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ABSTRACT
We have searched for continuous gravitational wave (CGW) signals produced by individually
resolvable, circular supermassive black hole binaries (SMBHBs) in the latest European Pulsar
Timing Array (EPTA) data set, which consists of ultraprecise timing data on 41-ms pulsars. We
develop frequentist and Bayesian detection algorithms to search both for monochromatic and
frequency-evolving systems. None of the adopted algorithms show evidence for the presence
of such a CGW signal, indicating that the data are best described by pulsar and radiometer
noise only. Depending on the adopted detection algorithm, the 95 per cent upper limit on the
sky-averaged strain amplitude lies in the range 6 × 10−15 < A < 1.5 × 10−14 at 5 nHz < f <

7 nHz. This limit varies by a factor of five, depending on the assumed source position and the
most constraining limit is achieved towards the positions of the most sensitive pulsars in the
timing array. The most robust upper limit – obtained via a full Bayesian analysis searching
simultaneously over the signal and pulsar noise on the subset of ours six best pulsars – is
A ≈ 10−14. These limits, the most stringent to date at f < 10 nHz, exclude the presence of
sub-centiparsec binaries with chirp mass Mc > 109 M� out to a distance of about 25 Mpc,
and with Mc > 1010 M� out to a distance of about 1Gpc (z ≈ 0.2). We show that state-of-
the-art SMBHB population models predict <1 per cent probability of detecting a CGW with
the current EPTA data set, consistent with the reported non-detection. We stress, however, that
PTA limits on individual CGW have improved by almost an order of magnitude in the last five
years. The continuing advances in pulsar timing data acquisition and analysis techniques will
allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming
years.

Key words: black hole physics – gravitational waves – pulsars: general.

1 IN T RO D U C T I O N

The direct detection of gravitational waves (GWs) is one of the pri-
mary goals of contemporary observational astrophysics. The access

� E-mail: stba@aei.mpg.de (SB); petiteau@apc.in2p3.fr (AP); asesana@
star.sr.bham.ac.uk (AS)

to GW information alongside well-established electromagnetic ob-
servations will be a milestone in our investigation of the Universe,
opening the era of multimessenger astronomy.

Precision timing of an array of millisecond pulsars (MSP; i.e.
a pulsar timing array, PTA) provides a unique opportunity to get
the very first low-frequency (nHz) GW detection. PTAs exploit
the effect of GWs on the propagation of radio signals from ul-
trastable MSPs to the Earth (e.g. Sazhin 1978; Detweiler 1979),
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producing a characteristic fingerprint in the times of arrival (TOAs)
of radio pulses. In the timing analysis, TOAs are fitted to a physical
model accounting for all the known processes affecting the gen-
eration, propagation and detection of the radio pulses. The timing
residuals are the difference between the observed TOAs and the
TOAs predicted by the best-fitting model, and they carry informa-
tion about unaccounted noise and potentially unmodelled physical
effects, such as GWs, in the datastream (e.g. Hellings & Downs
1983; Jenet et al. 2005). The European Pulsar Timing Array (EPTA;
Kramer & Champion 2013), the Parkes Pulsar Timing Array (PPTA;
Hobbs 2013) and the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav; McLaughlin 2013), joining to-
gether in the International Pulsar Timing Array (IPTA; Hobbs et al.
2010; Manchester & IPTA 2013), are constantly improving their
sensitivity in the frequency range of ∼10−9–10−6 Hz.

The primary GW source in the nHz window is a large popula-
tion of adiabatically inspiralling supermassive black hole binaries
(SMBHBs), formed following the frequent galaxy mergers occur-
ring in the Universe (Begelman, Blandford & Rees 1980). Signals
from a cosmic string network (see e.g. Vilenkin 1981; Vilenkin &
Shellard 1994) or from other physical processes occurring in the
early Universe (see e.g. Grishchuk 2005) are also possible, but we
will concentrate on SMBHBs in this paper. Consisting of a superpo-
sition of several thousands of sources randomly distributed over the
sky (Sesana, Vecchio & Colacino 2008), the signal has classically
been described as a stochastic GW background (GWB; Rajagopal &
Romani 1995; Jaffe & Backer 2003; Wyithe & Loeb 2003; Sesana
et al. 2004). Consequently, in the last decade several detection tech-
niques have been developed in this direction (e.g. Anholm et al.
2009; van Haasteren et al. 2009; Lentati et al. 2013; Chamberlin
et al. 2015) and applied to the EPTA, PPTA and NANOGrav data
sets to get limits on the amplitude of a putative isotropic GWB
(Jenet et al. 2006; Yardley et al. 2011; van Haasteren et al. 2011;
Demorest et al. 2013; Shannon et al. 2013; Lentati et al. 2015).

However, Sesana, Vecchio & Volonteri (2009) (see also Ravi
et al. 2012) first showed that the signal is dominated by a handful of
sources, some of which might be individually resolvable. The typi-
cal evolution time-scale of those SMBHBs is thousands to millions
of years, far exceeding the observational baseline of PTA experi-
ments (about two decades); therefore, their signals can be modelled
as non-evolving continuous GWs (CGWs, Sesana & Vecchio 2010).
Resolvable sources are particularly appealing because, if detected
and localized on the sky, they can also be followed up electromag-
netically, thus providing a multimessenger view (Sesana et al. 2012;
Tanaka, Menou & Haiman 2012; Burke-Spolaor 2013; Rosado &
Sesana 2014).

This prospect triggered a burst of activity in the development of
search and parameter estimation algorithms for CGWs from cir-
cular SMBHBs (Sesana & Vecchio 2010; Lee et al. 2011; Babak
& Sesana 2012; Ellis, Jenet & McLaughlin 2012; Petiteau et al.
2013; Taylor, Ellis & Gair 2014), and more recently led to the de-
velopment of the first pipelines for eccentric binaries (Taylor et al.,
2015b). The pioneering work of Yardley et al. (2010) was the first to
produce sensitivity curves and set upper limits using a power spec-
tral summation method. More recently, Arzoumanian et al. (2014)
applied the frequentist and Bayesian methods for evolving and non-
evolving signals described in Ellis et al. (2012) to the NANOGrav
5-year data set (Demorest et al. 2013), whereas Zhu et al. (2014) ap-
plied a frequentist method to the PPTA data release (DR1) presented
in Manchester et al. (2013). Those limits are usually cast in terms
of the intrinsic strain amplitude of the wave, h0 or its inclination-
averaged version (which is a factor of 1.26 larger) as a function of

frequency, both averaged over the entire sky or as a function of sky
location. The best sky-averaged 95 per cent confidence upper limit
on h0 quoted to date is 1.7 × 10−14 at 10 nHz (Zhu et al. 2014).

Here, we investigate the presence of non-evolving continu-
ous waves from circular binaries in the latest EPTA data release
(Desvignes et al., in preparation). We perform a comprehensive
study applying both frequentist (Babak & Sesana 2012; Ellis et al.
2012; Petiteau et al. 2013) and Bayesian (Ellis 2013; Taylor et al.
2014; Lassus et al., in preparation) methods, and searching for both
evolving and non-evolving GW signals. The paper is organized
as follows. In Section 2, we introduce the EPTA data set and the
adopted gravitational waveform model. Section 3 is devoted to the
description of the techniques developed to analyse the data, divided
into frequentist and Bayesian methods. Our main results (upper
limit, sensitivity curves, sky maps) are presented in Section 4, and
their astrophysical interpretation is discussed in Section 5. Finally,
we summarize our study in Section 6. Throughout the paper, we use
geometrical units G = c = 1.

This research is the result of the common effort to directly detect
GWs using pulsar timing, known as the EPTA (Kramer & Champion
2013).1

2 E P TA DATA SE T A N D G W M O D E L

2.1 The EPTA data set

In this paper, we make use of the full EPTA data release described in
Desvignes et al. (in preparation), which consists of 42 MSPs moni-
tored for timespans ranging from 7 to 24 yr. However, we exclude
PSR J1939+2134 from our analysis because it shows a large, un-
modelled red-noise component in its timing residuals. The remain-
ing 41 MSPs show well-behaved rms residuals between 130 ns and
35 μs. For each of these pulsars, a full timing analysis has been per-
formed using a time-domain Bayesian method based on MULTINEST

(Feroz, Hobson & Bridges 2009), which simultaneously includes
the white noise modifiers EFAC and EQUAD2 for each observing
system, as well as intrinsic red noise and (observational) frequency
dependent dispersion measure (DM) variations. Variations in the
DM are due to a changing line of sight through the interstellar
medium towards the pulsar. Hereinafter, we refer to this timing
analysis as single pulsar analysis (SPA). As a sanity check, parallel
analyses have also been done in the frequency domain using the
TempoNest plugin (Lentati et al. 2014) for the TEMPO2 pulsar timing
package (Hobbs, Edwards & Manchester 2006), and in time domain
using search method combining a genetic algorithm Petiteau et al.
(2010) with MCMCHammer Foreman-Mackey et al. (2013). The
results of the three methodologies are consistent.

