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 Lower- to Middle-Triassic sandstones from eastern Paris Basin were buried to a 

maximum depth of 2500 m at a paleo-temperature of about 100 °C. They contain extensive 

amounts of authigenic platy and filamentous illite particles similar to those reported in 

reservoirs generally buried at 3000 to 5000 m and subjected to temperatures of 120 to 150 °C. 

To evaluate this unexpected occurrence, such sandstones were collected from drill cores 

between 1825 and 2000 m depth, and nanometric-sized sub-fractions were separated. The 

illite crystals were identified by XRD, observed by SEM and TEM, analyzed for their major, 

trace, rare-earth elements and oxygen isotope compositions, and dated by K-Ar and Rb-Sr.  

 Illite particles display varied growth features in the rock pore space and on authigenic 

quartz and adularia that they postdate. TEM-EDS crystal-chemical in situ data show that the 

illite lath/fiber and platelet morphologies correspond at least to two populations with varied 

interlayer charges: between 0.7 and 0.9 in the former and between 0.8 and 1.0 in the latter, the 

Fe/Fe+Mg ratio being higher in the platelets. Except for the deeper conglomerate, the PAAS-

normalized REE patterns of the illite crystals are bell-shaped, enriched in middle REEs. Ca-

carbonates and Ca-phosphates were detected together with illite in the separates. These 

soluble components yield 87Sr/86Sr ratios that are not strictly in chemical equilibrium with the 

illite crystals, suggesting successive fluids flows with different chemical compositions. The 

K-Ar data of finer <0.05 µm illite separates confirm two crystallization events at 179.4 ± 4.5 

and 149.4 ± 2.5 Ma during the Early and Late Jurassic. The slightly coarser fractions contain 

also earlier crystallized or detrital K-bearing minerals characterized by lower δ18O values. The 

δ
18O of the finest authigenic illite separates tends to decrease slightly with depth, from 18.2 (± 

0.2) to 16.3 (± 0.2) ‰, suggesting different but contemporaneous crystallization conditions 

deeper in the section.  

 The illite platelets and filaments crystallized in changing physical-chemical 

crystallization conditions induced by fluids flows through the host-rock pore system. These 
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flow events were probably driven by repetitive rifting episodes of the North Atlantic Ocean, 

although located several hundreds kilometers away from eastern Paris Basin, and/or by 

fracturing events in the nearby basement of the Vosges Massif. Complex relationships 

between geodynamical events, thermal anomalies, and advective fluids confirm that remote 

tectonic activities can impact quiescent basins, even if located far from tectono-thermal 

activities, by discrete and long-distance fluid flows.  

     

 

Keywords: Illite nanometric crystals, K-Ar and Rb-Sr dating, oxygen isotope tracing, rare-

earth element distribution, Triassic sandstones, eastern Paris Basin 

 

 

Introduction 

 

 Sediment petrophysical characteristics are of critical importance for evaluation of 

natural energy resources and geological storage potentials of varied types of waste in 

sedimentary basins. The porosity/permeability properties of sedimentary reservoirs strongly 

depend on the intensity of their cementation, with sandstones usually displaying variable 

reservoir qualities that depend on the type, extent, origin and timing of the cementation 

episode(s) (Worden and Morad, 2000; Burley and Worden, 2003). Authigenic illite is known 

to reduce dramatically rock porosity, together with quartz and calcite, especially when 

consisting of filamentous particles (Macchi, 1987; Worden and Morad, 2003). Such illite 

either results from progressive conversion of illite-smectite mixed layers (labeled I-S 

hereafter; Inoue et al., 1987; Velde and Renac, 1996) monitored by K supply from either 

dissolution of K-bearing micas or feldspars during burial diagenesis, or interaction with long-

distance migrating fluids of varied origins (Small et al., 1992; Lanson et al., 1996; Schlegel et 
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al., 2007; Cathelineau et al., 2012). In the latter case, the reaction pathway leading to 

concomitant alteration of detrital grains and crystallization of authigenic minerals, and 

identification of the physical-chemical characteristics of the parent-fluid interactions are 

challenging to constrain (Lanson et al., 2002; Clauer and Lerman, 2012).    

 The present study focuses on physical and chemical aspects of the post-deposition 

history of Lower-Triassic sandstones from eastern Paris Basin. This geographic area has been 

investigated since 1995 by ANDRA (Agence Nationale pour la Gestion des Déchets 

Radioactifs), the French National Radioactive Waste Management Agency, for potential long-

term geological repository of nuclear waste within the Callovian-Oxfordian claystone strata. 

As an identification step of the appropriate long-term storage qualities of the host rocks, and 

by extension of the whole regional context, a 2000-m deep borehole was drilled in 2009 close 

to the ANDRA underground research laboratory to check which type of regional aquifers are 

hosted by the underlying Lower-Triassic sandstones, and at which geothermal potential (Fig. 

1; Landrein et al., 2013). Surprisingly, these Triassic sandstones contain abundant, 

widespread platy and filamentous illite, despite having only been buried to low depth (<2500 

m) and subjected to low temperatures (<100 °C; Blaise et al., 2013). To understand how and 

when illite precipitated in such conditions, nanometer-sized sub-fractions that are considered 

to consist of nucleating and initially growing illite crystals (Nadeau et al., 1984), were 

extracted for determination of their elemental and oxygen isotope compositions, and dated by 

the K-Ar and Rb-Sr methods to differentiate chemically the two morphologies and constrain 

their crystallization episode(s). Complementary to the routine X-ray diffraction (XRD) and 

wet-chemical analysis, petrographic and chemical information was obtained by optical (OM), 

scanning electron (SEM) and transmission electron (TEM) microscopy, and by electron 

dispersive spectrometry coupled to a transmission electron microscope (TEM-EDS). 

 

Geological setting and sample description  
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 The sedimentary Paris Basin is bound by uplifted crystalline massifs to the North, the 

West, the East and in the center, and by major tectonic structures, such as the Variscan thrust 

front to the North and the Tertiary Upper-Rhine Graben to the East (Mégnien, 1980). It 

underwent several periods of tectonic activity with local faulting and large-scale buckling that 

influenced the general sedimentation pattern (Brunet, 1980; Curnelle and Dubois, 1986; 

Guillocheau et al., 2000). Rifting processes started to the East with a general collapse of the 

Hercynian Massif during the Late Carboniferous to Permian time, followed by a westward 

shift of the subsidence towards the present-day centre of the basin during Late Triassic (= 

Carnian; Le Roux, 1980; Perrodon and Zabek, 1991). Thermal subsidence controlled the 

evolution of the basin at least until Early Cretaceous. Two emergence stages associated with 

erosion and alteration were identified at that time (Quesnel, 2003) as a result of both an 

eustatic sea-level drop and a distant influence of rift shoulder uplifts due to North-Atlantic 

rifting (Mégnien, 1980; Ziegler, 1990). Both episodes induced unconformity of the Late 

Cretaceous chalk overlying the Ardennes and Armorican crystalline basements. After 

sedimentation of the Upper Cretaceous, the eastern part of the basin emerged, was subjected 

to weathering and erosion that induced progressive exhumation of the underlying Jurassic 

carbonates that outcrop presently in the study area.  

 Six core samples of the EST433 well that was drilled into the Lower Triassic 

(Bourquin et al., 2006) next to the ANDRA Underground Research Laboratory were selected 

at depths between 1825 and 1999 m (Table 1; Fig. 1; Landrein et al., 2013). The shallowest 

sample at 1825 m is representative of the Muschelkalk (Middle Triassic), whereas the five 

others range from Middle to Upper Buntsandstein (Lower to Middle Triassic). Except the 

conglomerate facies at 1999 m, all samples are fine- to coarse-grained sandstones. The rocks 

are rather unconsolidated, early mature (Ro = 0.75 %; Blaise et al., 2011) and free of visible 

hydrocarbon impregnation.  
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Analytical procedure 

 

 The cores were observed from macroscopic to microscopic scale. Scanning (SEM) and 

transmission (TEM) electron microphotographs, and electron dispersive spectra with electron 

diffraction patterns (TEM-EDS) were obtained on powder samples dispersed in ethanol and 

deposited on a micro grid (Formvar/Carbon 300 Mesh Ni, Agar Scientific). The electron 

microscope was operated at 200kV, equipped with a Si-Li detector and Li super ultra-thin 

windows. Relative proportions of Si, Al, Fe, Mg, Na, Ca, K, Ti, and S were determined by the 

EDS technique. Structural formulae were calculated on the basis of eleven oxygen molecules 

per half unit cell. The tetrahedral layer was assumed to be filled with Si(4-x) and Alx atoms 

(noted Al(IV)), and the octahedral layer with Fe, Mg and the left-over Al(VI), Fe being considered 

to be 100% Fe(III) without available information on the Fe oxidation-reduction conditions. The 

data of several reference clay minerals were added to the diagrams to represent the end-

members of potential crystal-chemical modifications (Kostov, 1968; Caillère et al., 1982). 

  The selected sandstone cores were first reduced into ~1 cm3 chips and then 

disaggregated gently by using a repetitive freeze and thaw technique to avoid over-grinding of 

the framework minerals (e.g., Liewig et al., 1987). The slurries were treated with a dilute 

sodium-acetate buffer, sodium dithionite and hydrogen peroxide to remove the soluble 

mineral phases and organic matter from illite matrix (Jackson, 1975). The <2 µmm size 

fractions were then separated by sedimentation following Stokes’ law, and the <0.2 µm sizem size 

fractions by high-speed centrifugation. The additional ultra-fine fractions (<0.02, 0.02–0.05, 

0.05–0.1, 0.1–0.2 µm) were obtained by subjecting them first to an extensive dilution of 

1g/40L in deionized water to ensure “infinite” osmotic swelling by breaking the smectite 

interlayers of the I-S. Then, the nanometric size fractions were separated successively using a 

continuous-flow high-speed centrifuge, and were recovered from diluted fluids by 
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flocculating the suspended matter with NaCl (1M). Finally, the excess of reagent was 

removed by dialysis and centrifugation ( Ś rodońrodo ń  et al., 1992). The sub-fractions smaller than 

0.1 µm were then analyzed by X-Ray diffraction (XRD) for their mineralogical composition, 

by wet chemistry for their major, trace and rare-earth elements (REE), by gas mass-

spectrometry for their oxygen isotope composition. They were also dated by the K-Ar and Rb-

Sr methods. 

 The major elements were analyzed by inductively coupled plasma-atomic emission 

spectrometry (ICP-AES; Jobin Yvon 124) and the trace elements including the REEs by 

inductively coupled plasma-mass spectrometry (ICP-MS; Thermo-Electron PQ2), both 

following the procedure of Samuel et al. (1985). The overall analytical accuracy of the 

method was controlled periodically by measuring the glauconite (GL-O) and basalt (BE-N) 

geostandards (Govindaraju, 1994) that provided an analytical precision of ± 2.5, ± 5 and ± 

10%, for respectively the major-, trace- and REE contents. The REE concentrations were 

normalized relative to the Post-Archean Average Shale (PAAS) reference (Taylor and 

McLennan, 1985), because of a similar sedimentary origin, and therefore for an easier control 

of the potential REE fractionations relative to a constant initial distribution. They were also 

compared to the REE contents of the NASC for further control (on the basis of the 

compilation by Piper and Bau, 2013), but not pictured as the data were consistently similar. 

The REE contents of leachates obtained by gentle leaching of the nanometric fractions were 

very low. To constrain best the potential erratic analytical uncertainty, they were duplicated 

and one set of each was normalized to the corresponding untreated fractions of samples EST-

1 and EST-2, as detailed in a further section. 

 For determination of their δ18O values, the nanometric size fractions were dehydrated 

under vacuum at 150 °C during 2 min plus the duration of the temperature increase and 

decrease from and to the room temperature. They were then allowed to react with BrF5 at 670 

°C overnight in Ni tubes following Clayton and Mayeda’s (1963) method. The liberated O2 
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was converted into CO2 by reaction with hot graphite. Isotopic analyses were carried out as 

CO2 on a gas mass spectrometer (VG Sira 10 or Optima). Systematic duplication of sample 

analysis and repeated analyses of an internal standard (granite A1113) and the NBS28 

reference allowed estimation of the analytical uncertainty at ± 0.20‰. Results are reported 

using the conventional delta (δ) notation vs. V-SMOW.  

 The nanometric size fractions were also fused under vacuum in a high-frequency 

furnace coupled to a glass line, and the noble gases purified and analyzed on a static gas mass 

spectrometry following Bonhomme et al. (1975), with preheating of the powders at 80 °C 

under vacuum for at least 12 hr to remove the potential atmospheric Ar adsorbed on the 

mineral particles. The accuracy of the results and the reproducibility of the procedure were 

controlled by periodic measurement of the glauconite (GL-O) international standard and the 

atmospheric Ar, as well as of the residual blank of the extraction line coupled to the mass 

spectrometer (VG Micromass 1000). During the study, the radiogenic 40Ar of the GL-O 

standard amounted 24.38 ± 0.10 (2σ) × 10−6 cm3/g for four independent determinations, and 

the 40Ar/36Ar ratio of the atmospheric Ar was at 294.9 ± 0.6 (2σ) for six determinations. The 

recommended values being respectively 24.85 + 0.24 x 10-6 cm3/g for the amount of 

radiogenic 40Ar of the standard (Odin et al., 1982), and 298.6 + 0.4 for the atmospheric 

40Ar/36Ar ratio (Lee et al., 2006), the analyzed values appeared internally consistent and close 

enough to the theoretical ones to not apply discrimination corrections to the individual 

determinations. The amount of the 40Ar in the blank of the mass spectrometer and the coupled 

extraction line never exceeded 1x10−8 cm3. The K contents were determined by flame spectro-

photometry with the same reproducibility than that given above for all major elements at 

2.5%, despite further constrained by a supplementary analysis, between two successive 

samples, of a standard with a K content close to those of the two framing samples. The overall 

analytical uncertainty of the K-Ar data results from an error propagation calculation 

standardized a long time ago by Dalrymple and Lanphere (1969) for this method and 
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generalized by Roddick (1987). The calculation integrates an average error of 2.5% for the K 

content, 0.05% and 1.0% for respectively the 40Ar/38Ar and 38Ar/36Ar ratio, and 0.1% for the 

spike calibration. The usual decay constants were used for the age calculation (Steiger and 

Jäger, 1977) with an overall analytical precision better than 2.5%, the final uncertainty of the 

individual ages including that of the sample weighing. 

