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Abstract. A three-dimensional cloud-resolving model is
used to investigate the vertical transport from the lower to the
upper troposphere in a mesoscale convective system (MCS)
that occurred over Niger on 15 August 2004. The redistri-
bution of five passive tracers initially confined in horizon-
tally homogeneous layers is analyzed. The monsoon layer
tracer (0–1.5 km) is the most efficiently transported in the up-
per troposphere with concentrations 3 to 4 times higher than
the other tracers in the anvil. On the contrary the African
Easterly Jet tracer (∼3 km) has the lowest contribution above
5 km. The vertical profiles of the mid-troposphere tracers
(4.5–10 km) in the MCS exhibit two peaks: one in their initial
layers, and the second one at 13–14 km altitude, underlying
the importance of mid-tropospheric air in feeding the upper
troposphere. Mid-tropospheric tracers also experience effi-
cient transport by convective downdrafts with a consequent
increase of their concentrations at the surface. The concen-
tration of the upper troposphere–lower stratosphere tracer ex-
hibits strong gradients at the edge of the cloud, meaning al-
most no entrainment of this tracer into the cloud. No down-
ward transport from the upper troposphere is simulated be-
low 5 km. A proxy for lightning produced NOx is trans-
ported preferentially in the forward anvil in the upper tropo-
sphere. Additionally, lateral inflows significantly contribute
to the updraft and downdraft airflows emphasizing the three-
dimensional structure of the West African MCSs.

Keywords. Meteorology and atmospheric dynamics (Con-
vective processes)
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1 Introduction

It has long been recognized that deep convection in the trop-
ics has a primary role in the global atmospheric circulation
and energetics of the tropical atmosphere by extracting heat
and momentum from the planetary boundary layer and redis-
tributing it to the upper troposphere. In the 1980s, the pioneer
works ofChatfield and Crutzen(1984) andDickerson et al.
(1987) have shown the potential role of deep tropical convec-
tion in the redistribution of trace gases from the lower to the
upper troposphere. Since then, the role of deep convection
as a venting process for trace gases and aerosols has been in-
ferred from aircraft measurements, satellite observations and
theoretical studies.

The impact of convection on atmospheric chemistry is
complex. Sensitivity studies show potential for both the en-
hancement and diminution of ozone formation (Lelieveld and
Crutzen, 1994; Thompson et al., 1997). Despite major im-
provements over the last two decades, further progress is
still needed to parameterize deep convection in large-scale
models (Randall et al., 2003; Arakawa, 2004; Barret et al.,
2010; Ruti et al., 2011). As a major consequence, there is
currently no consensus on the net effect of convective trans-
port on the ozone budget in the upper troposphere. Based
on analyses with global models,Lawrence et al.(2003), and
Doherty et al.(2005) reached opposite conclusions that deep
convection induces a net increase or decrease of ozone in
the upper troposphere.Tost et al.(2006) pointed out the pa-
rameterization of deep convection as the main source of un-
certainties in determining the sign and magnitude of ozone
production in the global models. Based on a global model
calculation,Prather and Jacob(1997) demonstrated that con-
vective transport turns over the upper troposphere at rate
(0.08 day−1) comparable to photochemical processes con-
trolling the abundance of HOx and NOx. Using aircraft

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


732 C. Barthe et al.: Tracers transport by a mesoscale convective system over West Africa

measurements,Bertram et al.(2007) calculated a compara-
ble convective turnover rate of 0.1–0.2 day−1. Gettelman
et al. (2002) showed that the convective turnover rate can
vary drastically with the seasons and increases exponentially
with altitude above the tropopause. Based on cloud bright-
ness temperature analysis, the authors found turnover times
shorter than a month at 11–12 km but exceeding a year at
16 km altitude. The rate at which air in the upper troposphere
is replenished by convection has strong implications in terms
of chemical equilibrium (Prather and Jacob, 1997) and oxi-
dising capacity of the upper troposphere (Jaegĺe et al., 1997;
Collins et al., 1999).

Traditional parameterizations of convection represent only
the ensemble mean of the small scales as a deterministic
function of a large-scale flow, disregarding fluctuations aris-
ing at the small scales. Hence, small scale deviations from
the ensemble mean can drive the large-scale variability, in
particular in the presence of mesoscale organization (Neelin
et al., 2008). This is the case in the Sahel region where deep
convection frequently occurs in relatively large organized
propagating systems known as mesoscale convective systems
(MCS) (Chong et al., 1987; Laing and Fritsch, 1993; Re-
delsperger et al., 2002; Laing et al., 2008; Schwendike et al.,
2010). During the West African Monsoon (WAM), MCSs
are responsible for 70–80 % of the rainfall in the wet tropics
while they only represent 10–20 % of the regional popula-
tion of the convective systems (Mohr et al., 1999). MCSs
have a well-defined structure which can be maintained while
they propagate during a day or more. Most of these systems
move faster than the surrounding air at all levels. They con-
sist of a leading line of cumulonimbus clouds followed by
a large region of more stratiform structure in the extensive
precipitating trailing anvil cloud (Houze et al., 1989; Zipser,
1977; Redelsperger and Lafore, 1988; Lafore and Moncrieff,
1989). Within the framework of the African Monsoon Mul-
tidisplinary Analysis (AMMA) program (Redelsperger et al.,
2006; Mari et al., 2010) several cloud resolving models suc-
ceeded in reproducing MCSs main features (e.g.,Barthe
et al., 2010; Tulet et al., 2010). On the other hand, an in-
tercomparison exercise with six mesoscale models showed a
wide spread in the rainfall rates across the simulations which
was reduced only when sub-kilometric horizontal resolutions
were considered (Guichard et al., 2010).

