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Perturbations of Schwarzschild-Droste black holes in the Regge-Wheeler gauge benefit from the

availability of a wave equation and from the gauge invariance of the wave function, but lack smoothness.

Nevertheless, the even perturbations belong to the C0 continuity class, if the wave function and its

derivatives satisfy specific conditions on the discontinuities, known as jump conditions, at the particle

position. These conditions suggest a new way for dealing with finite element integration in the time

domain. The forward time value in the upper node of the ðt; r�Þ grid cell is obtained by the linear

combination of the three preceding node values and of analytic expressions based on the jump conditions.

The numerical integration does not deal directly with the source term, the associated singularities and the

potential. This amounts to an indirect integration of the wave equation. The known wave forms at infinity

are recovered and the wave function at the particle position is shown. In this series of papers, the radial

trajectory is dealt with first, being this method of integration applicable to generic orbits of EMRI

(Extreme Mass Ratio Inspiral).

DOI: 10.1103/PhysRevD.83.064029 PACS numbers: 04.25.Nx, 04.30.Db, 04.30.Nk, 04.70.Bw

I. INTRODUCTION

It is currently affirmed that the core of most galaxies
host supermassive black holes, on which stars and compact
objects in the neighborhood inspiral and plunge-in. The
EMRI (Extreme Mass Ratio Inspiral) sources are charac-
terized by a huge number of parameters that, when spanned
over a large period, produce a huge number of templates
for the LISA (Laser Interferometer Space Antenna) project
[1]. Thus, matched filtering (the superposition of the ex-
pected and received signals) [2] is aided by stochastic
methods [3]; in alternative, other more robust methods
based on covariance or on time and frequency analysis
are investigated [2,4–8]. Furthermore, if the signal from a
capture is not individually detectable, it still may contrib-
ute to the statistical background [9,10]. Detection strat-
egies are to be tested by the LISA simulators [11–13].

Challenges by EMRIs arise increasing interest amongst
astrophysicists and those studying data analysis, but also
for theorists. Relativists, especially, have been drawn to
study EMRIs for the determination of the motion of the
captured mass and because of the impact that back-action
has on the gravitational wave forms (see [14] where a
comprehensive introduction to these topics is given).

The captured compact object may be compared to a
small mass m perturbing the background spacetime
curvature of a large mass M and generating gravitational

radiation. Perturbation methods from the seminal work of
Regge and Wheeler, henceforth RW [15], were an obvious
aid for studying the case we are dealing with. Approaches
based on numerical relativity (NR) appear not be best
suited, nor do the post-Newtonian (pN) expansions: the
former for the two-scale problem (one small scale for
the neighborhood of the particle, one large scale for the
radiation at infinity); the latter for the small field and low
velocity constraints. To EMRIs, nevertheless, Damour,
Nagar, and coworkers [16–19], and Yunes [20] have ap-
plied the EOB (effective one body) method, though based
on the pN approach. Furthermore, both pN and perturba-
tion methods are found to be in agreement in their common
domain of applicability by Blanchet et al. [21,22], as well
as EOB and perturbation methods have shown their
synergy thanks to Barack et al. [23]. Finally, it is to be
mentioned that NR analysis is slowly progressing towards
unequal mass ratios [24].

A. Perturbation methods

EMRIs have revived the interest for the perturbative
relativistic two-body problem, which was investigated
with a semirelativistic approach some 40 years ago by
Ruffini and Wheeler [25,26], and then more fully by
Zerilli [27–30]. These authors treated the source of the
perturbations in the form of a radially falling particle.
Zerilli’s results opened the way for others to study to first
order the orbital motion of the captured mass in a fully,
although linearized, relativistic regime. Work done up until
the end of the 1990s involved the captured star moving on
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the geodesic of the background field and being unaffected
by its own mass and the emitted radiation.