 The fractions of the two upper EST-1 and EST-2 sandstones were also analyzed for 

their Rb-Sr isotope characteristics before and after gentle acid leaching. The purpose was not 

a Rb-Sr dating exercise, but an attempt to control the potential contemporaneous 

crystallization of the illite-rich crystals and the intimately mixed soluble components. 

Theoretically, if the Rb-Sr “ages” calculated on the basis of “duochrons” obtained from 

untreated fractions and equivalent leachates are reasonably similar to those of the 

corresponding K-Ar ages, the soluble and illite components of each fraction are probably 

contemporaneous, having interacted with the same fluids. Alternatively, different Rb-Sr and 

K-Ar “ages” suggest non-contemporaneous crystallization of the illite crystals and soluble 

components. In fact, simultaneous analysis of the untreated, leached and insoluble fractions of 

each nano-sized fraction would have been even more appropriate for this approach. 

Unfortunately, the recovered amounts of powder for each size fraction of the selected samples 

were not enough to run all complementary analyses. The technical aspect included leaching of 

the adsorbed elements from particle surface and dissolution of the soluble components with 

dilute HAc (1M) during 30 min at room temperature increased by the time for centrifugation 

and slowing down of the rotor. The method follows Clauer (1982) with special attention not 

to use the brake of the ultracentrifuge after rotation, to avoid turbulences and therefore 

renewed dispersion of the finest nanometric particles back into the supernate. In this respect, 

it is probably appropriate to recall that gentle acid leaching, as that used here, does not affect 

the Rb-Sr and K-Ar isotopic systems of clay particles regardless of type, size or crystalline 

degree (Clauer et al., 1993). Also to be remembered is the fact that interpretation of the lines 
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in 87Sr/86Sr vs. 1/Sr or 87Sr/86Sr vs. 87Rb/86Sr diagrams strictly depends on the studied material 

(e.g., Clauer and Chaudhuri, 1995): for instance, a geologically meaningful isochron can only 

be claimed if the analyzed material is fully authigenic. If it is not the case, the lines yield 

meaningless slopes representing mixtures of components of varied origins (Clauer et al., 

2011). To be reiterated also is the fact that the data were only generated from “duochrons”, 

the results being evaluated with special care and an increased analytical uncertainty. 

 After acid digestion of the untreated aliquots and evaporation of the acid leachates, Sr 

was separated by resin chromatography and analyzed by solid-source mass-spectrometry for 

its isotopic composition. The Sr separation and purification was obtained on Eichrom Sr-resin 

following Pin et al. (2003). The purified Sr was loaded on a Ta-filament, and the 87Sr/86Sr 

isotopic ratio measured by thermal ionization mass spectrometry (Finnigan Triton TI). About 

100 ratios were measured for each aliquot to ensure the best analytical error depending on the 

available amount of analyzed aliquot. The external reproducibility of the isotopic 

measurements was controlled by analysis of the NBS987 standard that provided a mean value 

of 0.710258 ± 2.2 x 10-6 (2σ). The Rb and Sr contents of the leachates were determined by 

ICP-MS with a reproducibility of 5%, together with the major-, trace- and REEs. The Rb-Sr 

data were calculated with the usual decay and fractionation constants (Steiger and Jäger, 

1977). 

 

Results  

 

Petrography 

 Albite and K-feldspar overgrowths on Na- and K-feldspar grains (Fig. 2A), as well as 

quartz overgrowths on detrital quartz grains (Fig. 2C, B), and probable sub-synchronous 

crystallizations of quartz and K-feldspar (Fig. 2B) are visible by OM observations under 



  

 11

polarized light of 30 µm-thick thin-sections. SEM observations show euhedral, authigenic 

quartz and feldspar habitus, such as bi-pyramidal quartz overgrowths embedding entirely the 

detrital quartz grains in some instances, as well as adularia crystallization on detrital, partly 

dissolved K-feldspar crystals (Fig. 3A, B, C). The overgrowth of the quartz and K-feldspar 

grains is well developed and preserved, and looks like sub-synchronous. Newly formed illite 

is widespread, displaying varied morphologies and growth features on quartz and adularia, 

therefore postdating their crystallization. As the samples were not grinded on purpose, the 

origin of the quartz grains in almost all size fractions can be considered to be authigenic, 

because of their size but also because of their euhedral shape. When platy and hexagonal, 

illite displays mainly epitaxic overgrowths on authigenic or older, either earlier crystallized 

within the host rocks or strictly detrital K-feldspars (Fig. 3C), whereas filamentous illite 

crystallized preferentially within the pore space (Fig. 3E, F). Sometimes, filamentous illite 

occurs also as epitaxic crystals along lateral faces of previous hexagonal illite plates (Fig. 

3D). Chlorite and kaolinite crystals, either of detrital or early diagenetic origin, were also 

identified. Kaolinite occurs rarely as “blocky” dickite-like crystals. As euhedral framboids or 

single crystals, authigenic pyrite is closely associated with macerals, illite and partly dissolved 

detrital feldspar grains (Fig. 3G, H), giving localized greenish reduced micro-volumes.  

 These observations have been summarized into successive diagenetic steps that are 

consolidated by appended arguments such as crystallization timing and temperatures 

discussed in later sections (Fig. 5). Noteworthy and conversely to general claims and 

published models (e.g., Lanson et al., 2002), illite did not result here from dissolution of 

kaolinite-dickite, because: (1) remnants of such kaolin minerals were only observed in the 

deepest EST-6 conglomeratic sample buried at 1999 m, none being detected in the other 

samples, and (2) quartz and K-feldspar crystallization occurred before illitization, consuming 

Si and Al either released from altering kaolinite-dickite association when occurring, or as 

dissolved solutes in the migrating fluids. Also to be mentioned is the fact that these 
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mineralogical and petrographical features are not unique; they were also reported at a larger 

regional scale in equivalent stratigraphic units at Haut-du-Roc near Remiremont about 150 

km to the ESE of the drill-hole location (Fig. 1), and in Upper-Triassic sandstones buried at 

similar depths in the south-central Paris Basin (Mossmann et al., 1992; Clauer et al., 1995).  

 

Clay Mineralogy 

 Examined by XRD, the nano-fractions (<0.02, 0.02-0.05, 0.05-0.1 µm) consist mostly 

of illite at all sizes, often mixed with minor amounts of I-S detectable by a slight shift of the 

10-Å illite peak after ethylene-glycol impregnation and chlorite-smectite (labeled C-S) mixed 

layers, chlorite and accessory minerals such as quartz and K-feldspar (Table 1). Most of these 

non-illitic minerals are difficult to quantify by XRD due to their low (<3-5%) contents. 

Chlorite was identified in almost all studied samples, whereas kaolinite is restricted to the 

already mentioned deeper EST-6 conglomerate. Minute amounts of C-S were detected in the 

shallowest EST-1 sample. The abundance of quartz consistently decreases with particle size in 

all samples, confirming an authigenic origin for, at least, the finest grains. If detrital, its 

contents should have increased instead. Minute amounts of K-feldspar were also detected in 

three coarser fractions of two samples (Table 1).    

 

Clay Chemistry 

 TEM-EDS crystal-chemical in situ data show that the two illite lath/fiber and platelet 

morphologies correspond at least to two different populations. Their compositions are typical 

of illite-rich I-S close to pure illite. However, slight chemical differences confirm the two 

types of particles: (1) the interlayer charge is between 0.7 and 0.9 in the laths/fibers and 

between 0.8 and 1.0 in the plates, and (2) this difference in the interlayer corresponds to a 

higher Si content in the laths than in the platelets (Fig. 6A). There is also a marked difference 

in the Fe/Fe+Mg ratio, which is significantly higher in the platelets than in the laths (Fig. 6B). 
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The Fe and Mg concentrations do not vary significantly as a function of grain size, but the 

laths contain systematically more Mg than the platelets (Fig. 6C). In summary, the calculated 

average structural formulae are: 

 

(Si3.31 Al(IV)

0.69) (Al(VI)

1.74 Mg0.08 Fe0.13) K0.92 O11 (OH)2, 

 

for the hexagonal platelet-shaped illite, and 

 

(Si3.61 Al(IV)

0.39) (Al(VI)

1.58 Mg0.22 Fe0.13) K0.81 O11 (OH)2. 

 

for the filaments. The observed changing chemical compositions, especially in the K content, 

suggest different crystallization conditions for the two illite types. 

 The total concentrations of the major elements are consistently within 98.83 and 

101.08% of oxides and the loss of ignition (LOI; Table 2). The highest LOI is systematically 

for the intermediate 0.02-0.05 µm fractions, which suggests that they contain higher amounts 

of volatiles. The contents are consistent with the XRD mineral identification: K and Al, for 

instance, are mainly controlled by illite and identified I-S. The highest Al concentrations are 

found in the deeper EST-6 sample at 1999 m, where they reflect addition of kaolinite. The 

large range of Si contents is due to variable amounts of authigenic and possibly detrital 

quartz. Mg is positively correlated with Fe, in relation with chlorite and/or C-S. Phosphate 

concentrations are rather low, but the positive correlation between Ca and P (R=0.94 for 

n=18) suggests minute amounts of apatite that were observed independently by SEM 

(Ploquin, 2011). The Sr and Rb contents tend to be higher in the coarser 0.05-0.01 µm 

fractions, being possibly linked to the presence of feldspar. Indeed, K-feldspar was abundant 

enough to be detected by XRD in the coarser fractions of samples EST-3 and EST-5 (Table 

1). 
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 Except for the deeper EST-6 conglomerate, the PAAS-normalized REE patterns of the 

nanometric illite are consistent among the size fractions of the other samples (Fig. 7), with an 

enrichment of the middle REEs (MREE) leading to “bell-shaped” patterns (e.g., Zwingmann 

et al., 1999). The three fractions of the EST-6 conglomerate display markedly different REE 

patterns with a regular increase in the normalized MREE and HREE concentrations. In spite 

of differences in absolute concentrations of the REEs, the distribution patterns remain broadly 

consistent among the size fractions of the selected samples.  

 The chemical data of the dilute acidic leachates of the nanometric illite fractions from 

two upper EST-1 and EST-2 samples were duplicated for most studied size fractions to 

consolidate the analytical reproducibility. The leachates consist essentially of Ca and K or Na 

(Table 3). As stated above, all samples were initially subjected to a Jackson (1975) treatment 

to remove the adsorbed chemical elements on the silicate particles, as well as the associated 

soluble mineral phases and organic matter. Therefore, the elements released by the dilute-acid 

leaching were constitutive of soluble components that escaped the initial treatment, trapped 

and somehow protected within illite inter-crystalline domains. Inaccessible to the initial 

reagents, they were leached later due to the further size reduction of the illite particles that 

induced an easier access to that intra-crystalline domain. The Ca contents of the EST-1 

leachates correlate with high Mg contents, suggesting the occurrence of Ca- and Mg-

carbonates, whereas the carbonate of sample EST-2 is Mg-depleted. The high Na content 

probably relates to salt crystals that were observed independently by SEM. Noteworthy is also 

the P content of sample EST-2 consistently increasing with increasing grain size and Ca 

content. The correlation between Ca and P (R=0.48 for n=18) points also to the occurrence of 

a soluble Ca-P phases of possible organic origin, which explains why they were dissolved by 

dilute acid, while apatite was not, and why the correlation coefficient between Ca and P was 

lower than for the untreated fractions, probably because Ca occurred also as a different 

soluble phase. 
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REE characteristics of the soluble components (= leachates) 

 Duplication of some leaching experiments of the size fractions from two EST-1 and 

EST-2 samples shows that, except for the La content of the 0.05-0.1 and the Nd content of the 

0.02-0.05 µm fraction of sample EST-2, the data reproducibility is analytically acceptable 

considering the very low measured amounts (Table 3). Relative to their corresponding 

untreated fractions, the REE distribution patterns of the leachates are of broadly similar 

shapes. With the exception of Tm and Lu for the leachate from 0.05-0.1 µm fraction of 

sample EST-1, which contents are close to the analytical detection limit and therefore off the 

general trend, the patterns are all characterized by dissymmetric “bell-shaped” distributions 

with the maxima for Eu or its neighbor Gd (Fig. 8). In the detail, only the amounts of the 

REEs differ, those of the EST-1 size fractions ranging at about 1.5 µg/L, whereas those of the 

EST-2 being higher at 8.5 to 26 µg/L. The overall similar distribution patterns suggest a 

simultaneous precipitation for the leached soluble mineral phases from the same fluids, 

however at variable concentrations.  

