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Nonlinear electron acceleration by oblique whistler waves: Landau
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This paper is devoted to the study of the nonlinear interaction of relativistic electrons and high
amplitude strongly oblique whistler waves in the Earth’s radiation belts. We consider electron
trapping into Landau and fundamental cyclotron resonances in a simplified model of dipolar
magnetic field. Trapping into the Landau resonance corresponds to a decrease of electron
equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron
equatorial pitch-angles. For 100keV electrons, the energy gained due to trapping is similar for
both resonances. For electrons with smaller energy, acceleration is more effective when
considering the Landau resonance. Moreover, trapping into the Landau resonance is accessible for
a wider range of initial pitch-angles and initial energies in comparison with the fundamental
resonance. Thus, we can conclude that for intense and strongly oblique waves propagating in the
quasi-electrostatic mode, the Landau resonance is generally more important than the fundamental

one. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4836595]

I. INTRODUCTION

Planetary radiation belts are effective accelerators for
relativistic electrons.! In turn, electron acceleration and
transport determine the dynamics of entire radiation belts.”?
Moreover, high-energy electrons represent a hazard to satel-
lite electronics.>* Therefore, the investigation of electron
acceleration in the radiation belts is an important problem of
modern plasma physics.

One of the most significant processes responsible for
electron acceleration is the wave-particle resonant interac-
tion.”® Wave amplitudes determine the character of such an
interaction: scattering of particles on small-amplitude waves
can be described in the frame of the quasi-linear theory,
while large wave-amplitudes correspond to nonlinear effects
of particle trapping.” The basis of the quasi-linear description
of wave-particle interaction was given in Refs. 8 and 9. A
comprehensive scheme of calculation of effective diffusion
coefficients corresponding to particle pitch-angle and energy
diffusion was introduced in Refs. 10 and 11. There are sev-
eral modern numerical'>'? and semi-analytical'*'® models
of these diffusion coefficients, which are used in 3D codes of
the radiation belts to provide a solution of the Fokker-Plank
diffusion equation.'” "

Although, the major part of wave statistics corresponds
to small enough wave amplitude values allowing the applica-
tion of quasi-adiabatic theory,'*'™*® modern spacecraft
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observations have revealed the presence of whistler waves
with extremely high amplitudes.”*2® These waves form
short intense wave-packets with 10-10* wave-periods inside
each packet.”” Spatial scales along the background magnetic
field allow one single packet to be present over most of a
field line starting from the equatorial plane and up to 45° of
latitude.?® Transverse scales of wave-packets ~500km are
substantially larger than wavelengths.*’

High-amplitude whistler waves can interact with relativ-
istic electrons in the nonlinear regime when particle trapping
is possible.’®! Previously, this regime of interaction was
mainly considered for parallel whistler waves. In this case,
the fundamental cyclotron resonance is the most accessible.
In this case, particles must propagate in the direction opposite
to the waves to be trapped in the regime of nonlinear acceler-
ation (see review Ref. 32 and references therein). There are
several generalizations of this mechanism of acceleration,
together with interesting applications. It was shown that
trapping of particles into cyclotron resonance results in pitch-
angle increase, while transient particles decrease their pitch-
angles due to resonant interaction.>® Interaction of electrons
with lightning-generated waves at small L-shell was
described in Refs. 34 and 35. The influence of the variation
of the mean frequency of the wave-packet on nonlinear accel-
eration was described in Refs. 36 and 37. An important effect
at large electron energy was found in Ref. 38, when the
decrease of the effective gyrofrequency due to the increase
of the relativistic gamma factor may result in a turning of
resonantly trapped particles in the course of acceleration
(so-called turning acceleration). If the initial energy of elec-
trons is large enough (>1 MeV), resonant interaction with par-
allel waves becomes possible for electrons moving with the
wave (so-called ultra-relativistic acceleration, see Ref. 39).

© 2013 AIP Publishing LLC
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The important influence of wave-frequency variation with
time on the turning acceleration mechanism was investigated
in Ref. 40. There is also a series of important publications
devoted to the study of a realistic self-consistent acceleration
of ~100keV—1MeV electrons by parallel waves. In this case,
the strong temperature anisotropy of low-energy electrons
generates whistler waves, while resonant interaction of these
waves with high energy electrons results in electron accelera-
tion.*! In the frame of this self-consistent model, the effect of
wave-frequency variation with time and the turning accelera-
tion mechanism were also investigated.*>*

The latest spacecraft observations show that chorus
waves can propagate with a large normal angle 0 relative to
the background magnetic field.***> Moreover, oblique waves
represent a statistically significant population.”**® Thus,
some portion of high-amplitude chorus waves can be strongly
oblique. Indeed, an analysis of THEMIS (Time History of
Events and Macroscale Interactions during Substorms) data*’
has shown that a number of high-amplitude whistler waves
are observed with 0 within the range 0 € [0,, 0,], where 0, is
Gendring angle*® and 6, is the resonance cone angle (for a
simplified whistler-mode dispersion in the cold plasma-high
density limit, one has cos 0, = 2w /Q., cos 0, = »/Q. where
w is a wave frequency and Q. is a electron local gyrofre-
quency). These strongly oblique whistler waves propagate in
the electrostatic mode: the main part of the wave energy then
resides in the wave electric field (see Ref. 49). Thus, ampli-
tudes of wave electric field reach 100-300mV/m (see Refs.
24,26, and 47).

Nonlinear interaction of oblique high-amplitude whis-
tler waves with relativistic electrons involves the Landau
resonance besides the fundamental cyclotron one (see
review Ref. 6). Even for waves with 0 < 0,, it has been
shown that the effect of the parallel electric field can
become dominant in the nonlinear interaction for 0 > 0,
and w/Q,. > 0.3 (see Ref. 50). For such waves, Landau reso-
nance can therefore be described within the electrostatic
approximation. Electrons trapped into the Landau resonance
can effectively increase their energy and decrease their
equatorial pitch-angles in the course of their propagation
along with the waves from the equatorial plane up to high
latitudes.”® Electron acceleration via Landau resonance has
already been studied in several papers (e.g., Refs. 51-53),
while a comparison of pitch-angle diffusion rates by Landau
and cyclotron resonances with very oblique low-amplitude
waves was achieved in Ref. 54. To the best of our knowledge,
however, no statistical comparison of the respective effective-
ness of Landau and fundamental cyclotron resonances with
intense very oblique waves was undertaken before. Such a
comparison requires detailed informations concerning the
actual distribution of wave-amplitudes along the field lines, as
well as a realistic model of wave-normal angle evolution dur-
ing wave propagation, both of which became available only
very recently from modern spacecraft missions.

