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Abstract. The kinetic features of secondary magnetic reconnection in a single flux

rope undergoing internal kink instability are studied by means of three-dimensional

Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection

are identified in the plane perpendicular to the flux rope: a quadrupolar electron

and ion density structure and a bipolar Hall magnetic field develop in proximity of

the reconnection region. The most intense electric fields form perpendicularly to

the local magnetic field, and a reconnection electric field is identified in the plane

perpendicular to the flux rope. An electron current develops along the reconnection

line in the opposite direction of the electron current supporting the flux rope magnetic

field structure. Along the reconnection line, several bipolar structures of the electric

field parallel to the magnetic field occur making the magnetic reconnection region

turbulent. The reported signatures of secondary magnetic reconnection can help to

localize magnetic reconnection events in space, astrophysical and fusion plasmas.
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1. Introduction

Flux ropes are bundles of magnetic field lines wrapped around an axis. They are

ubiquitous structures in space, astrophysical and fusion device plasmas. The presence

of flux ropes has been observed in planetary magnetotail [1], dayside magnetopause [2],

and in solar corona [3]. Astrophysical jets can be treated as flux ropes [4, 5, 6]. Flux

ropes can also reproduce to a first approximation the magnetic field geometry of fusion

devices such as Z-pinch or Tokamak fusion reactors [7]. The kink instability is one of

the most studied instabilities of flux ropes [8]. This instability is particularly important

in fusion devices, where it can disrupt the flux rope limiting the confinement of plasma

[9]. Because of this, many analytical and numerical studies have been devoted to the

understanding of its dynamics. The kink instability has been extensively studied using

MHD modeling. It has been examined with Particle-in-Cell methods [10, 11, 12] only

recently to enlighten possible kinetic effects during the evolution of the kink instability.

This paper presents a simulation study of secondary magnetic reconnection

triggered by the internal kink instability of a single flux rope in a periodic domain

along the axis direction. Secondary magnetic reconnection occurs when magnetic

reconnection is driven by a primary instability that forces the magnetic field lines from

different disconnected magnetic regions to be in contact and reconnect. Therefore,

secondary magnetic reconnection develops over a dynamic time scale imposed by the

primary instability that acts as a driver. For instance, secondary magnetic reconnection

might be triggered by Kelvin-Helmholtz (KH) instability [13]. The vortices created by

the KH instability force the magnetic field lines from different magnetic domains to

reconnect. An additional example is the magnetic reconnection driven by interchange

instability affecting the reconnection fronts in magnetotail magnetic reconnection

[14, 15]. Secondary magnetic reconnection has an important role in the overall dynamics

of the primary instability: it converts magnetic field energy to kinetic energy of the

plasma allowing for a local reconfiguration of the magnetic field topology.

Several signatures of magnetic reconnection have been identified in simplified

configurations using computer simulations. The most famous example of such

configurations is the Harris current-sheet model [16]. The vast majority of simulations

starts from the Harris equilibrium. In this configuration, the most famous signature of

magnetic reconnection is the quadrupolar structure of the Hall magnetic field developing

on the reconnection plane [17, 18]. The quadrupolar structure of the Hall magnetic field

originates because of the decoupling of electron and ion dynamics in a small region

in proximity of the reconnection line. Additional signatures of magnetic reconnection

are the presence of regions of space with depleted density (density cavities) [19], of

bipolar electric field structures and electron holes in the phase space [20, 21], of whistler

and kinetic Alfvén waves [22, 23]. In this paper, we focus on signatures of magnetic

reconnection in a more complicated initial configuration, such as the single flux rope set-

up. In this configuration, we found signatures that are similar to the ones of magnetic

reconnection in the Harris sheet [18] and some new features characteristic of magnetic
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reconnection during the kink instability.

The main new contribution of this paper is to identify the features of magnetic

reconnection driven by internal kink instability. These features can be used by scientists

to determine reconnection sites developing during the kink instability of a single flux

rope and to increase the understanding of the complex phenomena involved in the kink

instability of a flux rope.

The paper is organized as follows. The simulation model, the initial configuration of

the flux rope and the parameters in use are presented in Section 2. The main features and

the signatures of secondary magnetic reconnection are presented in Section 3. Section 4

discusses the results, summarizes the results and finally outlines possible future extension

of this work.