For the searches performed in this paper, we use the results of the
SPA produced by MULTINEST. Those consist of posterior probabil-
ity distributions for the relevant noise parameters (EFAC, EQUAD,
DM and intrinsic red noise), together with their maximum likeli-
hood (ML) values. Extensive noise analyses on the same data set are
fully detailed in Janssen et al. (in preparation) and Caballero et al.
(in preparation), and the posterior distributions of the noise param-
eters of the three most sensitive pulsars in our array (J1909−3744,

1 www.epta.eu.org/
2 EFAC is used to account for possible miscalibration of the radiometer noise
and it acts as a multiplier for all the TOA error bars. EQUAD represents
some additional (unaccounted) source of time independent noise and it is
added in quadratures to the TOA error bars.
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Table 1. Summary of the searches performed in this study. Column 1: name of the search; column 2: treatment of the noise in the search;
column 3: number of pulsars considered in the data set (N); column 4: dimensionality of the parameter space to search over; column 5: adopted
signal model; column 6: notes about the treatment of the likelihood function. The different signal models are: Earth term only (E), Earth plus
pulsar term at the same frequency (E+P NoEv), Earth plus pulsar term at different frequencies (E+P Ev).

Search ID Noise treatment Pulsars (N) Parameters Signal model Likelihood

Fp-ML Fixed ML 41 1 E+P NoEv Maximization over 2N constant amplitudes
Fp Sampling posterior 41 1 E+P NoEv Maximization over 2N constant amplitudes
Fe Fixed ML 41 3 E Maximization over four constant amplitudes
Bayes_E Fixed ML 41 7 E Full
Bayes_EP Fixed ML 6 7 + 2 × 6 E+P Ev Full
Bayes_EP_NoEv Fixed ML 41 7 E+P NoEv Marginalization over pulsar phases
Bayes_EP_NoEv_noise Searched over 6 7 + 5 × 6 E+P NoEv Marginalization over pulsar phases

J1713+0747, J1744−1134) are also given in fig. 3 of the companion
paper Lentati et al. (2015). In most cases, we fix the noise parameters
to their ML value, but we also perform separate searches sampling
from the posterior distribution or searching simultaneously over
the signal and the noise parameters, as described in Section 3 and
summarized in Table 1.

2.2 GW model

In this subsection, we introduce the mathematical description of the
GW signal from a binary in circular orbit and the associated PTA
response. The main purpose here is to introduce the notation; we
refer the reader to Sesana & Vecchio (2010) for a full derivation
of the relevant equations. The timing residuals of radio pulses due
to the propagation of the electromagnetic waves in the field of an
intervening GW can be written as

ra(t) =
∫ t

0

δνa

νa

(t ′)dt ′, (1)

where

δνa

νa

= 1

2

p̂i
ap̂

j
a

1 + p̂a.�̂
�hij . (2)

Here νa is the frequency of the TOAs (i.e. the spin frequency of the
pulsar) and δνa its deviation. The index a labels a particular pulsar
(a = 1, . . . , N where N = 41 is the number of the pulsars in our
array) and indicates that a given quantity explicitly depends on the
parameters of the individual pulsar, p̂ denotes the position of the
pulsar on the sky and �̂ is the direction of the GW propagation. The
last factor in equation (2) depends on the strain of the GW at the
location of the pulsar hij (tw

a p) and on Earth hij(t):

�hij = hij (tp
a ) − hij (t). (3)

The pulsar time tp
a is related to the Earth time t as

tp
a = t − La(1 + �̂.p̂a) ≡ t − τa, (4)

where La is the distance to the pulsar. We consider a non-spinning
binary system in quasi-circular orbit. To leading order, the response
of a particular pulsar to a passing GW (that is, the induced timing
residual) is given by

ra(t) = rp
a (t) − re

a (t), (5)

where

re
a (t) = A

ω

{
(1 + cos2 ι)F+

a [sin(ωt + 
0) − sin 
0]

+ 2 cos ιF×
a [cos(ωt + 
0) − cos 
0]

}
,

rp
a (t) = Aa

ωa

{
(1 + cos2 ι)F+

a [sin(ωat + 
a + 
0)

− sin(
a + 
0)] + 2 cos ιF×
a [cos(ωat + 
a + 
0)

− cos(
a + 
0)]} . (6)

Equation (6) contains all the relevant features of the signal, and
deserves some detailed explanation. Here, ι is the inclination of
the SMBHB orbital plane with respect to the line of sight, and A
(sometimes referred to as h0 in the PTA literature) is the amplitude
of the GW strain given by

A = 2
M5/3

c

DL
(πf )2/3. (7)

Throughout the paper we consider a SMBHB with redshifted chirp
mass Mc = Mη3/5, where M = (m1 + m2) and η = m1m2/M2 are
the total mass and symmetric mass ratio of the binary system; DL

is the luminosity distance to the source and f = ω/(2π) is the ob-
served GW frequency, which is twice the SMBHB observed orbital
frequency.3 We specify A and Aa in equation (6) because the GW
frequency might be different in the pulsar and Earth terms, implying
different amplitudes. In fact, in the quadrupole approximation, the
evolution of the binary orbital frequency ωorb = ω/2 and GW phase
can be written as

ωorb(t) = ωorb

(
1 − 256

5
M5/3ω

8/3
orb t

)−3/8

, (8)


(t) = 
0 + 1

16M5/3

(
ω

−5/3
orb − ωorb(t)−5/3

)
. (9)

In equation (6), ω and ωa = ω(t − τ a) are the GW frequencies
of the Earth term and pulsar term, respectively. Over the typical
duration of a PTA experiment (decades), these two frequencies can
be approximated as constants (see e.g. Sesana & Vecchio 2010),
and we drop the time dependence accordingly. However, the delay
τ a between the pulsar and the Earth term is of the order of the
pulsar-Earth light travel time, and can be thousands of years. This

3 The relation between redshifted chirp mass and rest-frame chirp mass
is Mc = (1 + z)Mc,rf ; likewise, the relation between observed and rest-
frame frequency is frf = (1 + z)f. The GW community works with redshifted
quantities because this is what is directly measured in the observations, and
because this way, the 1 + z factors cancel out in the equations, making
the math cleaner. We note, moreover, that current PTAs might be able to
resolve SMBHBs out to z ∼ 0.1, implying only a small difference between
rest-frame and redshifted quantities.
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is comparable with the evolutionary time-scale of the SMBHB’s
orbital frequency (Sesana & Vecchio 2010). In particular ωa =
2ωorb, a is obtained by setting t = −τ a in the right-hand side of
equation (8), and can be generally different from one pulsar to the
other and from ω. Combining equations (8) and (9), one can show
that 
a ≈ −ωτ a.

If T is the timing baseline of a given PTA’s set of observations,
then its nominal Fourier frequency resolution bin is given by �f ≈
1/T. We therefore have two possibilities.

(i) If (ωa − ω)/(2π) > �f for the majority of the MSPs in the
array, then the pulsar and the Earth terms fall in different frequency
bins; all the Earth terms can be added-up coherently and the pulsar
terms can be considered either as separate components of signal or
as an extra incoherent source of noise.

(ii) Conversely, if (ωa − ω)/(2π) < �f for the majority of the
MSPs, then the pulsar terms add up to the respective Earth terms,
destroying their phase coherency.

This distinction has an impact on the detection methodology that
should be adopted, as we will see in the next section.