We shall refer to the first solution of the Einstein equa-
tion as the work of Droste [31–33] and Schwarzschild [34],
collectively as SD, this double authorship having been
justified by the historians, as recalled by Rothman [35].
Much research has been devoted to the study of SD black
hole perturbations in the RW gauge, first in a vacuum [15],
and then by Zerilli in the presence of a source [27–30]. An
outflow of publications by Davis, Press, Price, Ruffini and
Tiomno [36–41], but also by individual scholars like
Chung [42], Dymnikova [43] appeared in the 1970s. It
was followed by a slowdown in the 1980s and 1990s,
with the exception of the forerunners of the Japanese
school as Tashiro and Ezawa [44], Nakamura with
Oohara and Koijma [45] or with Shibata [46]. The aim of
all these authors was to analyze especially the amplitude
and spectrum of the radiation emitted by the falling mass.
Simulations were performed in frequency domain
with the particle falling from infinity. The numerical accu-
racy was recently improved by Mitsou [47]. It was in 1997,
that a fall from finite distance was analyzed by Lousto and
Price [48]. The latter two authors were the first to use a
finite difference scheme in time domain [49]. Following
on this work, Martel and Poisson [50] were able to pa-
rametrize the initial conditions reflecting past motion
of the particle and resulting into an initial amount of
gravitational wave energy. All of this work was carried
out in the RW gauge.

It is less than 15 years since we began to have methods
for evaluating the back-action for point masses in strong
fields thanks to two concurring situations. On one hand, the
theorists progressed in understanding radiation reaction
and obtained formal prescriptions for its determination.
The solution was brought by the self-force equation, first
by Mino, Sasaki and Tanaka [51], Quinn and Wald [52],
and later by Detweiler and Whiting [53], all various ap-
proaches yielding the same formal expression. On the other
hand, for the above-mentioned detection of captures, the
requirements from LISA posed constraints on the tolerable
amount of phase-shift on the wave forms, caused by radia-
tion reaction. This impulse—project oriented—compelled
the researchers to turn their efforts in finding an efficient
and clear implementation of the prescription made by the
theorists. The development was again pursued in perturba-
tion theory. This time, though, the small massm is correct-
ing the geodesic equation of motion on a fixed background
via a factor OðmÞ.

Actually, the advances in the field by e.g. Warburton and
Barack [54] and in radiation gauge by Keidl et al. [55]
have recently tackled the self-force in Kerr geometry [56].
Such initial results in Kerr geometry do not mean
that all major issues in nonrotating black holes have been
solved. For instance, the self-consistent evolution of an
orbit, along the lines suggested by Gralla and Wald [57],

is not yet applied even to the simpler case of nonrotating
black holes.

B. A different integration approach

The complexity in assessing the continuity of the per-
turbations (and the associated numerical computation of
derivatives) at the position of the particle, has led Barack
and Lousto [58], among other motivations such as the
compatibility of the self-force to the (Lorenz-FitzGerald-
de Donder) harmonic gauge [59–61], to convey their
efforts to this gauge. This alternative enterprise is by no
means priceless, the price being the unavailability of a
wave equation like in the RW gauge and of the gauge
invariance of the wave function, as determined by
Moncrief [62]. In this context, the recent investigations
of a gauge independent form of the self-force [63] may
change sensibly the trade-off on the gauge choice.
The choice of a gauge should be suited to the type of

problem under scrutiny and thus we do not adopt a position
on which gauge should be preferred a priori. We find of
some interest to revert a weakness of the RW gauge,
namely, the lack of smoothness, into a building tool of a
new integration method.
Indeed, we propose herein a finite element method of

integration based on the jump conditions that the wave
function and its derivatives have to satisfy for the SD black
hole perturbations to be continuous at the position of the
particle. We first deal with the radial trajectory and the
associated even parity perturbations, while in a forthcom-
ing paper [64] we shall present the circular and eccentric
orbital cases, referring thus to both odd and even parity
perturbations.
Herein, we present a first-order method and show that it

suffices to acquire a well-behaved wave function at infinity
and at the particle position. However, a higher order
scheme has been derived and tested [65].
The main feature of the indirect (-I-) method consists in

avoiding the explicit integration of the wave equation
(the source term with the associated singularities and the
potential) whenever the grid cells are crossed by the
particle. Indeed, the information on the wave equation is
implicitly given by the jump conditions. Conversely, for
cells not crossed by the particle, we retain the classic
approach for integrating wave equations [49,50], hence-
forth named LPMP.
For the computation of the back-action, the -I- method

ensures a well-behaved wave function at the particle
position, since the approach is governed by the theoretical
values of the jump conditions.

C. Structure of the paper

The structure of the paper is as follows. Section II is a
brief reminder of the formalism on perturbations for a SD
black hole in the RW gauge. In Sec. III, we give an over-
view about the jump conditions on the wave function and
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its derivatives. In Sec. IV, we introduce the scheme by
detailing one of the four physical cases that a particle
crossing the mesh cell during its infall may encounter,
while for the other three similar cases we simply provide
the final result. In Sec. V some wave forms at infinity are
shown, discussed and compared to those obtained with the
LPMP method. Furthermore, the theoretical and numerical
jump conditions at the position of the particle are displayed
and commented. In the conclusions, Sec. VI, the perspec-
tives are addressed.

