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We investigate electron trapping by high-amplitude whistler-mode waves propagating at small as

well as large angles relative to geomagnetic field lines. The inhomogeneity of the background mag-

netic field can result in an effective acceleration of trapped particles. Here, we derive useful analyt-

ical expressions for the probability of electron trapping by both parallel and oblique waves, paving

the way for a full analytical description of trapping effects on the particle distribution. Numerical

integrations of particle trajectories allow to demonstrate the accuracy of the derived analytical esti-

mates. For realistic wave amplitudes, the levels of probabilities of trapping are generally compara-

ble for oblique and parallel waves, but they turn out to be most efficient over complementary

energy ranges. Trapping acceleration of <100 keV electrons is mainly provided by oblique waves,

while parallel waves are responsible for the trapping acceleration of >100 keV electrons. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935842]

I. INTRODUCTION

Electron resonant acceleration by whistler-mode waves

is believed to play the most important role in the formation

of relativistic and ultra-relativistic electron populations in

the heart of planetary radiation belts.37,40,42,58,64,67 Multiple

spacecraft observations of intense emissions of parallel (rela-

tive to the background magnetic field) whistler-mode waves

during geomagnetic storms and substorms1,33,38 have led to

the suggestion that these parallel waves could be responsible

for almost all the recorded variations of electron fluxes. In

addition, oblique wave damping due to Landau resonance

with a dense population of suprathermal electrons20,36 often

sensibly decreases the amplitudes of oblique whistler-mode

waves along their propagation.

However, recent data from various satellites in the

Earth’s inner magnetosphere2,19,21,34 indicate that a signifi-

cant population of high-amplitude and oblique (almost elec-

trostatic) whistler-mode waves is actually present there.

Moreover, comprehensive statistics of whistler-mode waves

show that even oblique waves with very small magnetic field

amplitudes can contribute significantly to resonant wave-

particle interactions because of the noticeable portion of

wave energy stored in the wave electric field.9 This raises an

important, as yet unanswered question about the actual rela-

tive contributions of oblique and parallel whistler-mode

waves in electron acceleration and scattering.

The framework of the quasi-linear theory is generally

applicable for small to moderate wave amplitudes.54,62 In

this regard, it has been shown that parallel whistler-mode

waves are more intense during high geomagnetic activity

periods, while on average, less intense oblique whistler-

mode waves seem to be responsible for electron acceleration

and scattering mainly during relatively quiet conditions8,39—

during which electron quasi-linear pitch-angle diffusion can

be considerably enhanced by resonant interaction with such

oblique waves.35

Nevertheless, significant portions of the observed non-

Gaussian amplitude distributions of parallel and oblique

waves do correspond to very high amplitudes.2,19,21,34,63,66

When propagating through background plasma and magnetic

field which are both inhomogeneous, such high-amplitude

waves can interact with electrons in the nonlinear re-

gime25,31,48 when electron trajectories depend significantly

on the wave field over time intervals long enough.13,15 Such

nonlinear interactions include particle trapping and nonlinear

scattering (also called phase bunching).56 Both effects have

been investigated for parallel3,5,17,23,50,62,65 and oblique

waves.7,14,57,59 Although nonlinear scattering is a more wide-

spread effect than particle trapping, the latter can neverthe-

less be responsible for the rapid acceleration of charged

particles17,22,26 up to very high energy. Moreover, for realis-

tic wave amplitudes, the net effect of trapping can become

more important than both quasi-linear and nonlinear scatter-

ing.12,13 However, existing analytical estimates and numeri-

cal simulations do not allow comprehensive comparisons of

the respective efficiencies of parallel and oblique waves in

the nonlinear trapping of relativistic electrons under realistic

conditions. Answering this important question is the main

goal of the present investigation, which is performed follow-

ing a unified approach based on the Hamiltonian formalism.
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The paper is organized in the following way. First of all,

we describe the wave model, i.e., we derive approximate dis-

tributions of wave electromagnetic field for two cases: parallel

wave propagation and very oblique wave propagation. Then,

we use the Hamiltonian approach to provide an invariant-

based description of relativistic electron motion in a dipolar

magnetic field under the influence of the electromagnetic

fields of the considered whistler-mode waves. Such a descrip-

tion is especially appropriate when one wishes to examine

phase space fluxes of particles in cyclotron or Landau reso-

nance with the waves. It will allow us to derive analytical

expressions for both the probabilities of electron trapping and

the corresponding changes in particle energy and pitch-angle.

Section V of this paper is devoted to a detailed analysis of

these essential, characteristic quantities in realistic conditions

corresponding to the Earth’s Van Allen radiation belts. A

comparison between results obtained for parallel or oblique

waves will allow us to address the problem of the relative im-

portance of these two types of waves for electron acceleration.

Note that we consider here a simplified model of back-

ground magnetic field (i.e., the curvature-free dipole model

proposed in Ref. 14) in which the main magnetic field compo-

nent depends mainly on the field-aligned coordinate z.

Although, the effects of curvature of magnetic field lines can

be included into the Hamiltonian description of wave-particle

resonant interaction,56 it would significantly complicate ana-

lytical estimates and is therefore left for future works.