The antenna response functions F+,×
a of each pulsar to the GW

signal depend on the mutual pulsar-source position in the sky and
are given by

F+
a = 1

2

(p̂a.û)2 − (p̂a.v̂)2

1 + p̂a.�̂
, (10)

F×
a = (p̂a.û)(p̂a.v̂)

1 + p̂a.�̂
, (11)

where

�̂ = −{sin θS cos φS, sin θS sin φS, cos θS}, (12)

û = n̂ cos ψ − m̂ sin ψ, v̂ = m̂ cos ψ + n̂ sin ψ, (13)

n̂ = {cos θS cos φS, cos θS sin φS, − sin θS}, (14)

m̂ = {sin φS, − cos φS, 0}. (15)

Here θS, φS define the source sky location (respectively latitude and
longitude), and ψ is the GW polarization angle.

2.3 Likelihood function and noise model

The core aspect of all searches performed in this study (both fre-
quentist and Bayesian) is the evaluation of the likelihood that some
signal described by equation (6) is present in the time series of the
pulsar TOAs. We use the expression for the likelihood marginalized
over the timing parameters as described in detail in van Haasteren
& Levin (2013):

L(θ ,λ|δ t) = 1√
(2π)n−mdet(GT CG)

× exp

(
−1

2
(δ t − r)T G(GT CG)−1GT (δ t − r)

)
.

(16)

Here, n is the length of the vector δ t = ∪xa obtained by concate-
nating the individual pulsar TOA series xa, m is the total number

of parameters describing the timing model, and the matrix G is
related to the design matrix (see van Haasteren & Levin 2013, for
details). The variance-covariance matrix C, in its more general ver-
sion, contains contributions from the GWB and from the white and
(in general) red noise: C = Cgw + Cwn + Crn. We refer the reader
to van Haasteren et al. (2009) and to our companion paper Lentati
et al. (2015) for exact expressions of the noise variance-covariance
matrix. In our analysis, we use both the time (van Haasteren & Levin
2013) and frequency domain (Lentati et al. 2013) representation of
this matrix. Both approaches give qualitatively and quantitatively
consistent results (as we checked during our analysis). Therefore,
we will not specify which representation was used for each of the
employed methods. Moreover, we have excluded Cgw from our anal-
ysis assuming the hypothesis that the data consists of noise and a
single CGW source.

The model parameters in equation (16) are split in two groups:
(i) parameters describing the CGW signal (λ : r = r(λ)), and (ii)
parameters describing the noise model θ . The waveform of a non-
spinning circular binary given by equation (6) is generally described
by 7 + 2N parameters. The Earth term (a single sinusoidal GW) is
fully described by seven parameters: (A, θS, φS, �, ι, ω,
0), and
each pulsar term adds two additional parameters: frequency and
phase (ωa, 
a). As mentioned above, the pulsar term might fall
at the same frequency as the Earth term, in which case we have
only one extra parameter per pulsar (since ωa = ω). In principle,
even for ωa 	= ω, ωa and 
a are uniquely connected through the
pulsar distance La as shown by equations (8) and (9). However this
implicitly assumes that we have an exact model for the evolution
of the binary, which in this case is perfectly circular, non-spinning
and GW driven. Even tiny deviations from these assumptions (i.e.
small residual eccentricity, partial coupling with the environment,
spins), very likely to occur in nature, will invalidate the ωa − 
a

connection, and in the most general case, the two parameters must
be considered separately. We will specify the details of the adopted
waveform model for each individual method in the next section.

Some of the noise parameters (like pulsar-intrinsic red noise or
clock and ephemeris errors) are correlated with the GW parameters
and one should in principle fit for noise and GW parameters simul-
taneously. However, such a multidimensional search is computa-
tionally very expensive, and in most of the searches detailed below,
we use noise characteristics derived from the SPA introduced in
Section 2.1 and extensively described in Janssen et al. (in prepara-
tion) and Caballero et al. (in preparation). We characterize the noise
by considering the data from each pulsar separately (as given by
the SPA), and to exclude any potential bias we also considered a
model “noise + monochromatic signal”. The results of the latter are
usually consistent with the ‘noise-only’ model, except for one pul-
sar, J1713+0747, where we have found some correlation between
the parameters describing the red noise and the extra monochro-
matic signal. Each SPA returns posterior distributions for the array
of noise parameters θa : slope and amplitude of the red noise, slope
and amplitude of DM variations (both red noise and DM variation
were modelled as single power laws) and EFAC and EQUAD for
each backend. We have used this information in two ways: (i) use
the ML estimator for all the parameters(θML = ∪θML,a) and assume
that the noise is represented by that model, (ii) draw the parame-
ters describing the noise from the posterior distributions obtained
in the SPA. The first choice (fixed noise at θML) is computationally
cheaper as we need to compute the noise variance matrix, C(θ),
only once, while in the second choice we need to recompute it for
each draw of the noise parameters. Arzoumanian et al. (2014) found
that fixing the noise to the ML values will bias the results of the
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search and will yield a better upper limit compared to the full search
including noise parameters. The effect is, however, not dramatic, as
they found their upper limit is less than a factor ≈1.5 worse in the
latter case, over the full frequency range. To test the robustness of
our results, we also ran a full analysis searching simultaneously on
the GW and noise parameters on a restricted data set of six pulsars
(see Section 3.3 for the definition of this restricted data set).

3 M E T H O D S

As described in the previous section, the two parts of the GW signal
(Earth term and pulsar term) might or might not fall at the same
frequency, which has implications for the form of the likelihood
function given in equation (16). On top of that, both frequentist and
Bayesian methods can be used to analyse the data. We therefore
identify four separate classes of analysis: frequentist non-evolving,
frequentist evolving, Bayesian non-evolving and Bayesian evolving.
In each individual case, the signal (and sometimes also the noise)
can be treated differently, and the likelihood might undergo peculiar
manipulations (maximization, marginalization, etc.); moreover, we
sometimes explore two variations of the same method. The result
is a variety of complementary searches, which we now describe in
detail and which are comparatively summarized in Table 1.

3.1 Frequentist methods

The basis for the frequentist analysis is to postulate that we have a
deterministic signal in the data which is either corrupted (in case
of detection) or dominated by noise (no detection). We then define
appropriate statistical distributions (or simply ‘statistics’) based on
the likelihood function, those describe the data in absence and pres-
ence of a signal. Those statistics must be chosen in such a way that
the detection rate is maximized for a fixed value of the false alarm
probability (FAP), which is also known as the Neyman–Pearson
criterion. The aim is to check the null hypothesis (i.e. whether the
data are described by noise only), and in case of ‘no detection’
set an upper limit on the GW amplitude. In building our statistics
we always assume that the noise is Gaussian and, unless otherwise
stated, characterized by ML parameters estimated during the SPA.
We then fix the FAP at 1 per cent to set the detection threshold.
In case of no detection, frequency dependent upper limits are ob-
tained by splitting the frequency range in small bins, performing a
large number of signal injections with varying amplitude in each
bin, and computing the associated detection statistics. In the next
two subsections, we describe two particular implementations of this
procedure, known as Fp and Fe statistics.

3.1.1 Fp-statistic

In the case of non-evolving sources (i.e. ωa = ω), Ellis et al. (2012)
showed that, for each pulsar a, one can write equation (6) factorizing
out the ω dependence

ra(t) =
2∑

j=1

b(j,a)(A, θS, φS, �, ι, 
0, 
a)κ(j )(ω, t). (17)

Explicit expressions for b(j, a) and κ (j) can be found in Ellis et al.
(2012). We merely stress here that κ (j) are independent on the con-
sidered pulsar a. The log of expression (16) can then be maximized
over the constant 2N coefficients b(1, a), b(2, a) assuming that they
are independent, resulting in what is commonly known as the Fp-
statistic. This latter assumption is not actually true if the number of

pulsars is larger than six. We make use of the full 41 pulsar data set in
the Fp-statistic evaluation. However, six pulsars dominate (i.e. give
90 per cent of) the S/N, as discussed in Section 3.3; moreover, we
can simply postulate this form of statistic. Assuming independence
in the maximization process will somewhat degrade the detection
power of the Fp-statistic; nonetheless, this is a very simple detec-
tion statistic which depends only on one parameter: the frequency of
the GW. The Fp-statistic is in essence an ‘excess-power’ statistic,
in which we basically search for extra power – compared to the ex-
pectations of the statistic describing the null hypothesis – at a given
frequency in each pulsar’s data (summing the weighted square of
the Fourier amplitudes in each pulsar). By mixing the GW phases

0 and 
a at the Earth and at the pulsar in the coefficients b(j, a), by
construction Fp assumes that there is no coherence between GW
signals across each individual pulsar’s data.