Geometric units (G ¼ c ¼ 1) are used, unless stated
otherwise. The metric signature is ð�;þ;þ;þÞ.

II. BLACK HOLE PERTURBATIONS

The Zerilli-Moncrief (ZM) equation rules even-parity
waves in the presence of a source: a freely falling point
particle that generates a perturbation for which the
difference from the SD geometry is small. The energy-
momentum tensor T�� is given by the integral of the world

line of the particle, the integrand containing a four-
dimensional invariant � Dirac distribution for the repre-
sentation of the point particle trajectory. The vanishing of
the covariant divergence of T�� is guaranteed by the world

line being a geodesic in the background SD geometry,
represented by the metric tensor g��. Finally, the complete

description of the emitted gravitational waves is given by
the symmetric tensor h�� � g��.

The formalism can be summarized as follows. Any
symmetric covariant tensor can be expanded in spherical
harmonics [29]. Because of the spherical symmetry of the
SD field, the linearized field equations are cast in the form
of a rotationally invariant operator on h��. This term is

equated to the energy-momentum tensor, also expressed in
spherical tensorial harmonics. That is

Q½h��� / T��½�ðruÞ�; (1)

where the �ðruÞ Dirac distribution represents the point
particle unperturbed trajectory ru. The rotational invari-
ance is used to separate out the angular variables in
the field equations. For the spherical symmetry of the
2-dimensional manifold on which t, r are constants under
rotation in the �, � sphere, the ten components of the
perturbing symmetric tensor transform like three scalars,
two vectors and one tensor:

htt; htr; hrr ðht�; ht�Þ; ðhr�; hr�Þ h�� h��
h�� h��

� �
:

In the Regge-Wheeler-Zerilli formalism, the source term
for the odd perturbations vanishes for the radial trajectory
and, given the rotational invariance through the azimuthal
angle, only the index referring to the polar or latitude angle
survives. The even perturbations, going as ð�1Þl, are
expressed by the following matrix

h�� ¼

�
1� 2M

r

�
Hl

0Y
l Hl

1Y
l hl0Y

l
;� hl0Y

l
;�

sym
�
1� 2M

r

��1
Hl

2Y
l hl1Y

l
;� hl1Y

l
;�

sym sym r2½KlYl þGlYl
;��� r2GlðYl

;�� � cot�Yl
;�Þ

sym sym sym r2sin2�

�
Kl þGl

�
Yl
;��

sin2�
þ cot�Yl

;�

��

0
BBBBBBB@

1
CCCCCCCA
; (2)

where Hl
0, H

l
1, H

l
2, h

l
0, h

l
1, K

l, Gl are functions of ðt; rÞ and
the spherical harmonics Yl obviously of ð�;�Þ. Two for-
malisms describe the evolution of the perturbations in
terms of a single wave function and a single wave equation.
One, due to Moncrief [62], gauge invariant and developed
about a 3-geometry of a t ¼ constant hypersurface, refers
solely to theHl

2,K
l,Gl, hl1, perturbations. The other, due to

Zerilli [26–29], uses the RW gauge Gl ¼ hl0 ¼ hl1 ¼ 0. In
the RW gauge, the Moncrief wave function is given by

�lðt; rÞ ¼ r

�þ 1

�
Kl þ r� 2M

�rþ 3M

�
Hl

2 � r
@Kl

@r

��
; (3)

where the Zerilli [28] normalization is used for �l. The
dimension of the wave function is such that the energy is
proportional to

R1
0

_�2dt. Finally, the wave equation
is given by

@2�lðt; rÞ
@r�2

� @2�lðt; rÞ
@t2

� VlðrÞ�lðt; rÞ ¼ Slðt; rÞ; (4)

where r� ¼ rþ 2M lnðr=2M� 1Þ is the tortoise coordi-
nate. The potential VlðrÞ is expressed by

