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ABSTRACT
Direct detection of low-frequency gravitational waves (GWs, 10−9 to 10−8 Hz) is the main goal
of pulsar timing array (PTA) projects. One of the main targets for the PTAs is to measure the
stochastic background of gravitational waves (GWB) whose characteristic strain is expected
to approximately follow a power-law of the form hc(f ) = A(f /yr−1)α , where f is the GW
frequency. In this paper we use the current data from the European PTA to determine an upper
limit on the GWB amplitude A as a function of the unknown spectral slope α with a Bayesian
algorithm, by modelling the GWB as a random Gaussian process. For the case α = −2/3,
which is expected if the GWB is produced by supermassive black hole binaries, we obtain
a 95 per cent confidence upper limit on A of 6 × 10−15, which is 1.8 times lower than the
95 per cent confidence GWB limit obtained by the Parkes PTA in 2006. Our approach to the
data analysis incorporates the multitelescope nature of the European PTA and thus can serve
as a useful template for future intercontinental PTA collaborations.

Key words: gravitational waves – methods: data analysis – pulsars: general.

1 IN T RO D U C T I O N

The first direct detection of gravitational waves (GWs) would be
of great importance to astrophysics and fundamental physics: it
would confirm some key predictions of general relativity, and lay the
foundation for observational GW astronomy. Pulsar timing arrays
(PTAs) are collaborations which aim to detect low-frequency (10−9

to 10−8 Hz) extragalactic GWs directly, by using a set of Galac-

�E-mail: haasteren@strw.leidenuniv.nl

tic millisecond pulsars as nearly perfect Einstein clocks (Foster &
Backer 1990). The basic idea is to exploit the fact that millisecond
pulsars create pulse trains of exceptional regularity. GWs perturb
Space–time between the pulsars and the Earth, and this creates de-
tectable deviations from the strict periodicity in the arrival times
of the pulses (TOAs) (Estabrook & Wahlquist 1975; Sazhin 1978;
Detweiler 1979).

One of the main astrophysical targets of the PTAs is to mea-
sure the stochastic background of gravitational waves (GWB). This
GWB is expected to be generated by a large number of black hole
binaries located at the centres of galaxies (Begelman, Blandford &
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Figure 1. The processing pipeline for pulsar timing, step by step.

Rees 1980; Phinney 2001; Jaffe & Backer 2003; Wyithe & Loeb
2003; Sesana, Vecchio & Colacino 2008), by relic BWs (Grishchuk
2005), or, more speculatively, by oscillating cosmic-string loops
(Damour & Vilenkin 2005; Ölmez, Mandic & Siemens 2010).

Currently, there are three independent PTA groups.

(i) The Australian-based programme PPTA, the Parkes PTA,
which uses data from the Parkes Telescope (Hobbs et al. 2009;
Verbiest et al. 2010) and archival Arecibo data.

(ii) The North-American based programme NANOGrav, North-
American Nanohertz Observatory for GWs, which uses both the
Green Bank Telescope (GBT) and the Arecibo radio telescope (Jenet
2009).

(iii) And the European programme European PTA (EPTA) which
uses five different radio telescopes: the Lovell telescope near
Manchester, United Kingdom, the Westerbork Synthesis Radio
Telescope (WSRT) in the north of the Netherlands, the Effels-
berg Telescope (EFF) near Bonn in Germany, the Nançay Radio
Telescope (NRT) near Nançay in France and the Sardinia Radio
Telescope (SRT) in Sardinia, Italy.1

It is likely that the first detection of GWs by a PTA will occur as
a result of a joint effort of all current PTA projects: an International
Pulsar Timing Array (IPTA; Hobbs et al. 2010). This will involve
the combination of data from several different telescopes, each of
them with its own specific hardware elements and software
analysis tools. Combining data of different observatories is a chal-
lenging task, which requires extra care when dealing with the high-
quality data of modern observatories (Janssen 2009).

In this EPTA paper, we present a methodology on how to combine
the data from several radio telescopes and use it in an optimal way to
obtain the information on extragalactic GWs. We use the data from
three different radio telescopes located on the European continent,
to place a new upper limit on the amplitude of the GWB. As part
of our analysis, we obtain detailed information about the statistical
properties of the individual pulse time series.

The calculation of upper limits on the GWB, based on pulsar
timing, go as far back as the early 1990’s (Stinebring et al. 1990;
Kaspi, Taylor & Ryba 1994; McHugh et al. 1996; Lommen 2002).

1 The SRT is expected to become operational in 2011 (Tofani et al. 2008).

These analyses have been based on high quality data sets for sin-
gle millisecond pulsars. The most stringent upper limits have been
obtained recently by Jenet et al. (2006), who have used PPTA data
and archival Arecibo data for several millisecond pulsars. Our data
set is different from that used by Jenet et al. (2006) since it includes
only the pulse times of arrival measured by the EPTA Telescopes,
even though some of the pulsars are being timed by multiple PTA
groups. The Bayesian algorithm we use to obtain an upper limit on
the GWB is also different from the algorithms used by all of the
previous studies. Its potential advantages include the use of cross
correlations between TOAs of different pulsars, and the simulta-
neous constraint on both the amplitude and spectral index of the
GWB.