According to wave statistics collected by CRRES
(Combined Release and Radiation Effects Satellite)®' and
Cluster,? the intensity of the wave electric field on the day-
side of the Earth’s radiation belts has a local minimum in the
vicinity of the equator. At latitudes A~ 15°—20°, the

Phys. Plasmas 20, 122901 (2013)

intensity of the wave electric field reaches a maximum value
and does not vary substantially at 4 > 20°. Such a behavior
can be explained by a combination of two processes: (1)
with propagation away from the equator, waves become
more intense due to a local instability of the background
plasma medium, (2) wave propagation in the inhomogeneous
magnetic field results in an increase of electric field ampli-
tude due to the transformation of the wave-mode into an
electrostatic one (e.g., Refs. 55-57). Thus, one can introduce
an effective wave amplitude as a function of latitude u(4).
Below, we use u(4) derived previously in the work (Ref. 28).

In this paper, we compare the effectiveness of two
mechanisms of resonant accelerations (via Landau and fun-
damental cyclotron resonances). To this aim, we first obtain
analytical estimates of the energy gained by electrons
trapped into both resonances. We also derive expressions for
the probability of trapping in both cases. On this basis, the
relative importance of each resonance in electron energiza-
tion can be assessed statistically.

Il. GENERAL EQUATIONS

We use a simplified model of the background magnetic
field with two components B, = B(z) and B, = —xdB(z)/dz
(see Ref. 50), where z is the parallel coordinate, while x is
the perpendicular coordinate. This model can mimic any var-
iation of the magnetic field amplitude with z (e.g., for the

dipole field, we have B(z) = Bo\/1 + 3 sin’//cos®/, where

/. is magnetic latitude dz/dA =Ry 1+ 3 sin%/.cos A, Ry is
the radial distance from the planet to the point in the equator,
and By ~ R 3 is the magnetic field amplitude). However,
this magnetic field model cannot reproduce arbitrary curva-
tures of the magnetic field lines.

To derive analytical estimates of electron acceleration due
to wave-particle resonant interaction, we consider a simplified
model of the high-amplitude whistler wave. We only take into
account the electrostatic component of obliquely propagating
whistler waves generated in the vicinity of the equatorial
region. This approximation is valid for waves propagating near
the resonance cone angle (see Ref. 50). Such waves are
observed in the Earth magnetosphere (see statistics presented in
Refs. 23 and 58). Moreover, as shown below, resonant interac-
tions of particles with these waves only occur at medium to
high latitudes, where the Gendrin angle is merely 5°—10° below
the resonance cone angle. Thus, we hereafter assume that the
electrostatic approximation can be used to derive estimates of
electron acceleration for waves between the Gendrin and reso-
nance cone angles. In this case, the wave can be described by
the scalar potential ®(z, x, 1) = ®ou(z)cos¢, where the dimen-
sionless function u(z) corresponds to the distribution of wave-
field amplitude along the magnetic field lines and ¢ is the wave
phase. We further assume that the wave-phase can be written as

('b — (]50 —+ JkH (Zl)le + klx — wt,

where the perpendicular component of wavenumber & is a
constant. Wave amplitude @, is defined as ®y = Eq /&) (0),



122901-3 Artemyev et al.
where Ey| is the amplitude of the parallel electric field. We
also assume that the wave-frequency o is constant. We can
derive analytical equations for the general dependence of X
on z. However, for numerical estimates, we use expressions
for waves propagating with the Gendrin angle:*® k=
kow/Q. and k| =~ ko, where ko = const and Q. = eB(z)/m,c
(see Ref. 47).

The Hamiltonian of a relativistic electron with charge
—e and rest mass m1, can be written as

H = m,c*y — e®ou(z)sin ¢,

2 2 2
p2+p? e
—4/1 X z ——xB
/ \/ i (”165)2 <62 lx (Z)) 7

where (p., p.) are components of electron momentum. Here,
we introduce dimensionless variables and parameters
(px»pz) - (vapz)/meca (X,Z) - (X7Z)/R07 r— ZC/ROa (kHakL)
— (kjj,kL)Ro, ®— wRo/c, &= e®y/mec*, H— H/mec?,
b=B(z)/Boy=QRo/c, where By =B(0), Q. =eBy/m,c.
We also introduce the parameter w,, = ®/Q.o (in normalized
variables @ = wyy). The radius Ry =RgL is defined by L
(Rg ~ 6400km). The dimensionless Hamiltonian now takes
the form

H =7y — eu(z) sin ¢,

y = \/1 +p +p2 + (b(2))”. M

We consider systems where the background magnetic
field is strong enough to make gyrorotation the fastest type
of motion. Thus, we can introduce the adiabatic invariant /,
(see Ref. 59) for a non-perturbed (¢ = 0) system,

1 1 2
— — bpdy— = 2 12—
I, = o %pxdx - J \/V I —p2 — (xxb(2))"dx,

= 267~ 1=/ (h(2).

This is the classical magnetic moment and it can be
introduced as a new canonical variable with the conjugate
variable 0 defined with 0 = —yb(z)/y. Corresponding
expressions for (x, p,) in terms of (I, #) are

x = /2L/yb(z)sin 0,
Dy = /2L b(z)cos 0,

with these new variables, the Hamiltonian (1) can be rewrit-
ten as

H = Y — SU(Z)Z‘IH(VI)SH] (rbm

y =1+ 02+ 20b(2),
: @)
bn = Pon + Jku (Z)dz' + nf — o,

n=ki\/2L/yb(2),

where J,, is the Bessel function of the n-th order.
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The resonant condition (Z)n = 0 for the system (2) can be
written as

w — k\\(Z)UZ = —n /b))(z) s

where v, =p./y. The distance between resonances is
Ap. = yb(z)/ky(z). If this distance is substantially larger
than the width of the resonances, then we can consider each
resonance separately (see Ref. 51 and Sec. VII). In this
paper, we study two main resonances: the Landau resonance
with n=0 and the fundamental cyclotron resonance with
n=-1.