VlðrÞ¼
�
1�2M

r

�

�2�2ð�þ1Þr3þ6�2Mr2þ18�M2rþ18M3

r3ð�rþ3MÞ2 ; (5)

being � ¼ 1=2ðl� 1Þðlþ 2Þ. The source Slðt; rÞ includes
the derivative of the Dirac distribution, which appears in
the process of building a single wave equation out of the
seven even linearized wave equations
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Sl ¼ 2ðr� 2MÞ�
r2ð�þ 1Þð�rþ 3MÞ

�
rðr� 2MÞ

2U0
�0½r� ruðtÞ�

�
�
rð�þ 1Þ� 3M

2U0
� 3MU0ðr� 2MÞ2

rð�rþ 3MÞ
�
�½r� ruðtÞ�

�
;

(6)

U0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=ru0

p
=ð1� 2M=ruÞ being the time compo-

nent of the 4-velocity and � ¼ 4m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ�p

. The trajec-
tory in the unperturbed SD metric ruðtÞ assumes different
forms according to the initial conditions. For the radial
infall of a particle starting from rest at finite distance ru0,
ruðtÞ is the inverse function of

tðruÞ
2M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

ru0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ru

ru0

s �
ru0
2M

��
ru
2M

�
1=2

þ 2 arctanh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
ru

� 2M
ru0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

ru0

q
1
CAþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

ru0

s �
1þ 4M

ru0

�

�
�
ru0
2M

�
3=2

arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ru0
r

� 1

r �
(7)

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=ru0

p
.

For an infalling mass from infinity at zero velocity, the
energy radiated to infinity for all modes [37] is given by (in
physical units) X

l

El
rad ¼ 0:0104

m2c2

M
; (8)

while most of the energy is emitted below the frequency

fm ¼ 0:08
c3

GM
: (9)

Up to 94% of the energy is radiated between 8M and 2M
and 90% of it in the quadrupole mode. Obviously the above
expressions would sensibly vary in case of an initial
relativistic velocity.

For the SD black hole perturbations, there have been
successive corrections of the basic equations, the last being
pointed out by Sago, Nakano and Sasaki [66]. Sago et al.
have corrected the ZM equations (a minus sign missing in
all right-hand side terms) but introduced a wrong definition
of the scalar product leading to errors in the coefficients of
the energy-momentum tensor [67]. The expressions herein
correspond to those in [68], where some of the errors of
previously published literature on radial fall are indicated.

III. THE JUMP CONDITIONS

It has been indicated by two different heuristic arguments
[69,70] that even metric perturbations, for radial
fall in the RW gauge, should belong to the C0 continuity
class at the position of the particle. One argument [69] is
based on the integration in r of the Hamiltonian constraint,
which is the tt component of the Einstein equations
(Eq. (C7a) in [30]); the other [70] on the structure of selected

even perturbation equations. Following the latter, Lousto
and Nakano evince the continuity of the even perturbations
and afterwards impose such continuity to derive the jump
conditions on thewave function and its derivatives for l ¼ 2,
notably starting from the ZM equation.
In this section, we instead provide an analysis vis à vis

the jump conditions that the wave function and its deriva-
tives have to satisfy for guaranteeing the continuity of the
perturbations at the position of the particle. This approach
[71] is based on the solutions of the ZM equation, not on
the equation itself. The jump conditions found herein are
applicable to all modes. Incidentally, the jump conditions
were previously mentioned by Sopuerta and Laguna [72],
Haas [73], and Field et al. [74] in a different context. In the
forthcoming paper [64], the jump conditions for generic
orbits are based on the analysis of the odd and even wave
equations and are determined despite the lack of continuity
of the perturbations.
In the radial case, only three independent perturbations

survive, namelyKl,Hl
0 ¼ Hl

2,H
l
1. The inverse relations for

those perturbations, as functions of thewave function and its
derivatives, are given by (we drop henceforth the l index)

K ¼ 6M2 þ 3M�rþ �ð�þ 1Þr2
r2ð�rþ 3MÞ �þ

�
1� 2M

r

�
�;r

� �U0ðr� 2MÞ2
ð�þ 1Þð�rþ 3MÞr �; (10)

H2 ¼ � 9M3 þ 9�M2rþ 3�2Mr2 þ �2ð�þ 1Þr3
r2ð�rþ 3MÞ2 �

þ 3M2 � �Mrþ �r2

rð�rþ 3MÞ �;r þ ðr� 2MÞ�;rr

þ �U0ðr� 2MÞð�2r2 þ 2�Mr� 3Mrþ 3M2Þ
rð�þ 1Þð�rþ 3MÞ2 �

� �U0ðr� 2MÞ2
ð�þ 1Þð�rþ 3MÞ�

0; (11)