The outline of the paper is as follows. In Section 2 we give a
brief general overview of pulsar timing observations. In Section 3
we detail the observations from all of the EPTA telescopes which
were used for this paper’s analysis. We outline the data analysis
procedure in Section 4, after which, in Section 5, we present the
upper limits on the amplitude of the GWB, and also the spectral
analysis of the individual pulsar noises. Finally, in Section 6 we
discuss the astrophysical implications of our results.

2 EPTA DATA A NA LY SIS

In this section we present a brief overview of the observations,
instrumentation and data analysis used at the different EPTA obser-
vatories for transforming a series of measured pulses to a TOA.

The complete data reduction process that converts the incoming
data stream from a radio telescope into one single TOA per obser-
vation, called ‘the pipeline’, is optimized by hand with much care
and is observatory specific. The process can be described in five
general steps, shown in Fig. 1:

(1) the incoming radio waves are received by the telescope,
(2) the signal is converted from analog to digital, at a Nyquist

sampled rate,
(3) data are (coherently) dedispersed and, if possible, Stokes pa-

rameters are formed,
(4) the dedispersed time-series are folded at the pulsar period,

resulting in averaged pulse profiles. Typically a time span containing
several 105 pulses is used for each TOA,
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(5) a cross-correlation with a template pulse profile yields a TOA
and associated uncertainty (Taylor 1992).

Individual pulse amplitudes and pulse shapes are highly irregular,
and pulse phases vary significantly from pulse to pulse (Cordes &
Shannon 2010). Therefore careful averaging (folding) has to be
performed to obtain a single TOA. Furthermore, the interstellar
medium (ISM) results in significant delays of the arrival time of
the pulses over the receiver bandwidth. As a large bandwidth is
required to reliably detect a pulse, accounting for the ISM is key for
precision timing.

Differences in templates used, e.g. the use of integrated profiles
versus analytic templates, all based on single-observatory data, and
the difference in definition of the reference point in a template will
result in offsets between data sets generated by different observa-
tories. All extra offsets in our data will lead to information loss
of other signals like the GWB. Therefore, using a common tem-
plate for each pulsar at all observatories is desirable, and will be
implemented in the near future.

The realization of the five steps and therefore their output (the
resulting TOA) might differ among observatories. Understanding
and accounting for those differences is essential for the correct
analysis and optimal combining of the EPTA data. A more detailed
study on this subject is in preparation (Janssen et al., in preparation).

The cross-correlation between the folded profile and the template
yields an uncertainty of the TOA (Taylor 1992). One would like this
uncertainty to be solely due to the radiometre noise, i.e. the noise
intrinsic to the measurement, but in practice the errors sometimes
appear to have been systematically over- or under-estimated. It is a
common practice, which we follow here, to allow for an extra pa-
rameter to multiply these uncertainties for each pulsar-observatory-
backend combination (Hobbs & Edwards 2006). This extra multi-
plicative factor allows the TOA uncertainties to statistically account
for the TOA scatter: the deviations of the strict periodicity of the
pulses. This is clearly unsatisfactory, and in future timing experi-
ments the origin of the predicted and measured TOA scatter will
have to be thoroughly investigated.

3 EPTA O BSERVATIONS

3.1 Overview of the observatories

We have used pulsar timing observations of five radio pulsars, ob-
served with three of the EPTA telescopes, to set a limit on the GWB.
See Table 1, Fig. 2 and the appendix for an overview of the data sets
used and the properties of each telescope. Each pulsar was ob-
served on average once every month for 30 min at each telescope.
Although additional observing frequencies are commonly used at
WSRT and EFF, their respective 1380- and 1400-MHz observing
bands have the best sensitivity and result in the highest precision

Figure 2. The timing residuals of all the pulsars used in the GWB limit
calculation. The time in MJD is shown on the x-axis. On the left of the
dot–dashed line we have placed a sample residual with an uncertainty of
1 µs.

TOAs. Therefore we have only used observations taken at those fre-
quencies at WSRT and EFF for the analysis presented in this paper.
The data were either coherently dedispersed (NRT and EFF) or in-
coherently dedispersed (WSRT). The observations were folded and
cross-correlated with an analytic template (EFF), or a high signal to
noise ratio, observatory specific, template (WSRT and NRT), to cal-
culate one time-of-arrival (TOA) per observation. See e.g. Lazaridis
et al. (2009) for a more complete description of the observing pro-
cedures and data analysis at the different observatories.

As discussed, any change to the pipeline or to the input of the
pipeline can result in a difference in the calculated TOAs. We em-
phasize that it is essential to correctly identify these systematic
effects and include them in the modelling of the TOAs. In our anal-
ysis, we have done this by introducing jumps between TOAs of the
same pulsar anywhere the pipeline differs in some way.

