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Abstract. We present a theory of trapped ion motion in the Litvinenko, 1993 Anastasiadis et gl2008 and references
magnetotail current sheet with a constant dawn—dusk comtherein). Moreover, models of penetration of solar wind par-
ponent of the magnetic field. Particle trajectories are de-icles into magnetospherglfou et al, 2007 and electron dy-
scribed analytically using the quasi-adiabatic invariant corre-namics in the radiation belts (see dikhorskiy et al, 2011,
sponding to averaging of fast oscillations around the tangenand references therein) also have a relation to this topic.
tial component of the magnetic field. We consider particle In a general situation, to solve Hamiltonian equations of
dynamics in the quasi-adiabatic approximation and demon€harged particle motion analytically, one needs to introduce
strate that the principal role is played by large (so calledadditional invariants besides the well-known energy and mo-
geometrical) jumps of the quasi-adiabatic invariant. Thesementum. One of the most effective theories developed in this
jumps appear due to the current sheet asymmetry related tway is the guiding-center theory of charged particle motion,
the presence of the dawn—dusk magnetic field. The analytiwhere the magnetic moment can be introduced as this addi-
cal description is compared with results of numerical integra-tional invariant of motion lorthrop 1963 Sivukhin, 1965.
tion. We show that there are four possible regimes of particleThis theory is valid for systems with strong magnetic fields,
motion. Each regime is characterized by certain ranges ofvhere spatial and temporal scales of magnetic field variations
values of the dawn—dusk magnetic field and particle energyare much larger and slower than typical scales of particle mo-
We find the critical value of the dawn—dusk magnetic field, tion.
where jumps of the quasi-adiabatic invariant vanish. The guiding-center theory in a general case cannot be ap-
plied to describe ion dynamics in the Earth’'s magnetotail
with weak magnetic field in the vicinity of the current sheet.
However, in such systems, another small parameter can be
1 Introduction introduced. This parameter is defined as the ratio of the cur-
vature radius of field lines and ion gyroradius. Thus, comple-
Description of charged-particle dynamics in strongly inho- mentary adiabatic type theory of particle motion can be de-
mogeneous magnetic fields with a small curvature radius,ejoped in a more general form. Such a new theory is based
is an important problem of plasma physics. This descrip-on the adiabatic invariance of the integral of actibar{dau
tion has applications in theory of thin current sheets in thegnq Lifshitz 196Q Schindler 1965 Sonnerup197% Whip-
Earth’'s magnetotail (see reviews Bglenyi etal, 2013 Bim  pje et al, 1986. This invariant is often called quasi-adiabatic
et al, 2012 and references therein), magnetopause (see disnyariant to distinguish it from the magnetic moment. Usu-

cussion inWhipple et al, 1984 Panov et al.201?), and ally quasi-adiabatic invariants are more poorly conserved in
for many other mesoscale structures observed in the mag:omparison with the magnetic moment.

netosphere (see review I8harma et al.2008 Grigorenko
et al, 2011 and references therein) and solar corona (e.g.
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lon trajectories in the current sheet can be described an2 General equations
alytically using the quasi-adiabatic invariarBilchner and
Zelenyi 1986 1989 Chen 1992). This description was also A simple model of the magnetic field componeBt in
generalized to manage current sheets with the X-line and théhe current sheet can be representedBas= Bo(z/L) for
dawn-dusk electric fieldvainchtein et al. 2005 or bifur- |z/L| <1 andB, = £Bg for |z/L| > 1, whereL is the cur-
cated current sheeté\temyev et al. 2011 Vasiliev et al, rent sheet thickness amgp is the amplitude ofB,. In the
2012. The description of particle trajectories is based on sep-system withoui,, the field lines have the shape of parabolas
aration of the particle motion into two components: fast 0s- B.x = Boz?/2L+const (inside the domain/L| < 1). Parti-
cillations around field lines (or across the current sheet) andtle motion can be qualitatively described as follows: far from
slow oscillations along field lines (or rotation in the current the neutral plane = 0 (whereB, = 0) particles quickly ro-
sheet plane). Roughly speaking, averaging over fast oscillatate around the field lines and move along them. When par-
tions gives the quasi-adiabatic invariant. ticles approach the neutral plane- 0, they change the type
Systems under consideration contain the separatrix in thef motion: now, instead of rotation around field lines, parti-
phase plane of fast variables. Trajectories cross the separates rotate around, and oscillate across the neutral plane
trix when particles change the character of their motion fromz = 0. After half a period of the rotation aroung}, parti-
motion along field lines far from the current sheet plane tocles leave the neutral plane= 0 and return to the motion
rotation in (and oscillations across) the current sheet planealong field lines. This type of trajectory was discovered by
Crossings of the separatrix result in the violation of the con-Speiser (se&peiser 1965 1967). The description of this
servation of the quasi-adiabatic invariant: so-called jumpsmotion in the system witlB, =0 was given bySonnerup
(Timofeey, 1978 Neishtadt1986 Cary etal, 1986 Bichner  (1971); Chen and Palmades$9986; Biichner and Zelenyi
and Zeleny; 1989. (1986 1989. Far from the neutral plane= 0, due to the
Previously, the theory of the quasi-adiabatic invariants andgrowth of B, (z) component, particles can make a turn and
related ion motion in the magnetotail current sheet was destart moving towards the neutral plane again. This motion is
veloped for systems without shear of the magnetic field, i.ebounded and can be considered as trapped. If particles reach
with zero value of the dawn—dusk componéytof the mag-  the current sheet boundary wheBg component becomes
netic field (hereafter we use GSM coordinate system). Onlyconstant B, = +Bp), the motion becomes unbounded and
the tangential componem, (z) and the normal component can be considered as transient one. Corresponding particle
B. were taken into account. Howeve?, component is of-  trajectories are open. In this paper we are interested mainly
ten present in the magnetotail (sBetrukovich 2011, and in particle behaviour in the vicinity of the neutral plane- 0
references therein). It plays an important role in the currentduring periodical returns of the particle’s trajectory to this re-
sheet formation (se&ilin and Bichner 2006 Artemyey, gion. Thus, we consider the trapped motion. Effect of open
2011 Malova et al, 2012 and references therein) and sta- trajectories and related particle losses is a subject of the next
bility (seeGaleev et a].1986 Kuznetsova et al199§ Silin publication.
and Bichner 2003 Karimabadi et a].2005 and references We start with brief discussion of main features of trapped
therein). trajectories in current sheets wi, = 0. For this purpose
There are several numerical investigations of the influ-we show particle trajectories in the current sheet withut
ence of the magnetic field sheaB,(# 0) on ion motion  (Fig. 1a, b). In case oB, = 0 each particle can move along
(Karimabadi et al.199Q Buchner and Zelenyil991 Zhu one of two possible segments of a trajectory: with a turnpoint
and Parks1993 Kaufmann et al.1994 Baek et al. 1995 at positivez (Fig. 1a) and at negative (Fig. 1b). Projections
Holland et al, 1996 Chapman and Rowland4998 Del- of these two segments onto the neutral plase0 coincide.
court et al, 2000 Ynnerman et aJ.2000. Major parts of  Both segments consist of two parts: rotation aroutdin
these numerical investigations are devoted to the descriptiothe neutral plane = 0 (the corresponding oscillations over
of peculiarities of particle motion for particular values of sys- z-coordinate have a large amplitude) and motion along field
tem parameters. However, analytical theory of this motion islines (the amplitude of the oscillations around field lines is
still not properly developed. In this paper we develop an adi-about two times smaller). Any particle moving along one of
abatic theory of ion motion in the current sheet with # 0. the segments can change it to another one at the moment of
In the discussion we compare main results of previous nudeaving the neutral plane= 0 (when the amplitude of os-
merical investigations with our analytical theory. cillations decreases twice). Detailed description of such tra-
In this paper we only consider motion of trapped parti- jectories can be found iBiichner and ZelenyiLl986 1989.
cles (this is the first part of our investigation). Moreover, we In the case o, # 0, particle trajectories are more com-
take into account only adiabatic motion without effects of plicated (Fig.1c). Both previous segments merge into a sin-
stochastic destruction of the quasi-adiabatic invariant. Thegle trajectory. This trajectory consists of four segments. The
non-adiabatic effects (including peculiarities of untrappedtwo segments A1 and A2 correspond to the motion along
motion) will be considered in the next paper. field lines and have turning points at positive and negative
z respectively. Their projections onto the neutral plare0

