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Abstract. We investigate dynamics of charged particles in on the detailed description of a charged particle motion (see
current sheets with the sheared magnetic field. In our preWhipple et al, 1984 Sitnov et al, 200Q Zelenyi et al, 200Q
vious paper Artemyev et al. 2013 we studied the particle 2011). The motion of charged particles in inhomogeneous
motion in such magnetic field configurations on the basismagnetic fields of CSs can be described analytically in two
of the quasi-adiabatic theory and conservation of the quasidifferent classes of systems. When a spatial scale of the mag-
adiabatic invariant. In this paper we concentrate on violationnetic field inhomogeneity is much larger than a particle’s Lar-
of the adiabaticity due to jumps of this invariant and the cor- mor radius, the classical theory of the guiding-centre motion
responding effects of stochastization of a particle motion. Wecan be appliedNorthrop 1963 Sivukhin 1965. Another
compare effects of geometrical and dynamical jumps, whichclass contains systems where a spatial scale of the magnetic
occur due to the presence of the separatrix in the phase plarfeeld inhomogeneity is much smaller than a particle’s Larmor
of charged particle motion. We show that due to the presenceadius. In this case the so-called theory of the quasi-adiabatic
of the magnetic field shear, the average value of dynamicaimotion is used Biichner and Zelenyil986 Biichner and
jumps is not equal to zero. This effect results in the decreas@&elenyi 1989 Chen 1992 Vainchtein et al.2005 Zelenyi
of the time interval necessary for stochastization of trappedet al, 2013.
particle motion. We investigate also the effect of the mag- Both theories are based on the conservation of the ad-
netic field shear on transient trajectories, which cross the curditional approximate invariant of motion — invariant of ac-
rent sheet boundaries. Presence of the magnetic field sheéipn (Landau and Lifshitz 1960. For the guiding-centre
leads to the asymmetry of reflection and transition of parti-motion, the magnetic moment is an adiabatic invariant,
cles in the current sheet. We discuss the possible influencenhile in the quasi-adiabatic theory, an analogue of the mag-
of single-patrticle effects revealed in this paper on the currennetic moment is called a quasi-adiabatic invariati¢h-
sheet structure and dynamics. ner and Zelenyi1989. Violations of invariant conserva-
tion are calledjumps of the adiabatic (or quasi-adiabatic)
invariant. For the guiding-centre theory the expressions for
jumps of the magnetic moment and effects of these jumps
1 Introduction are described in detail in several comprehensive papers (see
Birmingham 1984 Chirikov, 1987 Buchner and Zelenyi
Current sheets (CSs) represent one of the most important anthgg Delcourt et al, 1994 and references therein). The
intriguing plasma objects in space plasmas. CSs have beegypression for jumps of the quasi-adiabatic invariant is de-
studied and observed in planetary magnetosph&asntjo-  rived for systems with a small scale of the magnetic field
hann et al.2007 Artemyev and Zeleny2013 and the solar inhomogeneity Keishtadt 1986 Cary et al, 1986 Neish-

corona (se&yrovatskij 1979 Parker 1994 and references  (adt 1987 Biichner and Zelenyil989. In contrast with the
therein). Theory of formation and stability of CSs is based
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900 A. V. Artemyev et al.: lon motion in current sheet with B,

guiding-centre theory, here violation of the adiabaticity cor- magnetic field configurations. Therefore, several conclusions
responds to change of a type of particle motidim{(ofeey, considered earlier for CSs witho®t, should be revised for
1978. As a result, we deal with the systems containing theCSs withB, # 0.
separatrix in the phase plane. The separatrix demarcates the The process of a particle interaction with the CS can be
regions of different types of a particle motion. Crossings of represented as a combination of scattering, reflection from
this separatrix result in jumps of the quasi-adiabatic invari-the CS and transition through the CS. These three phenom-
ant. ena define efficiency of the ion acceleration (see review by
Effects of jumps of the quasi-adiabatic invariant are im- Grigorenko et al.2011), determine amplitudes of ion electric
portant not only for dynamics of an individual particle but currents, which, in fact, support the CS configuration (see re-
also for dynamics and evolution of the entire CS configura-view by Artemyev and Zelenyi2013, and are responsible
tion (seeZelenyi et al, 20023 2003. Moreover, destruction  for various aurora manifestations in the Earth’s polar magne-
of adiabaticity results in stochastization of particle motion tosphere (see review BBaschmann et aR002.
(Chen and Palmadesst986 Blichner and Zelenyil989 The first part of the present paper is devotedBtoinflu-
Burkhart and Chen1991 Biichner 1991 Burkhart et al. ence on particle interaction with the CS. We consider reflec-
1999. These effects are important for particle accelerationtion and transition of particles coming to the CS from the
in the CSs of the solar coronaifvinenko, 2003 Anas-  CS boundaries. The influence Bf on particle scattering in
tasiadis et a).2008 and in planetary magnetotailBi{ichner  the CS and corresponding stochastization of particle motion
and Zelenyj 1990 Ashour-Abdalla et a).1992 Cheng and s studied in the second part of the present paper, where we
Decker 1992 Ashour-Abdalla et a).1994 Delcourt et al. concentrate on the investigation of the violation of the adia-
2003 Grigorenko et al.201% Zhou et al, 2012 Zelenyi baticity.
et al, 2013. Isotropization of particle velocity distribution
due to stochastization of particle motion influences the CS .
configuration in the vicinity of the reconnection regidre( 2 General equations
et al, 2013. Moreover, the same effect of the destruction of

quasi-adiabatic invariants can play a significant role in parti- "/ Study dynamics of particles in the plasma configuration

cle transport in radiation belts (s&#horskiy et al, 2011 with the sheared magnetic field reversal. This configuration

and references therein) and in dynamics of the laboratonf@" P& represented by the system with the magnetic field
plasma (e.gChirikov, 1979 Carati et al,2012). B = By(z)e; + By, + B:e;, whereB, > 0 andB, > 0 are

For the simple model of CS without a shear componentconStam',S”Ch a model allows also for the CS boundaries to
of the magnetic fieldB, (here and in the following we use be taken into accouns, = Bo(z/L) at|z/L| <1andBy =
the GSM coordinate system), the theory of jumps of the=50atlz/LI > 1.Inthe CS central region (ther@/H <1)
quasi-adiabatic invariant is described in detailsBijchner the vector potential idl = Byzex+(B:x — Boz /2L)ey. The
and Zelenyi(1989. However, theB, component is often _system is homogeneous along thaxis, and the correspond-
present in the Earth’s magnetotail (sRetrukovich 2011, "9 canonical momentuny,, is conserved. Thus, we can

and references therein) and in CSs of the solar corona (e. _hifF the .coo;dir?ate systgm f_allt()jn?]to setpy = fO. Dﬁe to. |
Masuda et a).2001 Schrijver 2009. This component can tationarity of the magnetic field the energy of each particle

affect particle accelerationLitvinenko, 1999, CS struc- is conservedh = const. The Hamiltonian of a particle with

ture Whipple et al, 1984 Roth et al, 1996 Artemyey, massn and charge in this system has the form

2011, Malova et al, 2012 and CS dynamicsQGaleev et al. 1 1 1 1

1986 Kuznetsova and Rofi995 Silin and Biichner2003  H = Epf +5(px = s2)% + 5lex = 512)2, (1)
Karimabadi et a].2005 Artemyev and Zimovet2012. The

influence ofB,, on particle motion has been studied in several where we use dimensionless variables and paraméiers:
papers with the help of numerical modelling of test trajecto- H/2h, p — p/~/2hm, r — r//poL, dimensionless time
ries (Karimabadi et al.199Q Biichner and Zelenyi1991; t — t/2h/(poLm), and parametersc = (B,/Bo)/L/po
Zhu and Parks1993 Baek et al, 1995 Chapman and Row- ands = (By/Bo)v/L/po (0o = ~/2hmc/(qBo) is a Larmor
lands 1998 Delcourt et al. 2000. It was noticed thaB, radius). This normalization corresponds to particle motion in
dramatically influences particle scattering due to jumps of thethe 3-D energy leveH (z, p;, kx, px) = 1/2 of 4-D phase

guasi-adiabatic invarianB{ichner and Zelenyil991 Kauf- space(z, p;,kx, px). We assume that the parameteris
mann et al.1994 Holland et al, 1996. However, no analyt- small ( € [0.01,0.1] for energetic and thermal ions in the
ical theory of this scattering has been developed so far. Earth’'s magnetotail CS (see review Bglenyi et al, 2011,