II. WAVE MODEL

In this paper, we consider parallel and oblique whistler-

mode waves propagating at a wave normal angle h (the angle

between the background magnetic field and the wave vector k)

close to the resonance cone angle hr � arccosðx=XceÞ, where

wave frequency x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XciXce

p
and Xce, Xci are electron and

ion gyrofrequencies (i.e., h < 88:7�). For such waves, we can

use the simplified dispersion relation27

x ¼ Xce cos h

1þ Xpe=kc
� �2

; (1)

where Xpe is the plasma frequency. The wave vector is lying

in the (x, z) plane: k ¼ k sin hex þ k cos hez. Throughout this

paper, we consider a constant plasma density (Xpe � const)
for the magnetic latitude range jkj < 37� (the main range of

wave-particle resonant interaction), while a more realistic

model described in Ref. 24 gives Xpe � cos�5=2k in the

Earth’s outer radiation belt. While this approximation allows

us to simplify the final expressions and calculations, it is

worth emphasizing that the general equations in Appendix B

are derived without any assumption about Xpe. Estimates of

the effect on nonlinear wave-particle interaction of a varia-

tion of Xpe along magnetic field lines can be found in Refs. 2

and 62. The equatorial value of Xpe is determined from an

empirical model of plasma density as a function of the

McIlwain’s parameter L (see Ref. 55).

To describe the distribution of the wave electromagnetic

field, we use three components of vector potential A ¼ Axex

þAyey þ Azez and scalar potential u. The Coulomb gauge gives

the relation between two components of A: Az ¼ �Ax tan h.

Thus, the three components of wave electric field and three

components of wave magnetic field can be written as

cEx ¼ ixAx � ik sin hu; cEy ¼ ixAy;

Ez ¼ �
ix
c

tan hAx � ik cos hu

Bx ¼ �ik cos hAy; By ¼ i cos�1hkAx; Bz ¼ i sin hAy:

(2)

The relation between components of electromagnetic field61

provides the following relations between Ax, Ay, and u:

Ax ¼ i
N2 � S

D

P cos2h

N2 sin2h� P
Ay

u ¼ i
N2 � S

D

N2 � P

N2 sin2h� P

sin h
N

Ay;

(3)

where N ¼ kc=x is the wave refractive index, while P,

S ¼ ðRþ LÞ=2; D ¼ ðR� LÞ=2, R, and L are Stix coeffi-

cients.60 Thus, if we introduce Ay ¼ Aw sin / ¼ Aw<ð�iei/Þ
(where / is the wave phase and Aw is amplitude of Ay), then

we get

Ax ¼ Aw
N2 � S

D

P cos2h

N2 sin2h� P
cos /

u ¼ Aw
N2 � S

D

N2 � P

N2 sin2h� P

sin h
N

cos /:

(4)

The wave phase / can be written as

/ ¼
ðz

kzðz0Þdz0 þ kxx� xtþ /0; (5)

where kz ¼ k cos h; kx ¼ k sin h, and /0 is the initial value of

the wave phase.

Let us consider separately two cases: a parallel wave

with h¼ 0 and an oblique wave with h 2 ½hg; hr�, where hg is

the Gendrin angle hg ¼ arccosð2x=XceÞ.

A. Parallel waves

For parallel waves h¼ 0, we have N2 ¼ R and Eq. (4)

takes the form Ax ¼ �Aw cos /; u ¼ 0, where we use

R� S ¼ D. Equation (5) shows that parallel whistler waves

are purely electromagnetic ku ¼ 0, circular polarized (am-

plitude of Ax is equal to Ay amplitude) waves. The corre-

sponding components of the magnetic field are Bx ¼ �kAw

cos /; By ¼ kAw sin /. Thus, the total magnetic field ampli-

tude averaged over the wave period �Bw is

�Bw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ð2p

0

B2
xd/þ 1

2p

ð2p

0

B2
yd/

vuuut ¼ kAw: (6)

For parallel waves, the variation of the wave vector k ¼ kez

along magnetic field lines can be obtained from Eq. (1):

kc=Xce0 ¼ xpef0ðzÞ, where Xce0 is an equatorial value of the

electron gyrofrequency, xpe ¼ Xpe=Xce0 and f0ðzÞ is

112903-2 Artemyev et al. Phys. Plasmas 22, 112903 (2015)
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f0 zð Þ ¼
1

cos hr
� 1

� ��1=2

: (7)

The corresponding wave phase is

/ ¼ /0 þ
Xce0

c
xpe

ðz
f0 z0ð Þdz0 � xmct

0
@

1
A; (8)

where xm ¼ x=Xce0.

B. Oblique waves

For oblique waves, we can omit terms � cos2h� 1.

Thus, Eq. (4) shows that Ax � cos2h � 0, while for u and

Az, we can write

Az ¼ �Aw
N2 � S

D

P sin h cos h

N2 sin2h� P
cos /

u ¼ Aw
N2 � S

D

N2 � P

N2 sin2h� P

sin h
N

cos /:

(9)

Using Eq. (1), we plot factors a1 ¼ ðN2 � SÞ=D; a2 ¼ P sin h=
ðN2 sin2h� PÞ; a3 ¼ ðN2 � PÞ=P, and a ¼ a1a2 in Fig. 1.

Profiles of a1, a2, and a3 coefficients show that a1 contributes

significantly to the wave amplitude Az=Aw; u=Aw, while the

smallness of a2 is responsible for the weak contribution of Az

components to the wave magnetic field.