Over West Africa, between 5◦ N and 15◦ N, ozone precur-
sors are emitted from soils and vegetation, (Guenther et al.,
1995; Serça et al., 1998; Jaegĺe et al., 2004; Delon et al.,
2008) and from urban areas (Aghedo et al., 2007; Minga
et al., 2010). When on the MCSs path track, the emitted
gases and aerosols are transported efficiently by convective
updrafts in the upper troposphere where they modify the bud-
get of ozone (Ancellet et al., 2009; Law et al., 2010), wa-
ter vapor (Homan et al., 2010; Khaykin et al., 2009) and
aerosols (Borrmann et al., 2010). Once in the upper tro-
posphere, gases and aerosols are advected downwind of the
African continent by the Tropical Easterly Jet (TEJ) and they

can impact the ozone and aerosols budgets at continental and
hemispheric scales (Prospero and Lamb, 2003; Saunois et al.,
2008; Barret et al., 2008; Real et al., 2010). The concen-
tration levels and geographical extension of these enriched
air masses depend directly on the frequency and intensity of
deep convection over West Africa.

A common approach when studying the net impact of deep
convection is the use of passive tracers. At mid-latitude,Mul-
lendore et al.(2005) performed three-dimensional (3-D) sim-
ulations of supercellular storms. Using tracers from different
levels of the troposphere, they showed irreversible transport
into the stratosphere of the tracer originating from the bound-
ary layer, and weaker ascent of the tracer immediatly above
the boundary layer on the flank of the updraft.Barth et al.
(2007) used eight cloud-resolving models to simulate the
10 July 1996 STERAO storm observed near the Colorado-
Nebraska-Wyoming border. They showed that all the mod-
els reproduced an efficient transport of high concentration of
CO originating from the boundary layer by updrafts, up to
the cloud anvil, while both numerical simulations and in-situ
observations revealed that O3 which concentration increases
with altitude in the troposphere was depleted in the cloud.
Over the tropics,Lafore and Moncrieff(1989) realized two-
dimensional simulations (2-D) of a West African squall line
to investigate the organization and interaction between the
convective and the stratiform regions. Three tracers were in-
troduced in the lowest 6 km where most of the inflow orig-
inates. They showed that, depending on the vertical profile
of the zonal wind and in particular on the intensity of the
African Easterly Jet (AEJ), the MCS can be fed mainly by
the front inflow or by both the front and rear inflows.Ya-
sunaga et al.(2004) performed 2-D simulations at 1-km hor-
izontal resolution of convection to study the detrainment of
boundary layer air mass from convective systems over trop-
ical oceans. They detected two peaks of detrainment at 600
and 200 hPa, the latter being the height of the most intense
clouds.

The objective of the paper is to provide a numerical de-
scription of the transport of air masses into a typical West
African MCS, that is a squall line, never investigated so far in
three dimensions. To achieve this goal, the transport of ide-
alized passive tracers by a propagating organized MCS over
West Africa is simulated with a 3-D high resolution cloud-
resolving model. A MCS observed over West Africa during
the summer 2004 serves as a real cloud for the idealized nu-
merical experiment. Passive tracers were followed so as to
deduce an integrated view of entrainment and detrainment
pathways of air masses as a function of their initial verti-
cal distribution. A particular attention was paid on the con-
trasted signature of transport in the convection and stratiform
regions of the cloud system. The paper is structured as fol-
lows. Section 2 presents the model set-up. Section 3 gives an
overview of the MCS and its environmental conditions from
observations and simulation. Section 4 shows the resulting
tracers transport, and Sect. 5 concludes the paper.
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2 Model description

The online-coupled model used in this study is the Meso-NH
model (Lafore et al., 1998). A full description of the model
capabilities is available onhttp://mesonh.aero.obs-mip.fr/.

2.1 Numerical framework

The case study was simulated with three two-way nested
models with a horizontal grid spacing of 40, 10 and 2.5 km,
respectively. The vertical grid has 90 vertical levels up to
31 km with grid spacings from 60 m (bottom) up to 400 m
(model top). A sponge layer was applied from 18 to 31 km in
order to dampen the upward-propagating gravity waves gen-
erated by the convection. The outer domain covered the West
African region with an area of about 6000 km× 4320 km.
The location of the domains is shown in Fig.1a. The time
step was 40, 10 and 2 s, respectively. The simulation was
integrated from 00:00 UTC 15 August 2004 to 00:00 UTC
16 August 2004. The initial and lateral boundary conditions
were obtained from European Center for Medium-Range
Weather Forecast (ECMWF) analyses.

The physics of the model included the prognostic calcula-
tion of turbulence followingBougeault and Lacarrère(1989).
A convection scheme based on mass-flux calculations was
used for the two outer models at 40 and 10 km (Bechtold
et al., 2001). For the inner grid (2.5 km), convection was
explicitly resolved. Mixed-phase microphysics (Pinty and
Jabouille, 1998) and subgrid cloudiness (Chaboureau and
Bechtold, 2005) were available for these simulations. The
surface fluxes were provided by the ISBA (Interaction among
Soil-Biosphere-Atmosphere) model (Noilhan and Planton,
1989) for the natural patches and TEB (Town Energy Bal-
ance) model (Masson, 2000) for the urbanized patches. The
radiative scheme was the one used at ECMWF (Gregory
et al., 2000). Synthetic brightness temperatures (BT) cor-
responding to the Meteosat Second Generation (MSG) ob-
servations in the infrared channels were computed offline
using the Radiative Transfer for Tiros Operational Vertical
Sounder (RTTOV) code version 8.7 (Saunders et al., 2005),
and compared against observations followingChaboureau
et al.(2000, 2002).