With the assumption of Gaussian noise, 2Fp follows a central
χ2 distribution, p0(Fp) – non-central, p1(Fp, ρ), if a signal with
optimal S/N =ρ is present – with n = 2N degrees of freedom (which
follows from 2N maximizations of the log likelihood), given by

p0(Fp) = Fn/2−1
p

(n/2 − 1)!
exp(−Fp), (18)

p1(Fp, ρ) = (2Fp)(n/2−1)/2

ρn/2−1
In/2−1(ρ

√
2Fp)e−Fp− 1

2 ρ, (19)

where In/2 − 1(x) is the modified Bessel function of the first kind of
order n/2 − 1. We divide our data set in bins �f = 1/T, where T is the
longest pulsar observation time, and we evaluate Fp independently
in each bin. At any given f, we consider only pulsars with observation
time T > 1/f when evaluating Fp. Since the implementation of the
Fp-statistic is computationally cheap, we run two flavors of it: (i)
one in which we fix the noise to the ML values (Fp-ML hereinafter),
(ii) one in which we take into account the uncertainty in the noise
parameters by sampling from their posterior distribution derived
from the SPA (simply Fp hereinafter).

3.1.2 Fe-statistic

If the source is evolving, then ωa 	= ω and one can choose to consider
as ‘signal’ only the Earth portion of equation (6), and treat the pulsar
term as a source of noise. In this case, we take only the Earth term of
r in the likelihood expression (16). Babak & Sesana (2012) showed
that it is convenient to rewrite the antenna pattern expressions (11)
separating the terms containing the polarization angle ψ :

F+
a = Fa

c cos(2ψ) + Fa
s sin(2ψ) (20)

F×
a = −Fa

s cos(2ψ) + Fa
c sin(2ψ), (21)

thus rearranging equation (6) in the form

ra(t) =
4∑

j=1

a(j )(A, ι, ψ, 
0)ha
(j )(ω, θS, φS, t). (22)

Explicit expressions for a(j ), h
a
(j ), F

a
c , F a

s can be found in Babak &
Sesana (2012), but note that, contrary to the Fp case, the coeffi-
cients a(j) do not depend on the considered pulsar a. As done for
the Fp case, we can now maximize over the four constants a(i),
constructing a statistic – the Fe-statistic – which is a function of
three parameters; namely the GW frequency, f, and source sky loca-
tion, θS, φS. If the noise is Gaussian, Fe follows a χ2 distribution,
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p0(Fe) – non-central, p1(Fe, ρ), if a signal with optimal S/N=ρ

is present – with four degrees of freedom (which follows from the
four maximizations of the log likelihood), given by:

p0(Fe) = Fee
−Fe , (23)

p1(Fe, ρ) = (2Fe)1/2

ρ
I1(ρ

√
2Fe)e−Fe− 1

2 ρ2
, (24)

Where I1(x) is the modified Bessel function of the first kind of
order 1.

Note that theFe-statistic adds the data from the pulsars coherently
(taking the phase information into account), and being a function
of the source position, it allows direct sky localization. However, if
the signal is non-evolving, its efficiency drops significantly and the
estimation of the source sky location can be severely biased. The
evaluation of Fe is significantly more computationally expensive
than Fp , as we need to take into account cross-pulsar correlations.
We therefore continue to use the full 41-pulsar data set, but we fix
the noise parameters at the ML values found in the SPA, without
attempting any sampling (contrary to the Fp case).

For searching over the 3-D parameter space (f, θ , φ), we use the
multimodal genetic algorithm described in Petiteau et al. (2013).
A detailed description of the method can be found there; here we
give only a brief overview. In the first step, we run a genetic al-
gorithm (with 64 organisms) over 1000 generations tuned for an
efficient exploration of the whole parameter space. Then we iden-
tify the best spot in the 3-D space and seed there a variation of the
Markov chain Monte Carlo ‘MCMC Hammer’ (Foreman-Mackey
et al. 2013), which serves as a sampler and returns the effective
size of the “mode” and the correlations among parameters. Here
“mode” stands for a local maximum of the likelihood. We then
again run the genetic algorithm, exploring the remaining parameter
space (i.e. excluding the mode we already found) and searching
for other potential local maxima in the likelihood. At each distinct
maximum that is found, we run ‘MCMC hammer’, and we iterate
this procedure five times. The end result is a set of independent local
maxima in likelihood, among which we choose the largest (high-
est in value). We repeat the entire procedure three times to verify
convergence. This algorithm has proven to give very robust results,
even in the case of pathological likelihood surfaces with multiple
maxima.

3.2 Bayesian analysis

In the Bayesian approach, the parameters describing the model are
treated as random variables. The principles of Bayesian statistics
provide a robust framework to obtain probability distributions of
those parameters for a given set of observations, while also folding
in our prior knowledge of them.

Bayes’ theorem states that the posterior probability density func-
tion (PDF), p(μ|d,H), of the parameters μ within a hypothesised
model H and given data d is

p(μ|d,H) = L(μ,H|d)π(μ|H)

p(d|H)
, (25)

where L(μ,H|d) is the likelihood of the parameters given the data
assuming the model H with parameters μ. The prior PDF of the
model parameters, π (μ|H), incorporates our preconceptions and
prior experience of the parameter space. The Bayesian evidence,

p(d|H) ≡ Z , is the probability of the observed data given the model
H,

Z =
∫

L(μ)π(μ)dNμ. (26)

For posterior inference within a model, Z plays the role of a nor-
malization constant and can be ignored. However, if we want to
perform model selection then the evidence value becomes a key
component in the computation of the posterior odds ratio:

p(H2|d)

p(H1|d)
= p(d|H2)p(H2)

p(d|H1)p(H1)
= Z2 × p(H2)

Z1 × p(H1)
. (27)

Here H1,H2 are the two models under comparison, Z2/Z1 is the
Bayes factor and p(H2)/p(H1) is the prior probability ratio for the
two competing models, which is often set to be one; the posterior
odds ratio is then just the Bayes factor.

When we specialize the formalism above to PTA data, the likeli-
hood L is given by equation (16), the data d is the concatenation of
the TOA series δ t and the model’s parameters μ are identified with
θ , λ. The presence of a signal in the data is assessed through the
odds ratio, equation (27), where model H1 corresponds to data de-
scribed by noise only and model H2 corresponds to data described
by noise plus a CGW. We use non-informative and conservative
priors in our analysis: they are always uniform in all parameters.
It is especially important to emphasize that we have used a broad
uniform prior in the signal’s amplitudeA, which will provide robust
and conservative upper limits on the strain. Unless otherwise stated,
we fix the stochastic noise parameters to the ML values found in
the SPA, and we employ either MULTINEST (Feroz et al. 2009) or a
parallel tempering adaptive MCMC (Lassus et al., in preparation) to
return samples from the posterior distributions, and thus reconstruct
the posterior PDFs. Both techniques also permit a recovery of the
aforementioned model-comparison statistic known as the Bayesian
evidence. We describe the different searches in detail below.

3.2.1 Phase-marginalized Bayesian analysis

For the non-evolving CGW signal searches, one should sample a 7
+ N multidimensional posterior, corresponding to the parameters
(A, θS, φS, �, ι, ω,
0, 
a). For a 41-pulsar data set, that amounts
to sampling a 48-dimensional parameter space. We mitigate the
computational cost implied by such high dimensionality by numer-
ically marginalizing (integrating) our posterior distribution over all
of these nuisance parameters 
a, thereby collapsing the search to
more manageable dimensions (i.e. to seven parameters only, Taylor
et al. 2014). By doing so, we not only rapidly recover the poste-
rior PDFs, but also achieve quick and accurate Bayesian evidence
values. This method is close in spirit to the Fp-statistic, we call
it phase-marginalized Bayesian analysis (labelled as Bayes-EP-
NoEv, for Bayes, Earth+pulsar, non-evolving source). The sampling
of the posterior is performed by MULTINEST.

The high performance of the MULTINEST sampler allowed us to also
run a full search, including noise parameters θ , on a restricted data
set composed of the six best pulsars –contributing to 90 per cent
of the total S/N, see Section 3.3 and Fig. 1 – in our array (labelled
Bayes-EP-NoEv-noise). We use non-informative priors also for the
pulsar noise parameters: uniform in the range [1,7] for the slopes
of both red noise and DM; uniform in the range [−20, −10] for
the logarithm (base 10) of their amplitudes; uniform in the range
[0,10] for the global EFAC (see Lentati et al. 2015, for a definition
of global EFAC). The posterior spans now a 7 + 5N = 37 dimen-
sion parameter space. We designed this search as a benchmark for
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Figure 1. Cumulative normalized (S/N)2. We rank pulsars according to their relative contribution to the total S/N, and we plot the quantity
∑

i < aρa/ρ.

our different fixed-noise analysis; to speed up the sampling, we re-
stricted the frequency prior range to [5,15] nHz, which turns out to
be the sweetspot of our array sensitivity.

