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ABSTRACT

Context. Data gaps are ubiquitous in spectral irradiance data, and yet, little effort has been put into finding robust methods for filling
them.
Aims. We introduce a data-adaptive and nonparametric method that allows us to fill data gaps in multi-wavelength or in multichannel
records.
Methods. This method, which is based on the iterative singular value decomposition, uses the coherency between simultaneous
measurements at different wavelengths (or between different proxies) to fill the missing data in a self-consistent way. The interpolation
is improved by handling different time scales separately.
Results. Two major assets of this method are its simplicity, with few tuneable parameters, and its robustness. Two examples of
missing data are given: one from solar EUV observations, and one from solar proxy data. The method is also appropriate for building
a composite out of partly overlapping records.

Key words. methods: data analysis – methods: statistical – Sun: UV radiation

1. Introduction

Solar and stellar irradiance records are often plagued by data
gaps. The proper interpolation of these missing data is a long-
standing and notoriously delicate problem that requires a good
understanding of the data (Wiener 1964; Little & Rubin 2002).
Considerable attention has been given to this problem in fields
such as climate science (Dobesch et al. 2007) but much less so
in solar physics and in astrophysics. Often, the limited attention
that is paid to data gaps contrasts with the sophistication of the
analysis that is performed on these data.

While short gaps can easily be filled by linear or by non-
linear interpolation, data gaps whose duration exceeds the char-
acteristic time scales are much more difficult to handle. A no-
table exception is when multichannel synoptic observations of
the same process are available, with gaps in some or in all of
them. Spectral irradiance observations, which we shall concen-
trate on, precisely belong to that category. Our examples will
be taken from the Sun, but the results can be easily extended
to other types of multichannel observations. Our method applies
to any set of observations that are recorded simultaneously (i.e.
the time stamps are the same for all records), are correlated with
each other, and whose time intervals fully or partly overlap. Our
main assumption is their linear correlation, in the sense that each
record can be approximated by a linear combination of the other
ones.

Consider spectral irradiance measurements or simultaneous
measurements of different proxies. These synoptic records are
frequently used to assess subtle changes in the variability of the
Sun; they are often remarkably coherent in time t and in wave-
length λ. As a consequence, their variability can be explained in
terms of a few contributions only. This property is well known
for the Extreme UltraViolet (EUV) (Lean et al. 1982; Amblard
et al. 2008) but also for the visible range (Rabbette & Pilewskie
2001), when measured from space.

The same coherency is observed among different proxies for
solar activity (Pap & Guhathakurta 1992; Schmahl & Kundu
1994; Lean 2000; Kane 2002; Floyd et al. 2005; Dudok de Wit
et al. 2009). This property is rooted in the structuring effect of
the solar magnetic field; it partly breaks down during the impul-
sive phase of solar flares because the spectrum then considerably
depends on the local conditions of the solar atmosphere. Here,
however, as in many applications, we consider daily or hourly
averages, so that the effect of short transients can be discarded.

This coherency in both time and wavelength is the key to the
reconstruction technique we shall introduce below. By interpo-
lating along two dimensions, we not only improve the quality
of the reconstruction, but we also can fill arbitrarily large data
gaps without having to rely on the tedious bookkeeping that is
required by most interpolation schemes.

The nonparametric and data-adaptive method we advocate
is based on the SVD or singular value decomposition (Golub
& Van Loan 2000), which is to linear algebra what the Fourier
transform is to spectral analysis. The SVD allows the extraction
of the coherent part of the solar spectral irradiance, which is then
used to fill the data gaps iteratively. The method is described in
Sect. 2, and two applications are detailed. The first one (Sect. 3)
deals with solar spectral irradiance data in the EUV. In the sec-
ond application (Sect. 4) we consider a set of solar proxies with
numerous gaps.

2. The reconstruction method

Let I(λ, t) be a multichannel record that represents either the
solar spectral irradiance at different wavelengths (or in differ-
ent spectral bands) or a set of solar proxies, or a combination
thereof. All these quantities must be sampled simultaneously;
the sampling rate, however, does not need to be constant. These
data are conveniently stored in a matrix Ii j = [I(ti, λ j)], in which
columns are time series. Each column may have an arbitrarily
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large number of data gaps, as long as a reasonable fraction of
observations are available, say at least 20%.