The components of wave magnetic field (2) take the

form

Bx ¼ �kAw cos h cos /;

Bz ¼ kAw sin h cos /

By ¼ kAwa sin h cos h sin /:

(10)

Thus, the total wave magnetic field amplitude averaged over

the wave period �Bw is

�Bw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ð2p

0

B2d/

vuuut � kAwffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

4
sin22h

r
: (11)

Fig. 1 shows that we cannot omit the term �a2 sin2ð2hÞ=4,

but we can consider that its magnitude is approximately �1.

Thus, Eq. (11) gives �Bw � kAw. Let us now compare the con-

tributions of Az and u to the parallel Ez component of the

electric field. Equation (7) shows that

c@u=@z

@Az=@t
¼ N2 � P

P
¼ a3: (12)

Fig. 1 shows that the term (12) is much larger than one for h
close enough to hr. Thus, we can safely omit the contribution

of Az to the wave electric field for oblique waves with wave

normal angles in this range.

For oblique waves, the variation of the wave vector magni-

tude k is given by kc=Xce0 ¼ xpeðcos h= cos hr � 1Þ�1=2
,

where Xce0 is the equatorial gyrofrequency. We consider waves

propagating with the angle h 2 ½hg; hr� (cos h ¼ ðqx=XceÞ and

parameter q 2 ½1; 2�). For such waves, cos h= cos hr ¼ q and

kc=Xce0 ¼ xpe=
ffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

. Thus, the magnitude of the wave vec-

tor kc=Xce0 ¼ xpe=
ffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

does not depend on z. The corre-

sponding wave phase is

/ � /0 þ
Xce0

c

qxpexmffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

ðz
Xce0dz0

Xce z0ð Þ
þ xpexffiffiffiffiffiffiffiffiffiffiffi

q� 1
p � xmct

0
@

1
A;
(13)

where xm ¼ x=Xce0 and we assume sin h � 1 for

xm < 0:35.

III. PROBABILITY OF TRAPPING

To evaluate the effect of trapping on the distribution

function of electrons, one should calculate the energy and

pitch-angle shifts of the particles corresponding to a given

trapping event (already derived in Ref. 5 for parallel waves

and in Refs. 7 and 11 for oblique waves), but also the proba-

bility P of such trapping events. The probability of electron

trapping P can be defined as the ratio of the number of par-

ticles trapped by the wave during their first resonant interac-

tion to the total number of particles having passed through

the resonance. To evaluate such quantities, it is convenient

to use the Hamiltonian framework. A first step then consists

of providing an accurate Hamiltonian description of the

motion of particles in resonance with parallel and oblique

waves. On this basis, it will be possible to estimate the pro-

portion of particles that eventually get trapped and therefore

the global effects of trapping on the electron distribution.

Let us consider the motion of relativistic electrons with

charge e and rest mass me in a background magnetic field

BðzÞ ¼ BeqbðzÞ, with a corresponding vector potential

A0y ¼ xBðzÞ, where b(z) varies with z as the amplitude of the

dipole field.14 In this case, particle motion can be described

by the following Hamiltonian:

FIG. 1. Profiles of coefficients a1

¼ðN2�SÞ=D;a2¼Psinh=ðN2sin2h�PÞ;
a3 ¼ ðN2 � PÞ=P, and a ¼ a1a2 along

magnetic field lines for several values

of the parameter q ¼ cos h= cos hr .

112903-3 Artemyev et al. Phys. Plasmas 22, 112903 (2015)
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H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec4 þ ðpþ eAþ eA0yeyÞ2
q

� eu; (14)

where p is the particle momentum (py ¼ const and we set

py¼ 0 without loss of generality), while A is the wave vector

potential. We introduce dimensionless variables p=mec! p

and ðx; zÞ=R0 ! ðx; zÞ (where R0 ¼ REL and R0 the equato-

rial distance to the center of the Earth, and RE the radius of

the Earth). To keep the Hamiltonian form of the equations,

the time should be normalized as tc=R0 ! t (i.e., the unit of

dimensionless time is about a quarter of the bounce period of

relativistic electrons). We also introduce the dimensionless

parameter v ¼ Xce0R0=c� 1.

We further rewrite the vector potential under the form

Aw ¼ uðzÞAw0, so that the function u(z) alone contains the var-

iation of amplitude Aw along the magnetic field lines, while

the dimensionless wave amplitude is given by the fixed pa-

rameter bw ¼ eAw0=mec2. For parallel waves, this parameter

bw can be written as (see Eqs. (6) and (7)) bw ¼ eAw0=mec2

¼ �Bw=Beqxpe, while for oblique waves, it can be written as

bw ¼ eAw0=mec2 ¼ �Bw

ffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

=Beqxpe, where Beq is the

equatorial value of the dipolar magnetic field and q 2 ½1; 2� is
a constant.

For both oblique and parallel waves, the function u(z)

corresponds mainly to wave amplitude variations caused by

wave amplification and damping over the course of interac-

tions with background electron populations: it can be deter-

mined from spacecraft observational data (see Fig. 2). For

oblique waves, the wave amplitude distribution u(z) has a

minimum at the equator. It has been obtained by fitting

approximately statistical satellite observations of oblique

chorus wave electric fields in the radiation belts (see discus-

sion and explanation in Ref. 7). The magnetic amplitudes of

intense parallel waves in the night sector of the inner magne-

tosphere have usually an opposite distribution with a maxi-

mum near the equator and a vanishing level at magnetic

latitudes k > 10� (see Refs. 1, 39, and 53). It corresponds

approximately to the size of the equatorial generation region

of intense parallel chorus waves,1,52 which tend to be

damped by suprathermal electrons and/or become more

oblique due to refraction as they propagate to higher lati-

tudes.39 Moreover, for parallel waves, the function u(z)

shown in Fig. 2 should be multiplied by the remaining func-

tion 1=f0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðzÞ=xm � 1

p
(see Eq. (7)) corresponding to

the variation of the wave vector.