 Interestingly, the tip of the shapes for the distribution patterns of the leachates is not 

systematically with Eu. If it is the case for the leachates from smallest <0.02 µm fractions, it 

is not for those from 0.02-0.05 and 0.05-1 µm fractions of the two samples, for which it is 

either Gd or even Tb. The systematic strongly positive anomalies in Eu are signatures for the 

input of feldspars. Conversely, the Gd or Tb positive anomalies are basically unexpected in 

the mineral world, confirming that except for Ce and Eu, which can occur either as tetra- or 

divalent configurations in addition to their usual trivalent configuration, all other REEs of 

mineral origin never yield such significant positive anomalies relative to the conventional 

standards (e.g., Taylor and McLennan, 1985). A straight interpretation for these abnormal Gd 
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and/or Tb supplies might then relate to the occurrence of organic matter as Gd anomalies, at 

least, were reported in living plants at surficial conditions (e.g., Semhi et al., 2014). 

  

K–Ar data 

 The K2O concentrations from 3.59% in the 0.05-0.1 µm fraction of sample EST-6 to 

6.54% in the 0.02-0.05 µm fraction of sample EST-2 (Table 4) are due to variable dilution of 

illite and I-S by K-free minerals (mainly quartz). However, a straight correlation among the 

determining chemical elements is difficult to obtain. The amount of radiogenic 40Ar ranges 

from 84.2% to 94.6%, indicating good analytical conditions with limited atmospheric 

contamination, which in turn favors a more accurate evaluation of the initial 40Ar/36Ar ratio 

trapped in the authigenic illite crystallites.  

 The seventeen individual K-Ar ages range from 145.7 ± 3.0 Ma to 217.3 ± 4.5 Ma. 

Those of the finest <0.02 and 0.02-0.05 µm fractions from samples EST-2, EST-4 and EST-5 

are consistent, as well as the finest and coarsest fractions of sample EST-6, with data ranging 

narrowly from 145.7 ± 3.0 to 152.7 ± 3.2 Ma, which is almost within analytical uncertainty. 

The data of the same <0.02 and 0.02-0.05 µm fractions of samples EST-1 and EST-3 and of 

the coarser (0.05-0.1 µm) fractions of these five samples are scattered between 168.1 ± 3.5 

and 217.3 ± 4.5 Ma, again with the exception for the coarser fraction of sample EST-6 (Table 

4). Noteworthy about this set of data is the narrow range of the finest <0.02 and 0.02-0.05 µm 

fractions of the samples EST-1 and EST-3 that range narrowly again between 173.9 ± 3.7 to 

184.7 ± 3.8 Ma. 

 Before evaluating the set of K-Ar data, it is probably appropriate to recall that the 

coarsest 0.05-0.1 µm and one intermediate 0.02-0.05 µm fraction of samples EST-3 and EST-

5 contain identified K-feldspar (Table 1). An age bias for these three size fractions is, 

therefore, expectable. The geological interpretation of the entire set of K-Ar ages was first 
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based on a preliminary statistical evaluation of their scatter by the software AGEDISPLAY 

that was initially conceived for examination of U-Pb ages (Sircombe, 2004). It allows 

calculation of binned frequency histograms and probable density distributions based on the 

assessment of the efficiency of bin widths. Its limitation is in the evaluation of the analytical 

uncertainty of the integrated data, the sample distribution being estimated on the basis of the 

age values alone. As such an option of discarding the individual analytical errors may 

potentially lead to misinterpretations, only the ages obtained from narrow Gaussian width 

distribution peaks have been evaluated, which includes all available data in the present case. 

Selection of a bin width close to the individual analytical errors at 10 Ma shows a histogram 

pattern with two groups of ages at 140-150 Ma and at 180 Ma amounting 12 of the 17 

analyses, whereas the independently calculated probability density distribution outlines two 

representative data concentrations at 149 and 179 Ma with respective probabilities of 2.8 and 

1.3% (Fig. 9A).  

 This statistical evaluation has been complemented, especially for a check of the 

analytical uncertainty, by a correlation study of the 40Ar/36Ar and 40K/36Ar ratios from the two 

sets of eight and four size fractions outlined by the AGEDISPLAY software. The 40Ar/36Ar 

and 40K/36Ar ratios of the whole set of data were determined with individual uncertainties 

(±2σ) between 1.03 and 2.92% for the former ratio, and between 2.31 and 3.38% for the latter 

(Table 4). The correlation coefficients of the two trends are at 0.998 (n=8) and 0.973 (n=4), 

respectively. The data points of the two smallest (<0.02 and 0.02-0.05 µm) fractions of the 

samples EST-2, EST-4 and EST-5, and the smallest (<0.02 µm) and coarsest (0.05-0.1 µm) 

fractions of sample EST-6 for which the intermediate (0.02-0.05 µm) fraction could not be 

analyzed because of lack of powder, plot along a lower array that yields an age of 149.4 ± 2.5 

Ma in an isochron diagram, aided by an isoplot calculation (Ludwig, 2001; Fig. 9B). Among 

the data points dispersed above this array, those of the two smallest fractions of samples EST-

1 and EST-3 fit the second slightly steeper array with an average age of 179.4 ± 4.5 Ma based 
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on the same calculation. Interestingly, the remaining dispersed data points with scattered older 

ages are only of the coarser 0.05-0.1 µm fractions of five samples, which suggests the 

occurrence of K-bearing minerals, probably the K-feldspars identified by XRD, that either 

crystallized earlier or are of detrital origin at this grain size. The initials of the two arrays cut 

the 40Ar/36Ar ordinates at 277 ± 85 and 237 ± 110, respectively, which is within analytical 

uncertainty with the atmospheric value of 298.6 ± 0.3 (Lee et al., 2006).  

 A value of 0.87 for the Mean Square Weighted Deviates (MSWD), which is a valuable 

control to evaluate the analytical database of an isochron plot, is obtained for the lower array, 

whereas that of the steeper array is less constrained at 2.5. To be identified as isochrons, it is 

basically required that the MSWDs of such arrays yield a statistical value of 1.0 or less. 

However, due to the limited number of samples of many available datasets, the MSWDs are 

often beyond 1.0, which incited Brooks et al. (1972) to suggest that 2.5 is an acceptable cut-

off for a definition in favor of a geologically-meaningful isochron. This is the case here, a 

general discussion being scheduled in a further section on the basis of a comparison of the 

ages with the mineralogical, chemical and oxygen isotopic data of the illite separates, and 

with the known regional evolution of the Triassic sandstones from Paris Basin. 

 In summary, the statistical examination of the K-Ar data points to two age peaks at 

about 179 and 149 Ma, the second being better constrained. These two statistical ages are 

confirmed by isochron trends at 149.4 ± 2.5 and 179.4 ± 4.5 Ma, with initial 40Ar/36Ar within 

analytical uncertainty with the atmospheric 40Ar/36Ar and MSWDs below 2.5. It can therefore 

be assumed that these two ages record two geologic events, with a less constrained database 

for the older than the younger episode.  

 

Rb-Sr data  

 The Rb and Sr contents of the dilute-acid leachates from the three size fractions of 

samples EST-1 and EST-2 range from 0.4 to 1.2 µg/g, and from 2.3 to 18.8 µg/g, respectively 
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(Table 5). To be mentioned is the duplicate Sr content of the 0.02-0.05 µm fraction of sample 

EST-2 that ends outside the analytical uncertainty. The contents of the untreated fractions are 

consistently higher for Rb (163 to 251 µg/g) than for Sr (28.5 to 114 µg/g). The 87Sr/86Sr ratios 

of the leachates range from 0.713651 (± 26x10-6) to 0.714428 (± 66x10-6) in sample EST-1, 

and from 0.711307 (± 14x10-6) to 0.712906 (± 15x10-6) in sample EST-2. The same ratios of 

the untreated fractions are significantly higher, from 0.744088 (± 11x10-6) to 0.748169 (± 

80x10-6), and from 0.725047 (± 16x10-6) to 0.729824 (± 10x10-6), respectively. Plotted into a 

87Sr/86Sr vs. 87Rb/86Sr isochron diagram, the data points fit three lines for the three fractions of 

sample EST-1 that converge towards a common initial 87Sr/86Sr ratio of about 0.7131 ± 0.0002 

with slopes giving ages within analytical uncertainty of 148 ± 8 Ma for the <0.02 µm fraction, 

134 ± 7 Ma for the 0.02-0.05 µm fraction, and a higher age of 176 ± 10 Ma for the 0.05-0.1 

µm fraction, all being calculated with only two data points (Fig. 10). The data display for the 

sample EST-2 is different with three sub-parallel lines giving the same age at 148 ± 8 Ma but 

with an initial 87Sr/86Sr ratio of 0.7108 ± 0.0001 for the <0.02 µm fraction, 0.7116 ± 0.0002 for 

the 0.02-0.05 µm fraction, and 0.7125 ± 0.0001 for the 0.05-0.1 µm fraction. 

 In summary, the Rb-Sr ages are almost identical within analytical uncertainty for five 

of the six analyzed leachate-untreated couples. Noteworthy are also the initial 87Sr/86Sr ratios 

that are either identical for the three fractions of sample EST-1, or slightly decreasing with 

crystal size for sample EST-2. Except for the two finest fractions of sample EST-2, the Rb-Sr 

ages calculated by combining the leachates and untreated aliquots are younger than the 

corresponding individual K-Ar ages, suggesting that the 87Sr/86Sr ratios of the leachates are not 

strictly in chemical equilibrium with those of the illite crystals. On the other hand, some of the 

Rb-Sr ages of the leachate-untreated couples are close to the K-Ar ages of either 149 ± 3 Ma 

or 180 ± 5 Ma.  
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Oxygen isotope data 

 Due to limited amounts of extracted clay-rich material, all the fractions of the samples 

EST-3 and EST-5 could not be analyzed for their oxygen isotope compositions. The δ
18O 

values vary from +14.9 (± 0.2) to +18.2 (± 0.2) ‰ (V-SMOW; Table 4). The coarser fractions 

of samples EST-3 and EST-5 display the lowest values, probably because of contamination by 

low-δ18O of high-temperature detrital K-feldspar detected by XRD analysis (Table 1) and 

whole-rock chemistry (Table 2). To be added is the fact that all separates contain also some 

quartz that could be of authigenic origin. For the finer fractions, the δ
18O values broadly 

decrease with increasing depth from +18.2 (± 0.2) to +16.3 (± 0.2) ‰ (V-SMOW).  

 

Discussion 

 

Significance of the mineral assemblages 

 TEM observations of illite crystals corroborate the existence of two generations based 

on the particule morphology and K-Ar ages: (1) older sub-hexagonal crystals with euhedral 

shapes (Fig. 4E, F), and (2) younger, well-crystallized elongated laths often developed by 

epitaxy on hexagonal illite (Fig. 4A, B, C, D). These microscopic observations helped setting 

successive diagenetic alteration steps (Fig. 5). It might be recalled that: (1) illite could not 

result only from dissolution of kaolinite-dickite, because kaolin minerals were only observed 

in the deepest EST-6 sample and hexagonal kaolinite is basically not changing into 

filamentous illite, and (2) concomitant quartz and K-feldspar crystallization preceded 

illitization, as platy and filamentous illite particles were observed growing on authigenic 

quartz and K-feldspar grains. Noteworthy, these local mineralogical and petrographic features 

are not unique; they were also reported at a larger regional scale in nearby equivalent 
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stratigraphic units at Niderviller and Haut du Roc on the western flank of the Vosges Massif 

(Fig. 1; Blaise, 2012), and Niedersteinbach (Tournier et al., 1999).   

 The paragenetic sequence observed by OM, SEM and TEM also required an open-

system behavior of the host rocks to allow migration of fluids, necessarily changing in 

chemical composition and temperature, in order to induce successive mineral crystallizations 

together with more or less extensive dissolutions (Fig. 5). However, a thermo-dynamic control 

of these variations is challenging, because drawing activity diagrams is especially difficult for 

illite at low temperature (<100°C), because only I-S phases or identified illite with rather low 

interlayer occupancy are considered forming stable macroscopic mineral phases. The stability 

field of an illite with an interlayer charge higher than 0.85 cannot, therefore, be visualized in a 

K+/H+ vs. Na+/H+ diagram at crystallization temperatures of about 100°C (Yates and 

Rosenberg, 1996), while illite is likely stable at temperatures higher than 150-200 °C. 