2. Simulation Model

We present three-dimensional Particle-in-Cell (PIC) simulations of a flux rope

instability. By using a PIC model, we describe correctly the kinetic behavior of the

flux rope plasma. The internal kink instability develops over time scale of hundred of

ion gyro-periods. These time scales are much larger than the typical time scales that

can be covered by standard PIC methods. In order to cover such a large period of time,

we use an implicit PIC approach [24] to avoid numerical instability when using large

simulation time steps.

The single flux rope is modeled with a simple screw-pinch configuration [7] as in

previous works [6, 11]. In this configuration, the initial magnetic field in cylindrical

coordinates is:
Bθ = B0r

r2+w2

Bz = B0

Br = 0

(1)

The magnetic field lines are helical with a pitch determined by the amplitude B0 =

0.1 micωpi/e, where mi is the ion mass, c is the speed of light in the vacuum, ωpi is

the ion plasma frequency and c the elementary charge. The parameter w is chosen to

be 1.0 di (di = c/ωpi is the ion skin depth). The density n0 = 1 is initially uniform.

The initial current is computed numerically by solving the Ampere’s law with the given

magnetic screw-pinch configuration. In our set-up, only electrons carry out the initial

current. The electron drift velocity of the computational particles is calculated from

the electron current as Ve0 = Je0/(en0). Ions do not have an initial drift velocity. The

pressure is calculated by imposing a force balance in the domain. The thermal velocity

of the computational particles is computed from the local value of the pressure. In this

configuration, the plasma beta, the ratio of plasma pressure to the magnetic pressure,

is β ≈ 0.2. The electron beta is βe ≈ 0.02.

The simulation box is Lx × Ly × Lz = 4π di × 4π di × 8π di long and discretized

in a Cartesian domain with nx × ny × nz = 128 × 128 × 256 points. An artificial ion

to electron mass ratio equal to 25 is chosen to reduce the simulation execution time.
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The grid spacing results ∆x = ∆y = ∆z = 0.098 di = 0.78 de, where de is the electron

skin depth. Because the electron skin depth is not fully resolved by the grid spacing,

the proposed simulation does not model the dissipative kink mode (the collisionless

analogous of the resistive kink mode) but the kink mode under study is an ion-kinetic

modification of the ideal kink mode [25]. Perfect conductor boundary conditions for

the electromagnetic field and reflecting for particles are used in the x and y directions.

The system is periodic in the z direction, and therefore it can be considered infinite

in that direction. The simulation time step is ∆t = 0.3 ω−1
pi . In this configuration,

∆t = 0.3 ω−1
pi = 2.4 ω−1

p , where ωp is the plasma frequency. The time step in use is

larger than the maximum time step (2 ω−1
p ) allowed in standard explicit PIC methods. A

total of 226 million particles are used. Simulations are carried out with the parallel fully

kinetic and fully electromagnetic PIC code iPIC3D [26] on 512 cores of the Lindgren

supercomputer at KTH Royal Institute of Technology. In our simulations, we use the

core magnetic field B0 to define the ion cyclo-frequency Ωci = B0e/me, and Alfvén

velocity VA = B0/
√

4πen0. In this configuration, c/VA = ωpi/Ωci is 10. The ion and

electron gyro-radii are respectively 0.4 di and 0.03 di. In this set-up, the time step and

grid the spacing resolve all the time and space scales relevant to the study of magnetic

reconnection. A relatively high number of computational particles (if compared with

standard PIC simulations) has been chosen to decrease the numerical noise arising from

the particle description of plasma. It is therefore reasonable to expect that severe

numerical artifacts do not affect the simulation of magnetic reconnection.

This initial configuration is unstable against the kink instability. In fact, the safety

factor q = 2πrBz/BθLz is smaller than one in a region of space in the computational

domain, and therefore the system results unstable against kink instability [27]. The

surface q = 1 is called ”resonant surface” and magnetic reconnection will develop along

the resonant surface when the kink instability reaches the non linear stage [27]. The

resonant surface rs is located at r ≈ 1.7 di in our simulation set-up.

3. Results

The evolution of the kink instability and of the secondary magnetic reconnection in a

three-dimensional PIC simulation is presented. Figure 1 shows an isocontour of the axial

component of the electron current at four successive times t = 0, 60 Ω−1
ci , 75 Ω−1

ci , 90 Ω−1
ci .