H1¼�r2�3M�r�3M2

ðr�2MÞð�rþ3MÞ�;tþr�;tr

� �U0 _zuð�rþMÞ
ð�þ1Þð�rþ3MÞ�þ

�U0 _zurðr�2MÞ
ð�þ1Þð�rþ3MÞ�

0; (12)

where � ¼ �½r� ruðtÞ� and �0 ¼ �0½r� ruðtÞ�.
From the visual inspection of the ZM wave equation (4),

it is evinced that the wave function � is of C�1 continuity
class, since the second derivative of the wave function is
proportional to the first derivative of the Dirac distribution
(incidentally, the concept of C�1 continuity class element,
like a Heaviside step distribution, may be pragmatically
introduced as an element of a class of functions which
after integration transforms into an element belonging to
the C0 class of functions). Thus, the wave function and its
derivatives can be written as
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� ¼ �þðt; rÞ�1 þ��ðt; rÞ�2; (13)

�;r ¼ �þ
;r�1 þ��

;r�2 þ ð�þ ���Þ�; (14)

�;rr¼�þ
;rr�1þ��

;rr�2þð�þ
;r ���

;r Þ�þð�þ���Þru�0;

(15)

�;t ¼ �þ
;t �1 þ��

;t �2 � ð�þ ���Þ _ru�; (16)

�;tr¼�þ
;tr�1þ��

;tr�2þð�þ
;t ���

;t Þ�
�ð�þ���Þru _ru�0; (17)

where �1 ¼ �½r� ruðtÞ�, and�2 ¼ �½ruðtÞ � r� are two
Heaviside step distributions. For Eqs. (15) and (17), a prop-
erty of the Dirac delta distribution at the position of the
particle, namely fðrÞ�0½r�ruðtÞ�¼fjruðtÞ�0½r�ruðtÞ��
f0jruðtÞ�½r�ruðtÞ�, has been used.

The wave function � and its derivatives are to be
replaced in Eqs. (10)–(12). At the position of the
particle, it is wished that the combination of all disconti-
nuities renders the perturbations of C0 class. Thus, the
coefficients of �1 must be equal to the coefficients of �2,
while the coefficients of� and�0 must vanish separately. To
this end, the perturbations are expressed in an implicit form

K ¼ f1ðrÞ�þ f2ðrÞ�;r þ f3ðrÞ�; (18)

H2 ¼ f4ðrÞ�þ f5ðrÞ�;r þ f6ðrÞ�;rr þ f7ðrÞ�þ f8ðrÞ�0;

(19)

H1 ¼ f9ðrÞ�;t þ f10ðrÞ�;tr þ f11ðrÞ�þ f12ðrÞ�0; (20)

where the definitions of the f functionsmay be easily drawn
by visual inspection of Eqs. (10)–(12). The jump conditions
are obtained via Eq. (18)

ð�þ ���Þru ¼ � f3
f2

; (21)

ð�þ
;r ���

;r Þru ¼
f1f3
f22

; (22)

via Eq. (19)

ð�þ ���Þru ¼ � f8
f6

; (23)

ð�þ
;r ���

;r Þru ¼
1

f6

�
f5f8
f6

� f7 þ f8;r � f6;rf8
f6

�
; (24)

and finally via Eq. (20)

ð�þ ���Þru ¼
f12
_ruf10

: (25)

The jump conditions set by Eqs. (21), (23), and (25), are
equivalent, as those set by Eqs. (22) and (24). The equiva-
lence shows the consistency of the conditions and the
compliance to the continuity requirement. The first t,
second r, second mixed t, r derivative jump conditions
(coming from H2 and H1) are given by

ð�þ
;rr���

;rrÞru ¼�f4ð�þ���Þþf5ð�þ
;r ���

;r Þ
f6

; (26)

ð�þ
;t ���

;t Þru ¼
dð�þ ���Þ

dt
� ð�þ

;r ���
;r Þ _ru

¼ ðf9 � f10;rÞ _ruð�þ ���Þ � f11 þ f12;r
f10

;

(27)

ð�þ
;tr ���

;trÞru ¼ � f9ð�þ
;t ���

;t Þ
f10

: (28)

In explicit form, the jump conditions become

ð�þ ���Þru ¼
�Eru

ð�þ 1Þð3Mþ �ruÞ ; (29)