Nonlin. Processes Geophys., 20, 16878 2013 www.nonlin-processes-geophys.net/20/163/2013/
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Fig. 1. Characteristic trajectories in current sheets with®utpan-
elsaandb, s = 0 andx = 0.01) and withB,, (panelc corresponds
to s =0.5 and«x =0.01 and panel corresponds ta = 1.0 and

165

We study dynamics of particles in the system with the
magnetic fieldB = Bo(z/L)ex + Byey+ B.e,, whereB,; > 0
and B, > 0 are constants. Corresponding vector potential is
A = Byze,+(B,x — Boz%/2L)e,. The Hamiltonian of a par-
ticle with massn and charge in this system has the form

2 2
H=35 p 3 (i 8y2) 4 5 (o~ Boxglg Boc?)

We note that particle energy is constaft= h = const
because Hamiltonian does not depend on time ex-
plicity (0H/9t =0). We use dimensionless variables
p— p/~2hm, r —r//poL, dimensionless timer —
t/2h]/(poLm), parametersk = B,/Bo/L/pg and s =

By /Bov/L/po (po = ~/2hmc/(qBo) is the Larmor radius).
We also shift coordinate system alongo set momentum

py =0 (it is possible because the Hamiltonian does not de-
pend on y-coordinate). In this case, dimensionless Hamilto-
nian H — H/2h can be written as

H= %pz2+%(px—sz)2+%(fcx—%12)2. Q)
Our normalization of all variables on particle energy
gives the equatiod/ (z, p;, kx, py) = 1/2. Thus, in the four-
dimensional spacé, p., kx, py) the particle moves on the
three-dimensional surfadé(z, p., kx, px) =const. If B, =

0, we haves = 0 and Hamiltonian]) is the same as the one
considered earlier bgonneru1971); Buchner and Zelenyi
(1986 1989. Parametek is small for thin current sheets
observed in the magnetotait € [0.01, 0.1] where L ~ po;

see review byZelenyi et al, 2011 and references therein).
Therefore, variablegcx, p,) are slow and variableg, p,)

are fast.

3 Fast variables and quasi-adiabatic invariant

We introduce the potential enerd¥(«xx, py,z) = H — %pf
of particle motion in the phase plane, p;) of fast vari-
ables. At given values of the slow variables, systépcould
be considered as a Hamiltonian system with one degree of

« =0.01). Red curves show projection of trajectories onto planefreedom withH = %pf_f_ U(kx, px,z), Where(kx, py) are

z=0.

treated as constant parameters.

FunctionU = U(z, kx, p,) is the fourth order polynomial.
The particle’s oscillations in the potenti&l occur on the en-
ergy levelH = 1/2, i.e. amplitudes of these oscillations are

do not coincide. The segment A3 with the increased ampli-determined by the equatidih = 1/2. FunctionU (z, kx, py)

tude of z-oscillations corresponds to rotation aroBnéh the

can have a single minimum or two minima separated by a

neutral planeg = 0. The segment A4 corresponds to rotation local maximum depending on values of, p,. Thus, the

aroundB; in the vicinity of the neutral plane = 0 without

equationU = 1/2 can have two solutions or four solutions.

the increase of the amplitude of z-oscillations. Note that if Here we do not consider such valuesaf p, that the equa-
the value ofB, is large enough, the segment A3 with large z- tion U = 1/2 does not have any real solutions. For values

oscillations and rotation arour®l in the neutral plane = 0

of kx, p, such that there are four solutions of the equation

disappears (Figld). This complex motion of a charged par- U = 1/2, the schematic view dff as a function ot is pre-

ticle in current sheets with various valuesRfis the subject

sented in Fig2a. There are two minima and one local max-

of our study. Without loss of generality we consider positive imum at z = zc. The phase portrait of this system is pre-
By, (negativeB, corresponds to the mirror reflection of the sented in Fig2c. A system with two solutions of the equation

system with respect to the neutral plane 0).

www.nonlin-processes-geophys.net/20/163/2013/

U =1/2is shown in Fig2b, d.

Nonlin. Processes Geophys., 2017632013



166 A. V. Artemyev et al.: lon motion in current sheet with By

(a) ) .
s=0.0
(t2r) ]
x oscillation inside < )
> separatrix loops =1 oscillation in )
T * the outer region .
T 1T T T T ; . .
z (d) Z, z S
' D
Z. z Z )

Fig. 2. Panelga) and(b) demonstrate profil&/ (z). Panelgc) and
(d) demonstrate the corresponding phase plane of the fast variables
S| andS; are the areas surrounded by separatrix loops.