2.1. Basics

The method we propose exploits either the coherency in wave-
length, or both the coherency in wavelength and in time. We start
with a description of the first option, because the second one can
be readily obtained by data embedding. Let us first assume that
there are no gaps. The SVD of the data matrix then yields a sep-
arable set of functions (hereafter called modes)

I(ti, λ j) =
M∑

k=1

sk uk(ti) vk(λ j), (1)

which are orthonormal

〈〈uk(t)ul(t)〉 = 〈vk(λ)vl(λ)〉 =
{

0 if k � l
1 if k = l. (2)

The weights s1 ≥ s2 ≥ . . . ≥ sM ≥ 0 are positive by construction.
The number M of modes equals the rank of the matrix, which is
usually the smallest of the number Nt of samples or the num-
ber Nλ of records. This decomposition is unique. The SVD of
the data matrix directly yields a set of three matrices I = USVT

that respectively contain u(t), the weights s, and v(λ).
A key property of the SVD is that modes with heavy weights

describe salient features of the data. That is, the truncated
expansion

ÎK(ti, λ j) =
K≤M∑
k=1

sk uk(ti) vk(λ j) (3)

will capture the coherent part of the data while deferring inco-
herent fluctuations to the remaining modes. This property has
made the SVD popular in multichannel and array data process-
ing (Dudok de Wit 1995; Cline & Dhillon 2006). We shall use it
here to reconstruct the missing values.

The performance of the reconstruction can be quantified by
the mean square error

e =
Nt∑
i=1

Nλ∑
j=1

(
I(ti, λ j) − ÎK(ti, λ j)

)2
=

M∑
k=K+1

s2
k , (4)

which shows that by taking the few largest modes, the recon-
struction error can be made arbitrarily small. As it turns out with
spectral irradiance data, the first few weights are often orders of
magnitude heavier than the subsequent ones, so that excellent
reconstructions can be achieved with a few modes only. We im-
plicitly assume here that features departing from the behaviour
observed at other wavelengths are unlikely to have a solar origin
(except during the impulsive phase of flares), so that they can be
readily discarded. This will be illustrated below in Sect. 3.

Let us now assume that some samples are missing. The data
covariance matrix and the SVD then cannot be computed any-
more. This problem, however, can be circumvented by using the
following iterative scheme with two embedded loops:

1. fill each gap with some adequate value (typically the tempo-
ral mean of the record);

2. compute the SVD;
3. compute the approximation Îk of the data by retaining the k

largest mode(s) of the SVD. Initially, k = 1;

4. fill the gaps with Îk, as defined in Eq. (3). As long as these
values have not converged, go back to 2. (inner loop);

5. increment the number of modes k and start again at 2. Iterate
until k = K (outer loop).

This method seems to have emerged independently in different
contexts (Schneider 2001; Beckers & Rixen 2003; Kondrashov
& Ghil 2006); it has mostly been used for spatio-temporal data
sets, with some subtle differences (Schneider 2007). We refer
to Schneider (2001) for discussions on optimality, convergence,
etc. Three additional adaptations, however, need to be consid-
ered before the method can be applied to irradiance data.

2.2. Preprocessing problems

The relative variability and the average value of the solar spectral
irradiance vary by orders of magnitude between the soft X-ray
and the visible range. The SVD, however, is scaling-dependent
and so a renormalisation is required. We do so by standardising
each record: first, the time average is subtracted and then a nor-
malisation with respect to the standard deviationσλ j or the noise
level (if known) is performed. Both operations are affected by the
value of the missing samples, so they must be repeated at each
iteration. This is particularly important for the offset subtraction.
The renormalisation may be done only once.

2.3. Multiscale decomposition

The solar spectral variability contains a mix of scales that are
driven by different processes: 27-day variations are due to solar
rotation, the 11-year periodicity is caused by the solar cycle, etc.
Each of these processes leads to a specific spectral dependence;
different scales should therefore be processed separately when
filling gaps. This feature considerably improves the reconstruc-
tion skill and to the best of our knowledge has not yet been used.

The two ranges of scales that are most frequently encoun-
tered in solar studies are: below 81 days (which captures solar
rotation and the evolution of active regions) and above 81 days.
We apply the iterative SVD procedure described in Sect. 2.1 sep-
arately to both scales. The à trous wavelet transform (Mallat
2008) is used to decompose the data into two records at each
iteration: one with short time-scales and one with long time-
scales. Classical bandpass filters may also be used because this
has no significant impact on the results. The wavelet transform,
however, is better suited for non-stationary data. One may also
want to extract additional scales, such as the 13-day periodicity
associated with centre-to-limb effects of hot coronal lines. This
indeed results in a small but discernible improvement in the re-
construction of the EUV, at the expense of a longer computation
time.

2.4. Coherency in time

The methodology so far only exploits the coherency between dif-
ferent wavelengths (or proxies), which is the key property. One
may also want, however, to make use of the temporal coherency.
This is useful when there are specific times at which there is no
single observation, or if the number of records is small (typi-
cally Nλ < 5), or if each record can be considered as a smoothly
varying waveform with incoherent noise superimposed on it.