Once the complete set of data for each pulsar is obtained, and cor-
rected for global drifts by comparing to UTC, it is fit with the timing
model. The timing model is a multiparameter fit that represents our
best knowledge of the many deterministic processes that influence
the values of the TOAs. The timing residuals are then produced
by subtracting the timing model, which is subsequently optimized
by minimizing these residuals through a least-squares fit. This was
done using the pulsar timing package TEMPO2 (Hobbs, Edwards &
Manchester 2006).

Table 1. Details of the different EPTA observatories relevant for this work. The NRT observing
bandwidth has doubled to 128 MHz in 2009 July.

Telescope WSRT NRT EFF

Equivalent dish size (m) 93.5 94.4 100
Centre observing frequencies (MHz) 1380 1398, 2048 1400

Observing bandwidth (MHz) 80 64/128 28–112
Obs. time per month per pulsar 1 × 30 min 4–6 × 60 min 1 × 30 min

Pulsar backend PuMaI BON EBPP
Dedispersion incoherent coherent coherent

Used templates integrated profiles integrated profiles analytic

C© 2011 The Authors, MNRAS 414, 3117–3128
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3.2 Selection of data sets

The European observatories have been timing millisecond pulsars
for many years, and potentially all of that data could be used in
the calculation of an upper limit on the GWB. However, like Jenet
et al. (2006) we choose to use only the data from the pulsars which
perform best as ideal clocks, e.g. those with the highest precision
TOAs and the most straight-forward noise characteristics.

TOA precision is not the only factor that determines the sensitivity
to the GWB; other factors like the total timing baseline and the
number of observations (i.e. TOAs) affect this sensitivity as well.
A great advantage of the EPTA data is that several pulsars have
been monitored for a relatively long time: over 10 yr. To determine
which timing residuals (i.e. pulsar-observatory combinations) are
most useful for GWB detection, we analyse each data set separately.
By doing this we can determine the sensitivity to the GWB of a set
of TOAs: the lower the 3σ upper limit hmax

c (1 yr) we get using only
a particular set of TOAs, the more sensitive that set of TOAs is to
the GWB.

The timing residuals of the selected pulsars are shown in Fig. 2.
These five pulsars significantly outperform the other pulsars being
timed by the EPTA in terms of how well they can limit the GWB
amplitude: these five pulsars can each individually limit the GWB
well below hc(1 yr) = 10−13 for α = −2/3, whereas other current
EPTA data sets typically perform worse by a factor of several. Since
there is such a difference between this set of five pulsars, and the
other pulsars that have been observed by the EPTA, we do not
expect to gain any significant sensitivity by including more pulsars
that cannot meet this constraint. We therefore choose hmax

c (1 yr) ≤
10−13 with α = −2/3 as a constraint for including a data set in our
calculation.

In addition to this constraint, we also demand that data sets that
just barely satisfy hmax

c (1 yr) ≤ 10−13 do not show prominent low-
frequency (‘red’) timing noise. Our criterion for presence of the
latter is a peak in the posterior distribution which is inconsistent
with zero amplitude for α ≤ 0.

4 DATA A NA LY SIS

The analysis presented in this paper broadly follows the procedure
introduced in van Haasteren et al. (2009, vHLML). The vHLML
Bayesian algorithm relies on creating the parametrized models of
the timing residuals, and forming a probability distribution function
(PDF) as a function of the model parameters. All known systematic
contributions of known functional form should be included in the
model. In the examples used by vHLML the model for the sys-
tematic errors included only the quadratic contribution to the TOAs
from pulsar spin-downs. The multitelescope nature of the EPTA re-
quires more complete models for timing residuals than the one used
in vHLML. In this section we show how to build and implement
these models in practice.

We first briefly review the algorithm of vHLML in Section 4.1
and 4.2. We then present the extended model we use for the analysis
of the TOAs in Section 4.3, after which we show how we handle
TOAs coming from different observatories in Section 4.4.

4.1 Brief review of the vHLML algorithm

The set of TOAs from all pulsars forms the basic input used in
the Bayesian data analysis. Many processes influence the measured
TOA values; in this work we discriminate between deterministic
processes, like quadratic spin-down, and stochastic processes, like

timing noise:

tobs
(ai) = tdet

(ai) + δt stoch
(ai) , (1)

where tobs
(ai) represents the ith TOA of pulsar a, tdet

(ai) is the correspond-
ing contribution to the TOA solely due to deterministic processes,
and δt stoch

(ai) is the contribution due to stochastic processes.
The effects of deterministic processes are described by the set

of model parameters η: tdet
(ai) = tdet

(ai)(η). As is done in vHLML, we
assume that the stochastic processes are Gaussian, though their
spectra are not necessarily white. In such a model, the stochastic
processes can be represented by the correlation matrix〈
δt stoch

(ai) δt stoch
(bj )

〉
= C(ai)(bj ) = C(ai)(bj )(ξ ), (2)

where ξ are the model parameters.
The key distribution used in a Bayesian analysis is the likelihood

function, the probability distribution of the data for a given model
and its parameters. As described in vHLML, for PTAs the likelihood
takes the following form:

L (θ ) = P (δ t |θ ) = 1√
(2π)n det C

× exp

[
−1

2

∑
(ai)(bj )

(
tobs

(ai) − tfit
(ai)

)
C−1

(ai)(bj )

(
tobs

(bj ) − tfit
(bj )

)]
, (3)

where θ = (η, ξ ), and δ t is the difference between the observed
TOAs, and the fitted TOAs. A Bayesian analysis assigns prior dis-
tributions P0(θ ) to the model parameters, and explores the param-
eter space of the posterior distribution (short-handed simply as the
posterior): P (θ |δ t) = L(θ )P0(θ ).