2.2 Tracers initialization

The major goal of this work is to quantify the mass transport
from the lower to the upper troposphere produced by a MCS
over West Africa. For this purpose, it is convenient, follow-
ing the work ofLafore and Moncrieff(1989), Scala et al.
(1990), Lu et al. (2000), Yasunaga et al.(2004) and Mul-
lendore et al.(2005) to describe the redistribution of passive
tracers that were initially confined within horizontally ho-
mogeneous layers. Each tracer was initialized with a mixing
ratio of 1 nmol mol−1 throughout its source layer and zero
outside that layer. The tracers were considered to be insol-

Fig. 1. Large-scale fields at 12:00 UTC 15 August 2004:(a) po-
tential temperature (K) and wind vectors at 925 hPa and(b) water
vapor thickness (mm) and wind vectors at 700 hPa. The rectangles
indicate the position of the two inner domains.

uble. FollowingMullendore et al.(2005), five tracers were
initially confined in layers from 0. to 1.5 km, 1.5 to 4.5 km,
4.5 to 7.5 km, 7.5 to 10 km and 10 to 20 km. The first tracer,
TR1, was initialized in the monsoon layer, close to the sur-
face. The second tracer, TR2 was in the driest layer corre-
sponding to the AEJ. TR3 and TR4 were initialized in the
region above the AEJ but below the major convective cloud
outflows. The last tracer, TR5, initially occupied the upper
troposphere and lower stratosphere (UT/LS). The tracer is
intended to represent air masses at the highest altitudes of
the model but with no distinction between tropospheric and
stratospheric origin. The role of this tracer was to eventually
detect large scale subsidence associated with the convective
cloud but not to trace fine stratosphere-troposphere exchange
events. Another practical reason for not refining this altitude
range is that increasing the number of tracers increases the
numerical cost of the simulation.

3 Meteorological situation on 15 and 16 August 2004

The MCS born around 12:00 UTC on 15 August 2004 east
of the Äır Mountains as seen with MSG observations (not

www.ann-geophys.net/29/731/2011/ Ann. Geophys., 29, 731–747, 2011
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Fig. 2. Time-longitude diagram of 700-hPa meridional wind (color)
and MSG 10.8-µm BT contour at 265 K (dashed line) averaged over
5◦–15◦ N from 11 to 20 August 2004. The black thick line indicates
the location of the MCS in the simulation while the two red lines
show the position of the troughs T1 and T2.

shown). The initiation of the MCS was a consequence of the
convergence of the southwesterly monsoon flux and of the
easterly winds at low levels, as decribed next. One hour later,
the cloud developed vertically and the cloud top reached an
altitude of 14 km just above the top of the mountains. The
MCS then grew steadily while propagating southwestward
during the afternoon and until 21:00 UTC. From 00:00 UTC
16 August onwards, the MCS split into two parts and further
propagated westward to finally dissipated over the Guinea
highlands at 00:00 UTC 17 August.

3.1 Life-cycle of the MCS from analysis and
observations

The large scale environment of the MCS is illustrated at
12:00 UTC on 15 August at 925 and 700 hPa over West
Africa (Fig. 1). This simulation shows similar meridional
kinematic and thermodynamic structure to the one derived
from observed profiles byParker et al.(2005). At 925 hPa,
the potential temperature showed a strong meridional gradi-
ent with the largest values over the Sahara where a continen-
tal depression (also called “Heat Low”) resides in summer-
time (Lavaysse et al., 2009; Chauvin et al., 2010; Lavaysse
et al., 2010). This strong contrast from the Guinea coast to
the Sahara drove the meridional circulation. Remarkably,
the southwesterly monsoon flux penetrated deeply into the

African continent, up to the Äır mountains at 18◦ N, 9◦ E.
Large values of water vapor thickness were found between
5◦ N and 15◦ N, and over the Äır mountains, in association
with a strong AEJ at 700 hPa. These conditions are common
during the summer period and lead to frequent convective
developments over the Aı̈r moutains in the afternoon.

To underline the connection between African Easterly
Wave (AEW) and convection, Fig.2presents a Hovm̈oller di-
agram of the 700-hPa meridional winds from ECMWF anal-
yses, averaged between 5◦ N and 15◦ N for the 11–20 August
2004 period. The 265-K isoline of the averaged 10.8-µm BT
observed from MSG was superimposed and used as a proxy
for MCSs. This 10-day period was characterized by the
prevalence of northerly winds at 700 hPa. Two African East-
erly Wave troughs were characterized by a cyclonic change in
the meridional wind component, and propagated westward:
the first (T1) from 0◦ at 12:00 UTC 11 August to 20◦ W at
00:00 UTC 13 August and the second (T2) from 30◦ E at
12:00 UTC 13 August to 20◦ W at 12:00 UTC 19 August.
As in Berry and Thorncroft(2005) the location of the trough
was defined as the zero value of the 700 hPa meridional wind.
Many studies (McBride and Gray, 1979; Barnes and Sieck-
man, 1984) have shown that the region ahead of the AEW
trough, where north-easterly flow aloft both advects dry air
equatorward and increases vertical shear, promote MCS or-
ganization as shown by the 265-K MSG 10.8-µm BT isoline
in Fig. 2. The MCS studied here developed ahead of trough
T2 from 5◦ E at 00:00 UTC 16 August. The simulated MCS
(thick line in Fig.2) was also located ahead of trough T2, but
it propagated more slowly than in the actual observations.
Together with the surge of the monsoon flow up to the Aı̈r
mountains and the dry AEJ at 700 hPa, this situation was fa-
vorable for convection triggering.