For Landau and cyclotron resonances, we estimate the
energy gained by particles due to trapping by a wave.
Trapping itself corresponds to a change in the type of parti-
cle motion: before trapping, a particle oscillates along the
field lines (bounce motion) with parallel velocity p,/y
=+/1—972—2Ib(z)/y* and constant energy y = const,
while during trapping this particle starts moving at the reso-
nance velocity vg. Trapped motion is therefore characterized
by energy evolution. Trapping is possible if the wave electric
field is strong enough to compensate the force due to mag-
netic field inhomogeneity (some analog of the mirror force).
The magnetic field inhomogeneity varies along the field
lines. Thus, for each particle with a given energy and pitch-
angle, there is a point where the particle can get trapped (at
this point the resonance condition is satisfied and the mag-
netic field inhomogeneity is weak enough) and a point where
the particle should escape from the resonance. The variation
of particle energy induced by trapping is simply calculated
as the energy difference between these two points.
Comparison of such gains of energy for the two considered
resonances should allow us to determine which resonance is
statistically more effective for particle acceleration.

For fixed particle energy and equatorial pitch-angle, the
possibility of trapping depends on the initial position of the
particle relative to the wave (i.e., on the value of ¢,,,). Initial
coordinates of potentially trapped and transient particles are
mixed in phase space. Due to the fast variation of the wave
phase ¢, even a small variation of the initial coordinates of
the particle can result in a significant change of the following
scenario of wave-particle interaction. Potentially trapped
particles can become transient, while potentially transient
particles can become trapped. Moreover, already after one
bounce-period (or a single passage through the resonance), a
potentially transient particle can become potentially trapped
and vice versa. Therefore, it is not sufficient to consider sim-
ply all the possible ranges of initial coordinates where par-
ticles could be trapped during their first resonant interaction
with one wave. A great many bounce periods as well as the
full ranges of initial coordinates should be investigated,
which represents an enormous amount of simulation runs.
An alternative, probabilistic approach is to consider the
phase volume of the initial coordinates of particles which
should be trapped. The probability of particle trapping
IT <1 can be defined as the ratio of this trapped volume to
the whole phase volume of the initial coordinates. For given
energy and equatorial pitch-angle, this probability is the
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percentage of particles that are to be trapped in the course of
the next passage through the resonance.®” The comparison of
such probabilities calculated for the Landau and cyclotron
resonances can be used as an indicator of the potential effec-
tiveness of these resonances.

lll. LANDAU RESONANCE

In this section, we consider the Landau resonance (n = 0).
The wave phase ¢, (2) does not depend on 0 and, as a result,
the invariant /, is conserved even in the presence of the wave.
The argument of the Bessel function 7 ~ /I, ~ sinoyg
strongly depends on the equatorial pitch-angle o of particles
and can vary in wide range. So, we introduce the function
uo(z) = u(z)Jo(n) and rewrite the Hamiltonian (2) as

H =y — eup(z)sin ¢,

v = \/1 +p2 +2Lb(2), )

¢ = ¢+ JkH(z’)dz’ — wt.

Corresponding equations of motion are

i=p./y
p. = —Lyb' [y + ekjug cos ¢,

where ' = d/dz and we assume ug, < kjjuo.

In the vicinity of the resonance ¢ = 0, we can introduce
the resonant velocity vz = w/k| and resonant gamma factor
7g = 1/4/1 — v3. In this case, the equation for the wave-
phase has the form

(y/ku)('j') =—A+Bcos¢
2
Y
A= 7R (—vgy* (K'y/ky) + Lgb')
B = SkHuo
v =/ 1+ 2L yb(2).

This is the classical equation of the nonlinear pendulum with
a constant torque: if B > A there is a region with trapped tra-
jectories in the phase plane and for A > B all particles are
transient (e.g., Ref. 6). Here, we consider the wave propagat-
ing with Gendrin angle k= ko/b(z) = 2w,.0/b(z) (see
Ref. 47) to show variations of A, B along field lines
(@pe = Qpe/Qe0, Where Q,, = const is the plasma frequency,
see approximate dependence of Q,, on L in Ref. 61). In this
case, vg = w/k| = b(z)/(2w).) and

»2 b
AR (P2 ry )b,
Y (2wpe)

- Skouo
b

B

Corresponding profiles of A and B are shown in Fig. 1
for various particle energies and equatorial pitch-angles. One
can see that B > A at the equator and only above a certain
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without Jy(n) with J,(n), ®,,=0.35
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FIG. 1. Profiles of A and B for various system parameters. We show B coef-
ficient calculated with J () and without this factor.

latitude A* we get B < A. Therefore, there is some range of
latitudes where trapped trajectories exist in the phase
space.”®

In absence of the wave, particles oscillate along the
bounce trajectories and their parallel velocities can be
described by the adiabatic relation

p- =2 —1=2Lyb(z).

Thus, for any given value of the equatorial pitch-angle
ao (271, = (7> — 1)sin’ag), one can determine the coordinate
of the resonance zz where yvg = p.. Particles can be trapped
by the wave if in the region z ~ zz we have A < B and
dB/dt > 0 (here the derivative is taken along the particle
trajectory).®” Trapped particles should be transported by the
wave to higher latitudes. Near the point z~ where A =B,
particles finally escape from the resonance. The correspond-
ing energy gain is Ay ~ y(z*) — 7(zg).

Using the magnetic field model b(z), one can further
analytically obtain 2D maps in the (7, 0p) space of the distri-
bution of gained energy Ay for various system parameters
(see Fig. 2). Moreover, trapping is a probabilistic process
with a certain probability IT (see Ref. 60). Thus, only some
subpopulation of resonant particles can be trapped and accel-
erated. We derive the corresponding analytical expressions
for the probability IT in Appendix A (see Eq. (A20)) and plot
2D maps of I in Fig. 2.