One can see two types of particle trajectories in these por-=
traits: the first type corresponds to particle oscillations inside
one of the two small potential wells (these are particle oscil- 2 0 2 0 2 4 6
lations around field lines, Fi@a, c). The second type corre- = KX
§ponds to pa_lrticle oscillations ir_1 the outer region with CrOSS ki 3. The phase plane of slow variablesx, py) is shown for
ing z = z¢ (Fig. 2a, c). Separatrix separates these tWo typesyo values of the parameterVarious colours are used for domains
of trajectories (it is shown by the dotted curve in F&g).  with different types of particle motion. Dotted grey lines show the
Separatrix passes through the saddle point-atc. For the  position of energy level/ = 1/2.
system withB, = 0, we havezc =0 and trajectories cross-
ing z = z¢ correspond to oscillations across the neutral plane
z=0. For the system witlk = 0 (i.e. B, = 0) we have only two

As particle trajectories in the plarie, p.) are closed (i.e. domains. In the first domain (t1) particles oscillate in one of
motion is periodic), one can introduce the quasi-adiabatic intwo symmetric potential wells. Thus, we have four solutions
variant as the area surrounded by a trajectory dividedday 2 of the equation/ =1/2. In the second domain (t2) parti-
I, = (1/2r) ¢ p.dz (Landau and Lifshitz196Q Sonnerup  cles oscillate in the single potential well (i.e. there is just
1971, Buchner and Zelenyil986). one well, or there are two wells separated by the maximum

of U located below energy leval = 1/2). In this domain
we have two solutions of the equatiéh=1/2. When the

4 Slow variables particle moves inside the (t2) domain, it crosses the neutral
planez = 0. Trajectories corresponding to oscillations in a
Potential energy/ depends on the slow variabléax, p,), single potential well (motion in the (t2) domain) and in one

and we can divide the phase plafae, p,) into several do- of two potential wells (motion in the (t1) domain) are sep-
mains on the constant energy levél= 1/2. Each domain arated by the separatrix in the pla@e p,) (see Fig.2a, c).
corresponds to some profile 8f(z) and some position of The separatrix corresponds to a certain curve inthe p,)

the lineU = 1/2 with respect to this profile, see Fi§).Here-  plane. This curve is callethe uncertainty curveThus, the
after we use marks (t1), (t2l), (t2r) and (t2) for four domains uncertainty curve separates (t1) and (t2) domains in the plane
with different types of position of the energy levél=1/2 (kx, py). When a particle is located on the uncertainty curve
relative toU (z) profiles. Each domain is characterized by in the plane(xx, py), this particle moves along the separa-
properties of solutions of the equatidh= 1/2. We consider trix in the (z, p;) plane. Hence, we use tertfne uncertainty
location of these solutions with respect to the plane 0 curveon the phase plangx, p,) and ternthe separatribon

to determine particle position relative to the neutral plane.the phase plan&, p;) (the uncertainty curve was first intro-
Note that for systems with # 0, valuez = 0 does not play  duced bywisdom 1985. For a system with = 0, the uncer-
any particular role in the equatidin = 1/2 (fors = 0 poten-  tainty curve is defined by the simple equat'(@tx)2+p§ =1,

tial U is symmetrical relative to the plane= 0). However, «x > 0.

z = 0 determines position of the neutral plane eversfgrO. If s #0, two additional domains appear, while area of
Thus, it is important to describe particle motion relative to the domain (t1) with two potential wells decreases. These
this plane. two new domains, (t2r) and (t2l,), correspond to particle

Nonlin. Processes Geophys., 20, 16878 2013 www.nonlin-processes-geophys.net/20/163/2013/
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oscillations inside a single potential well without crossing proved invariant (see detailsheishtadt1986 Arnold et al,

the neutral plane = 0. The particle oscillates above (blue 2006. For a system with a symmetrical phase portrait in the
colour) or below (red colour) the neutral plane-0 inside  plane(z, p;) (i.e. fors = 0), dynamical jumps of the quasi-
the right or left potential wells, respectively. In this case the adiabatic invariants 1" at the separatrix are proportional
equation = 1/2 has two solutions. Both solutions are posi- to x. For asymmetrical phase portraits (i.e. fog 0), dy-
tive for (t2r) domain and negative for (t2I) domain. ksog 0, namical jumps of the quasi-adiabatic invariamzdy” at the
the uncertainty curve is the boundary between (t1) and (tz)separatrix are proportional tdn« (Cary et al, 1986 Neish-
domains. Due to decrease of the (t1) domain area, the uncefagt 1986 1987). In the first approximation, we can neglect

tainty curve shrinks. It looks like a segment of a circle. variations of, far from the separatrix and dynamical jumps
At the boundaries between (t1) domain and (t2r), (t2I) do- , ,dyn

ins. the bott f fth rential wells is located tAIZ at the separatrix. Such an approximation is called
mains, the bottom o one of the potential Wi 1S 10Cated aly,o 4 gjapatic approximation. According to this approxima-
the energy leveH = 1/2, but these boundaries are not un

. ) . " tion, particle trajectories in the phase plane of slow variables
certainty curves (crossing of these boundaries does not cor-

X fi h [ s Px) =
respond to the separatrix crossing in taep;) plane). The (icx, px) are defined by the equatiaii(cx, p.) = const up

. . . to reaching the uncertainty curve. In the course of motion in
boundaries between (t2) domain and (t2r), (t2I) domains e plangx x, p,) of slow variables, particle trajectory in the

not an uncert_ainty curve either. These poundaries are de_fine Jane (2, p.) evolves. However, the area surrounded by the
by the fo!lowmg condition: one of so_lghong of the equatlpn trajectory in the planéz, p;) is conserved (i.el, = const).
U=1/2is equal tozzerc2>. This gondmon gives th(_a equation 4 areass|; surrounded by separatrix loops (see Fip.

of thg bounda;f”)z try=1 F|gure3 shows .that is #0, are functions of the slow variablggsx, p,). Thus, S de-

the circle(kx)~ + pZ = 1 does not coincide with the uncer- pends on the particle’s position in thiex, p,) plane. Par-

tainty curve. Mor_eoyer, some pomts_ of the (t1) domain ariicle motion in the(xx, p,) plane results in evolution of
located inside this circle. Thus, particles can cross the neux

tral ol 0] ¢ lati insid fthe t Si.r. Velocity of this evolutionk®,, can be determined as
ral planez = 0 in course of oscillations inside one of the two «O1; = dS) /dr (see details in Appendix A and iArnold

potential wells.
Due to evolution of I iabl ticl from ©t & 2000.
ue to evolution of slow varianies, particies can go rom -, e system witly = 0, we have only two domains in the

one domain to another in the placex, px) and cross the lane(xx, py). Particles move in the (t1) domain inside one

uncertainty curve (and hence cross the separatrix in the fa f separatrix loops (inside one of two potential wells) with

variable plane). Each transition from one domain to anomerinvariantlz — const and cross the separatrix. This crossing

c_o_rresponds to change in _type of the partlcle§ motion. Tran'occurs when the area surrounded by this loop decreases and
sition from the (t1) domain to the (t2) domain means that

ticl h lati d field I i ilati becomes equal tor2l,. After separatrix crossing, particles
particles change oscliiations around I€1d lines o 0SCHations, s jngjde the single potential well in the (t2) domain, where
across the neutral plane= 0. Transition from the (t2) do-

10 the (2] 2 d . that particl h the area surrounded by the trajectory is exactly two times
mainto the (t2]) (or (t2r)) domain means tha particies chang arger than the area before the crossing (both separatrix loops
oscillations across the neutral plane to rotation around fiel

X . . re symmetric and) = S;). As a result, one can use factor
lines below (or above) the neutral plane. Particles in (t21) andl/2 to renormalize the invariart. Namely, one can intro-
(t2l) domains do not cross the neutral plane O. '