Finally, expanding the Hamiltonian (14) over the small

parameter bw ¼ eAw0=mec2 � 1, and making several trans-

formations of variables (see Appendix A for details), we

obtain the final form of the Hamiltonian, for both parallel

and oblique waves

H ¼ cþ bwwðz; pz; IxÞ cos f

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ 2Ixvb
q

;
(15)

where Ixv is the magnetic moment (see Eq. (A2)). The effective

wave amplitude w and wave phase f are determined separately

for parallel and oblique waves. In case of parallel wave propa-

gation and the first cyclotron resonance, we have wðz; pz; IxÞ
¼ �uðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IxvbðzÞ

p
ðbðzÞ � xmÞ=xmc and f ¼ /þ w, where

w is conjugated variable to Ix (i.e., _w ¼ @H=@Ix) and

/ � /0 þ v
ðz

Kðz0Þdz0 � xmt

0
@

1
A; (16)

with KðzÞ ¼ xpef0ðzÞ and /0 is an initial phase.

For oblique waves and Landau resonance, we have w

¼ �uðzÞðUðzÞJ0ðgÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb
p

ðdJ0ðgÞ=dgÞÞ and f ¼ / from

Eq. (16) with KðzÞ ¼ qxpexm=ðbðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

Þ. The argument

of the Bessel function is g ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb
p

KðzÞ=qxm. The function

UðzÞ determines the amplitude of the scalar potential and it

is given in Eq. (A1).

The general procedure for the derivation of P has been

presented in Refs. 44–47. The probability depends on the rate

of evolution of the area S in the phase plane (f;PÞ surrounded

by the separatrix inside which particles have closed trajecto-

ries43,57 (where P is a variable conjugated to f). Thus, it can

be written as the ratio of the phase flux of particles coming

into the region of closed (trapped) trajectories (because of the

increase in S) over the total phase flux passing through the

resonance. First applications of this approach to the problem

of relativistic electron trapping by whistler-mode waves can

be found in Refs. 7 and 11 in the case of oblique waves prop-

agating at the Gendrin angle (see also Supplementary

Material in Ref. 12). This procedure essentially requires an

expansion of the Hamiltonian (15) around the resonance
_f ¼ 0. Then, a comparison of phase space fluxes of trapped

and transient particles provides the probability of trapping

which can be defined as (see Refs. 11 and 29)

P ¼ 2W

W þ ffiffiffi
v
p (17)

for W <
ffiffiffi
v
p

and P¼ 1 otherwise. In Eq. (17), the function

W is determined by system parameters and their gradients in

phase space (along the resonant trajectory) evaluated at the

coordinates of the resonance zR (where zR is a solution of

Eq. (15) and _f ¼ 0). Analytical expressions for W provided

in Appendix B for both parallel and oblique whistler-mode

waves show that W is proportional to gradients of the func-

tion Sðz; pzÞ (see Eq. (B6)) depending both on magnetic field

FIG. 2. Profiles of the uðkÞ function describing the amplitude distribution of

oblique (grey) and parallel (black) waves as a function of the magnetic lati-

tude k.
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b(z), wavenumber K(z) and effective wave amplitude

wðz; pzÞ. There is no simple analytical expression for S (and

for W), but we can mention one important property of the

function W. Gradients of S include a term corresponding to

@w=@z � @uðzÞ=@z. Thus, our choice of the function u(z)

(see Fig. 2) can influence significantly the final value of the

trapping probability P. In this study, we use realistic profiles

of u(z) for parallel and oblique waves determined from large

spacecraft statistics. But the variability of the radiation belts

is such that actual profiles may vary sensibly from one event

to another. Therefore, for each individual realistic event for

which the needed statistical information about u(z) is avail-

able, the probability of trapping should be recalculated using

the equations from Appendix B.

IV. COMPARISON OF TRAPPING EFFICIENCIES OF
PARALLEL AND OBLIQUE WAVES IN THE EARTH’S
RADIATION BELTS

We consider a typical wave frequency xm ¼ 0:35 in the

inner magnetosphere, for two L-shells L¼ 4.5 (with xpe ¼
4; Xpe ¼ 39:9 kHz) and L¼ 6.0 (with xpe ¼ 5:3; Xpe ¼ 22:5
kHz). In agreement with observational data, the magnetic

field amplitude of parallel waves is taken as Bw¼ 1 nT (see,

e.g., Refs. 53 and 66), while the magnetic amplitude of

oblique waves is taken as five times smaller than for parallel

waves (see, e.g., Refs. 8 and 33).

For both parallel and oblique wave modes, we calculate

the probability of particle trapping P for a given equatorial

pitch-angle a0 and an initial energy E, as well as the corre-

sponding jumps in energy DE and pitch-angle Da0 due to

trapping (see Appendix B for details). Figure 3 shows pro-

files Pða0Þ for parallel waves and four initial particle ener-

gies. Trapping is possible for particles with a0 > 30� and

trapping acceleration results in a significant increase in the

electron energy (energy jumps vary between 50� 300 keV).