However, it can be stated, on the basis of OM (Fig. 2) and SEM observations (Fig. 3), that the 

initial episode is clearly characterized by a concomitant quartz and K-feldspar crystallization 

without illite. Quartz saturation resulted either from redistribution of silica due to pressure 

solution (Bjørlykke and Egeberg, 1993; Worden and Morad, 2000), although such a process is 

not intense in rocks with high permeability and limited compaction like here, or from 

changing pore-water temperature, fluid-cooling being the driving force for quartz over-

saturation in open media. On the basis of a classic activity diagram in the K-Na-Si-(Al) 

system (Bowers et al., 1984), K-feldspar precipitation requires high K+/H+ ratios, e.g. a neutral 

or slightly basic pH. Such pH values correspond to solutions equilibrated with respect to 

carbonates that are abundant here in adjacent formations, together with a high K+ activity that 

favors feldspar crystallization instead of phyllo-silicates, and high K/Na ratios, albite 

overgrowths having only been observed in a few instances, despite probable high Na (Cl) 

contents of the fluids. 
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 Precipitation of illite after feldspars resulted necessarily from a significant change in 

the fluid chemistry, e.g. a drop in the K+/H+ ratio that could have resulted from a drop in either 

K activity or pH, therefore excluding concomitant precipitation of K-feldspar and illite. Both, 

K and/or pH drop, can then be explained by supply of more dilute fluids, possibly from 

another reservoir. Clearly, none of these conditions favored precipitation of kaolinite or 

dickite that were observed in the deeper conglomerate, which occurrence has thus to be 

considered as detrital, unless it resulted from a progressive, burial-induced diagenesis in rock 

units that were not already invaded by migrating hydrothermal-type fluids. This hypothesis is 

not valid on the basis of the K-Ar ages from concomitant illite that obviously crystallized 

during fluid flow events. Alternatively, concomitant quartz and illite precipitation has been 

described in the basement rocks of the Rhine Graben at Soultz-sous-Forêt (Smith et al., 1998; 

Cathelineau and Boiron, 2010), where it is linked to mixing of brines issued from and 

equilibrated with Triassic formations. These fluids penetrated downwards, apparently with 

meteoric fluids that were identified in the basement rocks. Illite crystallization was, then, also 

favored by decreasing temperature and chlorinity after fluid mixing (Komninou and Yardley, 

1997). 

 

Significance of the illite K-Ar ages 

 Illitization is largely controlled by the K content of the host-rock pore waters, and was 

probably favored by rather low pHs in the sandstones (Lanson et al., 2002). It is often 

reported as resulting from either progressive K-fixation in a smectite-to-illite trend (e.g., 

Inoue et al., 1987), or as a direct mineral precipitation associated with concomitant 

alteration/dissolution of detrital K-bearing feldspar and micas (e.g., Schlegel et al., 2007; 

Brockamp et al., 2011). Systematic decrease of K-Ar dates with decreasing micrometric size 

fractions of clay-rich material has been often reported (e.g., Clauer et al., 1995; Zwingmann et 

al., 1999; Cathelineau et al., 2004; Sant’Anna et al., 2006), the older ages of the coarser size 
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fractions being generally considered as reflecting contribution of detrital minerals that 

accumulated more radiogenic argon. Progressive dissolution of these detrital feldspar grains 

and mica flakes induces isotopic resetting that is dependent on the crystal size and the ambient 

temperature (Cathelineau et al., 2004). Separation of size fractions as small as possible is 

therefore recommended, especially of sandy but also of argillaceous sediments, as it 

minimizes contamination by coarser non- or partly-recrystallized K-bearing framework 

minerals (Clauer and Lerman, 2012). However, the correlative decrease of K-Ar age and 

crystal size also points to a long-term wisdom about increased “mechanical” release (= loss) 

of 40Ar from crystallites becoming smaller. This wisdom was activated again recently by a 

molecular modeling of 40Ar recoil in illite particles (Szcerba et al., 2015) without any 

experimental support for the offered theoretical interpretation of the 40Ar loss. In fact, this 

advocated recoil due to decrease of crystallite size is clearly questionable on the basis of 

alkylammonium leaching of illite crystals, also of nanometric size. In this case, Clauer (2011) 

showed experimentally on the basis of such leaching protocol that di-octahedral illite 

crystallites, even as small as <0.02 µm, do not lose “mechanically” 40Ar beyond analytical 

uncertainty. 

 The geological meaning of the K-Ar age at 179.4 ± 4.5 Ma being less constrained 

because of the limited number of data taken from a cloud of data points of coarser fractions, 

further information can be earned by comparing these K-Ar ages with the data obtained from 

mineralogical, chemical, isotopic and morphologic techniques on the same materials. As 

already stated, the coarser fractions yield older K-Ar ages than the finest ones except for the 

deeper EST-6 sample, even if not systematically the oldest (Table 4). The coarser fractions 

also give lower δ18O values than the finest ones except, again, for the same EST-6 sample. As 

K-feldspar was identified by XRD in the coarser fractions of the EST-3 and EST-5 samples 

(Table 1), it is clear that the ages older than 200 Ma are geologically meaningless, due to an 

excess of radiogenic 40Ar supplied by the feldspar grains, detrital or crystallized in situ earlier 



  

 24

than the common age of about 180 Ma. However, no detrital minerals having been observed 

by OM or detected by XRD analysis in the three other EST-1, EST-2 and EST-4 samples, 

addition of authigenic illite that crystallized at a similar crystal shape during an earlier thermal 

episode appears more justified than a partial isotopic resetting of detrital mica or feldspar 

grains that would probably lead to more dispersed data than those obtained here. The narrow 

K-Ar ages of the coarser fractions of samples EST-2 and EST-4, for which the data points plot 

below the upper array in the isochron diagram (Fig. 9B) are more in favor of a limited 

addition of illite from 180-Ma generation than of detrital grains variably older than 180 Ma 

that should naturally provide a larger dispersion. The K-Ar ages of the two finest fractions 

(<0.02 µm and 0.02-0.05 µm) being consistent with each other, as are their δ18O values (Table 

4), suggest that they are free of any contamination by detrital or earlier crystallized K-bearing 

minerals. Interestingly, the finest <0.02 µm fractions of four samples yield older K-Ar ages 

than the corresponding coarser 0.02-0.05 µm fractions, although within analytical uncertainty 

(Table 4). This difference suggests that illitization could have been driven here by a crystal-

growth mechanism (Eberl and Ś rodońrodo ń , 1988; Hay et al., 1988; Clauer et al., 1997). However, 

such a crystal growth process has yet only be demonstrated in slow diagenetic illitization and 

not due to “fast” hydrothermal fluid flows, even at temperatures around 100 °C (e.g., Clauer 

et al., 1997; Clauer and Lerman, 2012). 

 

Fluid-rock interactions and impact on the thermal history 

 Fluid-inclusion data of quartz overgrowths from Triassic sandstones and of halite 

crystals from Keuper units above have been published recently (Blaise et al., 2014). Keeping 

in mind that the micro-thermometric data of fluid inclusions from halite crystals of the Keuper 

units could have been reset in density during the latest thermal activity, the thermal modeling 

calibrated against organic matter maturity and apatite fission tracks data indicates that the 

Callovian-Oxfordian and the Lower Triassic units underwent maximum burial temperatures 
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of 50 ± 5 °C to 90 ± 10° C, which is about 25 °C higher than the present-day temperature. 

This temperature offset implies an erosion of several hundred meters of sediments, depending 

on the thermal flux and conductivity considered. In fact, it is difficult to attribute a precise 

crystallization temperature to illite because it crystallized after the quartz and feldspar 

paragenesis, possibly at a slightly higher temperature than that determined for the quartz 

overgrowths.  

 A closer look at the diagram displaying a general burial/thermal evolution pattern of the 

eastern Paris Basin by Blaise et al. (2014) shows significant subsidence accelerations of the 

Lower-Triassic sandstones from 900 to 1200 m depth at 190-185 Ma, and from 1400 to 2100 

m depth at 165-145 Ma (Fig. 11). These pronounced subsidence periods were related to 

structural readjustments of the basement at the scale of the whole basin (Brunet and Le 

Pichon, 1982; Curnelle and Dubois, 1986). They could therefore have induced and driven 

migrations of fluids of varied origins and temperatures in the overlaying sediments, as 

suggested by Clauer et al. (1996) for the south-central basin, on the basis of a similar 

modeling.  

 Evidence for supplies of allochtonous fluids was provided by Clauer et al. (1995) who 

reported varied distinct correlations between K-Ar and δ
18O data for illite-rich separates of 

Rhaetian sandstones from an identified fault and a nearby unaffected rock of the same south-

central Paris Basin. Illite from fault gouge provided K-Ar ages similar to the oldest ages of 

illite from undisturbed matrix, between 200 and 185 Ma, but with significantly higher δ18O, 

from +16 to +18.5 ‰ (V-SMOW), as compared to +13 to +14 ‰ for illite from nearby 

undisturbed matrix. This difference suggests that illite crystallization in the matrix occurred at 

the same time as in the fault, but at a different temperature and in contact with different fluids. 

The δ18O values obtained here for the nanometric illite fractions were plotted against their K-

Ar ages (Fig. 12). The three fractions of samples EST-1, EST-2 and EST-4 yield almost 

identical patterns that incline to consider them as representative of an identical crystallization 
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process. The K-Ar age decrease within analytical uncertainty from <0.02 µm to 0.02-0.05 µm 

size is accompanied by a concomitant decrease in δ
18O. Although limited and close to the 

analytical uncertainty, the δ18O decrease of 0.1 to 0.3 ‰ suggests a slight increase of the illite 

crystallization temperature (Zheng, 1993). However, other factors may have also influenced 

the δ
18O such as: (1) a variable water/rock ratio (Uysal and Golding, 2003); (2) a variable 

chemical composition of the parent fluids (Clauer and Lerman, 2012); or (3) a variable 

contribution of detrital minerals, especially of quartz, in the coarser fractions. The slightly 

younger K-Ar age of the 0.02-0.05 µm fraction is within the analytical uncertainty, while the 

lower δ18O values for the three EST-4 size fractions located deeper than the EST-1 and EST-2 

sandstones are analytically significant, suggesting that they do not result strictly from the 

same mineral mixtures. 

 As the finest fractions lack detrital admixtures on the basis of the K-Ar ages, two 

generations of illite can be inferred depending on the two observed shapes, fibers and 

platelets, and the chemical compositions. For instance, the 2-‰ decrease of the illite δ
18O 

value from samples of the 1825-1882 m interval to those of the 1958-1999 m interval could 

correspond to distinct fluid/rock interaction during illitization. As already stated, this change 

could correspond to a temperature increase of about 20 °C (from 80 to 100 °C), regardless of 

the illite-H2O isotopic fractionation curve used (Savin and Lee, 1988; Zheng, 1993; Sheppard 

and Gilg, 1996). Actually, such a temperature increase cannot be due to a burial-induced 

process because the samples are distant by less than 200 meters, for which an increase of only 

6 °C can be expected on the basis of a mean geothermal gradient of 30 °C/km. Alternatively, 

the δ18O difference of 2‰ could also result from successive diagenetic episodes, involving 

fluids with distinct δ18O values, which is consistent with the hypothesis of distinct illite shapes 

crystallizing during independent fluid flows. In this case, the diagenetic assemblage with the 

lowest δ18O values would have crystallized in equilibrium with fluids possibly mixed with low 
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δ
18O meteoric fluids, favoring a relationship with distinct geodynamic events, and not a lasting 

illitization during continuous burial of the sediments. 

 

Changing chemistry of the interacting fluids 

 By combining the Rb-Sr data of the untreated fractions and their corresponding 

leachates, four out of six calculated ages are within analytical uncertainty. This age identity 

suggests that the 87Sr/86Sr ratio of the leachates is probably representative for fluids that 

interacted with the authigenic illite. In fact, the initial 87Sr/86Sr ratios of the different leachate-

untreated couples are quite variable from 0.7108 ± 0.0001 to 0.7134 ± 0.0003, which inclines 

one to consider that the soluble components did not result from a unique fluid during a single 

flow. Also, the rather high values allow discarding a major contribution of pure seawater, 

whose 87Sr/86Sr ratios were lower than 0.7076, during the two episodes of probable illite 

crystallization (e.g., Jones et al., 1994), while an interaction with meteoric water cannot be 

excluded. In this case, the fluid 87Sr/86Sr ratio could have increased due to interactions with 

altering minerals of the host rocks, as the solute Sr of the present-day pore fluids of the 

EST433 drill hole yields an 87Sr/86Sr ratio of 0.712856 ± 0.000005 (Rebeix et al., 2011), which 

is within the range of the calculated initial ratios of the leachate-untreated couples. 

 Comparison of the Rb-Sr ages of the leachate-untreated fractions with the 

corresponding K-Ar ages shows that the K-Ar data points of the two finest (<0.02 and 0.02-

0.05 µm) fractions of sample EST-1 belong to the isochron with an age of 179.4 ± 4.5, the 

data point of the coarser fraction (0.05-0.1 µm) plotting slightly above the isochron (Fig. 9). 

In the case of sample EST-2, the K-Ar data points of the two finest fractions plot on the 

isochron with the younger age of 149.4 ± 2.5 Ma, the data point of the coarsest fraction, again 

above the isochron, suggesting addition of contaminants of an older authigenic or detrital 

origin. Only the coarsest fraction of sample EST-1, in which detrital or older high-temperature 

components are suggested by the low δ
18O value relative to the finer fractions (Fig. 12), is 
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within the individual K-Ar ages. The two finest EST-1 fractions yield Rb-Sr ages that are 

significantly younger than the corresponding K-Ar ages. In the case of sample EST-2, the 

three fractions yield Rb-Sr ages identical to the K-Ar isochron age. However, the initial 

87Sr/86Sr ratio of the three size fractions of this EST-2 sample is variable, which is unexpected 

for mineral (and organic) phases that would have crystallized at the same time from the same 

fluid of whatever origin and composition.  

 Theoretically, the K-Ar isochron and Rb-Sr duochron ages of pure authigenic silicates 

should be identical in the analyzed separates (e.g., Clauer et al., 2003), which is not 

systematically the case here. A straight explanation is that the initials of the Rb-Sr duochrons 

are not always representative of the 87Sr/86Sr ratio of the fluids that favored crystallization of 

illite, because of different Sr isotopic ratios for the leachates. Variable addition of Sr with 

higher 87Sr/86Sr ratios, for instance by the soluble Ca and P-rich components basically enriched 

in Sr, variably modify the slope of the leachate-untreated duochrons and, therefore, change to 

some extent the Rb-Sr age calculated for the different fractions. 