4.2 Obtaining a marginalized posterior distribution

The posterior P (θ |δ t) contains information about all model param-
eters. We need to express the posterior as a function of only those
parameters that represent the GWB. This process is called marginal-
ization, and consists of integrating over all other parameters. The
resulting marginalized posterior is the posterior probability density
of the GWB parameters.

Marginalization of a posterior in a high-dimensional parame-
ter space is non-trivial, and a direct numerical integration is pro-
hibitively computationally expensive. As in vHLML, we employ
a mix of analytic integration and Markov Chain Monte Carlo
(MCMC) methods to accomplish this. The marginalization remains
the computational bottleneck for the method’s effectiveness, as the
computational time scales with n3, with n the total number of TOAs
to be analysed.

A computational shortcut can be used by analytically marginaliz-
ing over the parameters of the timing model. As shown in vHLML,
this is possible provided that the parameters represent signals of
known functional form. This condition is equivalent to the require-
ment that the timing residuals generated by the timing model are
linear with respect to its parameters: δt = d(α − α̂), where δt is the
timing residual, d is a proportionality constant, α̂ is the best-fitting
value for the model parameter and α is the model parameter. While
this is always true for quadratic spin-down as considered explicitly
in vHLML, it is generally not true for other timing model parame-
ters. However, when the deviations of the timing model parameters
from their best-fitting values are small, it is a good approximation
that the residuals generated by the timing model are linear with re-
spect to the deviations from their best-fitting values: δt ≈ d(α − α̂).

Analytically marginalizing over the timing model is therefore
possible, and by doing so the number of parameters that must be

C© 2011 The Authors, MNRAS 414, 3117–3128
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integrated over numerically by the use of MCMC is reduced greatly.
Dependent on the model we use to describe the statistics of the
timing residuals, the number of parameters left to explore is then just
several per pulsar/backend combination. The results of the analysis
can be presented as a marginalized posterior as a function of any
parameter in the model, provided that this parameter was present in
the MCMC run.

4.3 Used model for the TOAs

We divide the actual parametrization in three parts:

(a) The deterministic timing model.
(b) The GW background.
(c) Other stochastic processes (e.g., timing noise).

In this section we discuss how we have taken these into account
in our data analysis.

As a first step, the TOAs are processed using the software package
TEMPO2, in order to determine the best-fitting timing model. This
procedure consists of the following steps:

(1) TEMPO2 requires an initial guess α0i for the timing model
parameters αi in order to find timing residuals (pre-fit timing resid-
uals).

(2) It then constructs an approximation to the timing model, in
which the timing residuals depend linearly on αi − α0i.

(3) It finds the best-fitting αi within this linear approximation,
and uses those values to update the timing residuals using the full
non-linear timing model (post-fit timing residuals).

(4) The newly obtained parameters and corresponding timing
residuals are then judged by the person performing the model fitting,
and if determined necessary the newly obtained parameters can act
as the initial guess for a new fitting iteration. TEMPO2 also allows
adjustment and fitting of αi one by one.

Finding the timing solution with TEMPO2 is not fully algorith-
mic, but typically requires someone experienced with pulsar timing
analysis, who approaches the TOAs fitting in several different ways,
which ensures that phase coherence is maintained and that the rele-
vant deterministic model parameters are included properly. Though
this strategy works well in practice, we should remain conscious
of the possibility that different solutions might be obtained by dif-
ferent observers, who may also choose to include additional model
parameters.2 In the appendix we present the timing solutions we
found for the analysed pulsars. These are the values we used as
our initial guess, α0i. Note that these α0i and their uncertainties,
although created with TEMPO2 using the same data sets that we base
our upper limit on, do not include our model for the red noise. The
values and uncertainties we list in the appendix therefore do not
represent our best estimates if we were to take into account the
red timing noise. Although calculating these best estimates of αi

is reasonably straightforward, these estimates are not accessible in
our MCMC because we have marginalized over these parameters
analytically. The calculated upper limit on the GWB, however, does
include all these effects, and therefore automatically incorporates

2 Qualitatively, experienced observers are rightfully so very confident in their
timing solutions. Quantitatively, however, the only statistical tool currently
available for observers to check whether the timing solution is reasonable
is the reduced χ2 statistic. But since the error bars obtained with the cross-
correlation technique cannot be fully trusted, the same holds for the χ2

statistic.

the removal of power from the low-frequency GW signal by fitting
for the timing model parameters and jumps.