ð�þ
;r ���

;r Þru ¼
�E½6M2 þ 3M�ru þ �ð�þ 1Þr2u�
ð�þ 1Þð2M� ruÞð3Mþ �ruÞ2

; (30)

ð�þ
;rr ���

;rrÞru ¼ ��E½3M3ð5�� 3Þ þ 6M2�ð�� 3Þru þ 3M�2ð�� 1Þr2u � 2�2ð�þ 1Þr3u�
ð�þ 1Þð2M� ruÞ2ð3Mþ �ruÞ3

; (31)

ð�þ
;t ���

;t Þru ¼ � �Eru _ru
ð2M� ruÞð3Mþ �ruÞ ; (32)

ð�þ
;tr ���

;trÞru ¼
�Eð3M2 þ 3M�ru � �r2uÞ _ru
ð2M� ruÞ2ð3Mþ �ruÞ2

: (33)
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Having established the jump conditions for any value of l
at first order, we now turn to the presentation of the
integration scheme. It is remarked that first derivatives of
the jump conditions suffice to a scheme at first order.

IV. THE NUMERICAL METHOD

Our integration domain is discretized using a two-
dimensional uniform mesh based on the coordinates t, r�
as depicted in Fig. 1, where �450< r�=2M< 1000 and
0< t < tend, with tend greater than the falling time. Each

cell has an area of 2h2 where
ffiffiffi
2

p
h is the dimension of an

edge of the cell. The evolution scheme starts with the initial
data approach by Martel and Poisson [50].

The numerical scheme

The jump conditions determined in the previous section
are functions of the t, r variables, but for convenience
in the following computations, they are transformed into
functions of t, r�. The integration method considers cells
belonging to two groups: for cells which are never crossed
by the particle, the integrating approach is drawn by the
LPMP method, whereas for cells which are crossed, we
propose our strategy.

There are four subcases representing the different parti-
cle trajectories inside the cell, see Figs. 2–5. We define 	,

, �, � the four vertices of the diamond centered on � and
initially consider the world line crossing the cell as
displayed in Fig. 2. The trajectory crosses the line 
-� at
the point a and the line 	-� at the point b. We also define
the shift a and the lapse b as a¼minfr�a�r�
;r

�
��r�ag,

b ¼ minft	 � tb; tb � t�g, respectively. The jump

FIG. 1 (color online). Numerical domain: a staggered 1þ
1-dimensional mesh in t,r� coordinates. The geodesic trajectory
of the particle is represented by the continued line �. The
shadowed cells are those crossed by the particle.

FIG. 2 (color online). Cell crossed by the particle. The particle
crosses the segment ½��� at the point a and the segment ½�	� at
the point b.

FIG. 4 (color online). Cell crossed by the particle. The particle
crosses the segment ½��� at the point a.

FIG. 3 (color online). Cell crossed by the particle. The particle
crosses the segment ½��� at the point b and the segment ½�
� at
the point a.

FIG. 5 (color online). Cell crossed by the particle. The particle
crosses the segment ½�
� at the point a.
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conditions at the a, b coordinates express six analytical
equations

ð�þ ���Þa ¼ ½��a; (34)

ð�þ ���Þb ¼ ½��b; (35)

ð�þ
;r� ���

;r� Þa ¼ ½�;r� �a; (36)

ð�þ
;r� ���

;r� Þb ¼ ½�;r� �b; (37)

ð�þ
;t ���

;t Þa ¼ ½�;t�a; (38)

ð�þ
;t ���

;t Þb ¼ ½�;t�b: (39)

We maintain the superscript notation for which the wave
function values between the world line and infinity are
noted by the plus sign, and conversely by the minus sign
for the values between the world line and the horizon
(incidentally, such notation would also be applicable to
the LPMP method).

Using a first-order expansion, we get a set of six
numerical equations. For case 1, see Fig. 2, they are

�þ
	 ¼ �þðtb þ b; r

�
bÞ ¼ �þ

b þ b�
þ
;t jb; (40)

��
� ¼��ðtb�ðh�bÞ;r�bÞ¼��

b �ðh�bÞ��
;t jb; (41)

��
� ¼ ��ðtb � 2hþ b; r

�
bÞ ¼ ��ðt� � h; r�bÞ

¼ ��
� � h��

;t j�; (42)

�þ
� ¼ �þðta; r�a þ aÞ ¼ �þ

a þ a�
þ
;r� ja; (43)