 In fact, the 87Sr/86Sr ratios of the EST-1 duochrons average at 0.7131 ± 0.0003, whereas 

those of the EST-2 duochrons average at 0.7116 ± 0.0008. The first of these two mean values 

corresponds to the initial 87Sr/86Sr ratio of the finest untreated illite crystals that yield identical 

K-Ar and Rb-Sr ages at 180 ± 5 and 176 ± 10 Ma, respectively. One may then stipulate that 

the leachates of sample EST-1 could have been precipitated by the 180-Ma old fluid flow. In 

the case of sample EST-2, the two finest fractions yield identical Rb-Sr and K-Ar ages at 148 

± 8 and 150 ± 3 Ma, for a slightly lower initial 87Sr/86Sr ratio than before, of 0.7116 ± 0.0008, 

which may again reflect the Sr isotopic signature of the soluble phases. In summary, it can be 

suggested that the 87Sr/86Sr ratio of the leached soluble components reflects slightly different 

signatures for the fluids that were active during the 150- and 180-Ma flows. At last but not 

least, the Rb-Sr ages of the coarser fractions of both samples and the intermediate fraction of 

sample EST-1 are significantly younger at 134 ± 7 and 148 ± 8 Ma for the Rb-Sr data, relative 
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to 174 ± 4, 196 ± 5 and 168 ± 4 Ma for the corresponding individual K-Ar ages. To adjust 

identical Rb-Sr and K-Ar ages, it is necessary to conceptually decrease the initial 87Sr/86Sr 

ratios of these three fractions, which is a challenging exercise due of numerous uncertainties. 

A rough calculation provides initial 87Sr/86Sr ratios between 0.705 and 0.709, which are within 

the range of plutonic minerals. 

 In summary, the Rb-Sr data of the nanometric size fractions point to the occurrence of 

very few and discrete accessory Mg-Ca-carbonates and Ca-phosphates mixed with 

overwhelming illite separates, explaining why they were only detected by the chemical 

composition of the leachates. The Rb-Sr data also suggest that the soluble components could 

have crystallized from migrating fluids during the two fluid-flow episodes at 149.4 ± 2.5 and 

179.4 ± 4.5 Ma, with slightly different 87Sr/86Sr signatures. Alternatively, the calculated initial 

87Sr/86Sr signature of the coarser fractions suggests a contamination by silicates of plutonic 

origin. 

  

REE tracing of the interacting fluids 

 Theoretically, REEs can substitute for either K in the interlayer site, or for Fe, Mg and 

Al in the octahedral layer of illite and I-S (Awwiller, 1994). However, they can also occur 

potentially as minute amounts of accessory detrital monazite and/or apatite in sediments. Only 

a few studies have reported on REE concentrations of authigenic illite extracted from 

sandstones (e.g., Zwingmann et al., 1999; Uysal and Golding, 2003; Sant’Anna et al., 2006). 

Honty et al. (2008) reported the first REE concentrations of nanometric illite-rich materials 

from Cenozoic argillaceous and bentonite deposits of the East Slovak Basin. These authors 

found a tendency for REE enrichments with increasing illite particle size (Table 2). If sorption 

would have acted in the REE distribution here, the REE concentrations should have increased 

with increasing surface area, i.e., with decreasing size fractions, which is not the case. In spite 

of variable absolute concentrations, the REE distributions are broadly consistent among the 
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different fractions of each sample (Fig. 7), except for the deep EST-6 conglomerate that 

displays different patterns with a flat contribution for the LREEs and a continuous increase 

from MREEs to HREEs. The identical REE spectrum among the three fractions of this 

conglomerate highlights identical mineralogical and chemical compositions. In a similar way, 

sample EST-4 displays also a remarkable homogeneous REE distribution for the different 

fractions, despite a slightly older K-Ar age for the coarser fraction. The coarse 0.05-0.1 µm 

fraction of sample EST-3 yields also a slightly older K-Ar age suggesting the presence of 

detrital K-bearing detrital or older minerals, whereas the REE patterns are very similar. It 

looks like the K-Ar system is more sensitive to detrital contamination than the global REE 

distribution. 

 In fact, all samples show little variations in the REE concentrations among the 

different size fractions. The finest fractions <0.02 and 0.02–0.05 µm of samples EST-1 and 

EST-2 show bell-shaped REE patterns with the maximum fractionation ratio for Eu, while the 

coarser fraction exhibits a slightly flatter distribution pattern. The Ca-Mg carbonates in 

sample EST-1 and mainly of Ca-phosphate in sample EST-2, both mixed with the illite 

crystals at limited amounts yield similar REE spectra (Fig. 8), however with marked 

differences in the amounts. These patterns of small amounts of carbonates and phosphates 

similar to those of the whole fractions do not allow to decide if they interacted with the fluids 

from which illite crystallized.  

 The oxidation-reduction state of the fluids is usually assessed by changing Ce 

concentrations that result from oxidation of Ce(III) into its tetravalent state Ce(IV) (Piper, 1974). 

Ce is thus either enriched or depleted depending on its oxidation-reduction state (e.g., 

Landström and Tullborg, 1990). A slightly positive Ce anomaly is visible in all samples here, 

especially in the intermediate size fractions, except for the deeper EST-6 sample, which 

displays a negative Ce anomaly. The conglomeratic nature of this sample may have induced 

higher fluid/rock ratios relative to the above sandstone units, producing more reductive 
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conditions, as well as lower δ
18O values for the finest fractions devoid of detrital 

contamination. Also noteworthy is the systematic slightly positive Eu anomaly for the 

nanometric fractions of the other samples, which may have been inherited from dissolved 

detrital or from authigenic feldspars that crystallized at the same time as illite (e.g., Sant’Anna 

et al., 2006). This origin appears the most appropriate, as precipitation of minerals with a 

positive Eu anomaly from oxygen-poor hydrothermal solutions needs temperatures of more 

than 200 °C, which was not the case here.  

 REE contents are generally very low in diagenetic fluids, below the ng/g level 

(Michard and Albarède, 1986; Michard, 1989; Lewis at al., 1998). At crystal scale, such fluids 

carry REEs recovered from dissolution of detrital minerals, here mainly K-feldspars and 

micas that interacted with the nucleating authigenic minerals. Hence, REE patterns of 

crystallizing illite are expectedly controlled by the REE content of the nearby dissolving 

detrital feldspar and mica grains from which they inherit most elements transferred into the 

interactive fluids. Here, K-feldspar was detected by XRD in the 0.02-0.05 and 0.05-0.1 µm 

fractions of sample EST-5, and in the coarser fraction of sample EST-3 (Table 1). However, 

no clear contribution of K-feldspar identified by the well-known positive Eu anomaly is 

observed in the REE distribution of the illite crystals. Therefore, neither authigenic nor 

detrital K-feldspars appear to have significantly contributed to the REE budget of illite. 

Conversely and despite the lack of feldspar grains in the untreated fractions, the leachates of 

the size fractions from EST-1 and EST-2 samples yield significant positive Eu anomalies 

together with high Gd or Tb anomalies, probably because they originated from fluids that 

precisely did not interact with the silicates. The surprisingly high Gd (and Tm) anomaly(-ies) 

having not been reported in the mineral world, to the best of our knowledge, they suggest a 

limited supply of organics by the fluids. This possibility added to the fact that feldspar 

alteration did obviously not occur during illite crystallization, also discards a potential 

diagenetic burial-induced process. 
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 The occurrence of Ca- and P-rich soluble components does not distract from fact that 

minute amounts of REE-bearing mineral phases, such as apatite, monazite and zircon, even if 

they have not been detected by XRD could also be present. As these phases are highly 

enriched in REE relative to illite, even small amounts can influence the global patterns 

(Awwiller, 1994). Linear correlations between REE and other elements may thus help to 

identify such REE-bearing accessory minerals (Condie, 1991; Honty et al., 2008). The Ca-

phosphate soluble phase is confirmed by the positive correlation between P2O5 and CaO 

concentrations (R=0.87) in the leachates of sample EST-2. The fact that it survived the 

preliminary Jackson (1975) treatment suggests that it was probably intimately mixed with the 

illite crystals in the rock. Biogenic apatite displays usually bell-shaped REE distribution 

patterns when normalized to silicate minerals, i.e., it is significantly enriched in MREE 

(Lécuyer et al., 2004; Reynard et al., 1999). The correlation between P2O5 and REEs is 

lacking with respect to the LREEs and HREEs (R<0.1), but the ratio increases when 

considering the MREEs (0.25<R<0.32). Hence, the typical bell-shaped normalized-REE 

distribution of almost all size fractions may result, at least partly, from occurrence of soluble 

MREE-enriched biogenic Ca-phosphate, rather than from detrital apatite or monazite, which 

would also explain the Gd anomaly.  

 The separates of the conglomeratic EST-6 sample display a different general REE 

pattern, with a marked enrichment in HREE (Fig. 7). This sample exhibits the highest 

contents in Zr, ranging from 291 in the coarser fraction to 149 µg/g in the finest. As expected, 

the Hf contents are well correlated with those of Zr (R=0.99). As a common accessory detrital 

mineral in sandstones, conglomerates and shales, zircon is invariably enriched in HREEs 

(e.g., Sano et al., 2002). The correlation between Zr and REE concentrations increases from 

R=0.03 for the correlation of Zr vs. La, to R=0.92 for that of Zr vs. Lu, indicating that zircon 

undoubtedly contributes, even discretely, to the HREE content in the case of sample EST-6. 
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In sum, minute amounts of zircon crystals contaminate nanometric illite fractions, not 

interfering in the K-Ar and Rb-Sr ages. 

 

Which driving forces for illitization: progressive burial or episodic fluid flow(s)? 

 The debate about the driving force(s) of the described illitization process induced by 

either progressive burial or episodic hydrothermal fluid-flows in the Triassic sandstones of the 

Paris Basin was intense during, at least, the recent three decades. An overview of the present-

day situation appeared therefore appropriate, because this kind of debate exists for other large 

sedimentary basins, and because a convincing answer has still to be provided. During 

progressive burial, K-bearing minerals of sedimentary sequences, such as feldspar, micas, 

illite, or I-S, undergo alteration of variable extent. This alteration leads to a progressive K-Ar 

resetting of the detrital silicates next to precipitating authigenic clay crystals (e.g., Hower et 

al., 1976; Clauer et al., 2014). A major issue is in the fact that such detrital mineral grains, 

especially the coarser, are frequently only partly altered. Consequently, individual K-Ar ages 

range generally from crystallization timing of the detrital minerals to that of the mixed 

authigenic illite and altering detrital minerals. Such geologically meaningless K-Ar ages have 

been obtained recently by K-Ar dating of size fractions coarser than 0.05 µm of Triassic 

sediments of this eastern Paris Basin similar to the coarser fractions studied here (Ploquin, 

2011). If illite precipitation is only induced by progressive burial, its intensity increases with 

increasing depth, the associated illite K-Ar ages decreasing accordingly (Clauer and Lerman, 

2012). Such a progressive decrease of the K-Ar signature of burial-induced illitization was 

well documented in the deeper Gulf Coast sediments (Hower et al., 1976; Awwiller, 1994), 

and in the Mahakam Delta Basin (Clauer et al., 1999), a complete recrystallization of the 

detrital grains requiring an appropriate intensity to reset all detritals. 

 As the K-Ar and Rb-Sr isotopic ages of the finer separated size fractions from Triassic 

sandstones of the eastern Paris Basin are younger than the stratigraphic age of the host rocks, 
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the crystallization episodes were intense enough to erase the detrital signal in them, unless no 

detrital grains were small enough to occur in these finest separates. Also, no convincing 

correlation between individual K-Ar ages and sampling depth could be established (Table 4), 

probably because of the narrow studied depth interval (175 m). Therefore, the consistent 

individual K-Ar ages of the two finer fractions from selected samples confirm that they 

consist of authigenic illite-rich crystals free of any contamination by K-bearing detrital 

minerals. This result is of prime importance as it means that any fraction of the Triassic 

sandstones of the eastern Paris Basin coarser than 0.05 µm contains systematically detrital or 

older K-bearing minerals. In turn, the K-Ar data of such fractions are necessarily meaningless, 

which is indirectly supported by the oxygen isotope data.  In summary, two illite 

crystallization periods occurred at 179.4 ± 4.5 and 149.4 ± 2.5 Ma, on the basis of two K-Ar 

isochrons secured by an independent statistical calculation. These ages do not correspond to 

the maximum burial, which occurred significantly later during the Late Cretaceous (Blaise et 

al., 2014). Therefore, illite precipitation did not relate to progressive burial, but was likely 

driven by episodic fluid flows during the Early and Late Jurassic, like those advocated by 

Lampe et al. (2001) in the nearby Rhine Graben. This interpretation is supported by distinct 

illite crystal morphologies and chemical compositions that might correspond to the two 

crystallization episodes, as well as by different chemical compositions for the acid leachates 

of the illite fractions.   

 Calibration by organic matter maturation and fluid inclusions along the 2000-m long 

well points to temperatures of about 90 + 10 °C for the Lower-Triassic sandstones (Blaise et 

al., 2014). Petrographic observations indicating that illite postdates authigenic quartz and K-

feldspars suggest that the quartz-K-feldspar association probably crystallized at a lower 

temperature than illite, which had to be higher than during early crystallization of kaolinite-

dickite. These paragenetic, petrographic and chemical data exclude, therefore, any 

“eodiagenetic” (= early) low-temperature precipitation of K-feldspar together with kaolinite, 
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relative to “mesodiagenetic” (= late) quartz cementation together with illite authigenesis, as 

advocated by El-ghali et al. (2009). 