In the above mentioned step 2 where the timing model is lin-
earized, we have made an important simplification that we now de-
scribe in more detail. Since we take into account, and marginalize
over, all timing model parameters in our algorithm, we are effec-
tively working with the TOAs instead of just the timing residuals.
However, the timing model has been linearized by TEMPO2 with re-
spect to αi − α0i. This implies that we need to be sufficiently close
to α0i in the parameter space for this approximation to be valid,
which means that the timing residuals derived with TEMPO2 need
to be approved by the person fitting the data, before using these as
inputs in the Bayesian algorithm.

The stochastic component contributing to the TOAs is character-
ized as follows. First, general relativity describes how the timing
residuals of a pair of pulsars are correlated due to GWs:

ζab = 3

2

1 − cos θab

2
ln

(
1 − cos θab

2

)
− 1

4

1 − cos θab

2
+ 1

2
+ 1

2
δab,

(4)

where θ ab is the angle between pulsar a and pulsar b (Hellings &
Downs 1983). The GWB spectrum is parametrized as a power law
of the form (Maggiore 2000; Phinney 2001; Jaffe & Backer 2003;
Wyithe & Loeb 2003; Sesana et al. 2008):

hc = A

(
f

yr−1

)α

, (5)

were hc is the characteristic strain as used in Jenet et al. (2006), A
is the amplitude of the signal, and α is the spectral index. This then
results in a correlation matrix for the GWB (vHLML):

CGW
(ai)(bj ) = −A2ζab

(2π)2 f 2−2α
L

{
	(−2 + 2α) cos (πα) (fLτ )2−2α

×
∞∑

n=0

(−1)n
(fLτ )2n

(2n)! (2n + 2α − 2)

}
, (6)

where, as in vHLML, τ = 2π|ti − tj |, and fL is a cut-off frequency,
set much lower than the lowest GW frequency we are sensitive to.

Secondly, the stochastic timing noise for each individual pulsar
is split into three components:

(1) Individual errors of TOA determination from the cross-
correlation, represented by the TOA error bars. An extra free pa-
rameter, called the EFAC value, is commonly introduced by pulsar
observers in order to account for possible miscalibration of the
radiometre noise (Hobbs & Edwards 2006); this parameter is a
multiplier for all of the TOA error bars for a given pulsar.

(2) An extra white noise component, independent of the error
bars. This basically acts as extra non-time-dependent noise, and the
parameter is often called an EQUAD parameter.

(3) Red noise, consisting of a power-law spectrum in the tim-
ing residuals. This component allows for structure in the timing
residuals.

All three timing noise components are uncorrelated between the
pulsars.

C© 2011 The Authors, MNRAS 414, 3117–3128
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



3122 R. van Haasteren et al.

The resulting correlation matrices from components 1, 2 and 3,
as derived in vHLML, are given by:

Cerr
(ai)(bj ) = E2

a�t2
(ai)δabδij

CWN
(ai)(bj ) = N 2

a δabδij

CRN
(ai)(bj ) = −R2

aδab

(2π)2 f
2−2αa
L

{
	(−2 + 2αa) cos (παa) (fLτ )2−2αa

×
∞∑

n=0

(−1)n
(fLτ )2n

(2n)! (2n + 2α − 2)

}
, (7)

where Cerr
(ai)(bj ), CWN

(ai)(bj ) and CRN
(ai)(bj ) are the correlation matrices cor-

responding to the error bars, the extra white noise, and the red noise
respectively, with a and b denoting the pulsar number, i and j denote
the observation number, �t is the TOA uncertainty (the error bar)
as calculated in the pipeline, Ea is the scaling parameter of the error
bars for the a’th pulsar (the EFAC factor), Na is the amplitude of
the white noise, Ra is the amplitude of the red timing noise, αa is
the spectral index of the red noise spectrum of pulsar a, and τ is the
time difference between two observations.

4.4 Combining data sets

The previous section gives a complete description of the model
we use to analyse the TOAs of a single pulsar, observed with one
telescope. That model does not yet account for the use of different
observatories. In this section we explain what we do to accomplish
this.

As discussed in Section 2, the reduced data products are (some-
times subtlety) influenced by many different components of the
reduction process. In order to account for slight offsets between
TOAs, introduced by using slightly different reduction procedures
on individual data sets, a calibration term needs to be introduced
when merging TOAs from different observing systems. This ex-
tra calibration term takes the form of a ‘jump’, an arbitrary phase
offset between data sets, which is fit for simultaneously with other
timing model parameters. We use the term data set for any series
of TOAs that can be analysed without a jump. In practice this is
any series of TOAs, of the same pulsar, observed with the same
hardware elements, and processed with the same algorithms, at the
same observing frequency. Here we combine seven such data sets
(those shown in Fig. 2).