In our previous paper we presented the analytical theoryand references therein)). Therefore, varialgkes p,) could
of the quasi-adiabatic particle motion in the CS with an arbi- be considered as slow ones, and varialttep.) as fast. In
trary value ofB, (Artemyev et al.2013. It was shown that  this paper we consider only systems with- (rtIn2)k
dynamics of particles in the CS with, # 0 are substantially ~when effects of non-zers, are well distinguished. For sys-
more complicated than particle dynamics in non-shearedems withs < (7 ~1In2)«, one cannot separate effectsRf

Nonlin. Processes Geophys., 20, 89919 2013 www.nonlin-processes-geophys.net/20/899/2013/
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and effects of particle scattering due to dynamical jumps of
the quasi-adiabatic invariant (s@etemyev et al.2013. A
Here we discuss general features of the particle dynamic: /
described by Hamiltoniarl}. An example of the particle tra-
jectory is shown in Figl (top-left panel). One can see that
the z coordinate oscillates fast, while coordinatesandxy
change slowly. This is an effect of smallness of the paramete |
«. Therefore, we can describe systebnsing the separation
of the particle motion into fast oscillations in the plaaep,)
and slow evolution of coordinatésx, p,). At each point in
the plane(k x, p,) the particle oscillates in the effective po-
tentialU (z) = 3(px —s2)%+3 (kx — 3z%)? at the energy level
H =1/2 (see details ilArtemyev et al. 2013. The corre-
sponding trajectory in the plane, p.) can be located inside ? " To
the separatrix loops (e.g. Figa) or outside the separatrix
loops (e.g. Figle). Motion inside the separatrix loops cor-

P,
responds to particle oscillations in one of the two small po- Peoe o
tential wells described by potenti&ll(z). Motion outside the B o
separatrix loops corresponds to either (1) merging of the twc B B e o2
small potential wells into a single well, and particle oscil- 2 - 25

lations within this newly formed well; or to (2) oscillations ®

above the two small wells in the potentidlz) (see details

in Artemyev et al.2013. When the particle crosses the sep- . - Peosi N
aratrix in the plangz, p;), it crosses the uncertainty curve 15
(Wisdom 1985 in the plane(k x, p,) (this curve is shown as 2 25—
a black solid curve in Figl, top-right panel). z , :

We start the description of the particle trajectory at the N 1'5 (F)

point (A). At this point the particle oscillates inside the
right potential well far from the separatrix (Figa) and
moves along the field line towards the neutral plareO.
At the point (F) the particle trajectory in the, p,) plane ]
approaches the separatrix (Fid). Then the particle crosses e e e
the separatrix and comes to the point (E). At this point the
particle oscillates across the neutral plane, i.e. the trajectoryrig. 1. The particle trajectory in 3-D space and its projection onto
in the (z, p.) plane crosses = 0 (Fig. 1e). Then the parti- the plane(cx, py) are shown in top panels. Red arrows show po-
cle crosses the separatrix again and becomes trapped in tigitions of the uncerta_inty curve (UC_:) crossings. The corresponding
left potential well (Fig1b and c). Inside this well the particle ragments of the particle trajectory in the plaaep) are presented
approaches the neutral plane without crossing of the uncert e bottom panels. The solid curve is the separatrix, while the

. . . . dashed curve is the trajectory. Grey colour indicates the area, which
tainty curve (Fig.1d). We emphasize that the particle turns is equal to Z ..
over the uncertainty curve and comes to the neutral plane
without crossing of the separatrix. Comparison of panels (d)
and (e) shows the difference of two fragments of the particle
trajectory. If the particle crosses the separatrix, it starts oscil{Buichner and Zelenyil986 Buchner and Zelenyil989.
lating across the neutral plane with about double amplitudeConservation of this invariant is provided by the separation
of z. If the particle comes to the neutral plane= 0 with- of timescales of evolution of and«xx. For constant energy
out crossing the separatrix, it continues oscillating across th H = 1/2) the equation/, («x, p,) = const describes parti-
field line, which crosses the neutral plane. As a result, am-<le trajectories in the plangx, p,) (Blichner and Zelenyi
plitude of particle oscillations is approximately two times 1986. However, this equation can be violated when particle
smaller in the second case (compare panels (e) and (d)). trajectories cross the separatrix in the planep,) (Neish-

At fixed values(k x, py) the trajectory in théz, p,) plane  tadt 1986 Cary et al, 1986 Neishtadt 1987). For exam-
is closed, i.e. motion in the plang, p;) is periodic (see ple, let far from the neutral plane,= 0 particles oscillate
Fig. 1la—f). Thus, we can introduce the invariant of motion inside one of the two admissible potential wells. When par-
I, = (1/27) ¢ p.dz (Landau and Lifshitz1960. This invari- ticles approach the neutral plane they can change their mode
ant is often called quasi-adiabatic, in contrast to the classiof motion from the oscillations in one well to the oscilla-
cal adiabatic invariant represented by the magnetic momentions in the other well. This change corresponds to crossing

www.nonlin-processes-geophys.net/20/899/2013/ Nonlin. Processes Geophys., 2098992013



902 A. V. Artemyev et al.: lon motion in current sheet with B,

of the uncertainty curve in the plaiGex, p,). As aresult, the i.e. we suppose that is small enough and describe particle
value of I, experiences the jump. This jump consists of two motion at time intervat~ 1/«.
parts: (1) the geometrical jump corresponding to the differ- We consider three scenarios of particle motion. The first
ence of the areas surrounded by trajectories before and aftexcenario corresponds to particles starting from the A
separatrix crossings, and (2) the dynamical jump correspondboundary. These particles can be reflected from the CS or
ing to the singularity of the period of oscillations in the transit through the CS. In the case of transition, particles
vicinity of the separatrix Timofeey, 1978 Neishtadt 1986 reach the opposite boundary= —1. Reflected particles can
Cary et al, 1986 Neishtadt 1987. The dynamical jump has reach the initial boundary = A or become trapped in the
a small ¢ « Ink) value, which depends on coordinates of the CS (in this case their reflection points should be below the
separatrix crossing in the planes p.) and(x x, py). A posi- boundaries). The second scenario corresponds to particles
tion of crossing of the uncertainty curve in the pldre, p,) starting at the boundary= —\. These particles cannot be
is well defined by the equatioh («x, p,) =const, while a  reflected from the CS and reach the opposite boungary..
position of crossing of the separatrix in the plapep,) can  The third scenario corresponds to particles initially trapped
be considered as random because the oscillations, pf) in the CS. We show how the positions of reflection points of
are fast (i.e. even a small x change of initial coordinates in  these particles can be changed due to geometrical jumps of
the plangz, p;) can change the position of separatrix cross- I, resulting in escape of particles from the CS. These are
ing and the value of the dynamical jump very substantially).three typical scenarios, i.e. each complex particle trajectory
Thus, the dynamical jump is assumed to be a quasi-randorsan be considered as a combination of trajectories described
variable. The geometrical jump does not depend gand is by these scenarios.
well prescribed (it depends only on position of crossing of All these scenarios are characteristic for trajectories in the
the uncertainty curve in the platiex, p,)). Particle dynam-  system withs < 0.35. Fors € (0.35,1) the reflection from
ics with effects of the geometrical jumps were considered bythe CS is impossible: all particles from the upper boundary
Artemyev et al(2013. In the present paper (in Sed). we z = A pass through the CS (with or without a half-rotation
describe effects of dynamical jumps and corresponding vio-aroundB,) and all particles from the bottom boundary=
lation of the adiabaticity of particle motion. —X cross the CS without making turns arouRd (see de-

In the previous paperAftemyev et al. 2013 we consid-  scription of such trajectories iartemyev et al. 2013.
ered the system with Hamiltoniath)( However, the presence The general description of particle motion in the system
of the CS boundaries was not taken into account. It is approwithout dynamical jumps of, is based on consideration of

priate as particle trajectories do not cross the planesta, adiabatic trajectories in the plariex, p,). These trajecto-
whereir = /L/po. In the present paper (in Se@).we con-  ries are determined by the equatibfixx, p,) = const. Due
sider effects of the boundaries on the particle motion. to conservation of the particle energy, each point in the plane

It was shown inArtemyev et al(2013 that, ifs #0, the  («xx, py) corresponds to a certain closed trajectory in the
particle trajectories can have two options for possible prolon-plane(z, p;). As a result, if we know all possible particle
gations in the planécx, p,) after crossing of the uncertainty positions in the planéxx, p,) for a given value ofl,, we
curve. Thus, there is a splitting of the adiabatic-£ const)  can predict whether this particle crosses the boundaries.
trajectories with certain probabilities of various prolonga-
tions. We describe details of this effect in Sext. 3.1 Thefirst scenario