3.2 Life-cycle of the MCS from the simulation

The Meso-NH simulation is now evaluated through the envi-
ronmental conditions (Fig.3), the MCS propagation (Fig.4)
and structure (Figs.5 and 6). Figure 3a shows the verti-
cal profile of equivalent potential temperature (θe) averaged
over the model-3 domain, prior to the MCS triggering. The
strong gradient ofθe between the ground and 6 km altitude
reached−28 K due to the very dry midlevel (329 K) and
the relatively warm and moist surface (357 K). Such a gra-
dient is indicative of a significant initial convective instabil-
ity (Lafore and Moncrieff, 1989). The vertical profiles of the
zonal and meridional wind (Fig.3b–c) between 0 and 2 km
altitude clearly show the signature of the southwesterly mon-
soon flow. This is consistent with the large-scale fields at
12:00 UTC that shows the penetration of the monsoon flux
up to 18◦ N. The water vapor profile (Fig.3d) also shows
the signature of the monsoon flow with high mixing ratio
values∼10–15 g kg−1 below 2 km altitude. Above 2 km al-
titude, the flow was mainly easterly (Fig.3b), and reached
−10 m s−1 at 4 km which is the signature of the AEJ. Above,
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Fig. 3. (a) Equivalent potential temperature (θe in K), (b) zonal (u in m s−1) and(b) meridional wind (v in m s−1), and(d) water vapor
mixing ratio (rv in g kg−1) profiles at 12:00 UTC 15 August 2004 averaged over the model-3 domain, prior to the triggering of the MCS.

the zonal wind was easterly and peaked (10 m s−1) at 13 km
which corresponds to the TEJ.

The simulated MCS exhibits similarities with the ob-
served one. Both were generated in the early afternoon
of 15 August over the Äır Mountains, then propagated
southwestward. Figure4 shows the Hovm̈oller diagram of
the maximum radar reflectivity between 4.5 and 10.5◦ E.
As in MSG observations, convection was initiated around
9◦ E at 11:00 UTC. The maximum radar reflectivity ex-
ceeded 30 dBZ one hour later. The system propagated west-
southwestward at∼10 m s−1. From 16:00 UTC, another sys-
tem was located ahead of the studied MCS (see Fig.5). How-
ever, the horizontal extension of the observed MCS as de-
picted by the 10.8-µm brightness temperature (hereinafter re-
ferred to as BT(10.8 µm)) is larger than the simulated one all
along the afternoon (Fig.5). After 20:00 UTC, the first MCS
weakened and merged with the second MCS which revigo-
rated. At 23:00 UTC, the MCS was out of the simulation
domain. In terms of intensity, both the simulated and the
observed MCSs had large areas of 10.8 µm BT lower than
206.5 K, though this area is significantly lower in the sim-
ulation. Thus, the convective area is probably lower in the
simulation. This may also be a consequence of the high con-
centration of dust aerosols (that can serve as good ice nuclei)
near the tropopause in this region (Tulet et al., 2010) which
is not taken into account in the simulation. Therefore, the
synthetic brightness temperature computed from the Meso-
NH microphysical variables with the RTTOV code may be
impacted.

Figure6 displays the horizontal cross-section of the maxi-
mum radar reflectivity simulated by Meso-NH at 19:00 UTC
on 15 August. The MCS was located at 16.5◦ N, 7◦ E, south-
west of the Äır Mountains. The system presents a classical

Fig. 4. Hovmöller plots from 15 August 2004 00:00 UTC to 16 Au-
gust 2004 11:00 UTC of the maximum radar reflectivity (dBZ) in
a grid cell column simulated by Meso-NH (grey areas). The black
line shows the 5 mm h−1 instantaneous precipitation rate.

www.ann-geophys.net/29/731/2011/ Ann. Geophys., 29, 731–747, 2011
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Fig. 5. Top: observed METEOSAT and bottom: simulated cloud-top infrared brightness temperature at 10.8 µm for 15 August 2004 at 17:00,
19:00 and 21:00 UTC. Horizontal wind fields simulated by Meso-NH and relative to the motion of the MCS are shown at 6 km altitude.

Fig. 6. Horizontal cross section of the maximum radar reflectivity (dBZ) in a grid cell column and the horizontal relative wind field at 5 km
altitude on 15 August 2004 at 19:00 UTC simulated by Meso-NH. The black boxes delineate the convective and stratiform parts of the MCS
used for budget calculations. The propagation axis is marked as a A1-A2 line. The dotted region corresponds to the Aı̈r orography higher
than 1 km.

organization with the leading line of convective cells with
maximum reflectivity values exceeding 45 dBZ. At the rear
of the convective region, the stratiform region shows lower
reflectivity values (∼40 dBZ). This allows us to define two

regions: the convective region extends over 40 km while the
stratiform region is 200-km long. Another convective system
was located 100 km southwestard of the studied MCS as also
depicted in Fig.6. Figure7 shows the vertical velocity and

Ann. Geophys., 29, 731–747, 2011 www.ann-geophys.net/29/731/2011/
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Fig. 7. (a)Cross line (u) and(b) along line (v) relative wind components,(c) vertical velocity (w), and(d) water vapor mixing ratio (rv)
profiles on 15 August 2004 at 19:00 UTC averaged over the convective (solid lines) and stratiform (dashed lines) regions defined in Fig.6.
In (a), negative and positive cross-line winds correspond to rear-to-front (RTF) and front-to-rear (FTR) flow, respectively. In(c), UP and
DOWN stand for upward and downward motion, respectively.