 Basically, oxygen isotopes also provide potential information about illite crystallization 

conditions, especially about temperatures, if the isotopic composition of the parent-fluid is 

known and the water/rock ratio expectedly high. The water/rock ratio is poorly constrained 

here, and quartz grains of possible detrital origin might be present in some separates, making 

speculative the calculation of the illite crystallization temperature based on oxygen isotopes. 

On the other hand, many studies have shown that temperature is not as critical as previously 

thought for the nucleation and growth of illite (Brorkum and Gjelsvik, 1988). Recent models 

for fibrous illite crystallization in sandstones have shown that nucleation and growth are 

controlled, besides temperature, by the duration of the thermal episode, the activity of K+ in 

the medium, and the salinity of the solution (Lander and Bonnell, 2010). When illitization in 

sandstones is fueled by punctuated fluid flow events, its crystallization temperatures had to be 

higher than those reached during the maximum burial of the sediments. Otherwise, radiogenic 

40Ar would diffuse out of the crystal lattice with K-Ar ages more or less reset (e.g., Clauer and 

Chaudhuri, 1995).  

 

Review of illitization in Western European Triassic sandstones by Jurassic fluid flows 

 A paragenetic sequence similar to that described here was reported in Upper-Triassic 

sandstones of the central Paris Basin (Demars and Pagel, 1994). The authors hypothesized a 

high-temperature (100-140 °C) late-Cretaceous episode synchronous with maximum burial. In 

fact, their unconstrained temperature evaluation is higher than the temperature estimated for 

maximum burial, suggesting in turn some thermal activity. Spötl et al. (1993) studied Keuper 

(Upper Triassic) sandstones of the south-central Paris Basin buried at about 2000 m. They 

distinguished early-diagenetic processes and suggested that Cl-Br of the present-day pore 

waters are representative of fluids saturated with respect to halite that flushed the rock 
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sequence during burial. For them, uplift of the eastern border of the basin induced gravity-

driven fluid flows towards the west at subsurface temperatures of •140 °C. However, they did 140 °C. However, they did 

not relate these high temperatures to advective heat transport, but rather to a combination of 

maximum burial depth, high surface temperatures and thermal blanketing during Late 

Cretaceous (100-66 Ma). And last not least, Gonçalvès et al. (2010) published an evolutionary 

model based on fluid-inclusion constraints of Dogger and Keuper formations, favoring, again, 

a burial-induced evolution apparently simulated for the quartz and K-feldspar crystallization 

episodes. 

 On the other hand, Buntsandstein (Lower Triassic) sandstones of the Saverne fracture 

field in the Vosges Massif, or buried deeply in the Rhine Graben (3000 m) at a present-day 

temperature of about 160 °C (Clauer et al., 2008), contain illite typologies similar to those 

observed here in the EST433 well. These occurrences have been explained by a faulting 

tectonic activity in the crystalline basement visible in the field around Saverne that induced 

fluid migrations into the porous sandstones either covering the crystalline massif, or deposited 

in the nearby basin to the East of the Vosges mountains, with subsequent illitization. Rhaetien 

(Uppermost Triassic) sandstone cores from southern Paris Basin collected at depths between 

1000 and 2700 m contain similar illite typologies mixed with kaolinite and some chlorite 

(Clauer et al., 1995). In the Saverne fracture field and in the close eastern basin that is now the 

Rhine Graben, illite crystallized at 185-210 and 155-175 Ma (Clauer et al., 2008) and at about 

190 and 150 Ma in the Rhaetian (Upper Triassic) sandstones from south-central Paris Basin 

(Mossmann et al., 1992). On the basis of δ
18O values of the authigenic illite and the associated 

authigenic quartz, a crystallization temperature of 220-250 °C was advocated at ~190 Ma for 

the hydrothermal fluid flow in this southern Paris Basin (Clauer et al., 1995). This 

crystallization temperature was probably overestimated as it was obtained by assuming a 

contemporaneous crystallization of illite and quartz, which could have not been the case. 

However, the hydrothermal activity had also to exist in the central basin as some of the 
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studied rocks display fault/fracture structures. Two younger I-S generations were identified in 

these horizons and K-Ar dated at ~150 and ~80 Ma at progressively decreasing temperatures 

(Clauer et al., 1995). Spötl et al. (1996) refuted this interpretation, favoring again a burial-

driven authigenic illitization of these Upper-Triassic sediments.  

 The K-Ar ages of authigenic illite in the Triassic sandstones from eastern Paris Basin 

document two crystallization episodes during the Early-Middle Jurassic (Pliensbachian-

Aalenian) and Late Jurassic (Oxfordian-Tithonian). This Jurassic period is known to have 

seen a regional extensional tectonic regime (E-W to NW-SE) correlated with an increase of 

the sediment accommodation rate (Guillocheau et al., 2000; Ferry et al., 2007). It was linked 

to thermal doming in the North Sea and opening of the central Atlantic rift (Curnelle and 

Dubois, 1986). Similarly, substantial increase in the subsidence rate was identified in the Paris 

Basin during Early and Late Jurassic (Guillocheau et al., 2000; Ferry et al., 2007). This 

thermal anomaly linked to the North-Atlantic rifting that induced large-scale fluid flows. 

During the Jurassic-Cretaceous transition, the eastern border of the basin started to rise 

(Guillocheau et al., 2000; Brigaud et al., 2009). Hydrothermal activity has been reported 

independently along the southern margin of the basin (e.g., U deposits in the southern Central 

Massif, Lancelot and Vella, 1989; Respaut et al., 1991; F-Ba mineralizations in the Morvan 

area, Joseph et al., 1973), as well as in the southern Vosges Massif (Edel, 1997). In fact, 

widespread Early-Jurassic ages were evidenced by K-Ar dating of authigenic illite in Permian 

and Triassic sandstones at the whole West-European scale (Clauer et al., 1996b), as well as in 

correlative U and F-Ba-Pb-Zn deposits (Brockamp and Clauer, 2005; Cathelineau et al., 

2012). 

 In summary, Early Jurassic (~180 Ma) and Late Jurassic-Early Cretaceous (~150 Ma) 

rifting events were recorded in the Paris Basin and its margins (Fig. 13), as well as in many 

locations of Western Europe by the impact of the concomitantly driven fluid flows. At a 

global scale, intense volcanic activity occurred also during these periods with a significant 
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increase of the seawater temperature (Dera et al., 2011). Thermal anomalies and heat transfers 

related to successive stages of the North Atlantic opening induced: (1) major increases of the 

subsidence motion in the Paris Basin due to basement readjustments, (2) large-scale fluid 

flows at the origin of illite crystallization in Permian and Triassic sandstones (Clauer et al., 

1996b; this study), and (3) U, F-Ba-Pb-Zn concentrations at the southwestern margin of the 

Paris Basin (Cathelineau et al., 2012), and non-mineralizing tectonically driven hydrothermal 

activity at the southeastern margin of the French Central Massif (Brockamp and Clauer, 

2013).   

 In fact, the area investigated here was rather devoid of major tectonic activity, the 

uppermost Oxfordian and Kimmeridgian sequences being the only ones affected by Cenozoic 

tectonic episodes related to Pyrenean and Alpine orogeny episodes (André et al., 2010). In the 

Bathonian and Bajocian limestones buried at ~ 500 to 800 m, calcite crystallization was dated 

by the U-Pb method at 149.2 ± 5.8 Ma (Pisapia et al., 2011), which is strikingly consistent 

with the youngest illitization episode in the Lower-Triassic sandstones. Being vertically 

separated from each other by more than 1000 m of very low permeable sediments (Triassic 

and Lower-Jurassic claystones and marls, and non-permeable Upper-Triassic halite layers), 

fluid transfers from the lowermost siliciclastic Triassic aquifer to the uppermost limestone 

Bajocian-Bathonian aquifer appear very unlikely. Called “cross-formational flows” by 

Worden and Matray (1995), such transfers were, however, mentioned by Demars (1994) for 

interpreting saline paleo-fluids with a Triassic signature in authigenic calcite cements of 

Dogger formations of the central Paris Basin. To date, no determining indices are available to 

invoke this process for the eastern basin.  

 The eastern section of the Paris Basin was located several hundred kilometers away 

from the North Atlantic rift zone during the whole Jurassic time, while closer to the eastern 

plutonic basement of the not yet emerged Vosges Massif. Noteworthy in this respect, is the 

fact that grabens, such as that of Gondrecourt close to the study site, were shaped during more 
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recent extensional tectonic activities in relation with the rifting of the Rhine Graben (André et 

al., 2010). The fact that major cementation episodes in such a quiescent area are linked to 

distant geodynamical activity, suggests that wide wavelength thermal anomalies may relate to 

large-scale fluid flows (Cathelineau et al., 2012). Such anomalies may induce 

porosity/permeability losses in reservoir rocks during mineralization episodes at the margin of 

sedimentary basins. The fact that Jurassic tectonic activities were recorded in the remote 

eastern border of the Paris Basin highlights the complex relationship between geodynamical 

events, thermal anomalies and correlated fluid movements.  

 

Conclusions 

 

 Despite only buried to 2500 m in the past, and despite the absence of apparent major 

tectonic activity, the Early- to Middle-Triassic sandstones of the eastern Paris Basin 

underwent extensive illite precipitation. The finest <0.02 and 0.02-0.05 µm illite separates of 

such sandstones yield K-Ar ages at 179.4 ± 4.5 and 149.4 ± 2.5 Ma on the basis of two 

isochron plots. The coarser 0.05-0.1 µm fractions yield older K-Ar ages, lower δ18O values 

and changing REE distributions for five out of the six analyzed samples, indicating admixture 

of earlier crystallized or distinct detrital minerals of plutonic origin displaying an incomplete 

isotopic resetting, and therefore meaningless isotopic ages.  

 The finest <0.02 µm fractions yield slightly older ages than the 0.02-0.05 µm fraction, 

however within analytical uncertainty, suggesting that illitization proceeded during two fluid-

flow events, with nucleation of illite plates or laths and soluble mineral phases yielding 

variable chemical compositions. The δ
18O values are not consistent with a burial-driven 

illitization, rather supporting the two-stage event set by K-Ar dating, as do the Rb-Sr data. 

The chemical data of the leachates suggest discrete occurrences of accessory Mg-Ca-

carbonate and Ca-phosphate phases mixed with the illite crystals. The two fluid-flow events 
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fit with identified episodes of successive rifting stages of the central Atlantic Ocean where 

increasing heat flows and associated fluid circulations induced several mineralization (F-Ba-

Pb-Zn, U) episodes along the margin of the basin and the Central Massif, as well as extensive 

illitization in Triassic and Permian sandstones in many locations of Western Europe. 

 From a methodological point of view, this study demonstrates that separation of 

nanometric-sized illite particles is essential for determining diagenetic conditions involving 

interactions with fluids in shallowly buried sandstone-type sediments. Also, size fractions, 

even as fine as 0.05-0.1 µm, appear polluted by detrital components, therefore providing 

biased information on low-temperature diagenetic fluid-mineral interactions.  
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Figure and table caption 

 

Figure 1. Map of the Paris Basin with the outcropping Buntsandstein (Lower Triassic) 

sedimentary horizon and the Hercynian basement. The enlargement shows the regional 

outline with the major structural features, the locations of the deep drilling EST433 and 

the ANDRA Underground Research Laboratory. 

Figure 2. Polarized-light optical microscopy images of a thin section (30 µm-thick) of the 

EST-5 sample (at 1958 m depth). A. Overgrowths on albite (dark arrow) and K-feldspar 

(white arrow) crystals. B. Sub-synchronous crystallization of quartz (dark arrow) and K-

feldspar (white arrow) overgrowths. C. and D. Quartz overgrowths.  
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Figure 3. SEM photomicrographs of authigenic mineral features in the Triassic sandstones. 

A. A euhedral quartz crystal associated with smaller quartz grains (1-10 µm) and illite 

(sample EST-4). B. Diamond-shaped adularia (sample EST-5). C. Illite filaments and 

fibers growing on a partly dissolved K-feldspar grain (sample EST-4). D. Typical habitus 

of illite from Triassic sandstones: hairy illite growing onto well-crystallized hexagonal 

plates, suggesting that the hairy morphologies correspond to the last stage of the mineral 

paragenesis (sample EST-4). E. Platy and lathy illite (sample EST-2). F. Enlargement of 

platy to the left and lathy illite to the right (sample EST-2). G. A pyrite framboïd wrapped 

in illite fibers (sample EST-2). H. Pyrite as framboïds and euhedral crystals associated 

with illite (sample EST-3). 

Figure 4. TEM photomicrographs of fine fractions from Triassic cored sandstone. A. Illite 

laths growing onto hexagonal plates (sample EST-3). B. Detailed microphotograph of the 

two morphologies: hexagonal plates (left) and laths (right) (sample EST-3). C. Illite laths 

(sample EST-2). D. Mixing of illite laths and plates (sample EST-4). E. Hexagonal illite 

overgrowths (arrow), together with some dispersed filaments (sample EST-2). F. 

Enlargement of a hexagonal illite overgrowth (arrow) (sample EST-2).  

Figure 5. Sketch of the successive mineral parageneses based on SEM observations. 

Figure 6. Crystal-chemical diagrams applied to illite analyses from Buntsandstein sandstones 

(TEM-EDS analyses). Pyr stands for pyrophyllite, Bei for beidellite, Mt for 

montmorillonite, Verm for vermiculite, Musc for muscovite, LC for low charge, and HC 

for high charge. 

