogen and a cold 

sinking slab (Lippitsch et al., 2003), suggesting slab break-off (Davies and Von Blanckenburg, 1995). 

Simultaneous redirection of the Aare-Danube River, proposed by Schlunegger and Mosar (2011), may also be a 

superimposed regional driving factor that enhanced erosion rates at Early Pliocene. Erosion of the Molasse Basin 

started at the same time that the rivers originating from the Central Alps were deflected toward the Bresse 

Graben, which formed part of the European Cenozoic rift system. This change in the drainage direction 

decreased the distance to the marine base level by approximately 1,000 km, which in turn decreased the average 

topographic elevation in the Molasse Basin by at least 200 m. Isostatic adjustment to erosional unloading 

required ca. 1,000 m of erosion to account for this inferred topographic lowering. The contribution of 12,000-

24,000 km3 of recycled Molasse would correspond approximately to the increase in Alpine sediment discharge 

at the Miocene-Pliocene boundary.  

This emphasizes the interest of estimating evolution of sediment volumes for the Pliocene interval with better 

resolution. Determining intra-Pliocene seismic markers in the Provençal basin would be indubitably beneficial. 

 

5. CONCLUSIONS 

We identified, mapped and dated Pliocene and Pleistocene stratigraphic markers (2.6 Ma, 0.9 Ma and 0.45 Ma) 

in the seismic record of the Gulf of Lions and Provence Basin. We drew a physical stratigraphic continuity 

between the shelf domain and the deep basin and estimated the evolution of detrital sediment volumes over the 

last 6 Myr with high resolution. A terrigenous peak occurred during the Messinian Salinity Crisis, a regional 

event at the Mediterranean scale, which results from a global tectonics change. Increased sedimentation in the 

Provence Basin reflects regional enhanced fluvial erosion related to the dramatic fall of the base-level of the 

Mediterranean Sea. Stronger weathering due to a regional wetter climate probably also increased erosion and 

therefore fluxes. This sediment-study also highlights finer changes throughout the Pliocene and Pleistocene. We 

observe two increase of detritic sedimention, (i) the first one during Pliocene (between 5.3 and 2.6 Ma), (ii) the 

second one around 1 Ma and (iii) a decrease of detrital sediment fluxes around 2.6 Ma. We relate the increased 



signal at 1 Ma to the world-wide "Mid-Pleistocene Revolution" that induces a global increase in ice volume and 

a significant increase in the relief of the European Alps. This event is marked by a doubling of the detrital 

volume at 0.9 Ma in the Provence Basin. We attribute the decrease of detrital volume around 2.6 Ma in the 

Provence Basin to a regional change in the drainage pattern of rivers in the northwestern Alps. The contribution 

of the upper part of the Rhine tributaries was cut off from the catchment area of the Provence Basin. The 

Pliocene and Pleistocene sedimentation appears to be more than three times higher than that of pre-Messinian 

Miocene, in agreement with the worldwide increase in marine sedimentation rates over the last 5 Ma. 

Unfortunately, we do not have a good age control on the exact timing of the Pliocene increase. It can be 

considered to occur during Early Pliocene, and would be, thus, due to regional persistent wetter and warmer 

climate after the MSC and/or regional tectonic changes. It can also occur later (~ 3.4 Ma) as an event that is 

strictly related to the beginning of world-wide climate deterioration. All these regional and global triggers can 

also contribute in a concomitant way to the increasing sediment yield over the last 5 Myr. 
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Figures captions 

Fig. 1.  



A) Location of the study area (delimited by a white rectangle on the right) on a topographic map of the 

Mediterranean region (on the left). B) Dataset and bathymetry of the Gulf of Lion (modified from Berné et al., 

2002). Red triangles correspond to industrial wells, Blue triangles correspond to the two PROMESS European 

boreholes. Big green dots represent the ESP data, small green dots represent OBS data on Sardinia profiles. 