3.2.2 Full Bayesian analysis

We also employed the Bayesian formalism to construct a search for
evolving signals. In this case, we can either (i) use the full signal of
equation (6), or (ii) restrict ourselves to the Earth term only. This
latter case (ii) is similar in spirit to the frequentist Fe-statistic, with
the difference that we now search over the full 7-D source param-
eter space with the whole 41-pulsar array; we label this analysis
Bayes-E. The full-signal analysis (i) is very computationally expen-
sive because we do not assume any model for the source evolution,
therefore adding two extra parameters (ωa, 
a) for each pulsar.
Note that our parametrization of the full signal does not rely on any
knowledge about the distance to the pulsar. We name this search
Bayes-EP-Ev. We use non-informative priors also on those param-
eters, imposing the only constraint that the pulsar-term frequencies
cannot be higher than the Earth-term one (ωa ≤ ω). Since we need
to cover a 7 + 2N parameter space, we limit this search to the best
6 pulsars, for a total of 19 parameters. In both searches, the mul-
tidimensional posteriors are stochastically sampled with a parallel
tempering adaptive MCMC (Lassus et al., in preparation).

3.3 Restricted data set: ranking pulsar residuals

As mentioned above, some of the searches are extremely com-
putationally expensive, involving sampling of highly dimensional
parameter spaces. A way to mitigate the computational cost is to
run the algorithms on a “restricted data set’, which includes only
the best pulsars for these purposes. We therefore need a metric to
rank the quality of each pulsar. We choose our metric to be the rela-
tive S/N contribution of each pulsar to a putative detectable source.
We conduct extensive Monte Carlo simulations, in which we in-

ject CGW signals with an astrophysically motivated distribution of
parameters λ in the EPTA data set. For each signal, we compute
the total S/N and the relative contribution of each individual pulsar
according to the standard inner product definition:

(S/N)2 = (h((λ)|h(λ)) ≡ (h(λ)T G)(GT C(θ)G)−1(GT h(λ)). (28)

For each injected CGW, we draw the noise parameters of each pulsar
(θa) from the corresponding posterior distribution of the SPA. We
injected 1000 detectable CGWs, and each signal contained both
Earth and pulsar terms. In Fig. 1 we plot the average (over the
1000 simulations performed) build-up of ρ = (S/N)2 as we add
pulsars to the array, from the best to the worst. The plot shows the
cumulative S/N square over the total S/N square, i.e.

∑
i < aρa/ρ.

The ranking reveals that the array is heavily dominated by PSR
J1909−3744, contributing more than 60 per cent of ρ, followed by
PSR J1713+0747 at about 20 per cent. We decided to form a data
set considering only the best pulsars building up 90 per cent of
ρ. We ended up with six pulsars (PSRs J1909−3744, J1713+0747,
J1744−1134, J0613−0200, J1600−3053 and J1012+5307) which
constitute the restricted data set mentioned above, and is the same
used in our companion isotropic and anisotropic GW background
searches (Lentati et al. 2015; Taylor et al. 2015a).

4 R ESULTS

We now turn to the description of the main results of our analysis.
As in the previous section, we present the outcome for the frequen-
tist and Bayesian analyses separately, discussing first the detection
results and then the upper limit computation for the various tech-
niques. No evidence for CGW signals was found in the data; a
summary of all the 95 per cent upper limits on the GW strain
amplitude A as a function of frequency is collected in Fig. 6.
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Figure 2. Fp-statistics. The blue line represents Fp evaluated at 99 inde-
pendent frequencies, for 41 pulsars, using the ML noise parameters. The
right-hand panel shows the histogram of the Fp values at all frequencies,
and the dashed line is a central χ2-distribution, which is the expected distri-
bution of the Fp statistic in absence of a GW signal. The two are consistent
with a p-value of 0.93, which is indicative of excellent agreement. The yel-
low area denotes the central 90 per cent of Fp evaluated across the whole
sample of noise parameters. The thresholds turn over below 6 nHz because
of the reduced number of pulsars that have enough observing timespan.

4.1 Frequentist analysis

4.1.1 Fp-statistic

To tackle the issue of detection, we have evaluated Fp at Nf = 99
independent frequencies in the range [1/T, 2 × 10−7Hz] in steps of
�f = 1/T, where T is the maximum observation time. In this data
set 1/T = 2.0 × 10−9Hz. In the absence of a signal, 2Fp follows the
χ2 PDF with n = 2N degrees of freedom given by equation (18).
The FAP associated with a given threshold F0 is simply given by
the integral of the PDF and takes the form:

P (Fp > F0) =
∫ ∞

F0

p0(Fp)dFp = exp(−F0)
n/2−1∑
k=0

Fk
0

k!
. (29)

To assess the global probability of finding a given value of Fp in
our data set, we need to take into account that we are evaluating it at
99 different frequency bins, i.e. we are performing 99 independent
trials. The global FAP is therefore given by

FAP = 1 − [
1 − P (Fp > F0)

]Nf . (30)

We choose thresholds in F0 that correspond to FAPs of 0.01 and
0.001. The results are presented in Fig. 2. For the ML noise param-
eters (solid line with circles and corresponding histogram on the
right-hand), the data is consistent with the noise description with a
p-value of 0.93 and that there is no excess at any frequency above
the 0.01 FAP threshold. However, the choice of the noise parame-
ters, and hence the covariance matrix C, is crucial in evaluating Fp,
and the SPA reveals that many parameters are poorly constrained.
We therefore chose to create a whole distribution of Fp at each
frequency, sampling over noise parameters from the posterior dis-
tributions produced by the SPA. This is overplotted as the yellow
area in Fig. 2. The results obtained in this way are independent of
the particular ML value and give a better view of the uncertainties
involved. At each frequency, f, only pulsars with baselines T > 1/f
have been taken into account. This explains the rising FAP thresh-

olds. The uncertainty in Fp induced by the uncertainty in the noise
parameters is much larger at lower frequencies, where red noise
and DM dominate the noise model. For the lowest frequencies, the
ML evaluation of Fp does not even lie within the 90 per cent region
shown in the plot, which is a consequence of the fact that we sum
the contributions of 41 broad, and often skewed, distributions. In
several pulsars the ML red noise or DM amplitudes tend to lie at
the upper end of the distribution, which leads to small values of Fp

and results in this offset.
After confirming that the SPA describes the data appropriately as

only noise, we want to know how large a CGW contribution must
be in order to make the Fp-distribution non-central and clearly
distinguishable from the noise. This yields an upper limit on the
GW strain A that might be present in our data and still consistent
with the observed Fp value. A standard way to do this in frequentist
analysis is through signal injections. We first fix the noise to the
SPA-ML value; in this case the procedure to obtain the upper limit
on A at each frequency f is as follows (see e.g. Ellis et al. 2012):

(i) compute Fp,0 using the data set;
(ii) create 1000 different mock data sets i, by injecting in each of

them one source with fixed strain A but otherwise random parame-
ters, and compute Fp,i ;

(iii) compute the fraction y of mock data sets where Fp,i > Fp,0;
(iv) repeat steps (ii) and (iii) with different A until y = 0.95.

In practice, we iterate over a grid in log10A with step size 0.1 and
interpolate to find the point for which y = 0.95. We also want to
obtain an upper limit that takes into account the uncertainty of the
single-pulsar noise parameters. In doing this, the procedure outlined
above is modified as follows:

(i) compute a distribution of 1000 Fp,0 at each frequency f using
the data set and 1000 noise parameters drawn from the posterior
noise PDF obtained from the SPA;

(ii) create 1000 different mock data sets i, by injecting in each of
them one source with fixed strain A but otherwise random param-
eters in each, and compute Fp,i , each time drawing different noise
parameters from the posterior noise PDF;

(iii) compute the fraction y of mock data sets where Fp,i > F̄p,0,
where the single reference F̄p,0 is chosen to be the mean of the
distribution obtained in step (i);

(iv) repeat steps (ii) and (iii) with different A until y = 0.95.