Figure 7. PAAS-normalized REE concentrations of each size fraction of the 6 studied 

samples from Triassic sandstones. 

Figure 8. REE patterns of the leachates compared to the untreated corresponding illite-rich 

size fractions.  
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Figure 9. (A) Combination of the binned histogram of the K-Ar ages and the probable density 

distribution based on the software AGEDISPLAY of Sircombe (2004) with the frequency 

and probability of the two representations. (B) 40Ar/36Ar vs. 40K/36Ar isochron plot for the 

same nanometric illite-rich fractions; the first number of the data point identification refers 

to the sample number (EST-1 to EST-6), and then to the size of the separates from 1 for 

<0.02 µm, to 2 for the 0.02-0.05 µm, and 3 for the 0.05-0.1 µm intervals.  

Figure 10. Rb-Sr isochron plots of the three leached and untreated illite-rich size fractions of 

sample EST-1 in (A) and sample EST-2 in (B) with the ages and initial 87Sr/86Sr ratio of 

the equilibrium line for each couple. 

Figure 11. Modeled burial and thermal evolution pattern for the eastern Paris Basin (after 

Blaise et al., 2014). The decompacted burial of the whole sedimentary sequence is plotted 

relative to time on the horizontal scale and depth on the vertical scale. The stratigraphic 

succession starts to the left upper side with the bottom sedimentary units, which 

progressive burial can be followed by the varied curves. A reverse sedimentation is 

visible during about 10 Ma around 40 Ma ago. The color chart to the left of the pattern 

increases from blue to red color; the iso-temperatures curves of 50°C and 100°C are 

drafted in the pattern. The temperature records are based on the organic matter maturity 

and apatite fission track that basically require the use of thermal modeling inversion. 

Because no inversion procedure is currently available to model these two thermometers 

simultaneously, the PetroMod 11.0 model (Wygrala, 1988) for the organic matter and the 

AFTSolve model for fission track (Ketcham et al., 2000) were used.  

Figure 12. Plot of K-Ar ages vs. δ18O for the studied size fractions of the six samples. White, 

grey and black symbols represent the < 0.02, 0.02–0.05 and 0.05–0.1 µm size fractions, 

respectively. Full arrows illustrate the crystal growth mechanism (younger ages and 

lower 18O contents), while dotted arrows correspond to a probable incomplete resetting of 

the K–Ar clock of detrital micas or illite.  
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Figure 13. Compilation of K–Ar ages of authigenic illite in fine clay-sized fractions of 

sediments from the Paris Basin and covering the Central Massif: (1) outcropping 

Buntsandstein sandstones on and next to the border faults of the Vosges basement (ages of 

<0.2 µm fractions; Clauer et al., 2008); (2) and (2’) Rhaetian (Upper Triassic) sandstones 

from two boreholes in the south-central Paris Basin (ages of <0.2 µm fractions; 

Mossmann et al., 1992; Clauer et al., 1995); (3) Illite and illite-smectite mixed layers as 

low-temperature alteration phases in the Bernardan U deposit (Patrier et al., 1997); (4) and 

(4’) illite and illite-smectite mixed-layers at the sediment/basement interface (ages of <2 

µm fractions; Cathelineau et al., 2012); (5) Clay-rich materials filling fractures in granites 

(ages of <0.2 m fractions; Cathelineau et al., 2004); (6) Upper Rotliegende (Permian) and 

Bunter sandstones (Lower Triassic) from outcrops in the High Rhine trough area (ages of 

<0.2 µm fractions; Brockamp et al., 2011); (7) this study (ages of <0.02 m fractions). 

When given with a + error, the ages were obtained by an isochron display. The star “*” 

indicates consistent ages for adularia by 40Ar/39Ar dating. 

 

Table 1. Characteristics of the investigated samples, and qualitative mineral composition of the 

studied size fractions. Ill stands for illite, I-S for illite-smectite mixed layer, C-S for 

chlorite-smectite (corrensite) mixed layer, Chl for chlorite, Kaol for kaolinite, Qtz for 

quartz, and K-spar for K-feldspar. 

Table 2. Major and trace element contents of each size fraction of the six samples from 

Triassic sandstones. The major elements are expressed as oxides in wt.% and the trace 

elements as µg/g. LOI stands for loss of ignition and bdl for below detection limit. 

Table 3. Elemental analyses of the acid leachates of the three size fractions from EST-1 and 

EST-2 samples. 

Table 4. K-Ar data and δ18O values of the different size fractions from the studied samples. 
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Table 5. Rb-Sr data of the size fractions from EST-1 and EST-2 samples. 
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Table 1 

Sample 
ID Stratigraphic Depth Size Ill I-S C-S Chl Kaol Acc Min 

  location (m) (µm)             

EST-1 Buntsandstein 1825 <0.02 +++ + + +   Qtz 

  
(= Lower 
Triassic)   0.02-0.05 +++ + + +   Qtz 

      0.05-0.1 +++ +   +   Qtz 

EST-2 Buntsandstein 1882 <0.02 +++ +       Qtz 

      0.02-0.05 +++ +   +   Qtz 

      0.05-0.1 +++     +   Qtz 

EST-3 Buntsandstein 1887 <0.02 +++ +   +   Qtz 

      0.02-0.05 +++ +   +   Qtz 

      0.05-0.1 +++ +       Qtz, K-spar 

EST-4 Buntsandstein 1952 <0.02 +++ +       Qtz 

      0.02-0.05 +++ +       Qtz 

      0.05-0.1 +++ +   +   Qtz 

EST-5 Buntsandstein 1958 <0.02 +++ +       Qtz 

      0.02-0.05 +++ +   +   Qtz, K-spar 

      0.05-0.1 +++ +       Qtz, K-spar 

EST-6 Buntsandstein 1999 <0.02 +++ +   + + Qtz 

      0.02-0.05 +++ +   + + Qtz 

      0.05-0.1 +++ +   ++ ++ Qtz 

Acc Min stands for accessory minerals, Ill for illite, I-S for illite-smectite mixed-layer, C-S for chlorite-smectite mixed-layer, Chl for 

chlorite, Kaol for kaolinite, Qtz for quartz and K-Spar for K-feldspar, +++ for dominant,++ for intermediate, + for low contents 
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Samp
le ID 

                       
EST-1 

                       
EST-2 

                       
EST-3 

                      
EST-4 

                       
EST-5   

                       
EST-6   

Size 

(µm) 
<0.
02 

0.02-
0.05 

0.05
-0.1 

<0.
02 

0.02-
0.05 

0.05
-0.1 

<0.
02 

0.02-
0.05 

0.05
-0.1 

<0.
02 

0.02-
0.05 

0.05
-0.1 

<0.
02 

0.02-
0.05 

0.05
-0.1 

<0.0
2 

0.02-
0.05 

0.05
-0.1 

in %             

SiO2 
48.
63 47.90 

48.3
5 

51.
31 54.20 

50.5
9 

54.
57 52.57 

69.5
5 

52.
53 51.10 

55.4
1 

52.
96 48.50 

70.3
8 

51.9
1 51.40 

57.3
1 

Al2O
3 

19.
85 19.14 

20.9
2 

24.
55 20.72 

24.6
0 

19.
53 17.82 

13.8
3 

23.
73 21.63 

22.5
6 

23.
52 22.42 

15.5
2 

27.5
7 24.45 

24.0
5 

MgO 
8.2
7 7.77 6.62 

2.8
6 2.27 2.92 

2.0
6 1.94 1.04 

2.6
5 2.57 2.65 

2.4
4 2.83 1.29 1.55 1.48 1.46 

CaO 
0.0
6 0.27 0.30 

0.6
6 0.45 1.64 

1.5
5 1.69 1.04 

0.4
0 0.40 0.86 

0.2
7 1.37 0.43 0.16 0.29 0.26 

Fe2O3 
6.8
5 6.49 6.28 

3.9
7 2.74 3.94 

3.7
1 3.45 1.70 

4.1
9 3.97 3.99 

3.2
4 3.81 1.63 2.58 2.27 2.36 

MnO 
0.0
4 0.04 0.04 

0.0
1 - 0.02 

0.0
2 0.02 0.01 

0.0
1 0.01 0.01 

0.0
1 0.01 0.01 0.01 - 0.01 

TiO2 
0.4
0 0.36 0.39 

0.1
6 0.27 0.29 

0.2
1 0.43 0.32 

0.1
6 0.19 0.20 

0.1
7 0.20 0.18 0.22 0.27 0.29 

Na2O 
0.4
6 1.18 0.14 

0.1
9 1.28 0.01 

0.2
0 - 0.06 

0.2
5 1.11 - 

0.2
9 1.14 0.06 0.16 1.09 - 

K2O 
5.5
3 5.55 6.33 

7.0
8 6.71 7.59 

5.9
3 6.69 6.48 

6.9
6 6.67 6.87 

6.8
7 6.87 6.71 4.80 4.44 4.33 

P2O5 
0.1
9 0.20 0.06 

0.4
5 0.30 1.08 

1.0
4 1.40 0.78 

0.3
2 0.40 0.42 

0.2
9 0.60 0.29 0.25 0.20 0.10 

LOI 
8.5
5 11.60 

11.5
5 

8.2
4 10.80 7.10 

10.
66 14.70 4.66 

7.8
3 12.28 8.11 

9.1
2 11.95 4.57 

11.0
8 14.53 

10.3
4 

Total 
98.
83 

100.5
0 

100.
98 

99.
48 99.74 

99.7
8 

99.
47 

100.7
1 

99.4
7 

99.
03 

100.3
3 

101.
08 

99.
18 99.70 

101.
07 

100.
29 

100.4
2 

100.
51 

in 

µg/g             

Sr 28. 36.4 58.0 54. 74.9 114. 10 26.0 164. 39. 50.8 83.0 45. 60.9 135. 86.5 109.8 166.
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5 4 0 1.7 0 6 7 0 0 

Ba 
12
0.1 165.7 

224.
0 

10
4.7 255.9 

200.
0 

24
7.5 69.0 

618.
0 

99.
8 139.0 

204.
0 

152
.2 127.7 

593.
0 96.6 196.2 

200.
0 

Co 
30.
4 31.4 21.0 

23.
3 10.6 19.0 

32.
3 4.00 15.0 

9.1
0 8.60 8.00 

13.
7 23.7 7.00 6.80 6.40 8.00 

Cr 
78.
0 109.0 97.0 

11
6.0 90.0 

140.
0 

13
9.0 96.0 88.0 

56.
0 72.0 66.0 

80.
0 134.0 77.0 59.0 81.0 91.0 

Cu 
20.
0 44.0 30.0 

10
0.0 61.0 69.0 

60.
0 3.00 31.0 - 53.0 11.0 

40.
0 98.0 49.0 50.0 117.0 40.0 

Ni 
54.
7 81.9 55.0 

21.
2 52.3 60.0 

28.
5 10.0 47.0 

26.
8 36.4 28.0 

33.
5 39.4 39.0 42.1 63.9 47.0 

V 
79.
5 96.1 97.8 

20
9.0 143.6 

241.
0 

19
2.1 34.7 

108.
0 

10
4.5 125.1 

114.
0 

106
.0 234.1 67.9 54.2 70.6 62.7 

Y 
11.
9 15.7 22.4 

35.
8 13.9 76.1 

47.
4 12.5 55.8 

15.
9 22.6 34.5 

8.9
0 39.0 19.7 38.1 51.1 78.3 

Zn 
10
0.0 195.0 

140.
0 

80.
0 104.0 90.0 

70.
0 450.0 60.0 

50.
0 139.0 90.0 

40.
0 161.0 - 70.0 165.0 

230.
0 

Zr 
46.
0 72.0 78.0 

47.
0 38.0 90.0 

47.
0 6.00 69.0 

25.
0 39.0 46.0 

26.
0 62.0 42.0 

149.
0 231.0 

291.
0 

Rb 
16
3.0 217.2 

251.
0 

17
0.3 192.1 

237.
0 

15
2.9 31.8 

200.
0 

14
7.8 192.9 

215.
0 

164
.3 198.5 

229.
0 95.6 126.3 

140.
0 

Nb 
4.7
3 6.39 7.95 

2.0
7 2.31 5.67 

3.3
8 0.91 6.49 

1.7
9 2.60 3.96 

1.7
1 2.69 3.76 2.48 4.63 5.89 

Sn 
4.8
0 9.70 6.70 

21.
5 29.0 27.6 

24.
2 3.00 16.3 

6.3
0 14.1 9.40 

18.
2 27.1 36.5 5.80 13.0 9.10 

Sb 
1.7
0 2.50 3.20 

0.9
0 1.10 1.70 

0.8
0 - 0.80 

1.1
0 1.20 1.80 

1.0
0 1.10 0.40 4.90 2.90 7.80 

Cs 
35.
2 26.5 52.6 

28.
8 13.8 38.8 

20.
4 3.78 17.1 

20.
8 15.4 30.6 

21.
1 19.5 20.1 15.3 11.6 22.7 

Hf 
1.5
1 2.25 2.67 

1.7
7 1.28 3.23 

1.8
4 0.34 2.66 

0.9
5 1.34 2.03 

1.0
0 2.22 1.62 4.89 7.20 10.1 

Ta 0.5 1.27 0.74 0.2 0.50 0.56 0.3 0.07 0.84 0.2 0.38 0.50 0.4 0.32 0.53 0.40 1.14 0.74 
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2 2 5 7 2 