Thick black lines correspond to seismic lines shown in this paper. The thick purple line represents the end of the 

smooth abrasion surface RS (at 1.6 s twtt) and the pink thick line represents the limit of salt (from Bache et al., 

2009). 

 

Fig. 2 

Line-drawing of seismic line 96LRM18 located on the western shelf of the Gulf of Lions showing the major 

Pliocene, Pleistocene and Miocene markers that we identified. The Messinian Erosional Surface (pink) that 

results from erosion and incision of the Messinian fluvial network during the Messinian Salinity Crisis exhibits 

rough morphology and clearly individualizes Pliocene (blue) and Miocene intervals (yellow). Pliocene and 

Pleistocene strata shows a clear change in stacking pattern (shelf-slope breaks are indicated by black circles and 

shelf edge trajectory is plotted in black dotted line), from Late Pliocene prograding clinoforms to prograding-

aggrading Quaternary clinoforms after P11 (yellow). At the right top of the figure, a very high-resolution profile 

focuses on the erosional discontinuities for the last 0.45 Myr above Q5 (from Rabineau et al, 2006). 

 

Fig. 3 

Line-drawing of seismic lines 96LRM10 and 80LIGO22 showing the seismic units deposited on the margin 

during the Messinian Salinity Crisis and the two different interpretations for the base of the event. The base of 

the MSC corresponds to the Basal Surface (BS) and to the base of LU0 according to respectively Lofi et al., 

2011 and Bache et al., 2009. PQ = PlioQuaternary, MES = Messinian Erosional Surface, BES = Basal Erosional 

Surface, BS = Basal Surface, UU = Upper Unit, MU = Mobile Unit, LU = Lower Unit, CU = Clastic Unit, RS = 

Ravinement surface (smooth surface). Location on Fig. 1. 

 

Fig. 4 

Line-drawing of seismic line 96LRM28 (NW-SE) on the shelf of the Gulf of Lion and correlation of the 

discontinuities on the distal part of the profile with Autan 1 borehole. The seismic stratigraphic architecture (with 

the complex of large prograding clinoforms with a typical topset-foreset-bottomset organisation) is similar to 



Fig. 2. Biostratigraphic data (from Cravatte et al., 1974) provide us information to estimate ages of the seismic 

markers: the appearance of NeoGlobo-Quadrina Atlantica for example allows us to date P11 at 2.6 Ma. 

Paleoenvironments were also analysed by Cravatte et al., 1974. We therefore suggest an interpretation with R/T 

cycles (Regressive/Transgressive cycle) on the right. Location on Fig. 1. 

 

Fig. 5.  

Correlation of the stratigraphic markers with well data showing the lithologies of each unit. Individual lithologic 

colums were drawn by Lofi, 2002 and Lofi et al., 2003. Above the base of the MSC, Autan 1 shows a thick unit 

(500 m) which is composed by two sub-units: silted clays and carbonated clays. The first sub-unit may 

correspond to the early Messinian detrital unit (LU0) according to Bache et al. (2012). This synthesis on 

lithologies for all wells allowed us to define the relative proportion of dominant facies (sand, shale and 

carbonate) for each unit in order to decompact them (cf Tab.4 & Fig.13). Locations of wells on Fig.1. 

 

Fig. 6 

Line-drawing of the ECORS 1 profile in the Eastern part of the margin, showing the sedimentary architecture 

and the continuity of the seismic markers from shelf to deep basin. Location on Fig. 1. 

 

Fig. 7 

Line-drawing of the 96LRM10 and 80LIGO22 seismic profile on the Western part of the margin showing the 

sedimentary architecture and the stratigraphic continuity of the seismic markers from shelf to deep basin which 

is not always easy to draw. Location on Fig. 1. Pre-Messinian Miocene markers on the shelf are drawn but their 

age are not constrained. Faults (black lines) are also drawn. 