In both Figures 1 and 2, we show the effect of the factor
~Jo(n). This factor is important for high energy electrons
(>100keV) for which the decrease of the effective wave am-
plitude ug ~ Jy can result in a disappearance of trapping.
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without J,(n)
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with Jy(n), ©,.=0.35
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FIG. 2. 2D maps of energy gain and probability of trapping I1 = I /&, for various system parameters. The gain of energy is obtained as the difference
between energies of trapped particles at points of trapping and escape. Probability II is given in Appendix A.

To further illustrate the effects of trapping and accelera-
tion, we solve the system (3) numerically and plot the parti-
cle trajectory in Fig. 3. Initially, the particle oscillates along
the bounce trajectory (closed trajectory in the plane (z, p.)).
Then, after a certain time the particle becomes trapped by
the wave and is transported to higher latitudes. This trapping
motion corresponds to energy gain. After escape from the
resonance, the particle returns to bounce oscillations with
larger amplitudes. Thus, trapping into the Landau resonance
results in a decrease of the equatorial value of the particle
pitch-angle.

IV. FUNDAMENTAL CYCLOTRON RESONANCE

In this section, we consider the fundamental cyclotron
resonance (n=-1). The wave phase ¢, given in Eq. (2) is a
function of 0 and, as a result, the invariant /, is not conserved
in the presence of waves. Moreover, the Bessel function
J1(n) is small for small values of its argument. We introduce
the function u, (z) = u(z)J,(n) and write the Hamiltonian (2)
as

H =7y — eu;(z)sing,

)= \/1 +p2 + 2L yb(2), “

¢ =g+ Jk” (Z/)dZ/ —0— wt.

Corresponding equations of motion are

z :PZ/V

p. = —Lyb' [y + ekyjuy cos ¢
. 5)

I, = euj cos ¢
0= —71b(z) /7,

where we assume ] < kjju;.
In the vicinity of the resonance ¢ = 0, we can introduce
the resonant velocity vg as

ub(z) —wy _ wr
k) ki

Up = —

and the resonant gamma factor is y; = 1/4/1 — v. One can
see that the resonant velocity is negative for small wave fre-
quency, i.e., resonant particles move in a direction opposite
to the waves.®” We introduce several useful expressions
valid in the vicinity of the resonance

k’H 1 , w}e
0 = v _|_ — 1,
ko w0k
(.,ZS k\/| 2 WpUR (/) /
I=-———Up ——— = —+ UpUp,
ko Ky ki K
. Lyb've 5 1.yb
7 = yRyvRvE + V3 + 7% -

In this case, the equation for the wave-phase has the
form
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FIG. 3. Example of particle trajectory, energy and latitude A as functions of
time. The initial energy of the particle is 100keV, initial pitch-angle is 60°,

system parameters are: Eo = 100mV/m, L = 4.5, w,, = 0.35. The factor
~Jo(1) is not taken into account here.

(y/kH)('/'S = —A+ Bcos ¢,

Lyb'
A = 5 ==+ VRyvRvR,

@y

B=ﬁ@—%ﬁ:;ﬂ%mv

y=pV/ 1+ 2Lyb(z).

One can see that the general form of the equation for ¢
coincides with the one derived for Landau resonance (see
Sec. III). We rewrite coefficients A and B for a wave propa-
gating at the Gendrin angle such that k| = ko/b(z)
= 20peWmy/b(z). To this aim, we first derive an expression
for vg from the equation 1 — 2w,.vg = b/ (wmy)

om0~ /TR + (@ ) (1 T @)

R 1+a ’
2 (6)
(. 1 b
 \2wpewy ) 1+ 2yLb° ko= 2Wpe

We plot profiles of vg in Fig. 4 and compare them with pro-
files of the resonant velocity for the Landau resonance

Phys. Plasmas 20, 122901 (2013)

0,=60°
1 y
08 -vg for L=7.0, 100 keV
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FIG. 4. Profiles of vg defined by Eq. (6) for various system parameters and
profiles of resonant velocity for the Landau resonance vg = b/ (2w, ). Wave
frequency is w,, = 0.35.

vg = b/(2w,.). One can see that for 100keV particles, the
cyclotron resonant velocity vg is always negative. For large
energy (~1MeV) factor, ym,, can be larger than b and, as a
result, this resonant velocity becomes positive.*® The cyclo-
tron resonant velocity |vg| is larger in general than the corre-
sponding resonant velocity for the Landau resonance.

For Gendrin wave propagation, we can now rewrite the
expressions for A and B as

2 1,00
A—”Rb’<m+v2”’e :
b

2° 0b
2
v WOm?y
B :FR (1 — Ulzem)gkoul.

Corresponding profiles of A and B are shown in Fig. 5 for
various equatorial pitch-angles. Ranges of latitudes where
particles can become trapped (B > A) are similar to the cor-
responding latitude ranges for the Landau resonance (com-
pare with Fig. 1).

However, in contrast with the Landau resonance, now
Fig. 5 provides only the positions of trapping, but cannot



122901-7 Artemyev et al.
L=4.5 L=7.0
277100 keV 257100 keV | A
e | A | N
> S 27 B L
E 0.8 1 T
ry) 1.5
I | |
g .
§ 0.4 0,=80° —ano
o =600 . _ 0,=80
: o, =60°-
< 0y =400- °
1 o,=400°-
Of——7T 1 1 1 04— 0 —
0 10 20 30 40 o9 10 20 30 40
A° A°

FIG. 5. Profiles of A and B for various system parameters (cyclotron reso-
nance case). The factor ~J is taken into account (w,, = 0.35).

give the position of particle escape from the resonance,
because profiles of A, B are shown for constant y/,. In the
course of trapped particle motion, y/, changes (see system
(5)) and, as a result, we should take into account the evolu-
tion of A, B with y/, (see Appendix B).

To determine the gain of energy in the fundamental cy-
clotron resonance and corresponding probability of capture,
we apply a similar approach as the one used for the Landau
resonance in Sec. III. We plot 2D maps of gain of energy Ay
for various system parameters (see Fig. 6). The analytical
expressions for the probability IT of capture are derived in
Appendix B and presented as 2D maps in Fig. 6.