system-relative horizontal wind components perpendicular to
the MCS (u) and along the MCS (v), averaged in the convec-
tive and stratiform boxes (see Fig.6). The convective region
was characterized by strong updrafts (Fig.7) compared to the
stratiform region. Mean updraft speed in the convective area
reached 1 m s−1 between 5 and 12 km altitude. Below 2 km,
a rear-to-front flow in the cold pool reached the convective
leading edge (negative relative cross line wind component
u). Between 2 and 3 km, a strong front-to-rear flow fed the
convective system with humid air (rv ∼ 12–15 g kg−1). This
layer experienced an efficient entrainment of surrounding air
in the cloud updraft as also seen in Fig.10. The drier atmo-
spheric layer between 3 and 5 km corresponds to the altitude
of the AEJ with little inflows in the convective clouds. The
depth of the rear-to-front flow behind the convective updraft
is 2.5 km which is comparable to the estimation ofChong
et al.(1987). Below 5 km, the stratiform region experienced
mean downward motion associated with a north-westward
front-to-rear flow. This corresponds to the return branch of
the so called “return flow”. The system-relative airflow struc-
ture displayed the main features commonly observed in pre-
vious studies (Zipser, 1977; Roux et al., 1984; Roux, 1988;
Houze et al., 1989; Caniaux et al., 1994; Parker and Johnson,
2004; Chong, 2010).

With regards to the MCS organization, radar reflectivity
and brightness temperature intensities, the simulated MCS is
comparable to commonly observed MCSs. It thus provides a
representative West African cloud for the study of 3-D tracers
transport.

4 Tracer transport by a MCS

4.1 Redistribution of passive tracers

4.1.1 Temporal evolution of the tracers

Figure 8 shows the temporal evolution of maximum ver-
tical velocity and concentration of each tracer at different
altitudes, and instantaneous precipitation rate. Tracer con-
centration and instantaneous precipitation rate are averaged
over the sub-domain (16.6–19.0◦ N; 6.4–9.0◦ E), which en-
compasses the track of the MCS in the simulation. The
maximum vertical velocity is used as an indicator of con-
vection intensity. Between 02:00 and 08:00 UTC, before
the triggering of the MCS, the maximum vertical velocity
did not exceed 1 m s−1 (shallow convection) in the low- and
mid-troposphere (3 km, 6 km and 9 km) and no precipitation
was produced. The maximum vertical velocity began to in-
crease around 12:00 UTC in the lower levels, and reached
13 m s−1 at 3 km altitude at 20:00 UTC. Some oscillations
of the maximum vertical velocity between 15 and 40 m s−1

can be seen at 12 and 15 km altitude between 16:00 and
21:00 UTC. The precipitation was initiated at 13:00 UTC,
peaked at 19:00 UTC (0.6 mm h−1), then decreased rapidly
at 23:00 UTC after the MCS moved out of the sub-domain.

Between 02:00 and 08:00 UTC, the small vertical veloci-
ties simulated in the low- and mid-troposphere changed the
concentration of TR1, TR2, TR3 and TR4 in their initial
layer or immediatly above or below. However, the con-
centrations of tracers TR1, TR2 and TR3 were durably af-
fected by this shallow convection at the lower levels (3 km).
Above, the concentrations almost restored their initial value
after 08:00 UTC. As soon as deep convection was triggered
(∼12:00 UTC), concentration of tracers decreased in their
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Fig. 8. Time evolution of the tracers mixing ratios (nmol mol−1)
on 15 August 2004, TR1 (black), TR2 (red), TR3 (blue), TR4
(green) and TR5 (yellow) for five altitudes (15 km, 12 km, 9 km,
6 km and 3 km altitude). Black dashed and grey solid lines are max-
imum vertical velocity (m s−1) and instantaneous precipitation rate
(mm h−1), respectively. The parameters are averaged over the sub-
domain (16.6–19.0◦ N ; 6.4–9.0◦ E).

initial layer. TR1 was the most effectively transported up-
ward tracer with concentrations of 0.35, 0.13, 0.10, 0.26
and 0.14 nmol mol−1 at 3, 6, 9, 12 and 15 km, respectively.
Mid-tropospheric TR2, TR3 and TR4 contributed very lit-
tle to the airmass composition at 15 km height but all three
enriched the atmosphere between 3 km and 12 km. TR5

Fig. 9. Tracers concentrations (nmol mol−1) vertical profiles on
15 August 2004 at 02:00 UTC before the MCS triggering(a) and at
19:00 UTC in the convective(b) and stratiform(c) regions. In(a),
the concentrations are averaged over the sub-domain (16.6–19.0◦ N;
6.4–9.0◦ E). The convective and stratiform regions are defined as
areas with instantaneous precipitation rate higher and lower than
5 mm h−1, respectively.

was not transported to the lowest levels. Most of the peaks
in the tracer concentration at each level occurred between
18:00 UTC and 20:00 UTC, which corresponds to the peaks
of vertical velocity. An exception is the tracers concentration
at 12 km that reached a plateau from 20:00 UTC onwards.
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In the following, we will focus on the tracers transport at
19:00 UTC, the moment of the maximum upward velocities.