The electron current is represented as a vertical tube in the plot of axial component

(z direction) of the electron current Jez. The electron current tube starts bending

approximately at time t = 75 Ω−1
ci , and the kink instability eventually fully develops at

time t = 90 Ω−1
ci .

Figure 2 shows the magnetic field lines as grey tubes at times t =

0, 84 Ω−1
ci , 105 Ω−1

ci , 120 Ω−1
ci . The magnetic field lines progressively untwist as effect

of magnetic reconnection [27].

We focus on the secondary magnetic reconnection signatures in the plane (x, y)

perpendicular to the axis of the flux rope. A convenient quantity to identify magnetic
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Figure 1. Isocontour of the axial component of the electron current Jez = 0.005en0c

at times t = 0, 60 Ω−1
ci , 75 Ω−1

ci , 90 Ω−1
ci . A kink of the electron channel develops

approximately after t = 075 Ω−1
ci .

Figure 2. Magnetic field lines at times t = 0, 84 Ω−1
ci , 105 Ω−1

ci , 120 Ω−1
ci . The magnetic

field lines untwist as macroscopic effect of magnetic reconnection.

reconnection is the auxiliary magnetic field B∗, defined as B∗ = Bθ−(2r/Lx)Bz. Figure

3 shows B∗ at t = 0, 81, 87 Ω−1
ci in the plane z = Lz/2, r < 3.5 di. Initially, the quiver

plot shows two disconnected B∗ regions. In these two regions, B∗ points at opposite

directions. B∗ vanishes at r = rs represented as red dashed line in Figure 3. As the

simulation progresses, the internal B∗ region moves outward and crosses the resonant

surface as effect of the kink instability of the flux rope. This is clear by inspecting

B∗ configuration at time t = 81 Ω−1
ci in Figure 3. As the internal B∗ region crosses

the resonant surface, magnetic reconnection occurs, forming two new B∗ regions. We
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have found that B∗ is almost independent on z. For this reason, we focus on studying

secondary magnetic reconnection in the plane z = Lz/2. Almost identical features can

be found on different z planes.

Figure 3. Quiver plot of B∗ at time t = 0, t = 81 Ω−1
ci and t = 87 Ω−1

ci in the plane

z = Lz/2, r < 3.5 di. Initially, the quiver plot shows two disconnected B∗ regions

(B∗ pointing at different directions). At time t = 81 Ω−1
ci , the B∗ internal region

moves outward as effect of the kink instability. At time t = 87 Ω−1
ci , the two initially

disconnected B∗ regions reconnect. The resonant surface is shown with dashed red

line.

The plasma density is initially uniform. However, density inhomogeneities develop

under the effect of secondary magnetic reconnection. Figure 4 shows the contour plot

of the electron (panel a) and ion (panel b) densities in the plane z = Lz/2, r < 3.5 di at

time t = 84 Ω−1
ci . The densities are normalized to the initial density n0. The formation

of density cavities is a characteristic of magnetic reconnection. They are localized along

the separatrices and they are crossed by intense electron jets. It is found that the

regions with enhanced and depleted densities form a quadrupolar structure, as outlined

with dashed lines in Figure 4 panel b). The maximum and minimum densities are 50

% peak initial density. Density cavities are approximately 4 di long and 1 di thick.

Magnetic reconnection occurs in a region of space with density n ≈ n0/2. Previous

two-dimensional simulations [28] show that grid resolution in the proposed simulation

allows to capture all the relevant dynamics for studying magnetic reconnection.

Initially in the simulation, the current is primarily along the flux rope axis (z

direction) and carried out by electrons while ions have only an initial thermal velocity

and no drift velocity. Panel a) of Figure 5 shows a contour plot of the z component

of the electron bulk velocity Ve = Je/ρe, where velocities are normalized to the Alfvén

velocity VA. At the center of the contour plot, the initial electron current is directed
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Figure 4. Isocontour plots of the electron (panel a) and ion (panel b) densities in

the plane z = Lz/2, r < 3.5 di at time t = 84 Ω−1
ci . The densities are normalized to

n0. The densities plot shows region of enhanced and depleted densities (organized as

quadrupolar structure) in proximity of the reconnection region. The dashed lines shows

the quadrupolar structure in panel b). The white line represent B∗ contour-lines.