: o " duce the quasi-adiabatic invariant Bs= (1/27) ¢ p.dz in
A_\n); sshparflztrlg crossing é"e.' transitions fr(l)tm_the (tl) (:_O' the (t1) domain and as = (1/4r) § p.dz in the (t2) domain.
main to the (t2) omain and vice ver_sa) results in a vanation, i case invariant; is constant along the entire particle
of I, (the so-called jump of the quasi-adiabatic invariant; see

) . trajectory. Thus, the equatidi(xx, p,) = const determines
Twpofeev, 1978 Ca‘fy eF al, 1.95.36 N?'Shtadl 19{.36 1987). all particle trajectories in the slow variable plagex, p,).
A jump of the quasi-adiabatic invariatt/, consists of two

ts. The first part ds to violati t adiabaticit This approach is used to describe particle motion after av-
parts. The Tirst part corresponds 1o violation ot adiabaticl yeraging over the fast variable for a system witk O (see,
of particle motion in vicinity of the saddle point= zc (this

) R dyn e.g.Buchner and Zelenyil989 Vainchtein et al.2005 and
is a dynamical jumpA/;°"). The second part corresponds (eferences therein).

to difference of the areas surrounded by the particle’s trajec- gpe additional property of the system witk= 0 is iden-
tory inside one of the separatrix loops and in the outer regionity of the velocitiesc®y; of Si.; evolution. When particles
outside of these loops (this is a geometrical jumg*"). approach the separatrix inside one of the two potential wells,
the areas surrounded by both separatrix loops decrease. Tra-
. . . jectories cross the uncertainty curve (and cross the separatrix
5 Adiabatic descriptions in the phase plane of fast variables) and should appear in-
. . . . . side the single potential well in the (t2) domain, because the
Invariant /, is not an exact integral of mot.|or.1 and is con- capture into one of two small wells is impossible due to the
served only approximately. However, variations Bf far decrease of corresponding aréas This transition is shown

from the separatrix are proportional to the small parameter | Fig. 4 (top panel, separatrix crossing C1). When particles

k. These variations can be reduced by introduction of an im-

www.nonlin-processes-geophys.net/20/163/2013/ Nonlin. Processes Geophys., 20116832013
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separatrix crossing (C,)

IS separatrix crossing (C,)

potential well

motion in one of
two potential wells

s=0.5
motion in the single

potential well without
crossing z=0

P,| motion in the single
potential well after
crossing of uncertainty curve:

motion in one of
two potential wells

! “$eparatrix crossing (C,)
motion in the single NS
potential well without Oy,

crossing of uncertainty curve—~%
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two important new effects. Firstly, the quasi-adiabatic invari-
ant cannot be conserved in the course of the separatrix cross-
ings, even in the adiabatic approximation, becafisg S;
(i.e. S + Sy # 28, # 28)) and there is no factor 1/2 of renor-
malization (as it was for the case= 0), which would al-
low the elimination of these differences. Thus, in each of the
domains in the planécx, p,), the particle trajectory is de-
termined by the equatiof («x, p,) = const, but values of
I, are different in different domains. To plot such a trajec-
tory in the («x, p,) plane, one needs to solve the equation
I, (kx, py) = const inside each domain and match these so-
lutions at the uncertainty curve. It should be noted that in
the (t1) domain we actually have two non-identical equations
I,(kx, py) = const, corresponding to oscillations in the left
and right potential wells, respectively (see schemes in Bigs.
and3).

The second effect for current sheets witz O corre-
sponds to the difference of the velociti€y , (see Ap-
pendix A). For example, at the uncertainty curve one can

find segments wher®, > 0 and®, < 0O, or vice versa. The
velocity of the area evolution for the single potential well
® = —(©,+06y) can be positive along such a segment. In this
case, each trajectory coming to the uncertainty curve from
the domain (t1) has two prolongations. The particle can go
into the (t2) domain or stay in the (t1) domain but change
the potential well. These two transitions are shown in Eig.
(middle panel, separatrix crossing C3). If the particle stays
in the (t1) domain, after a certain time it approaches the un-
certainty curve again or comes to the (t2) domain without
the uncertainty curve crossing. The latter variant is shown in
Fig. 4 (middle panel, T2 transition), where the particle tra-
jectory goes around the uncertainty curve and comes to the
(t2) domain. Thus, at the uncertainty curve the adiabatic tra-
jectory splits into two prolongations, and the particle may
follow each of these prolongations with a certain probability
Fig. 4. Schemes of particle trajectories in systems with0 and  (see description below). In the course of the particle’s mo-
with s = 0.5 are shown in the phase plater, p,). Fragment of  tion, this splitting at the uncertainty curve can occur several
(kx, px) plane with trajectory splitting is shown in separated panel. times. Due to this effect, any trajectory can be represented
Bottom schemes (C1, C2, C3) show particle trajectories before (dotas a set of segments of trajectories in the various domains
ted curves) and after (solid curves) separatrix crossings in the planghatched at several points at the uncertainty curve.
. pz)- Hamiltonian () is invariant with respect to the trans-
formation z — —z, px — —px. As a result the half-plane
(kx, px), px >0 is mirror symmetrical to the half-plane
oscillating in the single potential well in the (t2) domain ap- px < 0. Therefore, all transitions from the (t1) domain to the
proach the separatrix again, arefs increase. As a result, (t2) domain with trajectory splitting are also mirror symmet-
particles will be captured into one of the two potential wells rical relative to the lingp, = 0. For example, should some
in the (t1) domain. This transition is shown in Fig.(top particle approach the uncertainty curve inside the left well
panel, separatrix crossing C2). Such a type of trapped motioifz < 0) at p, = —p} < 0, it can cross the uncertainty curve
is described in detail bfsiichner and Zeleny([1986 1989); and get into the single well. Then this particle can approach
Vainchtein et al(2005 (see also scheme in Fig). In the  the uncertainty curve inside the single well, cross the uncer-
adiabatic approximation, trapped-type particles move alongainty curve atp, = p3, and get into the right welk(> 0).
a single trajectory in the phase plafe, p,) forever. Four examples of particle trajectories in the phase plane
In the system withs # 0, the areas of the two separatrix of slow variables are presented in Fig(here we describe
loops Si r are not equal. Moreover, the evolution of these ar-trajectories crossing the uncertainty curve at some distance
eas is asynchronous (see Appendix A). As a result, we havérom its endpoints; see details in Sect. 7). General form of
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Fig. 5. Particle trajectories in the phase plane of the slow variables are shown for four values of the pardthetéaft column). Corre-
sponding profiles of| r andS are shown in the right column.

trajectories is defined by the number of the uncertainty curvepanels in Fig5). We use dotted curves for the segments of
crossings, because at these points trajectories split. The chagraphs with negative values 6f ;, ® and solid curves for
acter of splitting and possible prolongations are determined¢he segments with positive values 6f (, ®. Thus, dotted

by signs of®;, and® = — (0O, + ©y) at the corresponding and solid curves correspond to the “ejecting” and “absorb-
point at the uncertainty curve. To describe these trajectoriesng” segments of boundaries of domains, respectively.

we plot schemes with area$, and S = S + S, as func- Vertical dotted lines in the schemes (right panels) corre-
tions of the valuep} along the uncertainty curve (see right spond to the particle transitions between the potential wells
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(one line corresponds to one point at the uncertainty curve, two separatrix no separatrix
where the trajectory crosses it). Horizontal solid lines corre- crossings crossings
spond to segments of particle trajectories. Particles in this ! :
scheme move along the horizontal straight lines up to the \

crossing ofS) , profiles. Then particles should change the po-

tential well (i.e. particles reach the uncertainty curve).