Now, we solve the system (4) numerically and plot the
particle trajectory in Fig. 7 to show the main features of

3 3
£ =
> D 25 2.5
E X
0@ & P 2
I - s
T{-LIJS D s ’,‘37. 15
- - B
0 15 30 45 60 75 90 0 15 30 45 60 75 90
3 3
£
: 3
g &
0= Y
<t I_ o>
NS
w2
e —
= >
s 3
o8 =
e S
s
w2

FIG. 6. 2D maps of energy gain and probability of trapping for various
system parameters (cyclotron resonance case). The factor ~J; is taken into
account (w,, = 0.35).
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FIG. 7. The particle trajectory, energy and latitude A as functions of time
(cyclotron resonance trapping). Initial energy of the particle is 50 keV, initial
pitch-angle is 20°, system parameters are: Egj = 100mV/m, L = 4.5,
@y = 0.35. The factor ~J, (1) is taken into account.

acceleration. Initially, the particle oscillates along the bounce
trajectory (closed trajectory in the plane (z, p.)). Then, after a
certain time the particle becomes trapped by the wave and
transported to lower latitudes with an increase of its energy.
A comparison with Fig. 3 shows that electron acceleration in
the fundamental cyclotron resonance corresponds to motion
in the direction opposite to the wave.

V. PITCH-ANGLE JUMPS

Besides the energy changes, particles can also change
their pitch-angles during their resonant interaction with the
waves, which corresponds to a modification of the energy
distribution between parallel and perpendicular motions. To
estimate these jumps of pitch-angles Aoy, we use the defini-
tion of the 7, invariant: 2y/, = (y2 — 1)sin2 oo. Thus, for the
Landau resonance (when I/, = const) we have



122901-8 Artemyev et al.

Acy = arcsin | sin o jui; — 00, init

where oy, and y,,, are initial values of equatorial pitch-
angle and relativistic gamma factor.

For the fundamental resonance, conversely, I, changes
and we can write

Aoy = arcsin — 00 init-

Both these jumps of the equatorial pitch-angles are shown in
Fig. 8. One can see that a typical value of Aoy is about 30°.
Pitch-angles are seen to decrease for the Landau resonance
while they increase for the fundamental cyclotron resonance.

Vl. COMPARISON OF LANDAU AND CYCLOTRON
RESONANCES

In this section, we compare the effectiveness of Landau
and cyclotron resonances in particle acceleration and pitch-
angle change. To this aim, we make use of the probabilities
of trapping I, gains of energy AE, and jumps of pitch-angle
Awy shown in Figs. 2, 6, and 8. For each value of the initial
electron energy E, we calculate the maximum gain of energy
max,, (AE) and the maximum value of pitch-angle jump
maxy, (Aog) (we find the maximum values over the whole
pitch-angle range oy € [0",90°]). We also calculate the corre-
sponding probabilities of trapping Ilmaxaz and Ilnaxag,-
Then, we compare dependencies of max,, (AE), max,, (Ao)
on E for both resonances. In addition, we plot the ratio of

Landau fundamental
e —
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FIG. 8. 2D maps of jumps of the equatorial pitch-angles for Landau and fun-
damental cyclotron resonances. Terms ~Jy(17) and ~J;(n) are taken into
account.
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probabilities ITnaxar, Ilmaxas, for cyclotron and Landau
resonances.

Fig. 9 displays the maximum values of electron energy
gain for Landau and fundamental cyclotron resonances (top
panels). For initially ~100keV electrons, the fundamental
cyclotron resonance can provide a similar acceleration as the
Landau resonance. However, the probability of trapping is
substantially (~ ten times) larger for the Landau resonance
(see bottom panels). The exception is the case at L =7 where
Iy, < gy, for E ~ 100 keV, but in this case the potential
gain of energy in the Landau resonance is larger than for the
fundamental cyclotron resonance. For electrons with initial
energy less than 100keV, acceleration in the Landau reso-
nance is potentially much more effective: the maximum gain
of energy is 10-100 times larger for the Landau resonance
than for the cyclotron one. Moreover, in this energy range,
the probability of such trapping-acceleration via Landau res-
onance is ~100 times higher than the same probability for
cyclotron resonance. For E ~ 100 keV electrons, pitch-angle
jumps are larger for the fundamental cyclotron resonance,
while for E < 100 keV, pitch-angle jumps are again larger
for the Landau resonance.

VIl. DISCUSSION

A comparison of Figs. 2 and 6 shows the main differ-
ence between Landau and fundamental cyclotron resonances
for electron trapping by intense, strongly oblique quasi-
electrostatic waves: the ranges of initial energies and pitch-
angles with a positive probability of capture are wider for the
Landau resonance (see also Fig. 9). Moreover, <100keV
electrons can gain more energy through Landau resonance
acceleration, while gain of energy for ~100keV electrons is
similar for both resonances. The fundamental cyclotron reso-
nance is likely more important for changing particle pitch-
angles than for their acceleration. Indeed, trapping into the
fundamental resonance results in an increase of pitch-angles
(see Fig. 8). Thus, this mechanism can help to transport
some accelerated electrons away from the loss-cone, thereby
contributing essentially to their sustained acceleration via
successive trapping events in the Landau resonance.

The simple approximation of a dipolar geomagnetic
field has been used here. However, for large L-shells (~7)
the deviation of the magnetic field configuration from the
dipole model can be substantial. Such a magnetic field defor-
mation is especially significant on the night-side where local
currents of hot ions often deform the dipolar magnetic
field.*** This deformation influences particle quasi-linear
scattering65 66 and, as a result, can be important for nonlinear
wave-particle interaction as well. In this paper, general
expressions for probabilities of particle trapping have been
obtained for a simplified model of magnetic field which mag-
nitude is a function of magnetic latitude (see Appendices A
and B). Thus, our expressions for probabilities can be used
for any distorted magnetic field which can be roughly
described by such a simple model. For example, we plan to
apply our model of nonlinear wave-particle interactions to
the problem of electron acceleration by whistler waves in
the Earth’s magnetotail. In this region, strong emissions of
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FIG. 9. The top panels show the maximum value of the gain of energy of trapped electrons as a function of their initial energy. The middle panels show maxi-
mum values of pitch-angle jumps as a function of the initial electron energy (for Landau resonance |Aoy| is presented). The bottom panels show ratios of prob-

abilities of trapping for Landau and fundamental cyclotron resonances.