In other words, we want 95 per cent of the Fp,i distribution
to lie above the mean value F̄p,0 of the observed distribution. The
motivation behind criterion (iii) is that it resembles the criterion
for the ML upper limit and it is much more conservative than a
Kolmogorov–Smirnov test. It is also possible to choose even more
conservative criteria, susceptible to possible non-Gaussian tails in
either distribution, but we do not explore this possibility here.

Upper limits as a function of f are shown in Fig. 3. In all cases,
the most stringent limit is around 6–7 nHz, and reaches down to
A = 6 × 10−15 for the Fp-ML case. We note, however, that when
we allow the noise to vary, we get a limit which is a factor ≈2
worse at low frequency, yielding a value of A = 1.1 × 10−14. This
is consistent with Fig. 2; at low frequency the ML estimator of
the noise parameters is not representative of the noise posterior
distribution, resulting in Fp values which are biased towards low
values. Injections with lower A will therefore result in a detectable
excess Fp, pushing down the upper limit. Note that our upper limit
gets significantly worse at f < 3 × 10−9 Hz, because red noise
becomes significant for some pulsars, and not all 41 pulsars in our
array contribute down to those frequencies, having an observation
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Figure 3. 95 per cent upper limit on the GW strain A obtained with the
Fp-statistic. The blue line corresponds to noise parameters fixed to the
ML values obtained in the time-domain SPA, while the dashed lines take
into account the full uncertainty in the noise estimation by sampling from
the PDF distributions of either the pure time domain (green) or the time-
frequency (red) SPA. At 1 per year (the peak), the limit is poor because the
GW signal at this frequency is absorbed in the fitting of the pulsar positions.

time T < 10 years. At high frequency, the 95 per cent upper limit
degrades approximately linearly with f, consistent with a white-
noise-dominated data set.

4.1.2 Fe-statistic

Since Fe is also a frequentist technique, the procedures to assess
detection and to place upper limits are analogous to the Fp case.
Here, in absence of signal, 2Fe follows the χ2 PDF with n = 4
degrees of freedom given by equation (23). The FAP associated
with a given threshold F0 is simply given by the integral of the PDF
and takes the form:

P (Fe > F0) =
∫ ∞

F0

p0(Fe)dFe = (1 + F0)e−F0 . (31)

Again, the global false alarm rate depends on the number of trials,
according to equation (30), which is now given by the number of
independent templates in the sky location-frequency 3-D parameter
space. The vast majority of templates we have used in the search are
strongly correlated. We estimate the number of independent trials by
constructing a stochastic 3-D template bank (see Babak 2008; Harry,
Allen & Sathyaprakash 2009). We use a minimal match equal to
0.5 as the criterion of independence among different templates, and
obtain 4276 independent points in the searched parameter space (full
sky and frequency band restricted to 2–400 nHz). Fig. 4 presents
the result of the detection analysis. The maximum of Fe, Fe,max, is
found at f = 66 nHz and {θS, φS} = {51.◦9, 136.◦4}. It corresponds
to a FAP of 7 per cent, which is compatible with a non-detection.
Note that a GW signal with S/N=5, if present in the data, would
correspond to a FAP of ≈5 per cent, which is clearly too high to
make any confident claim of detection, as shown in Fig. 4.

Since the data are compatible with describing only noise, we can
again compute the 95 per cent upper limit on the strain amplitudeA
of a putative CGW as a function of f by means of signal injections.
The procedure is similar to the one employed in theFp-ML analysis.
Here, we construct a grid of frequencies, and at each grid point we

Figure 4. Result of the Fe-statistic detection analysis. The points are the
trials of the search. The horizontal lines are the detection thresholds for
different FAPs.

consider a small frequency interval �f = 1 nHz which is sufficient
to capture the injected Earth term:

(i) compute Fe,max,0, i.e. the maximum of Fe on the whole sky
and in the narrow frequency band �f in the raw data set;

(ii) create 1000 different mock data sets i, by injecting in each of
them one source with fixed strain A but otherwise random parame-
ters, including both Earth and pulsar terms;

(iii) for each data set i, run a search (stochastic bank + multisearch
genetic algorithm4) to find Fe,max,i , i.e. the maximum of Fe on the
whole sky and in the narrow frequency band �f;

(iv) compute the fraction y of the mock data sets in which
Fe,max,i > Fe,max,0;

(v) repeat steps (ii) and (iii) increasing A until y = 0.95.

The 95 per cent sky-averaged upper limit obtained in this way
is shown by the red curve in Fig. 6 and is in agreement with the
results obtained with other methods.

4.2 Bayesian analysis

The frequentist analysis presented above already provided strong
evidence against the presence of a signal in the data. None the less,
this can also be addressed in the Bayesian framework through the
computation of the odds ratio defined by equation (27). Since we
give a priori no preference to the presence or absence of a signal in
the data, we set the prior probability ratio to unity, and the odds ratio
coincides with the Bayes factor. The Bayes factor is then simply the
ratio of the Bayesian evidence computed for the hypothesis H1 and
hypothesis H0 as given by equation (27), which in our case reduces
to:

B =
∫ L(θ , λ|δ t)π(θ , λ)dθ dλ∫ L(θ |δ t)π(θ)dθ

. (32)

4 A full use of the multimodal genetic algorithm for each injection is compu-
tationally expensive and not needed, in practice. We therefore use a lighter
and faster search for the injected signals. We construct a stochastic bank
with minimal match 0.95 and we filter the data through this bank. We then
identify the maximum of Fe across the bank and refine our search running
the genetic algorithm with 64 organisms evolved over 1000 generations. The
stochastic bank is generated only once for the full parameter space and con-
tains 532 488 templates. In each search we use only the portion of template
bank covering the parameter space region around the injected signal.
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In the case of fixed noise, we assume that the noise parameters θ

are known exactly (fixed at their ML value), and the Bayes fac-
tor is directly computed from the likelihood ratio multiplied by
the priors, integrated over the source parameters λ. We compute
the evidence using both MULTINEST and parallel tempering MCMC
searches. In all the Bayesian searches with fixed noise we obtain
Bayes factors close to zero, consistent with a non-detection and
with the outcome of the frequentist analysis. In particular, we get
log(B) = −0.27 for the search Bayes_E, and log(B) = −0.31 for
the search Bayes_EP_NoEv.

The Bayesian analysis also returns samples from the joint poste-
rior probability distribution of all model parameters. The marginal-
ized distribution of any parameter of interest can then be evaluated
by integrating (i.e. marginalizing) the joint posterior distribution
over all other parameters. We are particularly interested in the strain
amplitude A. We can then split the vector parameter λ = (A, λ′)
and integrate over λ′ to obtain the marginalized posterior for the pa-
rameter A. In practice, we divide the frequency range in small bins
in which we carry out this marginalization procedure separately.
The 95 per cent upper limit at each frequency corresponds to the
value Ã for which 95 per cent of the posterior distribution lies at
A < Ã; namely

0.95 =
∫ Ã

0
dA

∫
dλ′L(A, λ′|δ t)π (A)π (λ′). (33)

Results are shown in Fig. 6, which compares all the upper limits
on the GW strain achieved by all methods presented in this paper.
For the non-evolving source case, the Bayes_EP_NoEv upper limit
agrees particularly well with the fixed-noise Fp-ML statistic. This
is encouraging, since the two methods are similar in spirit as they
adopt the same signal model and assume fixed/known noise param-
eters. For the evolving source case, the Fe upper limit is very sim-
ilar to both Fp-ML and Bayes_EP_NoEv, mimicking almost per-
fectly their behaviour at low frequency. The upper limits obtained
by both the Bayes_E and the Bayes_EP searches are noisier and
slightly higher, but overall consistent with the others within a factor
of two.

As mentioned in Section 3, we also ran a full 37-dimensional
search over noise and signal parameters on the restricted set of the
six best pulsars in our PTA (c.f. Fig. 1), and in a restricted frequency
range of 5–15 nHz where we have the best sensitivity. We used
the phase-marginalised Bayesian analysis for non-evolving sources,
and labelled the run Bayes_EP_NoEv_noise. The 95 per cent up-
per limit obtained in this case is shown in Fig. 5, together with
the fixed noise Bayes_EP_NoEv and the noise-sampling Fp results.
The Bayes_EP_NoEv_noise limit lies a factor 1.1–1.5 above the
Bayes_EP_NoEv one. This is in line with the findings of Arzouma-
nian et al. (2014), and confirms that our ML fixed noise upper limits
are reliable within a factor � 1.5. It is also interesting to see that
the Bayes_EP_NoEv_noise limit agrees fairly well with the noise-
sampling Fp one. By analysing Fig. 6 we can conclude that all the
upper limits yielded by the different techniques agree within a factor
of two. We also observe that methods based on fixed noise (ML)
parameters slightly underestimate the upper limit, which could be
because the ML values are not always representative of the posterior
distribution of the noise parameters.