There is a new effect for the system with4 0. Particles
can switch between the right and left potential wells with-
out the uncertainty curve crossing (i.e. without the separatrix
crossing). Corresponding lines in the schemes in the right
panels of Fig5 are inside the grey region. The particle can
transit between two wells according to the following sce-
nario: initially, the particle oscillates in the left well. Then
the right well disappears and the left well with the oscillat-
ing particle shifts toward the right well position. Then new
left well appears. The result is the transit of the particle from
the left to the right well without separatrix crossing, i.e. at all
times the particle oscillates in the same well, which changes
its position from left to right. To clarify this description, we
present a scheme with successive profile$/¢f) and cor-
responding particle position for two transitions from the left
well to the right well with and without separatrix crossings
(see Figb).

BecauseS) # S, particles change the value &f due to
the transition between potential wells at the separatrix. As
a result, we have a non-zero value for the geometrical jumg-ig. 6. Left column shows successive profilesloiz) and particle
A Izgeom_ positions (from top to bottom) for transition from left well to right

The splitting of the possible routes of particle motion at Well with two separatrix crossings. Right column shows the same
the uncertainty curve means that the corresponding trajectansition, butwithout separatrix crossings. Grey arrows correspond
tory of the full system should choose one of two possibleto particle pos_,ltlonU =1/2 and black arrows show direction of

. . . .U (z) deformation.
prolongations. This choice depends on values of the fast vari-
ables at the moment of the separatrix crossing in the plane
(z, p;). Because variablgs, p,) change (approximately) pe-
riodically with periods smaller than time scale &f, evo-  trajectory is presented far= 1. In this case the uncertainty
lution, these values may be considered as random. In thisurve (and the separatrix) is absent, and the trajectory is a
case each choice of the trajectory prolongation at the unsingle closed curve with the sanie= const along it. The
certainty curve has some probability. These probabilities detransition from regime < 1 tos > 1 corresponds to disap-
pend on the crossing position on the uncertainty curve. Inpearance of the uncertainty curve.
particular, such probabilities can be considered as functions The existence of various types of trajectories is determined
of the coordinatep, = p¥ along the uncertainty curve (see by the value of the parameter If s =0 we have the sys-
Appendix B). tem with two domains in the plangx, p,) andS| = S;. In

One can find three types of trajectories in Fsgrhe first  this case all trajectories are closed curves witk= const.
type corresponds to trajectories presented in panels within systems withs # 0, as long as is smaller than a certain
s = 0.2 ands = 0.3. Trajectories of this type cross the uncer- valuespjs, only trajectories of the first type exist. All trajec-
tainty curve several times and have two transitions throughtories have the same number of uncertainty curve crossing
the (t2) domain with the single potential well without un- points for a fixeds (see Appendix C). Examples of these tra-
certainty curve crossings. The second type of trajectories igectories are shown in Fich for s = 0.2 ands = 0.3. Value
shown for the system with = 0.4. These trajectories cross spif ~ 0.25 corresponds to the system where the minimum
the uncertainty curve only twice (on entering the (t2) domainvalue of S = S + S; is equal to the value of; ; at p} =0.
with the single well and at the exit from this domain). Parti- In systems withspif < s < 1 we can observe a new type of
cles moving along such a trajectory always come to the untrajectory (shown in Fig5 for s = 0.4). Trajectories of the
certainty curve at points whef@, < 0. Thus, transit into the first type disappear fos larger than a certain value This
right well is possible only without separatrix crossing (seevalues ~ 0.35 corresponds to the system whéeis neg-
the scheme in Fig6, right panels). This type of trajectory ative everywhere along the uncertainty curve. Therefore, in
exists fors larger than a certain threshold. The third type of the system withspif < s < § trajectories of both types (first

separatrix
crossing

PO

1X

separatr
crossing

<--
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and second) can be found. In the system with 4 > § only Table 1. System characteristics for varioss
trajectories of the second type exist. In the system withl
the separatrix disappears and we have only trajectories of the s range Description
third type (shown in Fig5 for s = 1.0). Evaluation of bifur-
cation values of the parameters described in Appendix A.

We summarize all characteristics of systems with various
in Table1. 0 < s <spif only trajectories of the first type exist

(see example in Figh, s = 0.2)

s=0 all trajectories are closed curves with two
crossings of the uncertainty curve

spif <s <5  trajectories of the first and second types exist

6 Trajectories in 3-D (see example in Figp, s = 0.4)

We compare trajectories obtained in the adiabatic approxi- §<s<1 only trajectories of the second type exist
mation with numerical solutions of the equations of motion (- 1 only trajectories of the third type exist
for Hamiltonian (). We choose a small value of the parame- (see example in Fig, s = 1.0)

terx to make dynamical jumps negligibly small. To illustrate
the effect of the trajectory splitting at the uncertainty curve,
we calculate two trajectories starting from the same point in
the (kx, px) plane with the same energy, but with different with (t1r) along their edges corresponding to the uncertainty
values of the fast coordinates (trajectories (1) and (2) in eackyurve, which is the projection of separatrices. The obtained
panel of Fig.7). Examples of such trajectories are shown for jrregular 2-D surface is a phase space of the slow system.
systems withy = 0.3 ands = 0.4. We also show the splitting  One can show that this surface relates to the classical object
in separated panels. of catastrophe theory — the swallowtail surface (8e®old,