in negative z direction and it can be still seen in blue color. In the proximity of the

reconnection site, a thin layer of electrons flowing in the opposite direction of the initial

electron current can be observed in the red color. This current is localized in the region

characterized by a relatively low electron density (Figure 4). The electron peak bulk

velocity is approximately 1.5 VA at center of the flux rope, while an opposite flow at

−1.5 VA develops in the low density region of the flux rope. Panel b) of Figure 5 shows

a contour plot of the z component of the electron bulk velocity Vi = Ji/ρi. This shows

a quadrupolar structure, similar to high and low density structures in Figure 4. The ion

peak bulk velocity is approximately 0.2 VA, approximately eight times smaller than the

electron peak bulk velocity.

The panel a) of Figure 6 shows an isocontour plot of the electric field intensity

with a superimposed quiver in the plane z = Lz/2, r < 3.5 di at time t = 84 Ω−1
ci . The

electric field is normalized to B0VA/c. The electric field has the strongest components

in the plane (x, y) and is localized in proximity of the density cavity regions. A weaker

component of the electric field in the z direction is observed also. A contour plot of the

z component of the electric field in the plane z = Lz/2, r < 3.5 di at time t = 84 Ω−1
ci is

shown in panel b) of Figure 6. Its peak value is 0.1 B0VA/c.

Figure 7 presents an isocontour plot of the magnetic field intensity and a quiver plot

of magnetic field at time t = 84 Ω−1
ci in panel a). The magnetic field values are normalized

to B0. The magnetic field is dominated by the core magnetic field in the z direction and
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Figure 5. Isocontour plot of the z component of the electron and ion bulk velocities

Vez, Viz in the plane z = Lz/2, r < 3.5 di in panels a) and b). Velocities are normalized

to Alfvén velocity VA. The white lines represent B∗ contour-lines.

Figure 6. Isocontour plot of the electric field intensity with a superimposed E quiver

plot in the plane z = Lz/2, r < 3.5 di at time t = 84 Ω−1
ci is shown in panel a).

Isocontour plot of the z component of the electric field is shown in panel b). The

electric field is normalized to B0VA/c. The white lines represent B∗ contour-lines.
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its value is close to B0 in the region r < 3.5 di. Panel b) shows the z component of the

magnetic field. A bipolar structure of the Bz component has been found in proximity

of the reconnection region. The peak value of the Bz −B0 is approximately 0.2 B0.

Figure 7. Isocontour plot of the magnetic field intensity with a superimposed quiver

plot in the plane z = Lz/2, r < 3.5 di at time t = 84 Ω−1
ci is shown in panel

a). Isocontour plot of the z component of the magnetic field is shown in panel b).

The magnetic field values are normalized to core magnetic field B0. The white lines

represent B∗ contour-lines.

As seen in Figure 5, two electron currents develop in opposite directions during

secondary magnetic reconnection. Figure 8 shows a three dimensional contour plot

for axial component of the electron current Jez = 0.005 en0c (red color) and Jez =

−0.005 en0c. Initially the electron current component in the z direction is only positive,

while later on an electron current develops in the negative z direction. At time

t = 90 Ω−1
ci , the electron current is perturbed. This might suggest that an electron-

scale streaming instability could occur at the interface of the two opposite currents.

Figure 9 presents an isosurface of the electric field component parallel to local

magnetic field. The red and blue isosurfaces are for E// = ±0.04 B0VA/c and an

isosurface of the axial component of the electron current is superimposed to visualize the

flux rope. Several bipolar parallel electric field structures develop along the reconnection

line in proximity to the interface between the electron currents flowing in the opposite

directions.



Secondary Magnetic Reconnection Driven by Kink Instability 10

Figure 8. Isocontour of the axial component of the electron current Jez = 0.005 en0c

(red color) and Jez = −0.005 en0c (blue color) at times t = 75 Ω−1
ci , 84 Ω−1

ci , 90 Ω−1
ci .

4. Discussion and Conclusions

In this study, the signatures of secondary collisionless magnetic reconnection triggered by

the kink of an infinite flux rope have been identified. The kink instability of the flux rope

has been simulated with a fully kinetic and fully electromagnetic PIC method, allowing

us to retain the kinetic effects during magnetic reconnection. This is important when

modeling magnetic reconnection, because fluid models can not provide a full description

of collisionless phenomena.