4.3 Sky maps

Most of the searches outlined above are also sensitive to the source
location on the sky. We can therefore extend our study and produce

Figure 5. The 95 per cent upper limit on the GW strain obtained with
the phase-marginalized Bayesian analysis, searching on noise and signal
simultaneously (Bayes_EP_NoEv_noise, blue-circled curve), is compared
to the same analysis with ML-fixed noise (Bayes_EP_NoEv, dashed-black
curve) and to the noise-sampling Fp analysis (solid-red curve). Details of
each specific analysis are given in Table 1. ‘TD’ stands for time-domain
analysis as opposed to the time-frequency approach developed in Lentati
et al. (2013).

sky maps of the 95 per cent upper limits provided by our analysis
as a function of frequency.

In the frequentist framework, this is straightforward to do in the
context of theFe-statistic, since it is sensitive to sky position (unlike
Fp). As already mentioned, the upper limit is evaluated through
massive signal injections according to the procedure outlined in
Section 4.1.2. The difference is that now we have to divide the
sky into ‘cells’ and inject 500 sources at each cell location. This
is much more computationally expensive than the evaluation of the
sky-averaged limit; we therefore generate the sky map at 6.3 nHz
only, corresponding to our best sky-averaged limit. This is shown in
Fig. 7. As expected we are more sensitive in the region of the best
pulsars.

We can also produce targeted upper limits as a function of sky
location by means of Bayesian techniques. The problem here is
that by splitting the posterior samples on a 3-D frequency-sky loca-
tion grid, we end up with only a handful of points per cell, which
are not enough to derive a reliable 95 per cent upper limit. To
mitigate this issue, we divided the sky into 4×2 patches on the
φ and θ coordinates, respectively. A dedicated Bayesian analysis
(fixed noise with marginalization of pulsar phases) on each patch
yielded enough samples to sub-divide the region into a further 4×4
sectors, for a total of 16×8=128 resolution elements across the
whole sky. Fig. 8 illustrates the sky map obtained in this way
at a GW frequency of 7 nHz (a movie showing the evolution of
the sky map across the relevant frequency range is available at
http://www.epta.eu.org/aom.html).

The qualitative agreement between the two maps is quite good.
In both of them, the best pulsars are shown as white dots, with
size proportional to their contribution to the square of the S/N. As
expected, the most constraining (i.e. lowest) upper limits on the
strain of a putative CGW lie around the location of the best pulsars
in the array, and the sky maps shows a clear dipolar pattern. The
closest galaxy clusters in the Universe, i.e. Virgo and Coma, are
located at the transition between the two regions of the dipolar
pattern, in an area of ‘average sensitivity’.
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Figure 6. The 95 per cent upper limit on the GW strain for the three frequentist methods, i.e. Fp varying noise (Fp), Fp fixed noise (Fp_ML) and Fe , and
the three bayesian methods, i.e. “evolving source” with Earth term only (Bayes_E) and with Earth and Pulsar terms (Bayes_EP) and ‘non-evolving source with
Earth and Pulsar terms (Bayes_EP_NoEv), see Table 1 for details.

Figure 7. Sensitivity sky map at f = 6.3 nHz computed with the Fe com-
puted with 500 injections in 48 directions in the sky (‘cells’). The colour
scale corresponds to log10 of the 95 per cent upper limit on the strain
amplitude A. The white points indicate the positions of the six best pulsars
with sizes corresponding to their contribution to the S/N. Black dots indicate
the location of the Virgo and the Coma clusters.

Figure 8. Sensitivity sky map at f = 7 nHz computed with the phase-
marginalized Bayesian technique for a ‘non-evolving source’. The colour
scale and points are the same as for Fig. 7.

5 A STRO PHYSI CAL I NTERPRETATI ON

The upper limits on CGWs from SMBHBs presented in this paper
are currently the most stringent in the literature. We turn now to
investigate their impact on the astrophysics of SMBHBs.

5.1 Horizon distance

Each of the 95 per cent upper limits on A derived in the previous
section can be easily converted into a horizon distance for CGW
detection as a function of mass and frequency using equation (7). If
A95 per cent(f ) is the strain upper limit as a function of frequency
obtained with a specific method, then

DH (f ,Mc) = 2
M5/3

c

A95 per cent(f )
(πf )2/3. (34)

In a frequentist sense, this has to be interpreted as the distance at
which, on average, a source of mass Mc emitting at frequency f
located anywhere on the sky would result in a value of the detection
statistics higher than what we measure in the data with 95 per cent
probability, if it was there. As an example, results for the Fp-ML
statistic are presented in Fig. 9. An interesting feature of the plot is
that, for a given Mc, DH is essentially constant (slowly declining)
for f > 5 × 10−9Hz. This is because of the cancellation effect
between the rising CGW amplitude with frequency, A ∝ f −2/3 and
the PTA sensitivity, which degrades almost linearly with f (see Figs 3
and 6). In this frequency range, and with the current sensitivity, we
can exclude the presence of an SMBHB with Mc > 109 M� out
to a distance of about 25Mpc, i.e. well beyond the distance to the
Virgo cluster, and with Mc > 3 × 109 M� out to a distance of
about 200 Mpc, i.e. twice the distance to the Coma cluster. Note
that Virgo and Coma themselves are located in a region of ‘average
sensitivity’ in our sky sensitivity map (see Fig. 8), meaning that
we can rule out the presence of SMBHBs (with the characteristics
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Figure 9. Horizon distance as a function of GW frequency for selected
values of Mc, based on the Fp- ML upper limit.

described above) in these specific clusters. We remind the reader
that these numbers are for SMBHBs with a given redshifted chirp
mass; because of the 1 + z factor, horizon distances evaluated at the
same values of the intrinsic SMBHB mass will be slightly larger.

A number of potentially interesting sources have been proposed
in the literature. Among these are the two blazars OJ287 (Valtonen
et al. 2008) and PG 1302−102 (Graham et al. 2015). Both objects
are located at z ≈ 0.3 corresponding to DL ≈ 1.5Gpc. At such
distances, we cannot rule out any system below Mc = 1010 M�,
which far exceeds the plausible range of chirp masses inferred for
these two objects. Should their binary nature be confirmed, these
two systems would likely be among the thousands of contributors
to the stochastic GW background. At this stage, SMBHBs need to
be more massive and/or nearby to be resolved by a PTA.

5.2 Probability of detection

A natural question that arises at this point is: could we expect a
detection of a CGW signal with the current EPTA sensitivity? We
now evaluate the probability of detecting CGWs from an individual
SMBHB with an array like the current EPTA, by using a large
set of observationally based simulations of the cosmic SMBHB
population. Each simulation represents a particular realization of
the ensemble of SMBHBs. In a nutshell, galaxy merger rates are
obtained using a selection of galaxy mass functions and close galaxy
pair fractions from the literature; merging galaxies are populated
with SMBHs following empirical black hole–galaxy host relations;
finally, each binary is assumed to emit GWs while inspiralling in
a quasi-circular orbit. Given the broad range of different models
taken into account and their uncertainties, numerous simulations are
created in order to cover all possible configurations consistent with
the observations. The SMBHB populations obtained in this way
are consistent with the results of semi-analytic halo merger trees
and cosmological N-body and hydrodynamical simulations. More
details on the simulations and the models employed to produce them
can be found in Sesana (2013).