We consider a particle that approaches the neutral plane be-
ing within the right one of the two small potential wells. We
can introduce two quasi-adiabatic invariants (calculated for

The CS boundaries are located zat +L (in the dimen-  therightand the left wells):

sionless variables= +x, wherex = /L/pp). Beyond these ot 5
boundaries |¢| > A) the value of theB, component of the Ly=n"Y [ J2H - (py—s2)2— (Kx _ %ZZ) dz
magnetic field is constanB, = +By. Thus, once particles 2ol )

reach these boundaries, they escape from the CS. In thi _ 2 ( _12 ) _

section we describe particle motion in the CS including (px szir’l) e 2% 2H

the boundaries. We assume that the crossing of the bound- are one can take into account tht= 1/2 due to the
aries|z| = A occurs when a particle moving from the region normajization used. The CS boundaries £ correspond
|z| < A crosses them. A particle crosses the boundaries wheg, the certain value&x, j,) of slow variables

its trajectory (calculated at fixg@d x, p,)) inthe(z, p;) plane

is located at the space domain > A entirely. Thus, we do {

3 The boundaries of the current sheet

2H = (jy —s))%+ (/oz - %AZ)Z ' @

Iz,r = z,r(Kf, Dx)

not take into account situations when only a fragment of a
trajectory is located in the domajg| > A. In this considera-
tion we also neglect small random (dynamical) jumpd.of

Nonlin. Processes Geophys., 20, 89919 2013 www.nonlin-processes-geophys.net/20/899/2013/
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Fig. 3. Left panel: the dependence of,, on I, for various values
of 5. Right panel:f; as a function ofcx from the left panel and
corresponding dependencies for variaus

/ oY
s boundary z=-A

N
re

be written as

— — 3l

5 T =g
/

(pxm—s2)dz _0
2
2H—(pxm —SZ)Z— (me — %22)

Ly =1, r (KX, Pxm)

- > t t >
0z, z.2 z, z, |0 z

-r +r

In the case with = 0 we havep,,, = 0 (as it was obtained
by Blchner and Zelenyll989. The solution of this systemis

Fig. 2. Schematic view of particle trajectories before and after the SNown in Fig 3 (left panel). One can see that,, depends on

neutral plane crossing. The uncertainty curve (UC) is shown by thes 0Only slightly. The general form of this dependence is close

grey solid line. Bottom panels show profiles of potential energy to the one obtained from the asymptotelaf (7, ~ 1//kx

U (z) and particle positions for two points in the plagex, py). for kx > 1; seeBuchner and Zelenyil990. Thus, we can
combine the dependencesof,, on I, and the dependence of
«x on I, to obtain/; as a solution of the equatiark = k x,

For positive and negative values afd this system can (Fig. 3, right panel). One can see that for eaclve have two
have four, three, two and one solutions, or can even have ngalues ofl.. Furthermore we use the largke
solutions. The existence of four solutions means that the cor- All particles with I. < I, penetrate into the CS from the
responding particle crosses the boundaries with= 0 two boundaries. These particles approach the uncertainty curve,
times during the motion away from the CS (with the increasecross it, and accomplish the half-turn arouBdfield. Then
of z), and crosses the boundaries with= 0 two times dur-  the particles can be captured in the left potential well (in this
ing the motion towards the neutral plane. In the first casecase the particles reach the same coordingig but already
the particle should leave the CS, because its trajectory in thavith z < 0) or can be captured in the right potential well (in
plane(z, p;) is above one of the boundari¢g = A. Exis- this case the particles increase their invarigrand the new
tence of two, three and one solutions of syst&ndorre-  value ofxx,, becomes smaller). In the first case we deal with
sponds to particles “partially” crossing (or touching) of the transition of the particles from one boundary of the£ZS A
boundaries in the plan&, p;). In these cases we assume to another boundary= —A (see the trajectory in Figa). In
that particles remain in the CS. When the syst@ndpes the second case the particles can become trapped in the CS
not have solutions, the corresponding particle does not cros§f the new value ofcx,, is smaller thancx; see Fig4b) or
the boundaries (its reflection points are located in the regiorcan reach the same boundary: A and be reflected from the
within the boundaries). CS (if the new value ot x,, is larger thancx, Fig. 4c).

For a given value of, we introducecx,, as the most dis- A double crossing of the uncertainty curve (i.e. a double
tant point in the planécx, p,) that can be approached by the separatrix crossing) in the symmetric system witk O re-
corresponding trajectory. Comparison«of,, and«x shows  sults only in a small variation- « of I,. Thus, trajectories
whether the particle crosses the boundaries, (> «x) or (transient and reflected) return to approximately the same co-
not (cx,, < «x). In the plane(kx, p,) a smaller value of, ordinatex x,,: if particles come from the CS boundaries, then
corresponds to a larger valuesof,,. Thus, there is a certain they return to these boundaries. Hence, particles can transit
value ofI, corresponding tex = kx,, (we denote this value through the CS or can be reflected from it. In an asymmet-
asr.). All particles with I, < I cross the boundaries, while ric system withs + 0 there exist also geometrical jumps of
particles withl, > I, cannot cross the boundaries. The equa-1.. As a result, after a double separatrix crossihgemains
tion for the most distant pointx,, at a given value of, can approximately the same for transient particles, which start in

www.nonlin-processes-geophys.net/20/899/2013/ Nonlin. Processes Geophys., 2098992013
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s=0.1 s=0.1 s=0.05 s=0.1
(a) (b) (c) (d)
boundary z=i.
boundary z=5. )
) boundary z=}.
boundary z=h
-
,--—"‘“'<
i N wi'] boundary z=x
boundary z=-). _ / / . ‘ &
KX KX : 4 kx| ¥X  poundary z=-7.
14 1 - 1—‘
= R .
o 0- L * g i | * o |
1 | o — g0 / do Ju
e € 3 O
T T T T 1 — T T — T T 1
0 2 4 6 8 0 2 4 [} 8 0 2 4 ] 8
KX KX KX

Fig. 4. Four types of trajectories and their projections onto(the py) plane.

the right potential well{ = 1) and are captured in the left
potential well (i.e. reach the boundary= —2). For reflected >
particles (which become captured in the right potential well), boundary z=A
the value ofI, increases. Thus, such particles already can- AR

not reach the initial coordinatex,,. Therefore, the particles ] )
starting from the boundary= A are more likely to cross the < uc | :
CS than be reflected from it.

'

/

Ft

A

v =7 rboundary z=-
/

3.2 The second scenario <

We consider now particles starting from the boundary 1

—A. Inthis case the particles approach the neutral plane with-

out crossing the uncertainty curve due to the shrinking of theFig. 5. Schematic view of particle trajectory.
uncertainty curve fos # 0 (see scheme in Fi§). Such par-
ticles do not accomplish a half-turn arouBd, but oscillate
around field lines. An example of such a trajectory is shown
in Fig. 4d. This type of motion resembles the classical gy-
rocentre motion without the demagnetization in the neutra
plane. Therefore, particles startingzat — cannot be re-
flected from the CS and transit through it. This scenario is
realized for realistic position of boundaries* 1) and not
very smallB, (s > (x~1In2)k).

i.e. the number of possible valuesfis finite. This number
depends only on theparameter (seArtemyev et al.2013.
|Therefore, there are particles with all possible valuesgf
smaller thancx (see the scheme in Fi§a). These particles
cannot escape from the CS, and only quasi-random dynami-
cal jumps ofl, may change this situation (see the next sec-
tion). An example of such a trajectory is shown in Fig. In

the absence of dynamical jumps bf these particles would
3.3 The third scenario have been trapped inside the CS forever.

The second subscenario corresponds to particles ith

This scenario concerns particles trapped within the CS. Foflecreasing due to geometrical jumps so substantially that the
these particles the coordinates of mirror poiats, are New mirror points appear atv,, > kX (see the scheme in
smaller than the corresponding coordinate of the boundaryi9- 6b). These particles can make a half-turn aroBadind
«%. There are two possible subscenarios of motion for sucrescape from the CS through the boundary —1 (an exam-
particles. ple of such trajectories is shown in Figh).

Due to geometrical jumps af, the particles can change
I, value at the uncertainty curve, and thus change the corre-
sponding mirror pointsx,,. However, for each trajectory the
number of such jumps with changing the valud ois finite,

Nonlin. Processes Geophys., 20, 89919 2013 www.nonlin-processes-geophys.net/20/899/2013/
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Fig. 7. Particles’ trajectories and corresponding projections onto the

(kx, px) plane.