Jumps have been used routinely when combining data of different
observatories and/or data recorders (e.g. Janssen 2009). This allows
us to find a single solution for the timing model of a pulsar timed by
multiple observatories. However, the TOAs produced by pipelines
at different observatories may have different statistical properties.
In order to account for this, we allow the stochastic contributions in
our model discussed in Section 4.3 to vary between data sets:

(1) one timing model per pulsar (taken directly from TEMPO2),
(2) jumps between different data sets,
(3) a scaling factor for the error bars (EFAC) for each data set,
(4) an extra white noise component (EQUAD) for each data set,
(5) power-law red noise for each data set.

A major advantage of this approach is that it allows one to detect
statistical differences between observatories that may be introduced
by different algorithms/components, and then use this feedback to
iteratively improve our data sets.

The analysis of the TOAs consists of two steps. In the first step
TEMPO2 is used to find the timing solution for a single pulsar. This
includes possible jumps between data sets. Once the timing solution

is obtained, the results are passed on to the Bayesian algorithm. The
Bayesian algorithm then analytically marginalizes all parameters of
the timing model, including jumps, while using MCMC to explore
the rest of the parameter space.

5 R ESULTS

Now that we have developed the necessary framework to analyse the
TOAs, we apply the algorithm to the observations. In the following
subsections we explain in detail how we selected the five pulsars
that we already mentioned in Section 3.2, and we present the GWB
upper limit we are able to calculate using observations of those
pulsars.

5.1 Selecting the most constraining data sets

For any pulsar, obtaining the timing solution and timing residuals is
the first step after obtaining the TOAs. The timing residuals of the
pulsars used in this work are shown in Fig. 2, and the parameters
of the timing model are shown in the appendix. The timing model
also includes several jumps as some of these pulsars have been
observed with several European telescopes. The timing solutions
we find are quite consistent with the values already published in the
literature. Given that we are solving for 56 parameters, it is to be
expected that one or two parameters deviate at the 2σ level. The only
unexpected outlier we find is the proper motion in right ascension
of J1713+0747, which deviates from Splaver et al. (2005) by over
5σ . Given that we are combining data of several telescopes, and
that we do not take into account our red noise models in listing
these timing solutions, we postpone exploring this difference to
future work where the focus lies on investigating the statistics of
the timing model parameters in the presence of red noise. Such an
investigation is beyond the scope of this manuscript.

With the model of the systematic contributions in place, we first
perform the analysis separately for each of the data sets and obtain
the posterior probability distribution for their intrinsic noise param-
eters, specified in equation (7) of the previous section. Note that at
this stage of the analysis the contribution from a GWB is not yet
included. We determine a marginalized posterior for each pulsar as
a function of the following parameter combinations:

(1) EFAC versus EQUAD,
(2) red noise amplitude versus red noise spectral index.

In both cases, the posterior is marginalized over all parameters but
two, and the resulting two-dimensional distribution is displayed as
contours at the 1σ , 2σ and 3σ level (the regions where respectively
68, 95 and 99.7 per cent of the volume of the posterior is enclosed).

As an example we consider the TOAs of pulsar J1713+0747,
which consist of data taken with Effelsberg and Westerbork. Here
we focus on the marginalized posterior distributions that represent
information about the Effelsberg TOAs; these distributions and the
residuals are shown in Figs 3 and 4. A traditional non-Bayesian
analysis of the Effelsberg TOAs consists of a fit to the timing model
with TEMPO2, which yields the best-fitting parameters, the corre-
sponding uncertainties, and a reduced χ 2 statistic. The reduced χ 2

is defined as:

χ 2 = 1

n − m

n∑
i=1

(
tobs
i − tfit

i

)2

ε2σ 2
i

, (8)

where n is the number of observations, m is the number of free
parameters in the least-squares fit, tobs

i is the observed TOA, tfit
i is
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Figure 3. The marginalized posterior of J1713+0747 (Effelsberg), as a
function of the EFAC and EQUAD parameters. The contours are at the 1σ ,
2σ and 3σ level, indicating a respective volume inside that region of 68, 95
and 99.7 per cent.

Figure 4. The marginalized posterior of J1713+0747 (Effelsberg), as a
function of the power-law red noise parameters: the amplitude and the
spectral index. The contours are at the 1σ , 2σ and 3σ level, indicating a
respective volume inside that region of 68, 95 and 99.7 per cent.

best-fitting value of the TOA, σ i is the TOA uncertainty of tobs
i , and

ε is the EFAC value. It is usual practice to set the EFAC such that
the reduced χ 2 = 1, which is accomplished by: ε =

√
χ 2(ε = 1).

For the J1713+0747 Effelsberg TOAs, we have χ 2(ε = 1) = 18.9
and therefore ε = 4.35.

As can be seen from Fig. 4, a non-zero red noise component is
required to describe the TOAs. The EQUAD parameter is consistent
with 0-amplitude according to Fig. 3, while the EFAC parameter is
significantly lower than what a TEMPO2

√
χ 2 estimate would give.

This tells us that no separate white-noise component is required to
describe the TOAs: all the uncorrelated scatter can be assigned to
the error bars on the TOAs. It is also of interest that in this case
the EFAC parameter is much smaller, and indeed much closer to
1, than the more traditional estimator

√
χ 2. The data is reasonably

well modelled by just the presence of red noise.
It is also worth noting that, due to practicalities having to do with

hardware changes at the observatories, the TOAs of J1713+0747
end at an earlier epoch than the other four pulsars. Although in the
future the inclusion of this data will obviously benefit the sensitivity

to the GWB, we note that the GWB limit is not negatively effected
by this lack of overlap of the TOAs between pulsars.