One can observe that the particle chooses one of two proi992.
longations of the trajectory at the uncertainty curve. Roughly  |n this paper we found the critical value of the parameter
speaking, both trajectories can be initiated at the same poirg where the uncertainty curve (and the separatrix) vanishes.
of the uncertainty curve (splitting points shown in Figj.but  We show that the uncertainty curve does not exist in sys-
their further prolongation would be different. Choice of pro- tems withs > 1 (see Appendix A). In dimensional variables
longation depends on values of the fast variables. Shapes @his criterion can be written asi2 < m(wgL)? (By /30)4 or
the trajectories are similar to ones obtained in the ad|abat|qg > Bo+/po/L, wherewy = g Bo/mc. The same criterion of
approximation in the previous section, because the mfluencpamde magnetization by, component was obtained ear-
of dynamic jumps was negligible. lier by Galeev and Zeleny{1978 and widely used in the
theory of current sheet instability (see eZglenyi and Tak-
takishvili, 1988 and references therein). For a given value of
By, particles with energy & < m(woL)?(By/Bo)* are not
The Hamiltonian system 1f has four variables Scattered inthe current sheetl®*°"andA1; N are absent).
(z, pz.kx, py). However, due to conservation of energy Their motion can be described as adiabatic witk= const.
H, the dimension of the system can be reduced to 3-D.One can easily show that for systems witfp> 1 the guid-
Therefore, any curve in the phase plafe, p,) of slow ing center theory is applicable. In this case the invariang
variables corresponds to some surface in this 3-D spacelroportional to the magnetic moment.
Without loss of generality we consider the energy level The system under consideration contains a class of regu-
H =1/2 (we have the equatioi (z, p.,«x, p,) =const lar trajectories in the domain (t2) with the single potential
and use normalization to obtakf = 1/2). The obtained 3-D well called “ring” orbits (see details iBuchner and Zelenyi
volume A is filled by trajectories of the fast motion. These 1986 Chen and Palmadessb986 Bulichner and Zelenyi
are trajectories of the system with Hamiltonid) &t various 1989 Chen 1992. Particles on these trajectories cross the
frozen variablesk x, p,). Figure3 is a projection ofA onto neutral plane; = 0 twice at each period of the fast oscilla-
the plane(xx, py). Thus, each trajectory of the fast system is tions. These trajectories never cross the uncertainty curve. As
projected to a point in this plane. However, to each point ina result for these trajectories/™" and A 19%°™ are absent.
the domain (t1) in Fig3, two trajectories of the fast system Phase volume filled by regular trajectories depends on the
are mapped. Those are trajectories of oscillations in the leftength of the uncertainty curvein the («x, p,) plane. For
and right potential wells with the same energly= 1/2. the system withy = 0, regular trajectories occupy less than
A convenient way to represent the dynamics is to considei20 % of the phase volume (this volume can be larger for a
two copies, (t1l) and (t1r), of the domain (t1). In this case bifurcated current sheet, séetemyev et al. 2011 Vasiliev
those trajectories of oscillations in the left and right potential et al, 2012. However, as we show in Appendix A, length
wells are projected to (t1l) and (t1r), respectively. Then we¢ decreases with the increase of the parametdtor sys-
glue (t1l) with (t2I), and (t1r) with (t2r). We also glue (t1l) tems withs > 1 the separatrix vanishes. Thus, this class of

7 Discussion
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Fig. 7. Trajectories in 3-D obtained by numerical integration of the Hamiltonian equations are shows faB ands = 0.4. Projections
of these trajectories ont@ x, py) plane are also shown. In 3-D we demonstrate only segments of each trajectory corresponding to the top
panels with projections. Bottom colour panels show moments of trajectory splitting for both values of

trajectories (those crossing the neutral plare 0O twice on In this paper we pay more attention to the geometrical
each period of their fast oscillations) does not exist. In sys-jumps. We assume that72°°™ is more important in com-
tems withs > 1 all trajectories are regular (.&a/>" and  parison with the dynamical jumps/®". However, for the
AIZ%°Mare absent), but all particles leave the vicinity of the system with a small value of the parametethe influence
neutral plane = 0 moving along field lines (an example of of AIZ“V” can be comparable with one Qﬁlz@leom_ To es-
such a trajectory is shown in Figd). timate the critical value of, we obtain the approximation