4.1.2 Vertical distribution of the tracers

At 19:00 UTC, in the convective region, the concentration of
each tracer (Fig.9b) in its original layer has decreased from
the initial state (Fig.9a). TR1, TR2, TR3 and TR4 are now
distributed over the whole cloud height, from the ground up
to 18 km altitude. TR1 was efficiently transported by the con-
vective updrafts in altitude, with a first maximum at 2.5 km
(0.57 nmol mol−1), above the upper limit of its initial layer,
and a secondary one at 14 km (0.43 nmol mol−1). The atmo-
spheric layer between 12 and 15 km corresponds to the main
convective outflow region characterized by strong vertical
velocity (Fig.8). TR2, TR3 and TR4 show a similar verti-
cal distribution, with a first maximum close to their initial al-
titudes, at 4 km (0.28 nmol mol−1), 6 km (0.36 nmol mol−1)
and 8 km (0.35 nmol mol−1), respectively, and a second peak
at 13–14 km altitude (∼0.16 nmol mol−1). It is worth noting
that TR2, TR3 and TR4 concentrations were increased near
the ground (0.25, 0.20 and 0.06 nmol mol−1, respectively) as
a direct consequence of the downdrafts in the convective re-
gion. The UT/LS tracer TR5 exhibits a well marked mini-
mum (0.15 nmol mol−1) at the main cloud detrainment level,
between 13–14 km altitude. This minimum signs the convec-
tive upward transport of TR5 poor air masses from the lower
levels. Above the cloud (20 km), the concentration of TR5
is almost 1 nmol mol−1 which shows that air at this altitude
was weakly affected by the MCS dynamics. The redistribu-
tion of tracers by the MCS reveals that the upper troposphere
was fed not only by boundary layer air masses (TR1) but
also by mid-tropospheric air masses (TR2, TR3 and TR4).
For example, at 14 km, in the detrainment cloud anvil, for a
total tracer mixing ratio of 0.90 nmol mol−1, half of it origi-
nates from the mid-troposphere between 2 and 10 km altitude
(Fig. 9). This result highlights the role of mid-tropospheric
entrainment in convective systems already shown inMari
et al. (2000), Mari et al. (2003) and Lopez et al.(2006),
and questions the simplified approach for the convection ef-
ficiency calculation based on boundary layer and upper tro-
pospheric concentrations only (Cohan et al., 1999; Bertram
et al., 2007).

In the stratiform region (Fig.9c), the vertical profiles of
the tracers concentration are fairly similar to the convection
ones, but some differences may be noted. The secondary
maximum of TR1, TR2, TR3 and TR4 concentration in the
12–15 km altitude layer corresponds to the rearward out-
flows detrainment and is significantly reduced compared to
the convective region. At this altitude, the minimum of TR5
concentration is less pronounced than in the convective re-
gion. It is worth noting that about the same concentrations of
each tracer are found at the ground. It is also interesting to
note that TR2, which was initialized in the AEJ layer has the
lowest contribution above 5 km in both the convective and

stratiform region in accordance withLafore and Moncrieff
(1989).

4.1.3 Analysis of the tracer transport across the MCS

To investigate which dynamical features are responsible for
such vertical distributions of the tracers, the tracer trans-
port along with the wind component across the MCS are
analyzed. Figure10 shows the perturbation of the hori-
zontal component of the wind from the initial wind field at
19:00 UTC. In the low levels, there is a rear-to-front pertur-
bation both at the front and at the rear of the system. This
is different from the numerical results ofLafore and Mon-
crieff (1989) who found a rear-to-front low level perturba-
tion associated with the rotor, and a front-to-rear low level
perturbation at the leading edge of their 2-D simulated MCS.
Here, a first system was located only 100 km ahead of the
studied MCS and therefore may influence the circulation be-
hind it. This rear-to-front flow below 5 km in the stratiform
region can explain the concentration of TR2, TR3 and TR4
at the ground (Fig.9). A front-to-rear flow between 2.5 and
6 km altitude was found ahead of the MCS in agreement with
Lafore and Moncrieff(1989). Above 10 km, one can observe
an horizontal divergence that acted to reduce (intensify) the
TEJ behind (ahead) of the MCS (at the horizontal distance of
190 km in Fig.10).

The front side of the two successive systems gives an
overview of the tracer distribution before the MCS pas-
sage. The tracers mainly remained unperturbed with max-
imum concentration in the middle of their initial layer
>0.9 nmol mol−1, but in a broader region. An exception is
that TR2 can be found down to the ground with concentration
∼0.1 nmol mol−1 between the ground and the lower limit of
its initial layer (Fig.10). This is in agreement with the find-
ing of Fig.9 that shows the shallow convection in the morn-
ing that acted to disperse the low level tracers just below and
above their initial layers.

Inside the main MCS, the five tracers were present in the
anvil in various concentrations. TR1 was transported up-
ward in the updrafts and diluted by the divergence above
10 km altitude in the front and rear anvils. TR1 shows sig-
nificant values in the anvil (0.4 nmol mol−1) while its con-
centration varies between 0.2 and 0.8 nmol mol−1 in its ini-
tial layer inside the cloud. While traces of TR2, TR3 and
TR4 are present in the anvil, their concentrations (∼0.1–
0.2 nmol mol−1) are less important than TR1. Thus, TR1
is the tracer the most efficiently transported in altitude with
concentrations 3 to 4 times more important than the other
tracers in the anvil. The UT/LS tracer TR5 was “pushed”
upward by the updrafts and the associated upper level di-
vergence, and consequently, low concentrations of TR5 are
found in the anvil (<0.2 nmol mol−1) while a very strong
gradient of concentration is observed at the edge of the cloud.
The relatively high concentration of TR5 at the front of the
system at 8–10 km altitude may be due to a downdraft located
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Fig. 10. Vertical cross section along the propagation axis (segment [A1 A2] in Fig.6) of the tracers concentration (nmol mol−1) and of the
perturbation of the horizontal component of the wind velocity from the initial wind field (dashed and dotted patterns are for the positive and
negative values, respectively) on 15 August 2004 at 19:00 UTC. The contours for the horizontal wind perturbation are plotted at± 1.5 m s−1.
The black solid line shows the cloud contour.

just ahead of the convective updraft and originating from
the evaporation of ice crystals falling from the leading anvil
(Lafore and Moncrieff, 1989; Roux, 1988). It is worth noting
that the simulated convective system does not show signifi-
cant downward transport of upper tropospheric tracer below
5 km. This result is in contradiction with the recent works
of Grant et al.(2008) andHu et al.(2010) who explain the
increase of surface ozone by an efficient downward transport
from the upper troposphere.