As a first step of our study, the reconnection regions have been identified using the

auxiliary magnetic field B∗. Several signatures of secondary magnetic reconnection have

been found on a plane perpendicular to the flux rope axis. Regions of enhanced and

depleted density (with peak density 50 % the background density) form a quadrupole

structure in proximity of the reconnection region. The regions with depleted density

are called ”density cavities” in the literature and electron currents flow along them.

The ion flow develops in large part on the (x, y) plane. The decoupling of electron

and ion dynamics on the (x, y) plane generates an Hall magnetic field. On this plane,

the Hall magnetic field has a bipolar structure in the plane. The peak value of the

Hall magnetic field is 20 % the axial magnetic field B0. The most intense electric

fields develop perpendicularly to local magnetic field and mainly on the (x, y) plane. In

proximity of the reconnection region, an electric field in the z direction forms as effect of

magnetic reconnection. Its value is 0.1 B0VA/c (panel b of Figure 6). This is the so-called
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Figure 9. Isosurface of the parallel electric field for E// = ±0.04 B0VA/c with

superimposed isosurface of the axial component of the electron current Jez = 0.005 en0c

at times t = 87 Ω−1
ci , 90 Ω−1

ci . Several bipolar electric field structures develop in

proximity of the reconnection region.

”reconnection” inductive electric field. During the secondary magnetic reconnection, an

electron current develops in the opposite direction of the initial electron current of the

flux rope. The intensity of this current is approximately of the same intensity of the

initial electron current of the flux rope. The bulk electron velocity is approximately

1.5 VA. We believe that the reverse current would render the kink more stable. The

presence of opposite currents has been observed in the Reconnection Scaling eXperiment

(RSX) device [29, 30]. The interface separating the two opposite electron currents is

characterized by the presence of bipolar electric field structures. It is likely that these

structures are caused by electron streaming instabilities along the reconnection line

[31, 32]. Because of the presence of several bipolar electric fields and electron-scale
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instabilities, the reconnection region is in a turbulent state. The turbulence of the

reconnection region might affect the reconnection rate by introducing an anomalous

resistivity [33].

This paper is an example of study of magnetic reconnection in a non trivial

initial configuration. We found that the results are generally in a good agreement

with the results obtained starting from simple initial configuration, such as the

Harris configuration with a uniform background guide field B0 [18]. In the flux

rope configuration, the Hall magnetic field shows a bipolar structure differently from

the famous quadrupolar structure developing in the Harris sheet configuration [34].

However, the peak value of the Hall magnetic field Bz − B0 is approximately 20 %

the core magnetic field B0 as in simulations starting from Harris sheet configuration

[21, 35]. The reconnection electric field is 0.1 B0VA/c in both configuration also [34].

As in simulations of Harris with a guide field, intense electron flows develop along the

cavity channel. However, these electron flows are approximately 1.5 VA in the flux

rope configuration, while they are 6− 7 VA in the Harris configuration with a B0 guide

field [19]. Bipolar parallel electric fields develop in both configurations with typical

electric field peak values 0.05 − 0.1 B0VA/c and 0.3 B0VA/c for flux rope and Harris

configurations respectively [19, 32]. In the case of Harris sheet configuration, the bipolar

parallel electric field structure originate along the magnetic reconnection separatrices,

while they originate along the reconnection line in the flux rope configuration.

In summary, the results of a three-dimensional PIC simulation, modeling magnetic

reconnection during the kink instability of a flux rope, have been presented. The main

signatures of secondary magnetic reconnection can be found on a plane perpendicular to

the flux rope axis. A quadrupolar structure of enhanced and depleted density, a bipolar

structure of the Hall field and a reconnection electric field develop in proximity of the

reconnection region. The reconnection line is characterized by the presence of several

parallel bipolar electric field structures. These results can be used to identify magnetic

reconnection during the internal kink instability.

This study focused on the analysis of signature of magnetic reconnection during kink

instability of a single infinite flux rope. Future extension of this work will be the study

of magnetic reconnection signatures with multiple flux ropes. In this case, magnetic

reconnection is triggered by combined kink and coalescence instabilities [36, 31] making

the analysis of the signatures more challenging. In addition, it would be important

to study reconnection in flux ropes with an anchored end instead of using periodic

boundary condition in the z direction. This would allow to model more realistically

laboratory experiments [30] and several space and astrophysical events.
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