4 Destruction of the quasi-adiabatic invariant

The quasi-adiabatic invariaift is an approximate invariant
of motion. Far from the separatriX, is conserved with the
accuracy~ « (seeArnold et al, 200§. One can introduce

the improved quasi-adiabatic invariait= I, + xu where

905

Fig. 8. Trajectories of two particles in the system with= 0.01.

(z, pz, kx, py) for fixed energyH = 1/2 (u cannot be deter-
mined only at the separatrix). Far from the separatfixs
conserved with the accuraey «2. Functionu is defined in
AppendixA2.

As a result of separatrix crossings, the invaridnéxpe-
riences a jumpAJ = AJ9OM4 A JWN where the geomet-
rical jump AJ9%°M s defined by the system geometry, and
the dynamical jumpAJ®" ~ ¢ Ink depends on a variable
& € (0,1), which characterizes the precise position of a sepa-
ratrix crossing in the plang, p;), and can be considered as a
quasi-random variable (see Appendix Thus, values of dy-
namical jumps can be treated as random. Dynamical jumps
result in destruction of the quasi-adiabatic invariant, i.e. par-
ticles slightly change their trajectories in the plare, p,)
at every crossing of the uncertainty curve. Examples of par-
ticle trajectories calculated on a long-time interval are shown
in Fig. 8 for two values ofs. One can see that both particle
trajectories acquire the spread over the planeg p,). For a
sufficiently long time interval the particle trajectory should
fill a substantial part of the plangx, p,) (the area of this
covered part does not dependon

To demonstrate the effect @ /" we calculate the par-
ticle trajectory on a long time period and show distributions
of I, values measured at the moment of particle crossing of
the neutral plane = 0 with p, = 0 (see Fig9). For the sys-
tems withs # 0 and a very small value of we have sev-
eral values of/;. This is the effect of trajectory splitting due

u(z, p;,kx, px), is defined at each point of the phase spaceto the presence of geometrical jumps. There are also narrow

www.nonlin-processes-geophys.net/20/899/2013/
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l, l, I the uncertainty curve. Crosses show numerical results. Black colour

is used forP, red for P, and blue forp;.
Fig. 9. Distributions ofI, at various values of and«. Each distri-
bution contains 1®values.

with certain probabilities?, > 0, P, > 0. When patrticles ap-

(but having a finite width) distributions around these max- Proach the uncertainty curve being within one of the two
ima. This is the effect of, destruction due to dynamical possible potential wells, there is also a certain probability of
jumps. For the system with= 0 we observe the same result, c@Pture in the single welP =1— P, — 7. Analytical expres-
but with the single peak value ¢f. An increase ok results ~ SIONS for these_ _p_robabllltles were derlvedQ_rtemyev etal

in the increase of the width of distribution due to intensi-  (2013. Probabilitieshr, P depend on coordinates of the un-
fication of the destruction of. because of dynamical jumps. Certainty curve crossing in the plagex, p.). Probabilities
The spreading of thé. distribution around the initial value Fir are positive if areas surrounded by corresponding sepa-
(this value corresponds to the maximum of the distribution at"atix 100ps (see Figl) are growing. If areas decrease, then
s = 0) is similar for systems witl = 0 ands 0. However, the corresponding probabilities are equal to zero.

due to splitting of trajectories caused by geometrical jumps_ FOrs =0 we have the symmetric system with= £ =

(the appearance of several maxima in thelistribution for ~ 0-5for px > 0andP = 1for p, < 0. Forfour values of > 0
systems withs # 0), the whole range of accessible values of W& Plot Prj and P as functions ofp, along the uncertainty

I is wider for systems with # 0. In the case of = 0.1, dy- curve (see FiglQ). With the increase of the probability P,
namical jumps become comparable with geometrical jumpsdecreases, and for> 0.35 we haver; = 0. Thus, fors >

As a result, there is a strong stochastization of particle mo0-35, particles cannot be captured in the right potential well
tion. at the uncertainty curve. Also far# 0 we haveP, > 0 for

px < 0. Thus, when particles approach the uncertainty curve
while inside the right small well, they can be captured either
in the single well or in the small left well.

To check the analytical expressions for the probabilities,
In this section we describe the probabilistic nature of parti-we use two simulations with ensembles of particles. In the
cle captures in the potential wells at the uncertainty curve first simulation we take = 0.1 ands = 0.2. We run 16 par-
When particles leave the neutral plane and cross the unceticles with the same quasi-adiabatic invariant, the same en-
tainty curve, they can enter one of the two small potentialergy, and the uniform distribution of initial coordinates along
wells. Capture in the left well corresponds to motion towardsthe trajectory in the planéz, p;), i.e. a number of parti-
the bottom boundary = —, while capture in the right well  cles in a small trajectory fragment centred at a certain value
corresponds to motion towards the top boundagy . For of p. is inverse proportional tg, value. All the particles
each trajectory this choice is determined by the coordinatesre initially located inside the single potential well, (= 0,
of the separatrix crossing in the pla@e p,). Because vari- «x < 0). Then we collect these particles after crossings of
ables(z, p;) evolve fast and periodically, even a small vari- the uncertainty curve and determine relative number of par-
ation of initial coordinates can result in a different choice ticles inside each of the two small potential wells. This sim-
of the potential well. Thus, the choice of the left or right ulation is repeated with various initial valueskof (i.e. with
potential wells can be considered as a probabilistic processarious values of the quasi-adiabatic invariant). Thus, we

5 Statistical aspects of particle motion
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obtain numerical “effective” probabilities for several cross-
ing points of the uncertainty curve (here we use the term “ef-
fective” to separate numerical data and analytical probabili-
ties). These values are shown in Fif.for s =0.1,s = 0.2

by red and blue crosses. For the second simulation we us
s = 0.3 ands = 0.4. We run 16 particles inside the left po-
tential well with the initial coordinatep, =0, xx > 1. In

this case particles approach the uncertainty curve and can t
captured either in the single or left potential wells. We calcu-
late corresponding effective probabilities (see black and rec
crosses in FiglOfor s = 0.3, s = 0.4). One can see that nu-
merical results agree with analytical expressions quite well.

To illustrate the probabilistic nature of a choice of potential
wells (where particles are captured), we present three real
izations of one particle trajectory. All these realizations start
from the same point in the plariex, p,) (see Figl11). The :
black arrows show the start and finish points of trajectories. ;
Red arrows indicate points where the particle changes th«“] )
potential wells. Corresponding projections of particle trajec- ]»
tories in the plangxx, p,) are shown in Figl2. X

Let us describe the trajectories in Fidd and12. First,
the particle starts moving inside the right potential well. Then
the particle approaches the uncertainty curve,atc —0.4.

At this point the particle should leave the right well, because

the corresponding area decreases (see detailed description

area and probability distributions along the uncertainty curve

in Artemyev et al.2013. Areas of the left well and the single N
well are increasing, and thus there are certain possibilities tc e a
be captured in the single well with the probabiliyand in
the left well with the probabilityP; 1. In the first case the
particle accomplishes a half-turn arouBd and approaches
the uncertainty curve while within the single well with ~
0.4. At this point the particle can be captured only in the
left well (as the area of the right well decreases). This is theb Discussion

realization (A) in Fig.11

In the second case the particle is reflected from the un-Trapped and transient particles play different roles in the CS.
certainty curve inside the left well with, ~ —0.4, and ap-  Trapped particles with reflection points below the CS bound-
proaches this curve again wigh. ~ —0.6. At this point the  aries|z| = A accomplish their oscillation motion inside the
areas of both small potential wells decrease and the partiCS (their adiabatic trajectories with = const are closed in
cle can be captured only in the single well. Then the particlethe (kx, p,) plane). As a result, the total electric current car-
makes a half-turn arounsl, and approaches the uncertainty ried by these particles is exactly equal to zeRel{at and
curve inside the single potential well with, ~ 0.6. At this Schmidt 1979. However, local currents of trapped particles
point the areas of both small potential wells increase and thare not equal to zero. These currents are positive at some
particle can be captured in the right well with the probability distance from the neutral plane and negative in the vicinity
P, and in the left well with the probability; ». In the first  of the neutral planeZelenyi et al, 2000. In contrast, or-
case we have the realization (B), and the second case corréits of transient particles crossing the boundari¢s- A are
sponds to the realization (C) in Figgl. Such splittings of the  open. Thus, the total current of these particles is not equal to
single trajectory into three realizations are possible only forzero and has a strong maximum in the vicinity of the neu-
the non-symmetric system with~ 0 when the two areas of tral plane Eastwood 1972. As a result, the self-consistent
small potential wells evolve asynchronously. CS equilibrium can exist only if the population of transient

particles is large enough in comparison with the population
of trapped particles (see discussiorBuarkhart et al, 1992
Zelenyi et al, 2002h c). Transient particles can be scat-
tered and trapped within the CS due to random dynamical
jumps ofI,. Therefore, in the absence of any mechanism of