The tracers have different vertical distributions after the
MCS passage. Lowest levels tracers TR1 and TR2 were sig-
nificantly reduced in their initial layers (<0.6 nmol mol−1).
The decrease of post-convective mixing ratios for TR3, TR4
and TR5 is less important and these tracers remained trapped
in slightly thinner stratified layers compared to initial ones.
At the rear of the system, the front-to-rear perturbation be-
tween 1.5 km and 5 km altitude overlays a front-to-rear per-
turbation. Thus the tracers present in the [1.5–5] km layer
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(TR1 and TR2) may also enter the system from the rear with
the mesoscale inflow. A fraction of these tracers was then
expelled rearward by the downward outflow. As inLafore
and Moncrieff(1989), a larger proportion of TR2 and TR3
was transported downwards, whereas a smaller proportion of
these tracers was transported upwards.

4.2 Redistribution of the lightning-produced NOx
tracer

A tracer was also introduced to mimic the NOx produced by
lightning (hereafter called LiNOx). A crude LiNOx param-
eterization was used in the inner domain. When the maxi-
mum vertical velocity reached a threshold value (∼15 m s−1)
(Barthe and Barth, 2008) and the three ice categories (ice
crystals, snow and graupel) were present in the cloud, the first
lightning was triggered with a lag of 8 min to mimic the time
necessary for the building of the electric field (Barthe and
Pinty, 2007). A mean flash rate of 10 flashes per minute was
fixed. Assuming a mean flash length of 100 km, the points
where NO molecules are distributed were randomly chosen
among the points where ice hydrometeors were present. The
number of NO molecules distributed at each grid point de-
pended on the flash length and altitude followingWang et al.
(1998). The aim of this parameterization was to see how a
tracer initially located or produced in the convective core of
the MCS is redistributed in the whole system.

The LiNOx tracer was present in the whole anvil with two
distinct maxima at the front (1 nmol mol−1) and at the rear
(0.9 nmol mol−1) of the system in relation to the upper level
divergence. In the convective region, LiNOx were only found
above 8 km altitude, with the maximum concentration in the
front anvil. Since they were produced in the iced region of
the cloud (above the 0◦C isotherm), this tracer behaves like
TR3, TR4 and TR5 which were uplifted by the convective
updraft, then depleted from the convective core. In the strati-
form part, LiNOx can be produced locally or advected from
the convective region by the front-to-rear flow. A small part
of the LiNOx tracer was transported to the ground, probably
by the mesoscale rear-to-front downdraft.

In order to decide between local production and advection
from the convective core in the front and rear anvil, new sim-
ulations with a LiNOx parameterization or an explicit elec-
trical schemes might be conducted.

4.3 Cloud-scale budgets of tracers transport

In order to study the separate role of convective and strati-
form components of the MCS in the three-dimensional air-
flow patterns and transport efficiency, a cloud-scale budget
was calculated every hour from 16:00 to 21:00 UTC. Convec-
tive and stratiform box regions for budget calculation were
defined as rectangular areas in which instantaneous precipi-
tation exceeds 5 mm h−1 and is less than 5 mm h−1, respec-
tively. An example of such boxes is shown at 19:00 UTC

on Fig.6. The orientation of the boxes is defined according
to the propagation axis of the MCS. The massMz (kg s−1)
of air transported vertically through a horizontal rectangular
areaA per unit time is expressed as:

Mz(z) = ρ(z)w(z)A

whereρ is the air density andw the vertical velocity overA at
the reference levelz. Mz is commonly called the convective
mass flux. The net vertical massFz can be calculated as the
differential mass transport between two horizontal surfaces
A separated by a vertical height1z (Chong et al., 1987):

Fz(z+1z/2) = Mz(z)−Mz(z+1z)

The differential horizontal mass transportsFx and Fy
(kg s−1) through the respective vertical sectionsLy1z and
Lx1z can be calculated in a similar way.Fx andFy are the
horizontal flux convergence components perpendicular and
parallel to the MCS respectively. Positive (negative) value
of Fx, Fy, Fz indicates a net convergence (divergence). In
the following −Fz is discussed in terms of horizontal flux
convergence (divergence) if positive (negative). Horizontal
fluxes are calculated using the system-relative horizontal ve-
locity components, but their divergence is independant of the
propagation speed.

Figure11 shows the vertical profiles of the air mass flux
and mass flux convergence components in the convective
and the stratiform regions each hour from 16:00 UTC to
21:00 UTC. First, the air mass flux and mass flux conver-
gence components in the convective region are examined. At
all times, the convective mass flux indicates a general upward
mass transport (Mz > 0) which decreases rapidly around
15 km altitude. Below 4 km, the horizontal flux convergence
(−Fz > 0) at every time was mainly driven by perpendicu-
lar (front-to-rear) flux convergence (Fx > 0). Above 10 km
altitude, the perpendicular flux diverges (Fx < 0) except at
20:00 UTC at the end of the MCS lifetime. This leads to a
strong decrease of the upward mass transportMz. Detrain-
ment in the upper troposphere above 10 km altitude is seen
during the first four hours of the cloud lifetime. It is worth
noting that detrainment also occurs in the mid-troposphere
between 3 km and 10 km altitude. The maximum of detrain-
ment was obtained at the early stage of the cloud formation
(16:00 UTC) with 110×109 kg s−1 of air detrained back to
the environment in the upper troposphere, and at the end of
the MCS lifetime (20:00 UTC) with 115×109 kg s−1 of air
detrained back to the environment in the mid-troposphere.
At 16:00 UTC, only 41 % of the air detrained above 10 km
originated from the lower levels of the troposphere. Below
5 km, parallel fluxes contribute mainly to the detrainment of
air out of the cloud. At 16:00 and 18:00 UTC, the vertical
profile of the parallel flux above 10 km signs entrainment of
surrounding air (Fy > 0) in the upper part of the cloud by par-
allel fluxes. Parallel fluxes can also have an opposite effect
and contribute to increase the net detrainment rate in the up-
per troposphere (19:00 UTC). At the end of the MCS lifetime
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Fig. 11. Result of mass transport budget of the MCS in the convective (two columns left) and stratiform (two colums right) regions every
hour from 15 August 2004 at 16:00 UTC to 21:00 UTC (1st and 3rd column). Vertical profile of air mass fluxMz in 109 kg s−1 (2nd and
4th column). Vertical profiles of line-transverseFx (red), line-parallelFy (blue) and vertical−Fz (black) mass fluxes convergences in
109 kg s−1. The grey arrows represent the entrainment/detrainment air mass fluxes (in 109 kg s−1).