��
� ¼��ðta;r�a�ðh�aÞÞ¼��

a �ðh�aÞ��
;r� ja; (44)

��

 ¼ ��ðta; r�a � 2hþ aÞ ¼ ��ðt�; r�� � hÞ
¼ ��

� � h��
;r� j�: (45)

Our aim is the determination of the value of �þ
	 ,

knowing those of ��

 , �

�
� , �

þ
� , a, b, ½��a;b, ½�;r�a;b

and ½�;t�a;b To this end, we subtract Eq. (41) from Eq. (40),

Eq. (44) from Eq. (43) and obtain, respectively

�þ
	 ¼ ��

� þ ½��b þ b½�;t�b þ h��
;t jb; (46)

�þ
� ¼ ��

� þ ½��a þ a½�;r� �a þ h��
;r� ja: (47)

Summing Eq. (42), (46), (45), and (47), and combining the
results, we finally get

�þ
	 ¼ ��


 ���
� þ�þ

� � ½��a þ ½��b � a½�;r� �a
þ b½�;t�b: (48)

We thus have obtained, without direct integration of the
singular source, the value of the upper node. Furthermore,

the latter depends solely on analytic expressions, and
obviously on the other values at the cell corners. Similar
relations are found for the other three cases. For case 2
(Fig. 3), we obtain

�þ
	 ¼ ��


 ���
� þ�þ

� þ ½��a � ½��b � a½�;r� �a
þ b½�;t�b; (49)

for case 3 (Fig. 4)

��
	 ¼ ��


 ���
� þ�þ

� � ½��a � a½�;r� �a; (50)

for case 4 (Fig. 5)

�þ
	 ¼ ��


 ��þ
� þ�þ

� þ ½��a � a½�;r� �a: (51)

In a concise form, the four cases might be represented by
a single expression (where �	 stands for �þ

	 or ��
	 , and

�� stands for �þ
� or ��

� )

�	 ¼ ��

 ��� þ�þ

� � f½��a � B½��bg � a½�;r� �a
þ Bb½�;t�b; (52)

where the upper sign holds when r�a > r�� and the lower
when r�a < r��, B ¼ 0 if the particle does not cross the 	-�
line, and B ¼ 1 otherwise.

V. RADIATED WAVE FORMS AT INFINITYAND
THE WAVE FUNCTION AT THE PARTICLE

We confirm the existing wave forms previously pub-
lished by Lousto and Price [49], and Martel and Poisson
[50]. In this section, the results from a code based on the
LPMP method (full second order) are compared to those
obtained by the -I- method (first order for the filled cells, as
presented herein, and LPMP-like for empty cells). In spite
of the partially different order of the two codes, the differ-
ence between the wave forms computed by the two meth-
ods is marginal. Incidentally, this occurs in absence of a
recognized standard to which refer different numerical
approaches.
Figures 6 and 7 show the l ¼ 2 wave forms for the

LPMP and -I- methods, for a particle falling radially,
with zero initial velocity, from ru0=2M ¼ 5 and ru0=2M ¼
20, respectively, in units u ¼ t� r�, ð2M=mÞ�. The initial
data are given by the minimal (	 ¼ 1) initial data condi-
tion H2 ¼ 	K for both cases (the parameter 	, introduced
in [50], measures the amount of radiation present on the
initial hypersurface and for 	 ¼ 1, the initial metric is
conformally flat).
Figures 8 and 9 show the logarithmic (absolute) differ-

ence for the l ¼ 2 wave forms between the LPMP and -I-
methods, for a particle falling radially, with zero initial
velocity, from ru0=2M ¼ 5 and ru0=2M ¼ 20, respec-
tively. It is evinced that the normalized wave function
amplitudes differ of an amount between 10�3 and 10�8:5,
in normalized units.
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We show also the behavior of the wave function at the
position of the particle, Figs. 10 and11. The theoretical jump
condition, Eq. (29), and the numerical result well overlap at
the particle position, as it may be inferred from the logarith-
mic (absolute) difference plots, Figs. 12 and 13. The dis-
crepancy in normalized units is between 10�3 and 10�6:5.

Discussion

The features of the -I- method can be summarized as
follows:

(i) For the grid cells crossed by the particle, direct and
explicit integration of the wave equation, the source
term with the associated singularities and the poten-
tial, is avoided. This determines also a faster code.

(ii) Reliability is improved, since analytic expressions
totally replace the numerical expressions represent-
ing the source. The terminology ‘‘source-free’’ is
due to this feature.