whistler waves are associated with fast plasma flows (e.g.,
Ref. 67)propagating from the deep tail towards the Earth.
Electrons can be effectively accelerated by these waves in
the magnetic field configuration with stretched field lines®®
or with depolarized current sheet.®’

In this paper, the Landau and fundamental cyclotron
resonances have been considered separately. This is possible
because the distance between these resonances in phase
space is usually much larger than their widths (see Ref. 51).
However, an important deformation of the magnetic field
configuration and an increase of plasma density due to parti-
cle injections into the inner magnetosphere can substantially
increase resonance width. This is especially true for waves
propagating with normal-angles close to the resonance cone
at large L-shells (where such waves are often observed, see
Ref. 47). In this case, resonance merging may result in the
appearance of an “integrated” Cherenkov resonance vk = w,
which cannot be expanded over cyclotron resonances. This
is a classical situation for wave-particle interaction in a weak
magnetic field’™’" when the so-called surfatron acceleration
is realized (e.g., Refs. 72—74). Thus, further consideration of
nonlinear resonance acceleration in a nondipole magnetic
field configuration seems to be an important task for the
future.

For very oblique whistler waves, higher-order cyclotron
resonances may also become important. The situation of
overlapping cyclotron resonances would require that the
width of resonances ~+/®, be larger than the distance

between resonances ~Q. /k. For Gendrin angle propagation,
this condition corresponds to very high wave amplitudes,
larger than 1 V/m for L < 7. In the latter case, quasi-linear
(stochastic) diffusion should again prevail. However, no
overlap with the Landau resonance should generally occur
for o < Q. /3. A full consideration of higher-order cyclotron
harmonics is beyond the scope of the present paper and it
will be addressed elsewhere.

The limit of high wave-amplitudes has been considered
here to study nonlinear trapping of electrons into the Landau
and fundamental resonances. However, we should mention
that even waves with smaller amplitudes can interact with
particles in the nonlinear regime. Trapped particles oscillate
in the effective potential well created by the wave electric
field. If the duration of particle trapping is much longer than
the period of such oscillations, one can consider nonlinear
acceleration as described in this paper. On the other hand, if
the duration of particle trapping is comparable with (or
shorter than) the period of oscillations, then we deal rather
with nonlinear scattering.®’>’® Moreover, particle trapping
is a probabilistic process and particles cannot be trapped at
each time of passage through the resonance, even for high
wave-amplitudes. If particles are not trapped, they are scat-
tered at resonance.””’® The timescale of such a scattering
depends on the wave amplitude and, as a result, this scatter-
ing cannot be described in the frame of quasi-linear theory.”®
To complete the picture of nonlinear wave-particle interac-
tion, we should include effects of such a scattering into
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diffusion equations. Fortunately, the corresponding diffusion
coefficients are already derived (see Ref. 6 and references
therein) and one only needs to apply the general expressions
describing these coefficients to a particular system with
oblique electrostatic waves. We leave this piece of work for
further publications.

The acceleration of electrons should correspond to some
wave damping due to the conservation of energy inside the
system. This is especially true for very oblique waves propa-
gating at the Gendrin angle (see Ref. 80). However, there
exists also a population of transient particles which are
responsible for wave amplification®’ In reality, the consid-
ered waves play the role of intermediates between a popula-
tion of transient electrons losing their energy and a trapped
population of electrons gaining energy.®? The description of
this complicated self-consistent system can be based on a
model of resonant currents of trapped and transient popula-
tions (see Ref. 83). The analytical expressions for the proba-
bility of trapping obtained here can already be considered as
an important step on this way.

VIll. CONCLUSIONS

In this paper, we have considered nonlinear particle
interactions with high-amplitude strongly oblique whistler
waves. Using analytical estimates, the corresponding particle
energy gains AE and jumps of pitch-angle Aoy have been
obtained as functions of initial electron energy and pitch-
angle in a very wide parameter range. Analytical formulas
for the probability of relativistic electron trapping into the
Landau and fundamental cyclotron resonances have also
been derived. To obtain analogous results by means of
numerical simulations, one would have to run millions of
particle trajectories. Thus, the analytical expressions derived
here for the variation of AE and Auwy as functions of L-shell,
wave amplitude Ey|, and wave-frequency w,,, are both useful
and insightful. In particular, they can be applied to estimate
the role of nonlinear trapping in the dynamics of large elec-
tron populations. For E < 100 keV electrons, Landau reso-
nance looks more effective than the fundamental cyclotron
resonance, 1.e.,

1. The range of initial pitch-angles with a positive probabil-
ity of capture is wider for the Landau resonance.

2. The energy gained by trapped electrons is larger for the
Landau resonance for £ < 100 keV and it is comparable
for both resonances for E ~ 100 keV.

3. The amplitude of pitch-angle jumps due to trapping is
comparable for both resonances. These jumps result in
pitch-angle increase for the fundamental cyclotron reso-
nance and lead to pitch-angle decrease for the Landau
resonance.
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APPENDIX A: PROBABILITIES OF TRAPPING FOR
THE LANDAU RESONANCE

In this Appendix, we derive an expression for the proba-
bility of particle trapping by a wave in the case of the
Landau resonance. To this aim, we apply the general
approach developed for resonant wave-particle interaction
(e.g., Refs. 68 and 84). We renormalize the dimensionless
time ¢ — t/e, coordinate z — z/e, frequency @ — ew and
wavenumber k| — ¢k are rewrite the Hamiltonian (3) as

H =7 — eup(ez)sin ¢,

7 =1/ 1+p?+Eb(ez),

ez

¢ = qSO + JkH(SZ/)dZ/ — wt,

(AD)

where we have introduced the parameter £ = 2/,y. Now, we
introduce the new variable ¢ with the help of the canonical
transform with the generating function G = pz + I ¢, where 1
is a new variable canonically conjugate to ¢. For new varia-
bles p, I, we have p = p, — k)l and the Hamiltonian (Al)
takes a form

H = —ol + y — eup(ez)sin ¢,
y =L+ (p+ Ky (s2)1)? + Eb(ez).