Fig. 11. Three realizations of particle trajectories starting from one
point in the plandxx, py).
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Fig. 12. Three panels show projections of trajectories from Figo the plane(kx, px). Probabilities of all trajectories corresponds to
combination of probabilities at the uncertainty curve.

particle detrapping, the CS lifetime is limited by the time cross-tail current, and thus help support the CS configuration
of total stochastization of particle motioZglenyi et al, (see discussion iArtemyev and Zelenyi2013.
20023 2003. We obtain an important result for dynami-  Increase of the stochastization rate of particle motion with
cal jumps in the CS withB, s 0: in contrast to the sym- theincrease oB, (until s < 0.35) is also important due to the
metric system, wheréA J%™ = 0, in asymmetric systems additional role played by the trapped population. The trans-
we have(AJYM £ 0 (see Appendi). This effect dras-  verse electric field exists in the Earth’s magnetotail (¢am,
tically changes the characteristic time of stochastization 0f199Q Angelopoulos et aJ.1993 and in reconnected CSs
particle motion.Z, of each particle changes by a valtec of the solar corona (e.duitvinenko, 1996. Thus, stochastic
(here for simplicity we omit Ir) in the course of one cross- motion of trapped particles can contribute to the transverse
ing of the uncertainty curve (one crossing of the separatrix).collisionless conductivity in the CSHprton and Tajima
During one period of motion in thécx, p,) plane (the pe- 1990. The magnitude of such conductivity strongly depends
riod is ~ x 1) particles are crossing the uncertainty curve on the level of stochasticity of particle motioHglland and
twice. If (AJ®M =0 (s = 0 case), then the averaged jump Chen 1992 Greco et al.200Q Numata and Yoshid2002).
is equal to zero, but AJHM2) ~ k2 is finite. Thus, we need  Thus, enhancement of stochastization should result in an in-
time ~ « 3 to change the invariant value substantially (the crease of collisionless conductivity and support the develop-
situation is different in the special case of when an initial ment of various resistive instabilities in the CS (see review
value of, is comparable with ; seeVainshtein et al.1999 by Horton, 1997, and references therein).
Vainchtein et al.2005. In the case of non-zero average value  Although we obtain non-zereA J%") (averaging ovet;
(AJDM) £ 0 (s £ 0 case) there is a drift in the space of the see Appendix A), we should also take into account the con-
invariants. This drift results in effective evolution 6f, and  servation of phase volume in the system. This requirement
as a result, the time required for the substantial chande of can be written as a kinetic equatiorf @t = 0 for the dis-
is aboutx ~2. For parameters of the Earth’s magnetotail this tribution function of particlesf, whered/dr is the total
effect results in the decrease of the stochastization time foderivative Pitaevskii and Lifshitz 1981). Absence of par-
one order of magnitude. Previous estimates gave the time dicle collisions results in the conservation of the phase vol-
the CS destruction due to stochastization around tens of minume, and forbids directed drifts of particles in the invari-
utes fork < 0.1 (Zelenyi et al, 20023 2003. In the case of  ant space initsyn et al. 201J), i.e. the double averaged
finite By (for B, > B;) the time of stochastization of parti- ((AJ"Y“))IZ (the second averaging is performed over adia-
cle motion (and corresponding CS destruction) becomes obatic invariants) should be equal to zero. Therefore, we ob-
the order of a few minutes. This is a rather small time in- tain that for each, an averaged valugA J®") is non-zero,
terval for the Earth’s magnetotail. Thus, the existence of thebut for all population of particles we have only redistribution
CS with small but finiteB,, ((r~1In2)k <5 < 0.35) seems  of invariants without the appearance of any particle fluxes
to be impossible without a certain mechanism of particle de-in the phase space. However, we should mention that the
trapping. The role of this mechanism can be played by thepresence of the boundaries= +A can result in non-zero-
earthward convection, when trapped particles get a chance taveraged jumps(Ade”mZ # 0 with corresponding particle
escape from the CS region due to the earthward drift motiondrift in the phase spac&¢lenyi et al, 2003.
In addition, any (even weak) gradient Bf along thex axis The effect of asymmetry of particle reflection/transition in
results in the drift of trapped particles in tiyedirection. In ~ the CS withB, # 0 has been mentioned by many authors
this case trapped particles can already contribute to the totadn the basis of numerical simulatiorighu and Parks1993
Baek et al. 1995 Delcourt et al.200Q Malova et al, 2012
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Grigorenko et al.2013. Here we have shown that this effect dynamical jumps of the quasi-adiabatic invariant (8dch-
occurs due to two peculiarities of the system: (1) decrease ofier and Zelenyi1989 Zelenyi et al, 2007). The theory
the probability of capture in the right well and (2) shrinking of such resonances was derived for the symmetric CS with
of the uncertainty curve. For particles coming to the CS withs = 0 (e.g.Ashour-Abdalla et aJ.1993 Dolgonosov et aJ.

By > 0 from the Northern Hemisphere (from the boundary 2010. For systems withB, #0 (s > (m~tIn2)«), various

z = A) the probability to transit through the CS is larger for numerical calculations have shown that resonances could be
larger By. For s > 0.35 (i.e. By > 0.35Bo/L/po) particles  destroyed (e.g<aufmann et a.1994 Holland et al, 1996.
from the Northern Hemisphere cannot be reflected from thee describe this destruction using the modification of the
CS at all. These particles either should cross the sheet anttheory of compensation of successive dynamical jumps for
come to the boundary= —A or should be trapped in the CS systems withs > (7 ~1In2)x (see AppendixB). It can be
with decrease of the distance between the neutral plane anshown that fos > (7 ~1In2)x and fixedk, the simultaneous
positions of corresponding reflection points. A decrease incompensation of two successive dynamical jumps is possi-
the length of the uncertainty curve with the increaseBef  ble only for relatively small group of particles with a certain
results in the absence of the uncertainty curve crossings fovalue of the quasi-adiabatic invariant. The population of res-
particles from the Southern Hemisphere (from the boundaryonant particles for fixed decreases with the increasesof

z = —). These particles cannot be reflected from the CS andAs a result, the effect of resonant interaction with the CS can-
even cannot be scattered in the CS. Their trajectories crossot be seen for a large population of particles in systems with

the neutral plane without a half-rotation arouRd. Thus,
such particles come directly to the boundagg A (normally
gyrating around field lines). Roughly speaking, in systems
with B, # 0, the probability of particle reflection from the
CS to the initial hemisphere decreases with the increase
B,. For large enougtB, > Bo./L/po, the scattering of par-
ticles is absent (seartemyev et al. 2013. Thus, all parti-
cles cross the neutral plane moving along trajectories, which
can be described by the guiding-centre theory. This effect
of asymmetry of the CS interaction with particles can play
an important role in the Earth’s magnetotail, whelg is
provided by penetration of the interplanetary magnetic field
(Cowley, 1981 Wing et al, 1995, by deformation of the
neutral planeRetrukovich 2009 or by local currentsArte-
myev, 2011 Rong et al.2012. Particles usually come to the
CS of the Earth’s magnetotail from the sources in the South-
ern and Northern Hemisphere. If these sources have different
intensities, butB, = 0, then symmetric reflection/transition
results in symmetric field-aligned flows of particles in both
hemispheres. However, even small # 0 results in asym-
metric reflection and asymmetric flows of ions from the mag-
netotail towards the ionosphere. Auroral phenomena in the
ionosphere are often considered as projections of particle
flows from the magnetotail (see, e@stgaard and Laundal
2012 and references therein). Thus, the asymmetry of au-
roral phenomena in the case Bf # 0 (Liou and Newel]
201Q Lukianova et al.2012 can be partially explained by
asymmetry of CS interaction with ions and corresponding
asymmetry of compensation of electron currents.

One of the most beautiful manifestations of the nonlinear
particle dynamics in the CS is the so-called resonant interac-
tion: particles with a certain value of energy (i.e. the certain
value ofk) are not scattered in the CSlfen and Palmadesso
1986 Burkhart and Chen1991; Buchner 1991). This res-
onant effect is responsible for the formation of beamlets
— coherent beams of accelerated partickkshpur-Abdalla
et al, 1992 Grigorenko et a].2005 2011). Resonant inter-

s> (@ In2)«.