Pb 
29.
2 38.7 22.6 

30.
8 16.4 34.6 

43.
9 - 22.8 

14.
6 15.3 19.3 

13.
1 21.3 4.30 27.1 12.7 35.2 

Th 
12.
5 14.8 14.5 

13.
3 10.2 26.0 

20.
2 4.80 21.3 

8.2
0 10.7 15.0 

8.0
0 18.0 9.40 10.3 15.6 21.6 

U 
2.5
9 3.14 3.22 

7.5
8 5.56 9.43 

8.1
4 1.85 8.75 

4.5
4 4.65 5.21 

7.3
6 7.81 3.31 4.81 6.61 9.49 

in 
µg/g             

La 
16.
2 26.3 33.5 

19.
7 20.5 44.6 

31.
9 8.58 45.3 

12.
6 22.9 30.6 

10.
1 27.1 25.1 12.9 22.2 28.4 

Ce 
39.
1 58.9 71.4 

50.
4 43.7 

115.
0 

86.
9 22.2 

115.
0 

34.
3 56.6 78.5 

22.
4 67.6 55.9 22.2 38.1 49.2 

Pr 
5.3
4 7.82 9.54 

5.0
4 4.81 12.3 

8.2
5 2.27 12.0 

3.3
0 5.37 7.79 

2.4
4 6.83 6.48 2.63 4.54 5.99 

Nd 
24.
9 35.7 40.5 

22.
7 18.8 55.4 

36.
2 9.78 50.2 

13.
9 21.8 32.0 

9.5
9 31.1 35.8 9.89 16.8 22.4 

Sm 
5.8
6 1.72 8.58 

8.0
8 4.19 21.1 

12.
8 3.31 15.5 

3.8
5 5.51 8.40 

2.3
8 10.8 5.72 2.24 3.72 4.86 

Eu 
1.0
7 1.46 1.46 

2.3
0 1.01 5.72 

3.5
4 0.85 3.87 

1.0
2 1.47 2.06 

0.6
4 3.28 1.35 0.66 1.10 1.38 

Gd 
4.2
6 5.69 5.80 

10.
2 3.78 22.9 

15.
4 3.40 15.8 

4.2
6 6.08 8.21 

2.3
1 13.8 4.54 3.13 4.96 6.40 

Tb 
0.5
5 0.67 0.85 

1.4
4 0.45 3.68 

2.1
9 0.54 2.52 

0.6
6 0.88 1.37 

0.3
4 1.99 0.69 0.72 1.14 1.68 

Dy 
2.8
4 3.89 4.66 

7.6
8 3.10 18.6 

11.
3 2.84 13.3 

3.6
7 5.21 7.63 

1.9
3 10.2 3.79 5.51 8.90 12.7 

Ho 
0.4
7 0.71 0.91 

1.3
1 0.59 3.29 

1.8
0 0.49 2.38 

0.6
3 0.95 1.44 

0.3
3 1.75 0.72 1.29 2.08 3.10 

Er 
1.3
5 1.97 2.37 

3.4
1 1.57 7.37 

4.4
9 1.08 5.44 

1.7
3 2.50 3.37 

0.9
9 4.49 1.83 4.62 7.25 9.30 

Tm 0.1 0.28 0.40 0.4 0.22 1.11 0.5 0.16 0.83 0.2 0.33 0.52 0.1 0.57 0.28 0.78 1.17 1.85 
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9 5 7 3 3 

Yb 
1.2
5 1.78 2.35 

2.8
0 1.41 6.13 

3.4
2 0.87 4.50 

1.4
4 2.02 2.85 

0.9
3 3.62 1.64 5.52 8.32 11.6 

Lu 
0.1
7 0.25 0.33 

0.3
8 0.21 0.84 

0.4
4 0.11 0.61 

0.1
9 0.27 0.38 

0.1
3 0.50 0.23 0.85 1.26 1.77 
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Table 3 

Sample 
ID 

                                                 
EST-1       

                                                   
EST-2       

Size 

(µm) <0.02 
          0.02-
0.05   

0.05-
0.1 <0.02 0.02-0.05 

             0.05-
0.1 

in mg/L           duplicata   
duplica

ta     duplicata   
duplica

ta   

duplica
ta 

Si 0.36 0.23 0.21 0.28 0.26 0.34 0.18 0.16 0.23 0.43 0.63 

Al 0.16 0.15 0.12 0.14 0.12 0.18 0.23 0.37 0.38 0.67 0.78 

Mg 1.02 1.14 1.30 1.44 1.16 0.30 0.25 0.18 0.46 0.37 0.45 

Ca 0.12 0.19 2.21 2.63 1.80 3.53 3.36 4.96 8.54 9.71 bdl 

Fe 0.13 0.11 0.10 0.11 0.11 0.09 0.06 0.05 0.07 0.11 0.14 

Mn bdl 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.04 0.05 0.05 

Na 4.69 4.75 0.20 0.30 0.19 1.27 0.99 0.13 0.28 0.27 0.31 

K 0.61 0.61 0.50 0.80 0.56 0.83 0.64 0.40 0.90 0.90 1.10 

P 0.03 0.02 0.02 0.02 0.01 0.15 0.24 1.59 1.61 3.20 3.25 

      

in µg/L     

Rb nd 0.40 0.90 1.10 0.83 nd 0.61 1.10 1.20 1.20 1.20 

Sr nd 2.30 6.12 8.42 6.20 nd 7.30 9.92 21.3 18.8 21.5 

                

La nd 0.06 0.07 0.10 0.10 nd 0.46 0.47 0.55 2.36 1.04 

Ce nd 0.31 0.33 0.45 0.32 nd 2.21 2.08 2.54 7.28 5.06 

Pr nd 0.06 0.06 0.08 0.08 nd 0.26 0.27 0.32 0.79 0.61 

Nd nd 0.47 0.46 0.65 0.42 nd 1.72 1.77 2.07 4.70 4.07 

Sm nd 0.26 0.20 0.28 0.21 nd 0.98 1.07 1.17 2.62 2.38 

Eu nd 0.05 0.04 0.06 0.06 nd 0.29 0.32 0.35 0.78 0.71 

Gd nd 0.20 0.17 0.24 0.16 nd 1.19 1.34 1.49 3.35 3.01 
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Tb nd 0.02 0.01 0.02 0.03 nd 0.15 0.17 0.19 0.43 0.38 

Dy nd 0.09 0.06 0.09 0.07 nd 0.71 0.80 0.93 1.99 1.88 

Ho nd 0.01 bdl 0.01 0.02 nd 0.11 0.12 0.14 0.30 0.29 

Er nd 0.02 0.02 0.02 0.03 nd 0.25 0.27 0.33 0.72 0.68 

Tm nd bdl bdl bdl 0.01 nd 0.03 0.03 0.04 0.08 0.07 

Yb nd 0.01 bdl 0.01 0.02 nd 0.16 0.20 0.25 0.48 0.46 

Lu nd bdl bdl bdl 0.01 nd 0.02 0.03 0.03 0.07 0.07 

nd stands for not determined 
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Sample 
ID Depth Size K rad. Ar rad. 40Ar 40Ar/36Ar 40K/36Ar Age δ18O 

  (m) (µm) (%) (%) 
(10-9 

mol/g) (+ 2σ  in %) 
(10-6 + 2σ  in 

%) (Ma + 2σ) (V-SMOW) 

EST-1 1825 <0.02 4.58 89.46 1.514 2885.7 (1.18) 0.2339 (2.36) 181.2 (3.7) 18.1 (0.2) 

    0.02-0.05 5.34 90.67 1.691 3349.1 (2.20) 0.2879 (3.02) 173.9 (3.7) 18.0 (0.2) 

    0.05-0.1 5.25 90.86 1.887 3395.0 (2.01) 0.2575 (2.85) 196.1 (4.1) 17.6 (0.2) 

EST-2 1882 <0.02 5.87 93.03 1.623 4439.6 (2.18) 0.4473 (2.98) 152.7 (3.2) 18.2 (0.2) 

    0.02-0.05 6.54 94.22 1.751 5484.0 (2.92) 0.5784 (3.09) 148.1 (3.1) 17.9 (0.2) 

    0.05-0.1 6.26 93.78 1.914 5084.3 (1.58) 0.4676 (2.56) 168.2 (3.5) 17.3 (0.2) 

EST-3 1887 <0.02 4.96 90.00 1.673 3072.0 (1.38) 0.2457 (2.46) 184.7 (3.8) nd 

    0.02-0.05 5.55 89.30 1.803 2925.5 (2.42) 0.2416 (3.18) 184.7 (3.8) nd 

    0.05-0.1 5.41 91.82 2.167 3813.1 (1.13) 0.2622 (2.31) 217.3 (4.5) 15.2 (0.2) 

EST-4 1952 <0.02 5.75 91.03 1.575 3380.0 (1.03) 0.3362 (2.28) 151.4 (3.1) 17.2 (0.2) 

    0.02-0.05 6.09 92.60 1.603 4333.3 (2.57) 0.4580 (3.26) 145.7 (3.0) 17.0 (0.2) 

    0.05-0.1 5.66 91.57 1.730 3660.6 (1.57) 0.3287 (2.56) 168.1 (3.5) 16.8 (0.2) 

EST-5 1958 <0.02 5.63 92.11 1.529 3951.7 (1.48) 0.4019 (2.52) 150.1 (3.1) nd 

    0.02-0.05 6.23 92.57 1.715 4392.3 (2.72) 0.4442 (3.38) 152.1 (3.1) 16.1 (0.2) 

    0.05-0.1 5.61 94.57 2.156 5940.4 (1.78) 0.4384 (2.69) 209.0 (4.3) 14.9 (0.2) 

EST-6 1999 <0.02 4.14 88.65 1.104 2710.0 (1.54) 0.2702 (2.56) 147.6 (3.1) 16.3 (0.2) 

    0.02-0.05 nd nd nd nd nd nd 15.9 (0.2) 

    0.05-0.1 3.59 84.23 0.957 1991.0 (1.86) 0.1898 (2.75) 147.5 (3.1) 16.0 (0.2) 

nd stands for not determined; the 2σ error of the K determinations is at +/- 2.5% 
 

 

 



  

Table 5 

Sample ID Depth (m)                          Fractions Rb Sr Rb/Sr 87Rb/86Sr 87Sr/86Sr (+ 2σ in 10-6) Rb-Sr age (Ma + 2σ) 87Sr/86Sro  (+ 2σ)
EST-1 1825 <0.02 µm leachate 0.40 2.30 0.17 0.51 0.714428 (66) 148 (8) 0.7134 (0.0003)

untreated 163 28.5 5.72 16.6 0.748169 (80)
0.02-0.05 µm leachate 0.90 6.12 0.15 0.43 0.713651 (26) 134 (7) 0.7128 (0.0002)

untreated 217 36.4 5.96 17.3 0.745415 (28)
0.05-0.1 µm leachate 0.83 6.20 0.13 0.39 0.713953  (27) 176 (10) 0.7130 (0.0002)

untreated 251 58.0 4.33 12.6 0.744088 (11)
EST-2 1882 <0.02 µm leachate 0.61 7.30 0.08 0.24 0.711307 (14) 148 (8) 0.7108 (0.0001)

untreated 170 54.4 3.13 9.11 0.729824 (10)
0.02-0.05 µm leachate 1.10 9.92 0.11 0.32 0.712249 (07) 148 (8) 0.7116 (0.0002)

untreated 192 74.9 2.56 7.46 0.727553 (07)
0.05-0.1 µm leachate 1.20 18.8 0.06 0.19 0.712906 (15) 148 (8) 0.7125 (0.0001)

untreated 237 114 2.08 6.05 0.725047 (16)
The Rb-Sr age is obtained by combining the data of each leachate and untreated couple. The initial 87Sr/86Sr ratio of the line is given by 87Sr/86Sr0

 



  

 67

 



  

 68

 

 



  

 69

 



  

 70

 



  

 71

Parameters STAGE 0 STAGE 1 STAGE 2 STAGE 3 STAGE 4 

)noitisoped(

  detrital sequence of authigenesis of  authigenesis of Qz+ authigenesis of  authigenesis of 

  Qz + K-spar + clays + kaolinite + dickite  K-spar platyillite filamentousillite + 

   (apatite + zircon) weathering of Qz +     pyrite 

raps-K

timing 250 - 240 Ma    180 Ma (?) 150 Ma (?) 

temperature 10 - 20 °C   50 - 95 °C >110 °C (?)  110 °C <>95 °C (?) 

Hpdecuderyrtsimehcdiulf

;G2;F2;E2;D2;C2;D3;A3;F2;D2B2;A2C2)#erugiF(sotohp

;D3;C3;A3;H2;F3;E3  
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Armorican Massif

Central Massif

Morvan
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Paris Basin

100 km
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Upper Cretaceous

Lower Cretaceous

Upper Jurassic

Middle Jurassic

Lower Jurassic

Upper Triassic 
(Keuper)

Middle Triassic 
(Muschelkalk)

Lower Triassic
(Buntsandstein)

Hercynian
basement Alps

Vosges

(1) 155 - 175 Ma

(7) 148 - 153 Ma
174 - 196 Ma

(2) 144 - 172 Ma

 162 - 181 Ma

(3) 145 - 174 Ma
(4) 155 Ma

*146 - 156 Ma
(4') 135 - 148 Ma

(5) 188 - 198 Ma

176 - 191 Ma 
(6) 138 - 157 Ma

180 - 200 Ma

 