In Appendix B we determine the probabilities of arrival of A79°°™for smalls (see Appendix D). One can conclude
into different domains after crossing the uncertainty curve.that in the system with > (2/7)« In2, the shape of particle
These probabilities depend on the coordinafealong the  trajectories is defined by the geometrical jumps. Dynamical
uncertainty curve. Using these probabilities one can calculatfumps lead to a slow diffusion across adiabatic trajectories
the probability for any trajectory consisting of several seg-(j.e. to a slow evolution of real particle trajectories).
ments matched at the uncertainty curve. One needs to mul- Particles cross the uncertainty curve at each period of
tiply the corresponding probabilities of transitions betweensjow variables oscillations (the duration of this period is
domains in the(kx, p,) plane at the uncertainty curve for proportional tox~1). Thus, geometrical jumps modify the
such a multisegmental trajectory. This procedure can be usegarticle trajectory (and the value of quasi-adiabatic invari-
to obtain the reflection and transition coefficients (portions ofant) at each period. Simultaneously particles slightly change
particles which will return to the initial half-space relative to their trajectories due to dynamical jumpsc In« (Neishtadt
z = 0 or pass through the current sheet and appear at the op-986 Cary et al, 1986. Each separatrix crossing at = Pk
posite half-space). We left this topic for further publication. s accompanied later by the second separatrix crossing at
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px = —p; at the same adiabatic trajectory (crossings occurleft and right potential wells. Increase @, results in de-
both at enter to and at exit from (t2) domain). The sum of crease of one of these probabilities (see Appendix B). Thus,
these two consecutive dynamical jumps can be considered gzarticle captures are asymmetrical Bt # 0. Moreover, if
a random value with a zero mean. Thus the effect of the dy-B, > 0.35Bg./L/po, particles can be captured only in one
namical jumps will be considerable only afterc ~2In—2« potential well. Therefore, all particles escape from the cur-
separatrix crossings. This process takes time 3In~2«, rent sheet to one hemisphei@elcourt et al.(2000 found
while even a single geometric jump produces a consideran interesting feature of asymmetry of particle scattering in
able change of the quasi-adiabatic invari@ntn general.  the current sheet witlB, # 0. They showed that particles
However, the role of geometrical and dynamical jumps inare not scattered for a certain range of initial pitch angles.
the considered system is completely different. GeometricaMe also can describe this asymmetry of scattering. Length
jumps lead to the formation of adiabatic trajectories in theof the uncertainty curve in th@x, p,) plane decreases with
plane of slow variables. These trajectories are made of segncrease ofB, (see Appendix A). As a result some particle
ments glued together at the uncertainty curve. Phase poirttajectories can cross the current sheet without crossing the
moves along these trajectories switching randomly betweemncertainty curve (thus, without jumps of the quasi-adiabatic
segments. Dynamical jumps lead to a diffusion across adiainvariant, see Fig5). Particles moving along these trajecto-
batic trajectories and stochastization of particle motion. ries are not scattered at one current sheet crossinéafy
Charged particle dynamics in the magnetotail current sheetmann et al. (1994 and Holland et al.(1996 described an
with B, # 0 was studied before by means of numerical in- effect of destruction of particle resonant interaction with the
tegration of trajectorieskarimabadi et al.199Q Biichner  current sheet in case &, # 0. Resonant interaction corre-
and Zelenyj 1991 Zhu and Parks1993 Kaufmann et al.  sponds to particle motion without dynamical jumps of the
1994 Baek et al. 1995 Holland et al, 1996 Chapman and  quasi-adiabatic invariant (two successive jumagdyn com-
Rowlands 1998 Delcourt et al, 2000 Ynnerman et al.  pensate each other afds conserved; see detailsBiichner
2000. We can compare predictions of our analytical the- and Zelenyj1989. However, in this paper we restrict our in-
ory with results obtained in these investigations. Five mainvestigation to adiabatic theory. Thus, this effect is beyond
effects of B, were found by numerical integration of par- the scope of our investigation; (§hapman and Rowlands
ticle trajectories: (1Karimabadi et al(1990 andBichner (1998 andYnnerman et al(2000 considered the effect of
and Zelenyi(199]) showed that particles are not scattered g, in regular particle trajectories, which never cross the un-
in the current sheet for large enoudh, i.e. jumps of the  certainty curve (i.e. never cross the separatrix). Our theory is
quasi-adiabatic invariant are abseBuchner and Zelenyi able to describe the decrease in number of such trajectories
(1991) determined the critical value aB, for this transi-  with the increase oB, (this effect was found b hapman
tion to the regime of regular motion @& > Bov/L/po. This  and Rowlands1999. This decrease corresponds to decrease
value coincides with our estimates 8f corresponding to  of length of the uncertainty curve. However, we did not de-
vanishing of the separatrix. Therefore, we can explain ab-elop a detailed theory for this class of trajectories in the case
sence of particle scattering by the absence of the separaf B, # 0. Thus, we do not consider all peculiarities of these
trix in the phase plan€z, p;) at large enoughB,. More-  trajectories reported bynnerman et al(2000).
over, Karimabadi et al.(1990 and Holland et al.(1996 We study particle trajectories that cross the uncertainty
pointed out that scattering of particles is notinfluence®dby  curve not very close to its endpoints (all crossings correspond
while By < B,. Our theory gives the more accurate criterion o |p*| far from +maxp*). Thus, particle dynamics in the
By < B;(2/m)In2 (i.e. By < 0.44B;); (2) in this paper we vicinity of the endpoints of the uncertainty curve is beyond
consider only adiabatic theory without detailed analysis ofthe scope of this paper. In the close vicinity of the endpoints
destruction of the quasi-adiabatic invariant. Thus, the effeciof the uncertainty curve, velocitie3) ; change the sign (see
of intensification of particle scattering f@, ~ B, is beyond Fig. A3 in Appendix A). Related dependence$f on p} is
the scope of our paper. This effect was founddayimabadi  not monotonous. Particles crossing the uncertainty curve in
et al.(1990; Holland et al.(1999; Chapman and Rowlands  this region have specific trajectories. However, due to small-
(1998; (3) asymmetry of particle trajectories with respect ness of this region in the phase plane (the length of the cor-
to the neutral plane = 0 has been mentioned by many au- responding segment of the uncertainty curve is smaller than
thors.Zhu and Park¢1993 numerically integrated particle 1 9% of its entire length), the role of such trajectories seems to
trajectories in the current sheet with, ~ B, < Bg. They be unimportant.
showed that particles escape from the current sheet mainly The effect of multiple geometrical jumps in the systems
to one hemisphere; (> 0 or z < 0 depending on the sign of with periodical separatrix crossings was discussed earlier by
By). Moreover,Baek et al.(1995 demonstrated that &,  Neishtad{1986. In this paper we consider a particular phys-
larger than a certain value, particles escape from the curreral system with multiple geometrical jumps. The invariance
sheet only to one hemisphere. Our theory describes this effeef Hamiltonian () to transformatiorp, — —p,,z — —z re-

of asymmetry. Direction of particle escape from the currentsults in an additional symmetry of the geometrical jumps.
sheet is determined by probabilities of particle capture into
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Finally, all (split) trajectories have a finite number of uncer- 1.2 14
tainty curve crossings (i.e. trajectories are closed). Inagen- 08 1
eral situation consecutive geometrical jumps should lead to ¢4 08 =04
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Fig. Al. Slow coordinateg}, xx* along the uncertainty curve are

In this paper we study ion dynamics in current sheets With _ :
§hown as functions af; for variouss.

component of the magnetic field, often called current sheet
with sheared magnetic field. We describe particle trajectories

in adiabatic approximation and demonstrate that a principaboint on the separatrix. Here we use- zc and p. = 0 and
role is played by geometrical jumps of the quasi—adiabaticobtain: '
invariant. We found four regimes of the system depending on

the parametes = (B, /Bo)+/L/po (see, also, Tablg): pEY =szc— ZS—CAZC
. . _ 12
1. s € (0, spif): only one type of trajectory exists; number KX =526+ Ag (A1)
of uncertainty curve crossings dependssoralue (see 2\"1/2
Fig. C1). A = (l+ _2)

2. s € (spif, 5): two types of trajectories exist; trajectories Note that in the system wit, = 0 we haves =0, zc = 0.
of the second type cross uncertainty curve only twice!n this case the uncertainty curve in the phase plane of the
(once forp? > 0 and once fop? < 0). slow variables is the half-circl x*)?4(p¥)? = 1,kx* > 0.
In the system under consideration, the position of the saddle
3. 5 € (5, 1.0): trajectories of the first type do not exist, and point zc depends on coordinates along the uncertainty curve
all trajectories correspond to the second type. (kx*, p¥), see FigAL.
With increase of, the range op? variation shrinks. The
4. s > 1: the separatrix vanishes and the geometrical (adength of the uncertainty curve in the plagex, p,) can be
well as dynamical) jumps of the quasi-adiabatic invari- calculated as
ant disappear; far > 1 one can obtain transition to the

Zcmax

guiding-centre theory. Us)y= [ 1+ (ap;/axx*)z(axx*/azc) dzc
—Zcmax
Analytical estimates givespif ~0.25 and 5~ 0.35, or B 2 F (A2)
(By)bit ~ 0.25Bo«/L/po and By ~ 0.35B0+/L; po. Compar- = 2arctanzemas/s) = Zomax 1+ (5/Zemax

ison of the dynamical and the geometrical jumps shows that _ 2arctar( [s—43_1 1) _ 3 /2 2.
ats < (2/m)x In2 geometrical jumps are smaller than the dy-
namical jumps. In this case the role of geometrical jJumps canyere we use the following expression for the maximum value

be neglected. Thus, particle dynamics is similar to one for theyy , . - — /5273 —Z (this expression is derived below).
system withs = 0. We conclude that the concept of geomet- one can easily obtain that(0) = 7. For s =1 we have

rical jumps is very practical and allow the understanding of y(1) — 0. Thus, the uncertainty curve (as well as the sepa-
the differences between system witk= 0 ands # 0. ratrices) vanishes at= 1 (see FigA2).