7 Conclusions

0Ifn this paper we have described effects of the magnetic field
shear on non-adiabatic behaviour of charged particles. The
main conclusions are listed below:

1. The presence oB, # 0 results in asymmetry of par-

ticle reflection from (and transition through) the CS.
For B, > 0, particles from the Southern Hemisphere
(z > 0) are more likely to cross the CS. The probability
of the CS crossing for these particle increases with the
growth of B, and forB, > 0.35Bo+/L/po all particles
from the Southern Hemisphere are crossing the CS.
Particles from the Northern Hemisphere are crossing
the CS without scattering already for> (7 ~1In2)«

(i.e. By > (w~1In2)B,). These particles cannot be re-
flected from the CS in the case Bf > 0. The situation

is mirror symmetric forB, < 0 (Southern Hemisphere
<—> Northern Hemisphere).

. In systems withB, # 0 the intensification of parti-

cle scattering (and corresponding chaotization of mo-
tion) occurs. Average values of dynamical jumps of
the gquasi-adiabatic invariant are not equal to zero. The
presence of geometrical jumps due to the emerging ef-
fective asymmetry of the system wih, # O helps to
destroy the adiabaticity.

. Finite B, > (m~1In2)B. destroys the resonances in

the CS. In systems with large enough the resonant
condition (compensation of two successive dynamical
jumps of the quasi-adiabatic invariant) cannot be satis-
fied simultaneously for a large population of particles.

All these results are valid for systems with< 1. Fors > 1
the uncertainty curve (and the separatrix) disappears and the

action can be explained by a compensation of two successiveotion of charged particles is regular.
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Appendix A whered|; = u| /27 = 0 (See SectA2), ® = O + By, Oy =
O1,/0, {...} is the Poisson bracket,e (0, 1) is a uniformly
Jumps of the quasi-adiabatic invariant distributed random value (see detailsAimold et al, 2006

_ _ _ _ _ andi = J~ — S/2r # 0.T is the gamma function. The tran-
In this appendix we derive expressions for jumps of thesjtion from small wells to the single well in the case of
quasi-adiabatic invariant. These expressions depend on are@s < 0, ©) < 0 is described by the same E1), where

S),r of the separatrix loops and rates of their evoluti@y Jt=JandS; =27J" —ku— 5.

(see scheme in Figh4). Areass) and ratesc®y, are func- Equation A1) can be used to describe the transition from
tions of slow variables«x, p.). However, below we define the single well to the left small well when the area of the
Sir, k©r; only along the uncertainty curve. Thui,, «®r1  right small well decreases (i.€;, < 0). In this case we have

depend on the, coordinate along the uncertainty curve. Ex- @, >~ 0,® > 0 and¢ € (0,1— |©r/©]). Equation A1) also

pressions forSj, and ©, were derived inArtemyev et al.  describes the transitions from the left small well to the single

(2013: well (with the same relations2/ ~ = (8| + Sy) +xu, J© =

Sy = —A, £ ch(gcz + ch) gu) vgen Bhe@area(l)ogheorighg\évell(i(;\clreafgs;.é)nghis case we
. 8 avet)r > U, 0 < 0,600 <lands € (U, 1 — [B®/0B]).

As = _4Z"(gcz' + Zcz‘) arctar(%) B 4Zc2'g” B §g§ Here we should mention that EqAY) also contains a term

0(3?(1—-¢)~1) (seeNeishtadt1987). Below, we omit this

Orr =24, (2A¢ £7s) term and assume thatis far from 1 (i.e. 1— & > «).

Ag = mrctar(%) — g, For the transition between small wells (whén < 0 and

®) > 0) we have (sebleishtadt 1987
whereg, = g(z.) and

2\ —1/2 _ =1 ~ ~
g(Z):\/AZC_SZ_%(Z_i_ZC)Z’ AZ(:(1+%) 27TJ|—S|+27T0 KMr+K(d|_9dr)
+xa(1—§) (OrIn(kO) — OrIn |k Orl)

We also introduce the asymptotic expression for the period = o
of particle fast oscillationd; = b —aIn|E|, where E = —ka®) (In (27T(1— £) |9|) —In (F(é)r(l-l-@ - 9§)>>
H — h. and i, is the energy at the saddle point of the Hi (L= &) (Orby — Orhy)
separatrix (see Figh4): k(L= £) (S, S} + 0 (¥2In),

1 , 1 1,\? (A2)
hc—z(px SZ¢) +§<KX EZC> .

- . X whered|; = u; /2w =0 (see Secid2), ity = Jy— S¢/2mw #0

Coefficientsh|; anda are derived in SecAl. andd = O/ < 0. Heret e (0,1) for © > 0 andé e (1—
To evaluate jumps of the quasi-adiabatic invariant we hav%G)l/®r| 1) for® <0 '

to introduce the improved invariant = I, + xu, where the Term;{S| .. S} = (S, S} and{s;, S/} in Egs. A1) and A2)

exprgssion fow is derived in SectA?. Finally,lwe use the  are defined in SecA3. In SectAL we show thab, is equal
relation between the valug™ of the improved invariant be- by (we introduceb = by,). Then we haveb, — 6y (b +

fore crossing of the_ uncertainty curve and its valtie after _ by) = b(1— 26;,). Finally, for the transition between the sin-
crossing. This relation can take several forms correspondm%Ie well and small wells we have
to different transitions. Here we write the general expression

for relation betweerv— and J* (seeNeishtadt 1987 and AT =0t =77 =AJE" - AJY"+ 0¥ Ink)
then reduce it to the form corresponding to the Hamiltonian =~ geom 4 " '
system ). v = s S = S) =55

For the transition from the single well to one of two
small wells, when areas of both small wells grow, we have
2nJ” = (S1+S) +«u, J* = Ji;. Here areas), are defined
at points where adiabatic trajectories (corresponding to the — ka®rIn
initial value of the invariant, far from the uncertainty curve) rer (9“(1 - 5)) rd-ar)
cross the uncertainty curve. The relation betwgerandJ 1 .
can be written asNeishtadt 1987 — kOurb (é B E) (1= 26) + k6

201y = Siy+ 210 kit + K (dl,r — 0 (dr +dl)) — kb, (§ . 1‘) {Sir, S}, (A3)
a®i, (g - %) (IN(kO1,) — 201, IN(kc ©)) 2

+ka®y In(TE)T (61— &) T (L—6,&)/(27)¥?) (AL) and for the transition between small wells

—Kk Oy (5 - %) (bl,r — O (br + bl))

—K O\ (E - %) {Sir, S} + 03 ?Ink),

AJI(,jryn = Kka®ur (%‘ B %) (IN«O1r) — 261 IN(k ©))

(2m)%2
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AJ = JT =07 = AT L AT 0 2 In i)
AJ%OM = L (5 —5p)

ATV = ka (1—£)(O,In|k O — O In|xOy])

AJ geom

27(1—£),/10]
LE@A+6 —08)
+k(1—£)b (O] — Op) + 6 Lkiiy
—k(1=86){S1, S} (A4)

— ka®iln

Here we define the geometrical jump in Eg83) and
(A4) as the difference of unperturbed areas surrounded by _
the separatrix loops before and after the separatrix crossing. g
For the system with the symmetric phase portrai(0) 3
we haveS| = Sy = §/2,®) = ©; = ®/2. Then the transition
between two small wells is impossible. For the transition be-
tween the single well and one small well we have

-4 T T T ) 4 T T T ]
geom 1 1 -1 0.5 0 0.5 1
AJFM =~ S ==3J b,
4 _
Ao _ Lo (g _ }> n2 TR == single well > right well
r 2 2 24 single well — left well |
1 (271)3/2 E 1 N immme- right well — single welli
—xa®,In ?% 0— EEEEE left well — single well
2 N (1(1—5))1“(1— 1g) 2 - right well > left well
1 2+ N
e ——aIC@Lr <$ — —> |n2 1
2 4 . . : :
1 3 -1 -(;5 (; 0‘5 ;
- ZK&@M In(Z?_S sinw&) ’ '

1 .
= _Z’“’@l.r In(2sinz§), Fig. Al. Geometrical jumps for systems with variaus

where we use Euler’s reflection formula and Legendre’s du-
plication formula for gamma functions (s&radshteyn and

X . For asymmetric systems £ 0) we plot A J9%°Mas func-
Ryzhik, 2007): tions of the coordinatep, along the uncertainty curve
rer(i— 1\ ra (Fig. Al). One can note that the differenSe— S; is linearly

&) (7 — 35 ) (1-3 proportional top,. This dependence can be easily obtained
=TE7T (% - %é) rG- 2% +3 analytically as well.