 

Fig. 8  

Correlation between the chronostratigraphic markers defined in this study and depositional environments as 

described in (Cravatte et al., 1974) deduced from well data. We interpreted them in a chronostratigraphic 

framework with Transgressive/Regressive sequences. Light gray, red and dark gray colors on T/R trends 

respectively correspond to ante-MSC Miocene, MSC and Plio-Pleistocene intervals. Our sequence stratigraphic 

interpretation using the depositional environments is consistent between all wells only if we attribute the base of 

LU0 as the base of the MSC as suggested by Bache et al, 2009 (see the text for more explanation). 



 
Fig. 9 

Comparison between the sea-floor topographic map obtained in this study (using the seismic data) and 

bathymetric map based on compilation of IFREMER’s multibeam echosounder data. The very good fit between 

the two maps shows the good resolution of the sea-floor map, and, by extension, of all isobath and isopach maps 

(all have been interpolated in the same way). 

 

Fig. 10 

A) Isopach maps (ms twtt) of individual Pliocene and Pleistocene units (see name and position of surfaces in 

Table 1 and seismic line Fig. 2). Present-day shelf-break (black) and locations of wells (black circles) are drawn 

on each map. B) Isopach maps (ms twtt) of our Messinian units. The smooth surface (blue line), the present-day 

shelf-break (black) and the messinian fluviatile network (pink) are drawn on each map. Normal faults (salt 

tectonic) from Dos Reis, 2001 are superimposed to thicknesses maps of UU & MU. C) Isopach maps (ms twtt) 

the major stratigraphic units. D) Depth-converted thickness maps of the Pliocene and Pleistocene units. E) 

Depth-converted thickness maps of the major post-rift stratigraphic units.  

 

Fig. 11 

Compilation of porosity versus depth curves (black curves) for different lithologies: a) shale, b) sandstone, c) 

carbonates (from Allen & Allen, 2005). Sonic (DT log) from GLP2 well (blue curve) is superimposed on a) and 

used to draw the best compaction law for decompacting shaly fraction of the stratigraphic units defined in this 

study (red curve on a). The superimposition of GLP2 sonic velocity curve fits the median curve of the 

compaction interval given by Allen & Allen’s (2005). So, the median curves (red curves on b) & c) are assumed 

to be also representative of the porosity versus depth curve for sandstone and carbonates in the study area. These 

curves were used with the lithology and the mean burial depth defined for each unit from well data. We 

determined thus initial and final porosities for each unit and calculated volumes of uncompacted and zero 

porosity sediments. 

 

Fig. 12. 

Vertical dip sections B, C, D, E used for estimating the uncertainties on our sediment volumes. Sections are built 

by extracting depths of all seismic markers from isobaths maps along each transect. Based on an interpolation 

between these sections, we calculated the volume of sediments accumulated in the basin for each time interval 



and determined variances associated with each parameter using a statistical approach implemented in the 

numerical code developed by Jean Braun (see the text & Guillocheau et al., 2012 for more explanation). 

Location of sections in the bottom right corner.  

 

Fig. 13 

Evolution through time of the post-rift sediment volumes in the Gulf of Lions margin with associated 

uncertainties. Sediment budgets are estimated for both uncompacted and solid sediments volumes. This study is 

focused on the last 6 Myr but a total sediment volume is also calculated for pre-Messinian Miocene sediment. 

The Provence Basin has recorded a peak of detritus during the Messinian Salinity Crisis,,a three-fold increase of 

detritus between Miocene and Pliocene, a decrease at 2.6 Ma, and a nearly doubling around 0.9 Ma. 

 

Fig. 14 

Comparison of the evolution of compacted (zero porosity) detrital volumes assuming that (A) the base of the 

MSC corresponds to the base of LU1 (according to Lofi, 2002 and Lofi & Berné, 2008) and (B) the base of the 

MSC corresponds to the base of LU0, a much deeper unit (according to Bache et al., 2009). Since detrital 

fraction in Lofi_LU (or Bache_LU1) is still unknown, we quantified detrital fluxes (undifferentiated between 

terrestrial and recycled material) by assuming successively 0%, 20% and 50% of terrigenous sediments within 

this unit. Recycled volume from Miocene shelf and Rhone valley (Bache et al., 2009) is superimposed with red 

bar in each interpretation. Note that vertical scale in B) is double than in A). These volume estimates are 

discussed in the text. 