The probability of trapping P is about 0:1� 0:3 (i.e., up to

30% of particles get trapped during their first passage

through the cyclotron resonance) and it decreases as electron

energy increases (at least in the considered energy range).

In Fig. 4, we compare results obtained for parallel and

oblique waves. We consider two values of the parameter q:

q¼ 1.05 corresponding to waves propagating �1� below the

resonance cone angle, while q¼ 1.025 corresponds to waves

propagating �0:5� from the resonance cone. Such waves

with large refractive index are rather common during moder-

ately disturbed periods just outside the plasmasphere.9,35

Figure 4 shows that such very oblique waves can resonantly

trap only low energy electrons (E< 100 keV), while the

FIG. 3. Distributions of the probability

of trapping P, as well as energy and

pitch-angle jumps are displayed for

parallel waves. System parameters are

L¼ 4.5 (solid curves, xpe ’ 4) and

L¼ 6.0 (dotted curves, xpe ’ 5:3),

xm ¼ 0:35.

FIG. 4. Comparison of trapping effects for parallel waves (red curve) and for oblique waves with either q¼ 1.05 (black curve) or q¼ 1.025 (grey curve). Three

initial energy values are considered. System parameters are L¼ 4.5 (xpe ’ 4) and xm ¼ 0:35.
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considered parallel waves can only trap electrons with high

enough energy E 	 100 keV. For 100 keV electrons, the am-

plitude of energy jumps DE is comparable for oblique and

parallel waves, but the probability of trapping by parallel

waves is much higher. Profiles of energy jumps and probabil-

ity as functions of a0 consist of many peaks corresponding to

the maxima of the Bessel function J0. Moreover, parallel

wave trapping results in an increase in pitch-angle Da0 > 0,

while trapping by oblique waves leads to a reduction of

pitch-angle (in agreement with previous works, e.g., see

Refs. 5 and 7). Interestingly, the probability of trapping is

largest for 10 keV electrons and oblique waves. Thus, paral-

lel waves should mainly accelerate electrons of E> 50 keV

and shift them to higher pitch-angles where they can remain

trapped a long time, while oblique waves accelerate lower

energy electrons and simultaneously send them to much

lower pitch-angles, which could ultimately hasten the precip-

itation of one part of them into the atmosphere.

Finally, Fig. 5 shows the maximum (over all equatorial

pitch-angles) possible jump of energy DE and the corre-

sponding value of the probability of trapping P for parallel

and oblique waves. We consider three values of the wave

frequency xm and two values of q (i.e., h). For small electron

energy E< 50 keV, trapping by oblique waves is clearly

more effective: both the energy jumps and the corresponding

probabilities are larger. But as energy increases, energy jumps

DE due to trapping by parallel waves rapidly increase and

for E> 200 keV exceed DE due to trapping by oblique waves

for all the considered wave frequencies. The probability of

trapping by parallel waves with the most effective accelera-

tion (i.e., maximum of DE) is also larger (to much larger) in

general (when it is not equal to zero) than the probability of

trapping by oblique waves, demonstrating the likely overall

efficiency of this process even in the simultaneous presence

of both kinds of waves.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have focused on electron particle trapping

by parallel and oblique whistler-mode waves. However, there

exists one additional phenomenon, called particle nonlinear scat-

tering (or phase bunching), which is responsible for small

changes of particle energy and pitch-angle.16,28,30,48,51 To

describe nonlinear scattering, one can use the following

Hamiltonian derived by performing an expansion of the equation

of motion about the resonance (see, e.g., Refs. 3, 13, and 56):

H/ ¼
1

2
gP2 þ Dfþ B cos f; (18)

where ðP; fÞ are conjugated variables, and functions

BðzÞ; DðzÞ, g(z) are given in Eq. (B4). The variable f denotes

the wave phase (see Appendix A), while P is equal to _f=g.

Thus, there is a direct relationship between P and particle

energy c and Ix. Nonlinear scattering correspond to jumps

DP, resulting in jumps in energy DE ¼ mec2Dc and pitch-

angle jump Da0. The average value of jumps DP ¼ P0f1ðAÞ
and their variance VarðDPÞ ¼ P2

0f2ðAÞ as functions of B; D,

g, and A ¼ jB=Dj have already been derived for oblique

waves in Ref. 13: P0 ¼ B
ffiffiffiffiffiffiffiffiffiffiffi
2=gD

p
and the functions

f1ðAÞ; f2ðAÞ are shown in Fig. 3 of Ref. 13. Previously, a

similar approach had been applied in Refs. 4 and 5 to derive

energy and pitch-angle jumps due to scattering by parallel

whistler-mode waves. Thus, a careful combination of the

results obtained in the present paper with previous results

from Refs. 4, 5, 11, and 13 should provide all the necessary

means for an analytical evaluation of energy and pitch-angle

FIG. 5. The maximum jump of energy

and the corresponding probability are

displayed as a function of the initial

electron energy for parallel waves

(solid curves) and oblique waves

(dashed curves). Left panels corre-

spond to q¼ 1.05 and right panels to

q¼ 1.025. System parameters are

L¼ 4.5 (xpe ’ 4) and three values of

xm are considered.
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variations for both electron trapping and nonlinear scattering

by parallel and oblique whistler-mode waves.