One can perform signal injections drawing the sources from these
models and run all the different detection pipelines detailed above,
to assess detection probabilities. However, this is an expensive task,
and we do not need such a refined analysis at this stage. We instead
simplify the problem following a similar approach as in Rosado,
Sesana & Gair (2015). For a given realization of the SMBHB pop-
ulation, we group GW sources in frequency bins �f = 1/T, and

Figure 10. GW strain amplitude versus GW observed frequency. The
coloured lines represent the different upper limits presented in this work.
The shading gives the probability of detecting an SMBHB in a particular
interval of strain and frequency. That detection probability increases towards
lower frequencies and smaller values of strain (on the lower-left corner). In
the legend, the percentage of detection probability is given for each of the
upper limits.

compute the characteristic strain

h2
c =

∑
k h2

kfk

�f
, (35)

the sum runs over all binaries falling in the frequency bin. We then
identify the loudest source in each bin, and compute its S/N fol-
lowing Sesana & Vecchio (2010) assuming that the noise is given
by the sum of the strains of the GWs produced by all other bina-
ries. In practice, we are assuming that all other sources produce an
‘unresolved background’, and we check whether the loudest source
‘sticks out’ of it. We assume a detection statistic described by a χ2

distribution with four degrees of freedom, and we consider ‘individ-
ually resolvable’ only those sources with S/N surpassing the FAP
threshold of 0.1 per cent related to this distribution.5

Let us assume a particular upper limit on the GW strain am-
plitude, among those presented in Fig. 6, and call it ULi. At a
particular frequency bin fj, we simply estimate the probability
of detecting an SMBHB with such sensitivity as the fraction of
realisations in which a resolvable binary produces a strain am-
plitude A > A95 per cent(fj ). We call this detection probability
p(D|ULi, fj). The probability of not detecting a binary at that fre-
quency is thus p(N|ULi, fj) = 1 − p(D|ULi, fj). Assuming that the
probabilities of different frequency bins are independent, the prob-
ability of not detecting a binary in any frequency bin is the product
of the individual values p(N|ULi, fj). Hence,

p(D|ULi) = 1 −
∏

j

(1 − p(D|ULi , fj )) (36)

is the probability of detecting an SMBHB at any frequency bin, for
the upper limit ULi.

The detection probability at any frequency obtained for each of
the upper limits is given in the legend of Fig. 10. The maximum
detection probability achieved with the EPTA upper limits is below
∼1 per cent. Therefore, we can safely conclude that a non-detection
is consistent with the theoretical expectations.

5 By assuming a χ2 distribution with four degrees of freedom, we are as-
suming Fe as detection statistic. This is an arbitrary choice dictated by com-
putational convenience only. Results are, however, qualitatively unchanged
if a different statistic (e.g. Fp) is assumed.
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Figure 11. Cumulative PDF of the frequency shift between pulsar and Earth
terms, in units of the adopted frequency bin �f = 15 yr−1. The upper and
the lower panels assume a pulsar distance of 2 kpc (average distance of the
EPTA pulsars) and 6 kpc (maximum distance), respectively.

5.3 Frequencies of the Earth and the pulsar terms

In our searches, we distinguished between evolving and non-
evolving GW signals, presenting distinct search methods for each
of them. One may therefore ask, whether one type of signal is more
likely than the other, in order to better focus development efforts on
specific analysis pipelines. We can use the same simulated SMBHB
populations discussed above to answer this question. As shown by
Fig. 10, only a small percentage of them leads to a detection with
the sensitivity of the current EPTA, being therefore inconsistent
with observations. Nevertheless, it is still meaningful to study the
outcome of those realizations, since they would resemble the true
ensemble of SMBHBs in the fortunate case of a detection in the
near future.

For each of the observable SMBHBs in those realizations, we
calculate, according to equation (8), the frequency evolution of
the emitted GW after a time lapse of 4kpc/c, which would be the
maximum time difference between pulsar and Earth terms for a
pulsar located at 2kpc (which is approximately the mean distance
to the EPTA pulsars). Frequency shifts are defined as the difference
between the GW frequency before and after that time lapse in units
of the frequency resolution bin of the array (assumed to be 15 yr−1

here). Their distribution is shown on the upper plot of Fig. 11.
The lower plot is analogous, but assuming a pulsar located at 6 kpc
(which corresponds to approximately the largest distance to a pulsar
in the EPTA). Should EPTA detect an individual source in the near
future, it could either be evolving or non-evolving with nearly equal
probability. Even considering the shifts produced in the furthest
pulsar only (≤6 kpc), there is still a 36 per cent probability that

the source would be non-evolving. Decreasing the PTA sensitivity
floor would make it sensitive to lower mass binaries (which evolve
faster), but would also improve the chance of detection at higher
frequency, where evolution is more likely. Likewise, extending the
observation time will allow us to see binaries at lower frequency,
where evolution is less likely; it will, however, also shrink the size
of the frequency bin (�f = 1/T), making it easier for a source
to sweep through different resolution elements. Detection strategy
development for both classes of sources is therefore warranted.6

6 C O N C L U S I O N S

In this paper, we searched for continuous GW signals in the lat-
est release of the EPTA data set. We adopted both frequentist and
Bayesian techniques, searching for both frequency-evolving and
strictly monochromatic signals. In most of the cases, we fixed the
value of the noise parameters in each pulsar to the ML estimated
in a separate SPA. This choice was primarily dictated by compu-
tational feasibility, but is certainly non-optimal, since pulsar noise
and GW signals might be degenerate and one should include both
simultaneously in the search. To validate our results we therefore
also performed a frequentist analysis, sampling from the posterior
distributions of the noise parameters returned by the SPA (simply
labeled Fe), and a full Bayesian search over both the noise and
the signal (labeled Bayes_EP_NoEv_noise). Because of the high
dimensionality of the search parameter space, the latter has been
conducted on a restricted data set including only the six best pulsars
in the array.

None of the analysis yielded any evidence of the presence of
a signal, and only upper limits on the amplitude A of a putative
CGW could be placed. The excellent quality and length of the data
set allowed us to place limits comparable to those of Zhu et al.
(2014) at f > 10 nHz and a factor of two better at f < 10 nHz, yeld-
ing the overall most stringent constrains to date. All the employed
methods yield 95 per cent upper limits on A (A95 per cent) con-
sistent within a factor of two across the whole 2–400nHz frequency
range. Our best sensitivity is in the 5–7nHz interval, where we
find 6 × 10−15 < A95 per cent < 1.5 × 10−14, depending on the
adopted method. The most robust analysis (Bayes_EP_NoEv_noise)
results in A95 per cent = 9 × 10−15 at 6 nHz. Limits on the strain
amplitude can be converted to horizon distances as a function of
source mass and frequency. We exclude the existence of SMBHBs
with separation <0.01 pc and Mc > 109 M� out to a distance of
about 25 Mpc (well beyond Virgo), and with Mc > 109.5 M� out
to a distance of about 200 Mpc (twice the distance to Coma). In re-
cent years, several ‘overmassive’ black holes have been found in the
local Universe, with measured masses in excess of 1010 M�. Our
analysis excludes that any such system lives in a compact binary
within a distance of about 1 Gpc (z ≈ 0.2). Finally, we compared
our limits to the predictions of state of the art models of the cos-
mic population of SMBHBs. We found a detection probability of
�1 per cent at current sensitivity, consistent with the null result of
our searches.

The present analysis has also highlighted a few interesting tech-
nical issues related to the search methods and to the nature of the
data set. Despite not being robust for detection purposes, as pointed
out by Arzoumanian et al. (2014), fixed noise analysis upper limits
are consistent within 50 per cent of those obtained by searches over

6 A more detailed study of the expected properties of the first detectable
SMBHBs can be found in Rosado et al. (2015).
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the full parameter space (i.e. including signal and noise simultane-
ously). Therefore, so long as the data do not support the presence of
a signal, a computationally cheap analysis of this type can be carried
out over an extensive data set of numerous pulsars, possibly yield-
ing more interesting astrophysical constraints on the low-redshift
SMBHB population in the near future. Eventually, simultaneous
searches over the signal and noise parameters will be required for
a confident detection claim. However, those are extremely expen-
sive, and novel techniques capable of efficiently handling parameter
spaces of 100+ dimensions must be developed. The reason why the
results of the full search on the restricted data set of six pulsars is
consistent with those provided by fixed noise analysis on the full set
of 41 pulsars, is that the current EPTA array is heavily dominated
by a handful of ultrastable MSPs. In particular, PSRs J1909−3744
and J1713+0747 combined account for 80 per cent of the EPTA
sensitivity to CGWs. As a result, the EPTA data set sensitivity has
a strongly dipolar pattern across the sky, varying by almost a factor
of four over the celestial sphere. The discovery of new ultrastable
MSPs will therefore be crucial to provide a better sky coverage,
ensuring that no ‘blind spots’ are left, and thus enhancing the prob-
ability of detecting CGWs in the coming decade.
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