The analysis of the TOAs of the other pulsars yields similar,
but slightly different results. As can be seen in the appendix, some
pulsars do have non-negligible white noise, and some do appear to
have EFAC values significantly different from 1. As of yet we do not
have a complete explanation for the exact form of the marginalized
posteriors.

We present the marginalized posterior as a function of the red
noise parameters in an intuitive way: as pointed out in Section 3.2
we use the same units for the red noise amplitude and red noise
spectral index as we use for the GWB parameters. For the analysis
of TOAs of just one pulsar, the red noise can now be thought of as
if it was generated solely by a GWB with a certain amplitude and
spectral index. In this case, the marginalized posterior for the red
noise parameters shows us what upper limit we are able to place on
the GWB amplitude as a function of spectral index.

We choose a 3σ threshold of Ra ≤ 10−13 at a spectral index
of αa = −2/3. Based on the marginalized posteriors of all the
EPTA pulsars, we can decide whether a particular data set can put a
constraint on the GWB lower than this or not. Using this threshold
we include five pulsars in our final analysis. These five significantly
outperform the other pulsars in terms of how well they can limit
the GWB amplitude, and we do not expect to gain any significant
sensitivity by including more pulsars in our current archival data
sets. The residuals of the pulsars we use in our combined analysis are
shown in Fig. 2. More data sets will be added after some extensive
and detailed recalibration procedure of existing data sets.

5.2 GWB upper limit

Now that we have selected our pulsars that can significantly con-
tribute to a GWB limit, we are in the position to infer the amplitude
and spectral index of the GWB. Our model of the combined data of
the five pulsars we selected in Section 5.1 consists of all sources we
included in the analysis for the single pulsars, and an extra source
that corresponds to the GWB. As discussed in Section 4.3, the GWB
source is a power-law correlated between pulsars as described by
equation (4).

As before, we use MCMC to sample the posterior distribution
while analytically marginalizing over the timing model; now the an-
alytic marginalization happens simultaneously for the timing mod-
els of the five pulsars. In Fig. 5 we present the posterior, marginal-
ized over all parameters except the GWB amplitude and spectral
index. In the same figure we also show the PPTA published values
of the GWB limit (Jenet et al. 2006). For the expected spectral index
for a GWB generated by a large number of supermassive black hole
binaries, α = −2/3, we find a 95 per cent confidence GWB upper
limit of hc(1yr) ≤ 6 × 10−15. This is smaller by a factor of 1.8 than
the previously published PPTA limit.

As a cross-check with other codes, and to verify that we are
definitely sensitive to the level of the limit we have calculated
here, we perform an additional test. We use the TEMPO2 plug-in
GWbkgrd (Hobbs et al. 2009) to generate simulated timing residuals
as produced by a GWB with an amplitude of hc(1 yr). We then create
a new set of TOAs, consisting of the values of the simulated timing
residuals added to the values of the observed TOAs of the five
pulsars that we have analysed in this section. We then redo the
whole analysis. Current PTAs aim to reach sensitivities in the order
of hc(1 yr) = 10−15 in the future (Jenet et al. 2005), which is over
five times more sensitive than the limit we achieve here. In the case
that the GWB just happens to be at the 2σ level of our current
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Figure 5. The marginalized posterior distribution as a function of the GWB
amplitude, and spectral index. The contours marked by ‘van Haasteren et al.
(2011)’ are the results of this work at the 1σ and 2σ level, indicating a
respective volume inside that region of 68 and 95 per cent. The vertical
dot–dashed line at α = −2/3 shows where we expect a GWB generated
by supermassive black hole binaries. The most recent published limits are
shown as the three upper limit arrows pointing down, marked by ‘Jenet et al.
(2006)’.

Figure 6. Same marginalized posterior distribution as in 5, but here we
have injected the residuals of a simulated GWB with amplitude hc(1yr) =
30 × 10−15 in the data.

limit, we demonstrate what such a five-fold increase in sensitivity
could do for our ability to measure the GWB parameters by adding
a signal of hc(1 yr) = 30 × 10−15 to our current TOAs. The result
is shown in Fig. 6. We find that the results are consistent with the
input parameters of the simulated GWB, and that we can reliably
detect a GWB in this case.3 The values of the GWB parameters we
have used to simulate the GWB lie within the 1σ credible region of
Fig. 6.

6 IMPLICATIONS

The analysis performed in this work puts an upper limit on a GWB
with a power-law characteristic strain spectrum hc = A(f /yr−1)α .

3 We note that, although such a detection is consistent with a GWB, we
would need more pulsars to exclude the possibility that some other effect is
causing the correlated signal we detect here.