Figures 3–5 show that 	 100 keV electrons interact with

parallel waves much more effectively than with oblique

waves. This is due to both the smaller magnetic amplitude of

oblique waves and the significant modulation of oblique

wave amplitudes by the oscillating Bessel function. While

the decrease in the parameter q as h gets closer to the reso-

nance cone can substantially increase the wave electric field

amplitude, it simultaneously increases the argument of the

Bessel function, making the effective wave amplitude more

oscillating. As a result, the most effective trapping and accel-

eration of �100 keV electrons by oblique waves actually

correspond to the Gendrin mode q¼ 2 (see Ref. 11).

However, for a wave propagating at the Gendrin angle to

have a significant parallel electric field, its magnetic field

amplitude needs to reach very high levels �1 nT. In this pa-

per, we have considered a more realistic situation in which

the magnetic field of oblique waves is five times smaller than

for parallel waves. In this case, q should be close enough to

1 to provide electric field amplitudes high enough for nonlin-

ear effects to become important. However, even in this rela-

tively small magnetic amplitude regime, oblique waves turn

out to be more effective in trapping and accelerating

<100 keV electrons.

It is also worth noting that additional phenomena could

disrupt the stable trapped motion assumed here. For instance,

some non-resonant waves of much smaller amplitude may be

present in the same space region as the considered waves

and can lead to a diffusive destruction of the trapped motion

of electrons,10,18 while important wave amplitude modula-

tions can lead even more quickly to a particle escape from

resonance.10,62 The presence of the above effects can reduce

trapping-related jumps in electron energy and pitch-angle as

compared to the levels calculated here.

In conclusion, we have derived analytical expressions

for the probability of electron trapping by parallel and

oblique whistler-mode waves. A comparison of these proba-

bilities and the corresponding energy jumps demonstrates

that for realistic parallel and oblique wave amplitudes, trap-

ping by parallel waves is more effective for >100 keV elec-

trons, while for <100 keV electrons, oblique waves provide

a more efficient trapping acceleration. On a global scale,

oblique waves might therefore increase the population of

�30� 100 keV electrons, while parallel waves could further

accelerate these particles up to �MeV energies.

ACKNOWLEDGMENTS

Work by A.V.A. and A.A.V. was supported by RFBR

No. 13-01-00251. Work by A.I.N. was supported by NSh-

2964.2014.1. Work by O.V.A. was performed under JHU/

APL Contract No. 922613 (RBSP-EFW). A.V.A. is grateful

to Dmitry Zimin Dynasty Foundation for support.

APPENDIX A: HAMILTONIAN EQUATIONS OF MOTION

We start with Hamiltonian (14) and expand it over the

small parameter bw ¼ eAw0=mec2 � 1 (where Aw ¼ uðzÞAw0)

H ¼ cþ bwu zð ÞU=c

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ p2
x þ vxb zð Þð Þ2

q
Uh¼0 ¼ vxb zð Þsin /� px cos /

Uh�hr
¼ vxb zð Þsin /� cU zð Þcos /

U zð Þ ¼ N2 � S

D

N2 � P

N2 sin2h� P

sin h
N

;

(A1)

where H! H=mec2 is the dimensionless Hamiltonian, and

ðx; pxÞ; ðz; pzÞ are the pairs of canonically conjugated varia-

bles. In Eq. (A1) for oblique waves, function u(z) is shown in

Fig. 2, while for parallel waves, u(z) is multiplication of the

function shown in Fig. 2 and factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=xm � 1

p
. The

Hamiltonian (A1) shows that particles rotate around the

background magnetic field much faster than they move along

field lines (v� 1). Thus, we can introduce the adiabatic

invariant Ix corresponding to the averaging over ðx; pxÞ
oscillations32

Ix ¼
1

2p

þ
pxdx ¼ c2 � 1� p2

z

2vb zð Þ
: (A2)

We write ðx; pxÞ as functions of the new canonical variables

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ix=vb

p
sin w; px ¼

ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb

p
cos w; (A3)

where phase w is conjugated variable to Ix. It should be noted

that due to variation of b(z) with z, variable transformation

(A3) requires introduction of a new pz which differs from ini-

tial pz by the fast oscillating term (� sin h, see Ref. 32).

However, we omit this difference here. With these new vari-

ables, the Hamiltonian system (A1) takes a form

H ¼ cþ bwuU=c

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ 2Ixvb
q

Uh¼0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb

p
cosðwþ /Þ

Uh�hr
¼

ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb

p
sin w sin /� cU cos /:

(A4)

Thus, for w, we have the following equation: _w ¼ @H=
@Ix � vb=c. For parallel wave, we can introduce new phase

f1 ¼ /þ w and write the final form of the Hamiltonian sys-

tem as

H ¼ c� bw
u

c

ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb

p
cos f1

f1 ¼ /0 þ v
ðz

K z0ð Þdz0 � xmt

0
@

1
Aþ w

(A5)

with KðzÞ ¼ xpef0ðzÞ. The corresponding resonance condition

_f1 ¼ 0 represents the first cyclotron resonance xpef0ðzÞ _z
�xm ¼ �b=c, where _z ¼ pz=c (see Hamiltonian (A5)).