(A2)

We use the renormalization ¢ = &z and rewrite the
Hamiltonian (A2),

H = —ol +7— eu(q)sinp = Hy + ¢H|,

y = \/1 + (p+ ki (@)])* + Eb(q).

(A3)

Here, the conjugate variables are (¢,1) and (¢/¢, p). The cor-
responding equations of motion are

=~ (g0 g,

o
. OH Pk + K1
b= =0+
ol y (A4)
) OH Eb' + 2p]k/H + Zka"‘I
p=—&—=—¢ )
9q 2y
. OH p+ k”I
q=&5-=¢ )
Ip 7
where ' = d/dg. The resonance qS = 0 corresponds to the
condition

P+ ki (@)e = % V1+2b@)+ (p + k(@) (AS)

Equation (AS5) defines a certain surface in the 3D space
(g, p, I). This surface intersects with the surface of constant
energy Hy = h along the so-called resonant curve,

w

p+k @Ik = (A6)
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The resonant condition (AS5) gives the expression for I

k
L Y e (A7)
N ki
We expand the Hamiltonian (A3) around I = I,
1 .
H=Ap.q) + 580 9) I — 1)’ = cuo(g)sin ¢,
1
A =H, =—+/1+ b+ vgp, (A8)
=l 'R
PHy| K
OF |, VI E

where vz = w/k|(q), 7 =1/+/1 — vj. We introduce the
new canonical variable K = I — I with the help of generat-

ing function Gy gpgan = pge” ! + (K +Iz) o,

1 .
H=Ap,q) +=8(p,q)K* — cuo(q)sin ¢ + edep,

> (A9)
where
OIg ON Ol OA

d ={R, A} =—F——F Al0
(o) = (1A} = GECR-SEE2 al0)

with {, } the Poisson bracket

N /2

(Ig, A} — IR P 20kVR(LECE) gy

k| 21+ &b

and vf, = —wk"l /k‘z| = —UR(k‘,l [ky). We use variables
P =K/ \/¢,t — ty/e and F = H /¢. In this case, the conjugate
pairs are (P, ) and (p,e3/%q). Thus, we can rewrite the
Hamiltonian (A9) in the form

F = 871/\(]7,(]) +F0(P7 ¢7p’q)a

Fo=58(a)P" ~ w(g)sin +d(q)9.

(A12)

The Hamiltonian F is similar to the classical Hamiltonian of
a nonlinear pendulum. If uy > d, then there is a region of
oscillations in the phase plane (P, ¢). The area of this region
is

(/)m
23/2
s=2 [ VAG, =9 g —wsngdd. (A13)
NG
b
where ¢, = —arccos(d/ug) and ¢,, is a root of the equation

d(¢ps — ¢,,) +upsin ¢, — upsinp, =0 different from ¢,.
To determine the probability of trapping II, one needs to
compare the velocity of evolution of S with the total phase
flux Y. For systems with d > u(/+/¢, we have

2n
Y= Jp¢d¢ = 27d| (A14)
0
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and the corresponding probability IT is (for {S, A} > 0),

{S, A} o \/EUR oS

M= — VIR
Ve 2nld|  2m|d| 0q

(A15)

For systems with d < up/+/e, the equation for IT has the
form®
2W /(W + 4n|d if W <d4nld
no [V ama) A a6
1 if W >4nld|,

where W = /¢(9S/dq)vr. Equation (A16) transforms to Eq.
(A15) for 4nd/+/e > (0S/q)vg. In both Egs. (Al5) and
(A16), all the variables are calculated at the resonance.

Now, we need to derive expressions for d, g, S in the
case of waves propagating at the Gendrin angle. For such
waves, we have k| = ¢ko/b and vg = b/(2w,.), leading to

b (1 b
kot 7 \2 20,,)* '
(2pe) (A17)
1 '
\/g k()ﬁ

where y = ypv/1 + Eb. In the vicinity of the equator (where
b’ = 0), the probability is defined by Eq. (A16) and it can
reach a value of 1, i.e., all the resonant particles can be cap-
tured in this region.

Equation (A13) can be rewritten with coefficients A and
B from Sec. 111,

¢m
R A . .
N :gJ \/B(¢S¢)+Sm¢smq§0d(j}, (A1)
where S = Seko, kjd = A and kjup = B and
_ 22k
g =20 =2y b Jugy. (A19)

V g/uo

Therefore, the final expression for the probability IT is

2W /o if eA<B
= q2W/(W + vko) if W<k (A20)
1 it W > vko,
where
W _ vV koSUR(aS/aq) _ k‘|UR(a§/aq) B \/kos g/ (AZI)

4r|d| drkoeA  8TwpA”
The first regime in Eq. (A20) corresponds to +/kocA/B
< 1/+v/ko (this condition is satisfied almost everywhere; only
for particles trapped in the close vicinity of the equator do
we get A ~ b’ ~ 0). In this regime, it is convenient to use
1= IT,/®, (with © the wave frequency normalized on
Q.0), because for the Gendrin angle of propagation, IT does
not depend on wave frequency.
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The obtained expressions (A21) for the probabilities of
trapping can be checked by means of test-particle simula-
tions. For each value of the electron energy and equatorial
pitch-angle, we run 10* particles from the equator in the sys-
tem, with various initial wave phases. Then, we integrate
each trajectory during 1/4 of the bounce period and deter-
mine the number of particles which become trapped. The
percentage of particles getting trapped gives the numerical
probability. A comparison between the numerical results and
the analytical expression (A21) shows that the latter is very
accurate (see Fig. 10).

In the Earth’s radiation belts, the wave amplitude u(z) is
often observed to grow as the wave propagates from the
equator in the latitude range 4 < 20° (e.g., Ref. 23). For
reasonable values of the plasma density,*® we have then
wpe >2 and v} = (b/2w,,)* < 0.12. Therefore, we can
neglect the term ~7; in Eq. (A17) (at least for particles with
energies >100keV, see Ref. 28).