For the symmetric system= 0 the average value of the
_ol- 2(,_,5)\/_”5)1,(1 £) = 26732/ sinzt. dynamical jump is equal to zero:

Thus, for the symmetric system £ 0), the geometri- g 2 : _
cal jump AJ2*" is equal to half of/ in the single po- <AJ yn)E = —;pr/In(Zsmng)dg =0.
tential well. As a result, we can renormalizZeto cancel 0
AJS™ we defines as a half-value of the corresponding _ _
variable (i.e.J — J/2) when particles oscillate in the sin-  FOr @ymmetric systems ¢ 0) we have the following ex- -
gle well. SectiomAl givesa = 1/g., while @), = 44, Ag = pressions for theNtra}nsmons between small wells ar!d the sin-
A(A., ze/5)ge = —4pyge. Thus, fors = 0 we obtain the well- ~ 91€ well (terms~ &, iir are equal to zero after averaging over
known expression for the dynamical jumfirpofeey, 1978 £):

Neishtadt1986 Cary et al, 1986 Neishtadt1987 Blchner
and Zeleny; 1989,

2
AJY = —Zkp. In@sinr§).
T
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Fig. A2. FunctionsG; withi =1...5. 1 05 0 05 1 1 05 0 05 1
Py i Py
s=0.2 , s=0.3
4 | 44 !
d X3 _ ] i
(79 =ka®1,G10), Ol >0 A : ,'
§ s 0_,,,,jj,\,:i,,,c 0_,,,':‘_—:; ,,,,,, — - -
o ) ’
dyn - 5 1 ) -2 - . -
<AJ y )5 = €a®1G2(0) + 5¢(S1. 51}, ©1> 0.0, <0, ©>0 N ]
dyn s 1s 0 -4 4
<AJ y >E=Ka®|G3(9)+§9 (S, S}, ©>00,<0,0<0
T T T 1 T T T 1 T T T T T T 1
1 05 0 05 1 -1 -05 0 05 1
. Py Py
and for the transition between small wells 1s=04 !
4 — I T . i
dyn\ __ 1 _ r__,l./—/\ single well — right well |
(A‘I Y >S = 3ka (©rIn|k O] — ©In |« O]) & / single well — left well |
+:—2LKb (O —06y) N EEEES right well - single well
—ka®G4(0) — 3k(S, S}, ©>0,0,<0, >0 5, o left well - single well |
<] -4 | right well — left well
e A UL A S
(AT, = ica (©rIn]ic®] — Ok Of]) 5
+%/5b(®| — ) —ka®Gs(H) ——
—307%{S, 8}, ©>00,<0, <0, 4 05 0 05 1
Px

where

Fig. A3. Dynamical jumps in the system with variouswithout

1
_ (2n)%/2d¢ -~
G1Bhr) = g N+ or@, o)yraes terms {5y, Sr}-

1+6

~ 3/2 ~ . . i
Ga(0) = ;15 JIn 1(2”) ds T 0>-1 right potential wells. From the general theory it is well known
0 NE)F(m(l—é))r(l—mé) that 7 = 7; for Hamiltonian systems likelj (seeArnold,
1 N . .
Ga@) = -1 f n (2m)¥2ds 51 ;LOQrS?: Thus,b) = by, and we can derive the expression only
140 1 S I
246 F(S)F(Hé (¢ 1)>F(1 1+§§) .
1 ~ ,
3y — _2n(A=HV10] J > dz
Ga(0) = gm r(é)r(1+§—és)d$’ 6>-1 I,=2 >’
1 = * J2H — (px — sz)2 — (Kx — lz2>
5 -1 27(1-6)+/10| 1 \/ 2
G5(6)=7~f ~|nmdé,9<—l
0+1)/6 wherez, is shown in FigA4 andz* corresponds to the left-
Profiles of functiongG; are shown in FigA2 most point of the trajectory inside the right separatrix loop.

The difference between th& value and the,. value is de-
termined by the particle energy. We introduge> z* > z.

and divide the integral. into two parts Az =z, —z. > 0

is small enough). The first part of the integral corresponds

For several values of we plot average dynamical jumps
(AT dy”)g as functions of the coordinate of uncertainty curve
crossingp, in Fig. A3. Here we plot AJ %M, without terms
~ {8, Sy} (analytical expressions fds, S} can be found in

Sect. A3) to integration along the small fragment of the particle tra-
jectory inside the separatrix loop in a close vicinity At
Al Period of fast oscillations To perform this integration correcthf; should be rewrit-

ten asl; = [ dp./p.. However, for Hamiltoniani) it is well
In this subsection we derive the asymptotic expression for th&known that integration ovep, inside the separatrix loop in
period of fast oscillationgir = by —aln|E| in the left and  the vicinity of z. in the principal approximation gives the

Nonlin. Processes Geophys., 20, 89919 2013 www.nonlin-processes-geophys.net/20/899/2013/
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same result as integration oveoutside the separatrix loop.

Thus, we can expand the Hamiltonian aroupdand write
the first part as

Ze+Az
dz

ZL/ \/ZH — (px —52)%— (Kx — %zz)z

Zet+AZ
2

2

dz

\/2E+g (Z_Zc)z

2 8eAZ+/2E 4 g2(Az)?
= In
V&, V2E
In (4g?) N 2In(Az) In(2E)
8¢ 8c 8c ’

where we use
19%H
2 972

¢

2 2 2
ZAZL'_S —Zczgc.

i=Zc

913

Z Z; z, z

Fig. A4. Schematic presentation of calculation of the integral
[(T/2—t){E, hc}dr.

1 T E T t E
— / dr — / /—dz’ dr
v apA dkx J Opx

0 0

T
1 T oh, OE  0h
o [(5-1) (5 — e )
2 2 Opx 0KkX
0

The second part can be considered as the integral along

the separatrix, because we integrate over z.| > Az. In
this case we have (séetemyev et al.2013

2H — (py — 52)%2 — (kx — —Z2)2
=(z2—2c) (AZC —s2— 3@+ Zc)2>
and

i+

5 / dz
(c—20) Az, — 52

Zet+Az

3 (z+2)?

Q

2, ((7+—Zc) 4g: >
8¢ Az 2(g2+722) — ze(z4 +20)
__2inag 2In(4¢2) In(g2+:2)

8c 8c 8c
where we take into account that = +2,/g2 + 72— z.. The
final expression for the period is

In@E)  3In(4g?) In(gf+z7)

8¢ 8c 8¢

Therefore, we have

Tl,r=—

a = 1/gc
6IN2g) IN(g?2+2z2) I
8c 8c 8c '

b|:br:

A2 The improved quasi-adiabatic invariant

In this section we derive the asymptotic expression for the

improved quasi-adiabatic invariatdt= I, 4+ xu for p, =0,
whereu is defined as (seleishtadt1987)

www.nonlin-processes-geophys.net/20/899/2013/

dKkXx Opy

HereT (kx, p,) is the period of fast motion. Integration is
performed along a trajectory with a certain initial point in the
plane(z, p;). We choose this point gs, = 0, and as a result,
the lower limit of integration = 0 corresponds to the starting
point where the trajectory crosses theaxis (the leftmost
point of the trajectory). We consider one of the two potential
wells (the right one). The last term afcan be written as

T
1 1T
2 2
0

where{...} is the Poisson bracket. We divide this integral
into two partst € [0, T/2] andt € [T /2, T]. The expression
{E, h.} does not depend opy, and thus it has the same val-
ues forr andr + T/2. Expressiorl’ /2—t = —(t — T/2) is
positive fors € [0, T/2] and negative for € [T/2,T]. As a
result, the total integral is equal to zero (see the scheme in
Fig. A4).

Now we consider the first two integrals in the expression
for u for the right well. The inner integrals are

t) {E,h}dr,

{ze.2} 1
a_Edt/ __1 S):( , I < {ZT _lr\s»{zc’ZJr} + ;%{Z,ZJr}
KX - 2 {Zc z+} X zz+} 2V% 2V%

’

N{Z( & , < lT ~{zp 74} ﬂ:s°{z 24}

O0E 4,7 _ [
Edt_ S:NOZ( o) ~{222+ =

where+ corresponds te < T/2 andr > T/2, and we use
=2(H—h.) = (z—2.)%g%(z) (seeArtemyev et al.2013.
Integrals are given in Tablé\1.