 

Fig. 15 

Mapping of the area from which we calculated sediment budget history in the Gulf of Lions (thick black contour 

line). Thickness map (ms twtt) of offshore Pliocene and Pleistocene deposits is superimposed (blue-red scale 

corresponds to smaller to larger thicknesses. Main onshore sedimentary basins - Bresse graben, Rhine graben, 

Valence basin, and Western Molasse basin from Sissingh (1998) (in grey) - are superimposed on the present-day 

catchment area of the Gulf of Lions margin (in yellow). Black arrows show the sediment pathways from Rhone, 

Pyreneo-Languedocian, Ebro and Var rivers during Quaternary (from Droz et al., 2006) and from Sardinian 

canyons during the Messinian Salinity Crisis (fromGeletti et al., 2014). Main Quaternary offshore sedimentary 

systems (dotted black lines) are drawn from Droz et al, (2006). A dip NW-SE line-drawing (location of the 



seismic profile in red line on the map) displays the sedimentary architecture through the Provençal basin until 

Sardinian margin (scarp in shaded grey). Thick dotted line roughly separates Alpine influenced regions from 

Corsica and Sardinia. Most of the offshore sediments in the Gulf of Lions originate from the Rhone River which 

channels Alpine continental inputs into the Gulf of Lions, where the Petit-Rhône Fan is the largest turbidite 

system. See the text for more explanation. 

 

Fig. 16 

Synthesis of major stratigraphic conclusions about the Provence Basin with detrital flux evolution. These results 

are placed in a chronostratigraphic frame and linked with the local and/or global climate and tectonic events 

from literature. A peak of detritus during the MSC arises from major erosional processes and intense reworking 

both in onshore & offshore domains. Decrease of sedimentation at 2.6 Ma is due to a change of the Rhine 

drainage pattern. Increase of sedimentation around 0.9 Ma is linked to the Mid-Pleistocene Climatic Revolution. 

The three-folds increase of detrital sedimentation during Pliocene compared to the pre-Messinian Miocene may 

be correlated with a wetter climate (Willett et al., 2006 and Willett, 2010) and/or a change in drainage network 

(Schlunegger and Mosar, 2011). Regional alpine exhumation on the last 5 Myr (Vernon et al., 2008) is 

contradicted by Bernet et al., 2001 and Glotzbach et al., 2011.  

 

Fig. 17 

Maps of the present-day (left) and Pliocene (right) catchment areas (red infill) of the Gulf of Lions showing the 

change in drainage pattern cut off the Aar network around 2.6 Ma.   

 

Tab. 1 

Synthesis of the post-rift stratigraphic markers considered in this study and their stratigraphic relationships. 

 

Tab. 2 

3D Velocity model used to convert time to depth. Velocities are estimated from borehole, sonic, ESP and OBS 

data. 

 

Tab. 3 



Sediment volumes and fluxes calculated in the Provence Basin for the last 23 Myr from isopach maps. Here, 

these quantifications are not corrected for remaining porosity. Timing of deposition of the Messinian unit is not 

still constrained. We calculated sediment fluxes for different hypothesis on time-intervals (from published 

papers) for information purposes. Since there is no consensus, the entire duration of the crisis (5.96 Ma-5.33 Ma) 

appears as the most relevant interval to estimate fluxes.  

 

Tab. 4  

Details of the quantification of uncompacted and solid sediment volumes after estimating the proportion of 

dominant facies from wells, the mean burial depth for each unit and the porosity loss for each facies from abacus 

curves (see the text for more explanation).  
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