In this Appendix we derive expressions for aréassur-
rounded by two separatrix loops and velociteg, of their
evolution (all these values depend on a slow coordinate along
the uncertainty curve). Fdfj ; one can write

Appendix A

The separatrix

max max
2 r r

In Fig. 2 one can see the saddle point with coordinateszc,

p. = 0 at the separatrix. At this point the potential enetgy i = 2 f pedz=2 / \/ZH —2U (kx*, py,z)dz,

has a local maximum value; thudl/ /9z = 0. We use this Zjnin Zjmin

condition to express slow coordinates along the uncertainty

curve in the planék.x, px) as functions otc. The equation  where the limits of integration are!’® = z¢,zy, z" =
for the uncertainty curve can be written as=Jp? + (p} —  ;_ z.. Values of z. are defined by the equation

$2)% + (kx* — %zz)z, wherez and p, are coordinates of any H = U (kx*, p¥, z+). We integrate along the separatrix and
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Fig. A2. The length of the uncertainty curve is shown as function
of s.

can takeH = Uc = U(kx™, p}, z¢):
QU — 2U (kx, prs2) = (z — 2¢)? [AZC 2 %(zc+z)2] .
After integration we have

Sir=—A; =5zl

2z¢

«/22—423)

—272,. /72— 472 — % (Ez _ 4Z§)3/2,

where¢ = 2,/A,_ — s2. From Eq. A3) one can define the
range ofzc variation:zc € | —+/s2/3 — 52, /s2/3 — 52|,
Expressions for®, , =dS ;/dct can be found with the

use of the following formula (see detailsWeishtadt 1986
Arnold et al, 20006):
) dr,

e

Ay = —zcl2arcta (A3)

oU U
ap¥ 0k x*

oU 0Uc
dkx* dp¥

where we integrate along the separatrix loop (left or right).

We can write

aU aU; U aU.

op¥ dkx*  Okx* ap*

=24 (z—20) (25 + % (z+20)).-
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Fig. A3. AreasS) (red), Sy (blue), S (black) and velocitie®; are
shown as functions of the parametgralong the uncertainty curve
for variouss. Dotted segments of curvess correspond to regions
with ®; < 0.

following system of equations:

Ae(Zc,5) = 5§
0Ae/0zclz, 5 =0

We replace the integration over time by the integration OVer 5. = §7.— %Azy

the fast variable, 0= dz/p,, and get

O = 44, (Ao £ Zs)

_ 2z lzc /72 2
A@_sarctar<\/22+4zg>—z?°v§ —4z2.

The area surrounded by two loopsSis= S| + S;. We denote
® = — (0 + 6r). We plot these values as functionsgf in
Fig. A3.

From Fig.A3 one can see that there is a specific value
of the parametes. Fors > 5§ we have®; < 0 (and®, > 0)
everywhere along the uncertainty curve. To deterniimee
note that fors = 5 there is some poing} = p}, where®, =
0 andd®,/dp; =0 (see Fig.A3). We can replace/dp;
by 9/9z¢ in view of Eq. (Al). In this case we obtain the

(A4)
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The solution of this system s~ 0.35, p} ~ 0.6 andz¢ ~
—0.35.

Another important value of can be found from the equa-
tion £(s) =0 (i.e. the separatrix vanishes). EquatidkR)
givess = 1 for¢(s) = 0. For a system with > 1, a separatrix
does not exist. As a resut/9%°™and A 1?" are absent.

The last value of the parameterwhere bifurcation of
the system occurs is = spf. In the system withs < spj
only one type of particle trajectory exists and in the sys-
tem withs > spjf we have two types of particle trajectories.
The value ofspi can be defined as follows: when= sy
the minimum value ofS = §) + S, is equal to the values of
Sir at the pointp} = 0. The minimum value of = S| + S;

is 4r (s2/3—s2)3/2. Values of S, at p* =0 are equal to

Nonlin. Processes Geophys., 2017632013
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* Fig. C1. Left panel demonstrates the scheme of the calculation
Fig. B1. Probabilities of capture’; (red), P> (blue) andP =1— of the number of uncertainty curve crossings. Right panel demon-
Py — Py (black) are shown as functions of the parametgmlong strates the number of uncertainty curve crossingsiat 0 for tra-
the uncertainty curve for various jectories of the first type (black) and the second type (grey) as func-
tions ofs.
3/2

(8/3) (152
for spif:

. As a result we have the following equation

We plot profiles ofS; and S for p} < 0. Then we plot the
232 _ (1)2/3 (1_ 2 ) _ polygonal line with _reflecti_ons from b_oth curvé_;sr until es-
bif bif s bif cape from the left side. This scheme is shown in the left panel
of Fig. C1. In this scheme we use the same solid line for seg-
ments of graphs with positive and negative valuespf.
This scheme for any given initial value @f at the uncer-

The solution of this equation i ~ 0.25.

Appendix B tainty curve gives all possible values pf < O at previous
and subsequent arrivals to this curve. One can show that the
Probabilities corresponding adiabatic trajectory indeed passes through all

these points. The number of reflection pointsSjrprofile is
When trajectories reach the uncertainty curve, particles geeéqual to the number of the uncertainty curve crossings by
from one potential well to another. If areas correspondingtrajectories of the first type at the half-spgegg< 0 (the to-
to both alternative wells are growing (i.e. correspondirg  tal number is twice larger). This number as a function of the
values are positive), particles choose one of the two accesparametes is shown in the right panel of Fig:1 (black dots
sible wells. The probability of being captured into one of form a staircase-like graph). One can have arbitrary large
the two small wells isP,; = &/ (@I +@r+@>, where ~ number of the uncertainty curve crossings in the adiabatic
. A ' approximation provided thatis small enough. However, for
O1r =max®\r,0) and® = max(—©) — Or, 0). The proba-  yery smalls dynamical jumps of the quasi-adiabatic invariant
bility of be_ing captured into the single wellB=1— P — P, should be taken into account, see Appendix D.
(see details ilNeishtad{ 1987 Arnold et al, 2008). Trajectories of the first type exist in the system with 3.

For the system with = O we haved; = OrandPr = 1/2  \wjith increase of the parameter the number of the uncer-
for pt > 0 (because ther®, ; > 0), while Py =0 for pY < tainty curve crossings decreases. The minimal number of the
0. We plot probabilities”  and P for various values of the  yncertainty curve crossings is four (two for the half-space
parametes in Fig. B1. As one can see, in systems witls- p* < 0). Trajectories of the second type existiif < s < 1.

0.35 we havePr = 0. Thus, in these systems particles cannotTrajectories of this type cross the uncertainty curve twice
be captured into the right well at the uncertainty curve. (once for the half-spacg’ < 0)
< 0).

Appendix C
Appendix D

Number of the uncertainty curve crossings

Comparison of AI%*°™and A 1"
In systems withs < 5, any trajectory can cross the uncer-
tainty curve several times. However, for each particular valueFor the current sheet with= 0, the dynamical jump of the
of s, the number of the uncertainty curve crossings is finite.quasi-adiabatic invariant is defined by the expressiom{
To determine this number one can use the following schemeofeey, 1978 Neishtadt 1986 Cary et al, 1986 Neishtadt
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