Nonlin. Processes Geophys., 2098992013
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Table Al. Integrals 37172 = [;2(z"/g(2))dz and 5{51&2} =
3{11112} _’_chgl,u}.

integral value

g{zc,z+} 4g.

yie 49(2)

SOZ"’Z*} - 2arctar(%)

S({)z’“} T — 2arctar(zé‘;z>

The first integral in expression faris

T t
JE JE
J (apx J Txdf’> dr
0 0
=4s gci”?é =8sg, ( arctar(%)) ,

and the second integral is

b}(a—EOft ) s?s{;‘ 2+ ( —2arctar({%)) =

=4smg. — 8sg. arctar(%) .

A. V. Artemyev et al.: lon motion in current sheet with B,

Then we have

max
r

2 2

aSir _ ;=2 0S| 0z¢
dK X 2U(z.) —2U (z) 0Z¢c JKkX
Zmln
zmax
a8l . Ze—2 dz oS 0z,
Opx VU (zc) —2U(z) 8zc Opx’

min
r

where we can use expressions kor = (1/2)z? + A, and
Pr = (ze/5)(s% = Ay ) with A, = (1422/5%)~ Y2 (seeArte-
myev et al, 2013. The corresponding integrals are

er

zc—z
n{n T or e 9 = 48
err:ax

. Ze=Z Zc
fn hU(zc) e n:|:2arctar(gc).

Derivativeso S| /dz. ~ dU (z.)/9z. are equal to zero due
to the definition of;.. Thus, finally we have

=325g. arctar< )
8c

as) 9S8
OKX 0Py

a8 98¢
Bpx x

Then, the difference of the first and the second terms

is equal to zero, and = 0 for the right potential well (at
p. = 0). The same conclusion is valid for the left well and
for the single well. Moreover, one can show tHaj: =0
(see details ilNeishtadt 1987).

A3 Calculation of {S;, S}
Here we derive the expression i, S}. Due toS = Sj+ S

we need to obtain the expressigh, Sy}, where

max
ZI,r

Siy=2 f V20U Gex, prsze) — 20 ex, paa )z

min
U

andzm'” =72 21 =2y 24y 2U = 2H — pZ (seeArte-
myev et al, 2013. We can write

2U(K.X, an ZC) - 2U(K-xv va Z) =

(Px —520)% + (kx — 322)2 — (px —52)% — (kcx — 322)2

= —2sp,(zc —2) —kx(22 = 22) +52(22 = 22) + (24 - 2%.

Nonlin. Processes Geophys., 20, 89919 2013

Appendix B

Resonances

In this appendix we describe the effect of resonant interac-
tion of a particle with the CS. In the course of interaction
with the CS, particles cross the uncertainty curve (and the
separatrix) twice: when particles approach the neutral plane
moving along the field lines, and when they leave the neutral
plane after a half-turn arouns,. Therefore, there are two
dynamical jumps of the quasi-adiabatic invariant.

For the symmetric systems & 0) we have the expression
for the dynamical jumpAJ®" = —(2/7)kp, IN(2sinEm),
where¢ € (0,1) is a random value (see Appendix A). Thus,
the sum of two successive jumps is

2
ZAden = ——KpDx In(
7T

where A¢ is a difference of phases between two separatrix
crossings. The full expression faw¢ can be found ilNeish-
tadt and Vasilie(2009: A& + & = FraqW — &), where

2sint&
2sinm (& + A¢§)

Kx*
Q2
W=— —dkx
Px

KX

andk«x is determined as thex value at the point where a
trajectory I, (kx, px) = const crosses thg, = 0 axis. Here

www.nonlin-processes-geophys.net/20/899/2013/
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Fig. B1.Schematical view of a particle trajectory with two crossings

of the uncertainty curve.

915

e
V!
vl

T I T I T I 1
-1.2-08-04 0 04 038

Px

Fig. B2. Fragments of three trajectories and corresponding depen-
dence ofr/2; on py.

Pr = (2/9)(s? = Az)
KX = %Zg—{—AZC '

One can see that the sign pf is defined by the sign of;
(becauset;, —s2 > 0 for entire range of..). Due to the sym-
metry of the phase portrait of the system in the plane p,)
relative top, = 0, particles that crossed the uncertainty curve
at p, = —p¥ <0 should cross it again g, = p; > 0. A

Fraq-) denotes the fractional part of a number in bracketsschematic view of such a trajectory is presented in Bi.
(), kx* is the coordinate of uncertainty curve crossings andWe consider the particles that come to the uncertainty curve

Q, (kx) is the frequency of fast oscillations:

Q, =27 (% dz/pz>_l.

If A€ is equal tar —2¢ (i.e. W = 1), we have) - AJH" =
0. This condition corresponds to the equatién= x, which
is independent of. Thus, the conditioy” AJ%" =0 can be
simultaneously satisfied for a large particle population. Th
equationW = = can be solved with regard to, and corre-
sponding solutions are called resonantalues Buchner and
Zelenyi 1989 Zelenyi et al, 2013.

inside the right well and after the second crossing are cap-
tured in the left well. These particles can return to the initial
coordinatecx in the opposite side relative to the neutral plane
z = 0. For these particles the coordinate of the saddle point
in the second crossin@z) is equal to—zgl), Wherezgl) is

the coordinate of the saddle point in the first crossing. Be-
causeS, (z.) = Si(—z.) (see expression fd§i in Appendix

A), we haveSr(l> = Sl(z). Thus, two successive geometrical

jumps compensate each other for such trajectories.
The ratesc®), of evolution of areas can be presented as a

sume|, =4A;Agt2rsA,, . Thus, we havé = Or(l) = 6?|(2).

To investigate the same effect of the resonance for systemBynamical jumps for two crossings are

with s £ 0, we write equations of the uncertainty curve in the

(kx, py) plane (sedrtemyev et al.2013

www.nonlin-processes-geophys.net/20/899/2013/
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Fig. B3. W as a function ofl, for variouss (to substitute val-
ues of W in the equation for dynamical jumps, one should take
FraqW/x)).

dyn e o'
AIYS = X0 (gﬂz) 2>(a|n (K®329 —b(1- 29))
ka®? In (21)3/2
2 TETD)T(6(1-£1D))r (1—-01D)°

where a =a(z;) =a(—z.) and b=b(z.) =b(—z,) (see
Sect.Al). The sum of these jumps gives

KOr

o@D
ZAdenz%Aé( o b(1—29)>

m(~>§1>| LEP)T(0(1-£@))r1-0£@)
Iz rEDrEa-¢m)ra-edy’

where Aé =£@ — @ One can see that the condition
A& =const—2:D does not obviously result i, AJY" =
0. Thus, the resonant conditidn AJ%" = 0 corresponds to

A. V. Artemyev et al.:

lon motion in current sheet with B,

4 d
d =2 =
f 2/ Pz f \/ZHf(px :

— Z)Zf(KX**ZZ)Z

I, = Zf \/ZH — (px —52)2 — (kx — —Zz)zdz,

wherez, are shown in FigB1. Therefore, for eacli; we
have a certainf2,;(«x) and can calculate the corresponding
integral W. Examples of three trajectories and correspond-
ing distributions ofQ2,; along the trajectories are shown in
Fig. B2. At the vicinity of the uncertainty curve the frequency
2, tends to zero. This is an effect of the logarithmic singu-
larity of the frequency of particle oscillations near the sepa-
ratrix.

We calculateW for I, > Iéo), Wherelz(o) corresponds to
the trajectory crossing the uncertainty curve at the endpoints
(see Fig.B2). Corresponding dependenciesWfon I, are
shown in Fig.B3. One can see that for smalithe function
W(I,) tends to 076/« asléo) — 0 (this value can be calcu-
lated analytically; seBulichner and Zelenyil 989.

For smalls the derivativedW /a1, is small enough. Thus,
if a value ofx in the system is suitable to obtain the resonant
value of A& for I, = IZ(O), then for particles with othet:, the
correspondingA&é should have similar values. As a result,
the resonant condition (condition fe) is satisfied for parti-
cles with varioudl, (see discussion iBiichner and Zelenyi
1989.

Increasings results in the increase of the derivative
aW/oI,. Thus, A¢ changes more substantially with for
s > 0. It means that even ik has a suitable (resonant)
value to obtain the resonant value & for I, = IZ(O), for
particles with other values of;,, the corresponding\& ~
(oW/ol)(, — IZ(O)) should be far from the resonant value.
This results in a decrease in the number of particles for which
the resonant condition is satisfied for the same
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nances.

Let us consider the second effect, which is responsible fol
destruction of resonances. This effect corresponds to depet
dence of the frequencg2, on the quasi-adiabatic invariant
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