(20:00 UTC), there was only one maximum of detrainment in
the mid-troposphere, while two maxima of entrainment were
simulated in the lower and upper troposphere.

The stratiform region is characterized by downdraft flows
below 5 km altitude and upward flows above. From
18:00 UTC, downdraft transport occurs above 14 km. Con-
vergence in the stratiform region between 3 km and 7 km is
driven by both parallel and transverse fluxes (Fx andFy > 0)
at each time, as already shown byRoux and Sun(1990).

The layer of convergence between 2.5 and 10 km, with di-
vergence both above and below this layer, was also observed
by Gamache and Houze(1982) andChong et al.(1987). At
each time, the upper level divergence (17–36×109 kg s−1) is
higher than the lower level divergence (58–165×109 kg s−1).
The line-parallel flux convergenceFy has a large contribution
between 3 and 9 km altitude, in particular from 18:00 UTC.
This means that the lateral inflows contribute significantly to
the mesoscale updraft and downdraft.
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5 Conclusions

This study analysed the 3-D simulated mass transport from
the troposphere to the upper troposphere associated with a
MCS over Niger, east of Niamey on 15 August 2004. A MCS
was triggered ahead of a trough, in a region with large humid-
ity in the low levels associated to the southwesterly monsoon
flow, and dry air at 700 hPa. This MCS originated from the
Aı̈r mountains on 15 August and propagated southwestard.

In order to have an integrated view of entrainment and de-
trainment flows associated with the convective system, five
passive tracers were initially confined within horizontal ho-
mogeneous layers. In the low levels, TR1 and TR2 originated
from the monsoon layer and from the dry AEJ layer, respec-
tively. TR1, which originated from the boundary layer, was
the tracer the most efficiently transported upward. Its con-
centration in the anvil was 3 to 4 times higher than the con-
centration of the four others. TR2 had the lowest contribution
above 5 km altitude in both the convective and stratiform re-
gions. After the MCS passage, TR1 and TR2 concentrations
were significantly reduced in their original layer. They were
found in a broader layer extending between the ground and
5.5 km altitude.

The mid-tropospheric tracers TR3 and TR4 mixing ratios
after the MCS passage peaked in their initial layer and around
13–14 km altitude, in both the convective and stratiform re-
gions, emphasizing the role of mid-tropospheric air in feed-
ing the upper troposphere. All mid-tropospheric tracers were
efficiently transported by convective downdrafts with conse-
quent increase of their concentrations at the surface.

The UT/LS tracer, TR5, was almost not transported down
to 5 km altitude. Since the concentration of TR5 at 20 km al-
titude was similar to its initial value, this means that air at this
altitude was not significantly affected by the MCS. The main
feature of TR5 vertical distribution is the minimum simulated
in the upper troposphere due to the convective upward trans-
port of TR5 poor airmasses from the boundary layer. TR5
was not efficiently entrained into the cloud, and recovers its
initial value once the MCS has passed. This suggests that the
polluted air masses transported by the TEJ from the Asian
continent through the Indian ocean are not significantly af-
fected by the MCS.

Compared to previous modeling studies of tracer transport
in a tropical MCS (Lafore and Moncrieff, 1989; Yasunaga
et al., 2004), the simulation of this MCS was realized in 3-
D, allowing to investigate the role of the lateral inflow. It
was shown that the along-line component of the flux con-
tributes significantly to the mesoscale updraft and downdraft
between 3 and 9 km altitude in the stratiform region. Two
peaks of detrainment were simulated both in the convective
and the stratiform regions. However, if the higher peak was
at about the same altitude (10–15 km) in the two regions, the
second peak was located in the mid-troposphere (5–10 km)
in the convective region, and at low levels (0–2 km) in the
stratiform region. The relative importance of mid-level de-

trainment and entrainment highlighted in this study is still
a challenging issue for current convective parameterizations
(Mari et al., 2000; Liu et al., 2001; Barret et al., 2010). Sub-
stantial entrainment of mid-level air in the convective column
reduces the fraction of boundary layer air contained in the
upper tropospheric convective outflow. This result directly
questions the classical calculation of convective enhance-
ment factor only based on upper tropospheric and boundary
layer mixing ratios.

It is worth noting that our findings are based on the sim-
ulation of a single case study with only one cloud-resolving
model. Different flux and concentration values would be ex-
pected if different resolutions (vertical and horizontal) are
used. For simulations with parameterized deep moist con-
vection, the choice of the convection parameterization would
also be of importance (Arteta et al., 2009; Tost et al., 2010).

The numerical strategy developped in this work will be ap-
plied to further interpretation of the impact of West African
MCSs on atmospheric chemical composition in the frame-
work of the AMMA program.
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