The wave phase / for oblique waves (13) can be written

as

/ � /0 þ v
ðz

K z0ð Þdz0 þ xpe sin wffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

ffiffiffiffiffiffi
2Ix

vb

s
� xmt

0
@

1
A (A6)
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with KðzÞ ¼ qxpexm=ð
ffiffiffiffiffiffiffiffiffiffiffi
q� 1
p

bðzÞÞ. We use two expansions

cos / ¼
X1

n¼�1
JnðgÞ cosðf0 þ nwÞ

sin / sin w ¼ �
X1

n¼�1
ðdJnðgÞ=dgÞ cosðf0 þ nwÞ

(A7)

with f0 � /0 þ vð
Ð z

Kðz0Þdz0 � xmtÞ and g ¼
ffiffiffiffiffiffiffiffiffi
2Ixb
p

K=qxm

to rewrite Uh�hr
from Eq. (A4)

Uh�hr
¼
X1

n¼�1
Wn cosðf0 þ nwÞ

Wn ¼ �cUJnðgÞ �
ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb

p
ðdJnðgÞ=dgÞ:

(A8)

The corresponding resonance condition is _f0 þ n _w ¼ 0

(i.e., KðzÞ _z � xm ¼ �nb=c) and we must take n¼ 0 for

Landau resonance.

In the case of parallel waves, one can derive from (A4)

the following Hamiltonian equations of motion:

_z ¼ @H

@pz
¼ pz=c

_pz ¼ �
@H

@z
¼ � ix

c
@b

@z
þ bwvwK zð Þsin f1 þ bw

@w

@z
cos f1

_ix ¼ �v
@H

@w
¼ bwvw sin f1

_w ¼ @H

@Ix
¼ vb

c
þ bww

2ix
cos f1; (A9)

where

ix ¼ vIx; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ 2ixbðzÞ
q

w ¼ uðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðzÞ=xm � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ixbðzÞ

p
=c: (A10)

For oblique waves, the corresponding Hamiltonian equations

of motion are

_z ¼ pz=c

_pz � �
ix
c
@b

@z
þ bwvw sin f0

w ¼ �u zð Þ U zð ÞJ0 gð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ixb zð Þ

p
dJ0=dgð Þ

� �
;

(A11)

where ix ¼ const; we neglected terms �bw � 1 but kept

terms �bwv � 1. The above equations are equivalent to the

equations of motions derived recently in Ref. 49.

APPENDIX B: PROBABILITY OF TRAPPING

In this appendix, we derive the equations for the W func-

tion in Eq. (17). We start from the Hamiltonian (15) and per-

form several changes of variables.

1. Parallel waves

First of all, we need to introduce the phase f as a new

variable (f is equal to f1 from Appendix A). This procedure

consists of two steps: introduction of time t as a new variable

(with the corresponding conjugated momentum) and change

of variables with the introduction of f as a new variable. The

first step is technical and well described in Refs. 29, 44, 46,

and 47. Thus, we start from the second step and introduce

the generating function with term fI, where I is the variable

conjugate to f. We would like to keep the coordinate z and

phase w as Hamiltonian variables, thus, the second term of

the generation function should be pzþ Î xw, where p, Î x are

new momenta conjugated to z and w. Therefore, we use the

generating function G1 ¼ fI þ pzþ Î xw, where f ¼ /þ w.

This generating function gives pz ¼ @G1=@z ¼ pþ nKðzÞI
and Ix ¼ @G1=@w ¼ Î x þ I. Thus, we have p ¼ pz �
nKðzÞI; Î x ¼ Ix � I (we keep the notation Ix for variable Î x).

Below, we use I and Ix instead of nI, nIx. Therefore, the new

Hamiltonian has the form

H ¼ �xmI þ cþ bwwðp; z; I þ IxÞ cos f

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðpþ KIÞ2 þ 2ðI þ IxÞb

q
:

(B1)

The Hamiltonian (B1) does not depend on w (f is the new

variable); thus, Ix becomes a constant. The resonance condi-

tion _f ¼ 0 is

@H

@I
¼ �xm þ

1

c
K pþ KIð Þ þ bð Þ ¼ 0: (B2)

The corresponding value of the resonant I is

IR ¼
1

K
v/c/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2 � 2B p� KIxð Þ

q
� B� p

� �
; (B3)

where v/ ¼ xm=K; B ¼ b=K; c/ ¼ ð1� v2
/Þ
�1=2

. Next, we

expand the Hamiltonian (B1) around the resonance I¼ IR:

H ¼ Kþ 1

2
g I � IRð Þ2 þ bwwR cos f

K p; zð Þ ¼ �xmIR þ cjI¼IR

¼ �xmIR þ cR ¼ c�2
/ cR þ v/ Bþ pð Þ

g p; zð Þ ¼
@2c
@I2

				
I¼IR

¼ K2

c2
/cR

wR p; zð Þ ¼ w zRð ÞjI¼IR

cR ¼ c/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2 � 2B p� KIxð Þ

q
:

(B4)

Using the function (B4), we can write the expression for W
(see Refs. 11, and 44–47)

W ¼ 1

4p
S;Kf g
j K; IRf gj ; (B5)

where f::g is the Poisson bracket for variables (z, p) and

S ¼ 23=2
ffiffiffiffi
D
p

FðAÞ

FðAÞ ¼
ðf

fs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fs þ A cos fs � A cos f� f

p
df

B ¼ vbwwR; D ¼ fK; IRg
A ¼ jB=Dj; fs ¼ arcsinðA�1Þ:

(B6)
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In integral (B6), f
 is a solution of equation fs þ A cos fs �
A cos f� f ¼ 0 (the profile of the function F(A) can be

found, e.g., in Fig. 2 of Ref. 41, see also a description of

F(A) properties in Ref. 46).