APPENDIX B: PROBABILITIES OF TRAPPING FOR
THE FUNDAMENTAL CYCLOTRON RESONANCE

In this Appendix, we derive an expression for the proba-
bility of electron trapping by a wave in the case of the funda-
mental cyclotron resonance. We use the same dimensionless
variables and parameters as in A and rewrite the
Hamiltonian (4) as

H= Y= EM(SZ)JI (n)sin¢(sz, Z 0);

y=4/1 4 p?+1b(ez),

where I, — 2yl and 0 — 0/(2¢y). Then we use the generat-
ing function R, which defines the transformation to new vari-
ables I = Iy, p = p. — k|1,

(B1)

&z

R= JkH(sz’)dsz' +0—owt |I+pz. (B2)

We introduce the ¢ = ¢z and write the Hamiltonian in the
new variables

H = —ol + 7y — eu(g)J1(n)sin p,
y= \/1 +(p+kyI)* + Ib.

(B3)

Here, the pairs of conjugate variables are (p, & 'q) and (I, ¢).
The Hamiltonian (B3) can be written as H = Hy + ¢H;. The
corresponding equations of motion are

Phys. Plasmas 20, 122901 (2013)

60 |En=100 mV/m

FIG. 10. Comparison of numerical
probabilities of trapping in Landau res-
onance (diamonds) with the corre-
sponding analytical expressions (A20)

for 100keV particles in three different

systems.
. OH
I = e eu(q)J(n)cos ¢,
. OH b+ 2pk + Zkﬁl
= — = — - 0
(B4)
) OH b + 2p]kIH + Zka‘/‘] O
p——sa—q——s 5 + 0(&%),
OH p+ kHI
g=e =,
Ip Y
where ' = d/dq. The resonance d) = 0 corresponds to the
condition

b+ 2k (p + kjlk) = 201/ 1+ Ixb(q) + (p + k&) (BS)
The solution of Eq. (BS) is
b () 4kﬁ — 4bpk” —b?

24 ko 8 a2

Only the solution with “+” can be used. Moreover, for
the fundamental resonance, we obtain the additional
condition

(B6)

4kt — Abpk| — b* > 0. (B7)

The Hamiltonian (B3) can be expanded around the reso-
nance as

H = Ap.q) +32(p.0) (1 — 1&)? — eula)s(ne)sin 6, (BS)

where 1 = nz(p, q) is evaluated at I = I. Functions A(p, q)
and g(p, ¢) are defined as

bp b 2b
= 1= 1= 2= T (24 p | ko,
I=Iy K0 ki 4kﬁ (k

) 2(kﬁ - wz)” .

e (4 — dbphy — 02

where wvgo = w/kj. We use the generating function
Gundamentar to introduce the new variable K =1 — I,

A =H,

_ O’Hy
- or

Gfundamental = [?8716] + (K +IR)¢ (B10)
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111>

bi,

FIG. 11. 2D maps of coefficients I, S

for two values of L and Ejp = 50mV/m

o (cyclotron resonance case). Grey color
11
11

shows region where condition (B7) is

2 3 not satisfied.
o] ol SR{))
BN s i
LN HH e, }
-2 -1 0 1 2 2
p p
In the variables, the Hamiltonian is b
1 S=g | \fsing —sing, ~ alp.a)(é — d,)d,
H=A+ EgK2 — eu(q)J(ng)sin ¢ + ed¢, (B11) b
d big, A
where d(p. ) = {Ig. A}. alpg) ==
We introduce new variables P = K/\/e, t — t/¢, D1 UIR 08U )1 VTR (B15)
F = H/e. Corresponding conjugate variables are (P, ¢), b(1 = 2u0p — U(z))l/4
(p, e 3/%q). New Hamiltonian takes the form g =2/ |u(g)J1(ng)| (1—2 )3/4
— URo
FZS_]A(p q) +Fo(P,¢,p.q) \/7
) s Y s ) 1 —20v — U2
(B12) ix = —(t0+ p) + vgoY— el — 10

Fo = 58(p. )P — u(aVs (ng)sin § + o,

This is the classical Hamiltonian system for the mathemati-
cal pendulum. However, in contrast to A, parameters g and d
now depend on both coordinates (p,qg). Thus, we get a two-
dimensional graph for the area S surrounded by the
separatrix

_H3/2 |u(g)J1 (ng)|
=2 8(p,q)
o d00)
. . ) q
X J\/Slnd}Slnd)Su(q)l(nR)(d)qu)dd)' (B13)

To plot S(p,q), we should first calculate all the coeffi-
cients. We start with Iz(p,q), A, and g(p,q) described by
Egs. (B6) and (B9). These equations can be rewritten as

. — 2v0p — V3,
V1 — vk,

A= /1= vho\/1 —200p — B3+ (00 +P)oro, (B14)
32
- 2k7 (1 — vgo)
V1= 200p — 13

where vgo = wb/ky and vy = b/2k| = b*/(2wpewy,). In
dimensional variables, we can write

kylg = —(vo +p) +

V1=, ’

where S = ko&S. We plot the corresponding surfaces in
Fig. 11.
We rewrite Eq. (A20) for the probability of capture II as

2W /ko Vea < 1
O={ 20 /(W+vk) W<vk (B16)
1 W > ko,
with
W — \/@{57/\} o \/m {S’A}b.ﬁ (B17)

4r|d)| dn {big,A},,’
where {, }, , = {, }0b/0q is the Poisson bracket with deriva-
tive 0/0q replaced by 0/0b. Here, W should be evaluated at
the resonance, i.e., for I = I.

To estimate the energy gain due to resonant interaction
with the wave, one needs to determine the coordinates (g, p)
where particles actually escape from the resonance. In this
point, the area S should have the same value as in the trap-
ping point. To determine the evolution of the momentum p
in the resonance, we substitute the expression for Iz into
Eq. (B3), where we can omit the term ~¢ and assume
H = const,

H = vgo(vo +p)+\/1—v§0\/1—21)0p—v§. (B18)
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This equation can be solved with respect to p

. Hugo — vo + /1 — v3g\/0% + v%y — 200vr0H
= : ,
Uko

(B19)

Calculating S along the resonant curve determined by
Eq. (B19), we get points of trapping and escape.
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