The main asset of the iterative SVD reconstruction method is
its straightforward extension to such a filtering in time, using the
concept of embedding, which has been pioneered in the study of
chaotic systems by Broomhead & King (1986). Let us expand
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the data matrix by appending replicates that are shifted in time,
i.e.

Ei j =
[
I(ti, λ j) I(ti+1, λ j) I(ti+2, λ j) . . . I(ti+D−1, λ j)

]
. (5)

By applying the SVD to this embedded matrix we exploit both
the coherency in wavelength and in time. It is important (but not
mandatory) that the data be regularly sampled since the method
essentially computes a weighted average of each sample with its
nearest neighbours. The higher the value of the embedding di-
mension D, the more adjacent time steps are used in the recon-
struction, thus leading to a stronger smoothing in time. This is
equivalent to using a symmetric finite-impulse filter whose coef-
ficients are obtained data-adaptively. The particular case wherein
one single record is embedded and decomposed by SVD is called
singular spectrum analysis (SSA). In the SSA, only temporal in-
formation is used and so it is important for the embedding di-
mension to exceed the value of the dominant period in the data
(Ghil et al. 2002). Our reconstruction, however, mostly relies
on the strong coherency across wavelengths or proxies to fill the
gaps and so the conditions on the value of the embedding dimen-
sion are much less stringent. In practice, low values (D = 2−5)
already bring a significant improvement. The main reason for
keeping this dimension as low as possible is to reduce the com-
putational load.

2.5. The method in practice

The three tuneable parameters of the method are: a) the num-
ber K of significant modes; b) the number of scales into which
the data are decomposed; and c) the embedding dimension D.
Only the first one really affects the outcome. A separation into
two scales only (with a threshold between 50–100 days) is
enough to properly capture both short- and long-term evolutions,
and embedding dimensions of D = 2−5 are usually adequate
for reconstructing daily averages. The determination of the op-
timum parameters and the validation of the results is made by
cross-validation and will be illustrated below.

The only critical question is memory and computational
load. For an irradiance data set with five years of daily values
at 100 wavelengths, and an embedding dimension of D = 5, the
size of the embedded matrix is [1822, 500]. The computation of
the SVD at each iteration typically takes several seconds. For
that reason, it may be desirable to process separately those spec-
tral bands that evolve differently, such as the soft X-ray, the EUV
and the MUV bands. The routine in Matlab R© is available from
the author.

3. First example: gap filling in the EUV flux

The Solar EUV Monitor (SEM) is a solar Extreme UltraViolet
(EUV) spectrometer that has been operating continuously on
the SoHO satellite since January 1996 (Judge et al. 1998). In
its first-order mode, SEM measures the irradiance within an
8 nm bandpass centred about the bright 30.38 nm He ii line. On
June 25, 1998, SoHO suffered a mission interruption, leading to
the loss of several months of data. This long data gap consid-
erably complicates the use of SEM data for upper atmosphere
model validation. The SEM, however, mostly captures chromo-
spheric emissions, which are highly correlated with other gauges
of solar activity. Foremost among these are:

– the f10.7 or decimetric index, which is the solar radio flux
at 10.7 cm. This index, which is measured from the ground,
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Fig. 1. Upper plot: four chromospheric proxies, averaged over 80 days,
using a Gaussian filter. The two major outages are shown shaded.
Bottom plot: excerpt of the same proxies, showing daily values. The
long-term trend has been subtracted from the latter. All records have
been normalised to their standard deviation and shifted vertically for
easier visualisation.

captures a mix of thermal and electron gyro-resonance emis-
sions, and has been shown to be highly correlated with the
EUV flux (Tapping & Detracey 1990);

– the Mg ii index, which is the core-to-wing ratio of the
Mg ii line at 280 nm. This index is widely used as a proxy
for chromospheric activity (Viereck et al. 2001);

– the intensity of the H i Lyman α line at 121.57 nm, which is
the brightest spectral line below 200 nm (Woods et al. 2000).

Together with the flux from the SEM, we have four quantities
that have different physical origins and yet are highly correlated,
thereby opening the prospect of filling the large gaps in the SEM
data. We consider daily averages made from January 1, 1996
until April 29, 2011. The linear correlation between the f10.7 in-
dex and the other proxies improves when taking its square root,
which we shall systematically do from now on. The correlation
between these four proxies on both long and short time-scales is
illustrated in Fig. 1.