Making use of the properties of the Poisson bracket, we

can write D ¼ fcR; IRg and

D ¼
c2
/

KcR

j v/cR � Bð Þ2 þ bB p� KIxð Þ
� �

; (B7)

where we introduced the following parameters:

j ¼ ð1=KÞ@K=@z; b ¼ ð1=bÞ@b=@z.

For the calculation of W in Eq. (B5), one should use the

derivatives along the resonance trajectory p ¼ pðzÞ given by

the solution of a system of two equations (B1) with H ¼ h
and (B2)

p ¼ 1

v2
/

v/h� Bþ 1

c/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
/ þ B2 � 2Bv/ h� xmIxð Þ

q !
;

(B8)

where h is the initial value of �xmI þ c ¼ c, corresponding

to an initial I¼ 0.

To check the derived equations, we numerically inte-

grate particle trajectory described by Eq. (A9) and compare

the corresponding results with analytical equations derived

in this appendix. Figure 6 shows an example of particle tra-

jectories. The fragments of particle trajectories in the ðz; pzÞ
plane demonstrate the trapped motion. The analytical esti-

mate cR given by Eq. (B4) coincides with numerical results

for time periods corresponding to the trapped motion. In the

right panels, we show the profiles of area surrounded by the

separatrix S (see Eq. (B6)). One can see that the particle

escape from the resonance when the area S rapidly drops to

small value (actually, the particle escape from the resonance

when S approaches its value at the start of trapping). Thus,

our analytical equations describe correctly the system: once

trapped, particles start moving while conserving the invariant

I/ ¼
Ð

Pdf (this invariant is equal to the value of S at the

moment of trapping) and the moment of escape from the

resonance corresponds to a decrease in S down to the value

equal to I/ (see a detailed description of this process in Refs.

6, 44, 46, and 47).

Fig. 7 shows profiles of analytical probabilities (17) cal-

culated with (B5). The particular, but realistic, distribution of

wave intensity u(z) displayed in Fig. 2 has been used. To ver-

ify the analytical estimates, we have used test particle simula-

tions: for given pitch-angle and energy, we run a large

ensemble of 104 particles and determine how many particles

become trapped after their first passage through the resonance.

Fig. 7 demonstrates that analytical formulas provide an accu-

rate description of the actual probability of trapping. Making

use of the conservation of the invariant I/ ¼
Ð

Pdf for the

motion of trapped particles, one can calculate the position of

particle escape from the resonance. Thus, the analytical equa-

tions provide the energy and pitch-angle jumps of trapped par-

ticles (see details of the calculations in Ref. 11). We have also

compared the results of analytical estimates against numerical

simulations for these jumps in energy and pitch-angle (corre-

sponding to variations taking place between the start of trap-

ping and the escape from resonance). Fig. 7 demonstrates that

both energy and pitch-angle variations of the particles are

faithfully described by the above analytical expressions.

2. Oblique waves

For oblique waves, the function w does not depend on

particle momentum pz. Moreover, the phase f does not con-

tain w and, as a result, the adiabatic invariant Ix is conserved

(f is equal to f0 from Appendix A). In this case, the final

expressions for the probability P of trapping given by

Eq. (17) were derived in Ref. 11 and further tested numeri-

cally in Ref. 12. The conservation of Ix allows us to intro-

duce ix ¼ vIx and to rewrite the Hamiltonian (B1) as

H ¼ �xmI þ cþ bww cos f

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðpþ KIÞ2 þ 2ixb

q
: (B9)

The resonance condition _f ¼ 0 gives the corresponding

value for the resonant I

FIG. 6. Trajectory (left panel) and particle energy changes (right panel) for an initially 200 keV electron. System parameters are as follows: L¼ 4.5 (xpe ’ 4),

the plasma density is taken accordingly to the model presented in Ref. 55, the wave amplitude is Bw¼ 1 nT, and the wave frequency is xm ¼ 0:35. Right panels

show also a comparison of particle energy c variations obtained from numerical simulations and from analytical estimates, as well as the area surrounded by

the separatrix S (see Eq. (B6)). Analytical curves (of c and IR þ Ix) are shown in red. Inserted panels display a fragment of particle trajectory in the ðP; fÞ plane

corresponding to the trapped motion (P is the momentum conjugated to f, see, e.g., Ref. 11).
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IR ¼
1

K
c/v/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ixb

p
� p

� �
: (B10)

Thus, instead of Eq. (B4), we obtain

K p; zð Þ ¼ v/pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ixb
p

c/
; g zð Þ ¼

K2

c2
/cR

: (B11)

Equation (B11) provides a simple formula for W:

W ¼ 1

4p
v/

j K; IRf gj
@S

@z
; (B12)

where S is given by Eq. (B6), while for D ¼ fK; IRg
¼ K�1ð@cR=@zÞ, we have

D ¼
c/

2K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ixb
p c2

/ 1þ 2ixbð Þ
@v2

/

@z
þ 2ix

@b

@z

� �
: (B13)

Expression (B13) depends only on z. Moreover, @v/=@z
¼�v/ð@K=@zÞ=K¼ v/ð@b=@zÞ=b (as K� const=bðzÞ). Thus,

Eq. (B13) takes the form

K; IRf g ¼
c2
/ c2

Rv2
/ þ ixb

� �
KcR

1

b

@b

@z
: (B14)

The probability of trapping calculated with Eqs. (17) and

(B12) has been checked numerically in Refs. 11 and 12.
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