(iii) A higher order scheme can be written, starting from
a higher order Taylor expansion for Eqs. (40)–(45),
and associated to this method [65].

FIG. 6 (color online). Radiated l ¼ 2 wave form for a particle
falling radially from ru0=2M ¼ 5 with zero initial velocity, in
units u ¼ t� r�, ð2M=mÞ�. The dashed and solid line represent
the -I- and LPMP methods, respectively.

FIG. 7 (color online). Radiated l ¼ 2 wave form for a particle
falling radially from ru0=2M ¼ 20 with zero initial velocity, in
units u ¼ t� r�, ð2M=mÞ�. The dashed and solid line represent
the -I- and LPMP methods, respectively.

FIG. 8 (color online). Logarithmic (absolute) difference plot
for a particle falling radially from ru0=2M ¼ 5 with zero initial
velocity, in units u ¼ t� r�, ð2M=mÞ�, between the -I- and
LPMP methods (l ¼ 2).

FIG. 9 (color online). Logarithmic (absolute) difference plot
for a particle falling radially from ru0=2M ¼ 20 with zero initial
velocity, in units u ¼ t� r�, ð2M=mÞ�, between the -I- and
LPMP methods (l ¼ 2).
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(iv) The applicability of the method stretches out to
generic orbits. It is our concern to apply the -I-
method to circular and eccentric orbits, even if
these orbits are not accompanied by perturbations
of C0 class. The rationale poses on the following
consideration. Instead of using the continuity of the

perturbations to get the jump conditions, we assume
that the even and odd wave equations are satisfied
by �, respectively R, being C�1. Using this ap-
proach, we have obtained encouraging results for
an eccentric orbit [64].

(v) The disadvantage of this method is represented by
the four possible trajectories that a particle may
follow inside a given cell, instead of the three
possible paths of the LPMP method. A different
labeling of the intersections between the particle
world line and the cell, though, reduces the number
of cases to three [65].

FIG. 10 (color online). Wave function (�þ, dashed-dotted
line, and ��, dotted line) at the particle position for a particle
falling radially from ru0=2M ¼ 5 with zero initial velocity
(l ¼ 2), in units u ¼ t� r�, ð2M=mÞ�. The numerical jump
condition ½��num, solid line, and the theoretical jump condition
½��the, dashed line Eq. (29), are shown.

FIG. 11 (color online). Wave function (�þ, dashed-dotted
line, and ��, dotted line) at the particle position for a particle
falling radially from ru0=2M ¼ 20 with zero initial velocity
(l ¼ 2), in units u ¼ t� r�, ð2M=mÞ�. The numerical jump
condition ½��num, solid line, and the theoretical jump condition
½��the, dashed line Eq. (29), are shown.

FIG. 12 (color online). Logarithmic (absolute) difference plot
for a particle falling radially from ru0=2M ¼ 5 with zero initial
velocity, in units u ¼ t� r�, ð2M=mÞ�, at the particle position,
between theoretical and numerical jump conditions (l ¼ 2).

FIG. 13 (color online). Logarithmic (absolute) difference plot
for a particle falling radially from ru0=2M ¼ 20 with zero initial
velocity, in units u ¼ t� r�, ð2M=mÞ�, at the particle position,
between theoretical and numerical jump conditions (l ¼ 2).
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VI. CONCLUSIONS AND OUTLOOK

We have presented a novel integration method in the
time domain for the Zerili-Moncrief wave equation at first
order, for cells crossed by the particle world line. The
forward time value in the upper node of the ðt; r�Þ grid
cell is obtained by the linear combination of the three
preceding node values and of the analytic jump conditions.
Therefore, the numerical integration does not deal any
longer with the source term, the associated singularities
and the potential. The direct integration of the wave
equation is circumvented.

The wave forms at infinity confirm published results,
and the wave function at the particle position shows a
well-behaved pattern. Our final aim is the evaluation and
the application of the back-action at the position of the
particle, in a self-consistent manner.

The indirect or source-free method has been
developed to fourth order [65] and applied to generic
orbits [64].

Beyond the scenario of EMRIs, other lines of investiga-
tion may emerge. One concerns the formal relation

between the algorithms of the indirect and LPMP
approaches [49,50]. Another considers applicability of
the indirect method to all wave equations with a singular
source term, and which the wave function of is constrained
by a set of properties.
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