Our working hypothesis is that each of the missing samples
from the SEM can be reconstructed from a linear combination
of (possibly non-simultaneous) observations of the other prox-
ies. As we shall see shortly, the best value of the embedding
dimension is 4; let us therefore select D = 4 and first determine
the optimum number of modes. With four variables and an em-
bedding dimension of 4, the total number of SVD modes is 16;
their weights are displayed in Fig. 2. The first weight surpasses
all the others because the first mode is an average of all four
proxies, which is by far the most conspicuous coherent feature.
The inflexion point between the few heaviest weights and the flat
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Fig. 2. Upper plot: distribution of the normalised weights sk/s1, for an
embedding dimension of D = 4. The total number of modes is 16.
Bottom plot: variation of the reconstruction error with the number of
modes K, for each of the four variables.

tail provides a convenient but visual criterion for determining the
number of significant modes (Dudok de Wit 1995). According to
this criterion, the best interpolation skill is for K = 5−6 modes
out of 16.

A better validation test consists in generating a small number
of synthetic gaps, reconstructing them, and then checking how
the residual error varies with the model parameters. To do so,
we remove 5–10% of the samples from each record and then
compute the normalised error

εK(λ j) =
1
σλ j

√
1

Ngaps

∑
i={gaps}

(
I(ti, λ j) − ÎK(ti, λ j)

)2
,

where the average is computed for synthetic gaps only. This pro-
cedure is repeated ten times to obtain an estimate of the average
value of the normalised error. A value of 100% can be inter-
preted as an error whose standard deviation equals the solar cy-
cle variability of the original data. This value truly reflects the
error made by filling short data gaps. Note that it tends to under-
estimate the error for larger gaps, unless the length distribution
of the synthetic gap matches that of the original data.

The evolution of the normalised error with K is illustrated
in Fig. 2, which shows a broad minimum around K = 4−8, in
agreement with the estimate obtained by visualisation. Note that
the four minima occur at different values of K. The normalised
error is on average larger for the

√
f10.7 index, which suggests

that this quantity is relatively more difficult to reconstruct than
the others. This is not so surprising, because it is the only emis-
sion from the radio band. The smallest normalised error is ob-
tained for the SEM, with εK = 4.5%. This value is about half
that of the estimated normalised uncertainty (Judge et al. 1998),
which shows the excellent quality of the reconstruction. In prac-
tice, the optimum value of K is frequently found to be one or
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Fig. 3. Upper plot: variation of the reconstruction error for the SEM
with the embedding dimension D. For each embedding dimension, the
number K of modes that minimises the error is chosen. Bottom plot:
comparison between the measured flux from the SEM (dashed line) and
the flux reconstructed with an embedding dimension of D = 4 (thick
line), and D = 15 (thin line). The Mg ii index is shown for comparison
(filled curve), with arbitrary units.

two units higher than the value obtained by visual inspection.
As Fig. 2 suggests, an overestimation of K is preferable to an
underestimation.

The choice of the embedding dimension D is mostly based
on physical insight. With D = 1 (i.e. no embedding) we assume
that the missing samples are reconstructed from simultaneous
observations only, whereas D > 1 implies that the information
contained in past and future observations is also used. Setting
D > 1 therefore involves a weighted averaging over time, which
is appropriate for records whose samples are highly correlated
in time.

In Fig. 3 we estimate the normalised error for different em-
bedding dimensions, using the optimum number of modes for
each of them. The smallest error is obtained for an embedding di-
mension of D = 4. Larger dimensions hardly reduce the error but
do increase the computational load substantially. As expected,
the higher the value of D, the smoother the reconstruction and
the more likely that fine features may be missed. This is particu-
larly evident in August 1998, when a group of rapidly evolving
active regions were moving across the solar disc. An embedding
dimension of 4 properly captures their evolution, whereas a di-
mension of 15 smears out all but the most pronounced peaks.

This example illustrates a relatively simple case because only
one record has gaps in it. Let us now, however, consider a more
frequent case in which several of the records have large gaps.
Filling these gaps by standard interpolation schemes can become
very time-consuming because of the amount of bookkeeping that
is required to test whether gaps occur simultaneously in several
records, etc. The SVD-based interpolation does not require any
of these tests.
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Fig. 4. Reconstruction of the missing values of the Ca K index using 1
to 6 modes. The upper plot shows an excerpt at solar maximum and
the bottom one at solar minimum. The observations are indicated with
crosses and the different reconstructions with continuous lines. Also
shown is the Mg ii index (filled line), in arbitrary units.

4. Second example: reconstruction of the Ca K
index

The Ca K index is the normalised intensity of the Ca ii K-line
at 393.37 nm and has been advocated as a proxy for magnetic
activity, including plages, faculae, and the network. This line is
measured from the ground, so it cannot be observed continu-
ously. Here we consider a record of daily observations made at
the National Solar Observatory at Sacramento Peak (Keil et al.
1998), in which about 66% of the samples are missing. This in-
dex is known to be highly correlated with other solar indices, in
particular with the Mg ii index (Foukal et al. 2009), so that the
SVD method is ideally suited for filling its gaps.

To reconstruct the missing values, we consider the follow-
ing set of proxies that are highly correlated with the Ca K index:
the square root of the f10.7 index, the intensity of the H i Lyman
α line, the Mg ii index and the magnetic plage strength in-
dex (MPSI) (Parker et al. 1998). The time interval ranges from
Nov. 1, 1980 to April 29, 2011; all proxies have data gaps ex-
cept for the first two. These gaps occur erratically and 6% of
them exceed 10 days. In this particular example, the coherency
between proxies is crucial and indeed the choice of the embed-
ding dimension D does not significantly affect the results. Let us
take D = 2, which is the value that is recommended by the re-
construction error. The maximum number of SVD modes is 10
because we have five records. Out of these, three only are found
to be significant.

The result of the reconstruction is illustrated in Fig. 4 for
periods of high and low solar activity. Note that the results ob-
tained with different number of modes lead to similar temporal
evolutions. The reconstruction at solar maximum looks reason-
able because it passes through the observations while staying
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Fig. 5. Ca K index after reconstruction and filtering by wavelet trans-
form (continuous curve) and the difference with the observations
(crosses). For easier visualisation, the Ca K index has been shifted
downwards by 0.08.

highly correlated with the Mg ii index. During solar minimum,
however, the observed values of the Ca K index continue to fluc-
tuate whereas the reconstructed values and the other proxies stay
almost constant. The difference between the observed Ca K in-
dex and the smoothly varying reconstruction varies randomly in
time, which questions its solar origin.

To further investigate the origin of this difference between
the observed and reconstructed index, we filtered the recon-
structed data with the à trous wavelet transform, which allows
the separation of the sharp peaks from the more regular recon-
struction. The residuals, i.e. the difference between the filtered
reconstruction and the original observations, are shown in Fig. 5:
they are found to be independent and their Gaussian distribu-
tion only weakly varies with the solar cycle. This is a strong
indication that the residuals are measurement errors rather than
solar fluctuations. Their standard deviation is 0.0008, which rep-
resents 20% of the solar cycle variability of the Ca K index. Our
reconstruction thereby provides a means for fitting the numerous
data gaps in the Ca K index while also evaluating the confidence
interval of the observations.

5. Conclusions and additional applications

This study shows that SVD-interpolation is a powerful technique
for filling arbitrarily large gaps in multi-wavelength, multichan-
nel or in synoptic records. We focused here on solar spectral
irradiance observations, which are frequently plagued by miss-
ing data. These gaps may be distributed at random in time or
in wavelength. The main tuneable parameter is the number of
SVD modes that is needed to reconstruct the data; this value may
be estimated either by visualisation or by cross-validation. The
method works best when each record can be approximated by a
linear combination of the others. Since it relies on linear com-
binations only, it may be desirable to apply a nonlinear static
transform beforehand to increase the linear correlation between
the records.

For the method to work, the observations must be sampled si-
multaneously but not necessarily evenly. Non-simultaneous ob-
servations can be handled by resampling all variables to a com-
mon grid, for example by Fourier decomposition (e.g. Hocke &
Kämpfer 2009), and then filling the gaps by SVD. By alternating
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between the two, both the gaps and the interpolated values can
be progressively refined.

This method has several applications in addition to mere
interpolation. The first one is the cross-calibration of mea-
surements of the same quantity by different instruments. The
Mg ii index, for example, is at present measured by different
instruments that give different amplitudes. These data sets are
incomplete and only partly overlap, which considerably im-
pairs their inter-comparison. The iterative SVD method is ideally
suited for filling these gaps because the records are by definition
strongly correlated.

A second potential application is the stitching together of
total solar irradiance (TSI) observations. Merging TSI records
from several instruments is a delicate and controversial task
(Fröhlich 2002) because instruments disagree on the absolute
value of the TSI and often do not operate simultaneously. The
iterative SVD provides a means for estimating the different off-
sets in a self-consistent way because it allows us to extrapolate
each TSI record by assuming that its statistical properties with
respect to the other records do not change in time. This property
is particularly useful for checking composites that are built from
different records, such as the TSI, the H i Lyman α intensity, the
Mg ii index and the sunspot index (Clette et al. 2007). This will
be detailed in a forthcoming publication.
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