In the literature, upper limits are typically quoted for various values
of α, where the considered α depends on the physics responsible
for generation of the GWB. A useful feature of our approach is
that we are able to measure α for a strong enough GWB (see
vHLML for a discussion). The extra degree of freedom in our model,
α, necessarily changes the interpretation of the posterior to some
extent. We interpret the 2σ contour in our plot of the marginalized
posterior as the upper limit on the GWB as a function of α. Fixing
α and re-evaluating the 2σ limit based on the posterior for A only
does not significantly alter our results.

In this section, we briefly discuss the implications of the new
upper limits in the context of two different mechanisms for genera-
tion of the GWB: binaries of supermassive black holes and cosmic
strings.

6.1 Supermassive black hole binaries

Several authors discuss the characteristic strain spectrum generated
by an ensemble of supermassive black holes (SMBHBs) distributed
throughout the Universe (Begelman et al. 1980; Phinney 2001;
Jaffe & Backer 2003; Wyithe & Loeb 2003). They show that the
characteristic strain spectrum generated by such black hole binaries
can well be approximated by a power law:

hc = h1yr

(
f

yr−1

)−2/3

, (9)

where h1yr is a model-dependent constant. Though the form of
the characteristic strain, the power law, is quite general among the
different SMBHB assembly models the authors use in their work, the
parameterizations and assumptions about other physical quantities
differ between all investigators. The predicted h1yr therefore differs
depending on what SMBHB assembly scenarios were assumed.

Recently, Sesana et al. (2008) have extensively investigated a
wide variety of assembly scenarios, including those considered
in Jenet et al. (2006). For our purposes in this work, their most
important result is an estimate of h1yr for all models. In calcu-
lating this value, they take into account the uncertainties of the
key model parameters for different scenarios, and come up with
h1yr ≈ 2 × 10−16 to 4 × 10−15. We are less than a factor of 2 away
from this range, so we foresee that we can start to rule out some
models in the near future.

Two more results of Sesana et al. (2008) are interesting with
respect to the limit presented in this work. The first is that the
frequency dependence of the GWB is expected to be steeper than
a power law ∝ f −2/3 for frequencies f � 10−8 Hz. The steepness
depends on the chosen model. We have incorporated a varying
spectral index α in our current analysis, and since we are not yet
able to detect the GWB, we postpone a more thorough investigation
of the exact dependence of hc on f to later work with even better
data sets. The second interesting result is that in the frequency range
of 10−8 Hz ≤ f ≤ 10−7 Hz, the GWB might be dominated by single
sources. In that case, a search for just a certain characteristic strain
spectrum is not appropriate, and we note that further investigation
is required in this regard.

6.2 Cosmic strings

Several authors have suggested that oscillating cosmic string loops
will produce GWs (Vilenkin 1981; Damour & Vilenkin 2005;
Ölmez et al. 2010). Damour & Vilenkin (2005) have used a semi-
analytical approach to derive the characteristic strain hc of the GWB

C© 2011 The Authors, MNRAS 414, 3117–3128
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



EPTA GWB limit 3125

generated by cosmic strings:

hc(f ) = 1.6 × 10−14c1/2p−1/2ε
−1/6
eff

× (h/0.65)7/6

(
Gμ

10−6

)1/3 (
f

yr−1

)−7/6

, (10)

where μ is the string tension, G is Newton’s constant, c is the av-
erage number of cusps per loop oscillation, p is the reconnection
probability, εeff is the loop length scale factor and h is the Hubble
constant in units of 100 km s−1 Mpc−1. Usually, the dimensionless
combination Gμ is used to characterize the string tension. Theoret-
ical predictions of string tensions are 10−11 ≤ Gμ ≤ 10−6 (Damour
& Vilenkin 2005).

From the above expression for the characteristic strain generated
by cosmic strings, we see that this is again a power law, but now
with α = −7/6. Using a standard model assumption that c = 1, the
facts that p and εeff are less than one, and that h is expected to be
greater than 0.65, we can safely use our derived upper limit on hc for
α = −7/6 to limit the string tension: Gμ ≤ 4.0 × 10−9. This already
places interesting constraints on the theoretical models, and in a
few years the EPTA will be able to place much tighter restrictions
in the case of a non-detection of a GWB: with only a factor of five
decrease of the upper limit, we would be able to completely exclude
the 10−11 ≤ Gμ ≤ 10−6 range mentioned in Damour & Vilenkin
(2005).

7 C ONCLUSION AND DISCUSSION

In this paper we have developed the methodology on how to handle
combined PTA data sets of several telescopes and how to robustly
calculate a corresponding upper limit on the GWB. Our Bayesian
approach has handled in a straightforward way different data sets of
varying duration, regularity, and quality. The current upper limit on
the GWB, calculated with EPTA data, is hc ≤ 6 × 10−15 in the case
of α = −2/3, as predicted for a GWB created by an ensemble of
supermassive BH binaries. More generally, the analysis has resulted
in a marginalised posterior as a function of the parameters of the
GWB: the GWB amplitude and the spectral index.

Due to hardware and software upgrades at the EPTA observato-
ries, and due to the ever increasing time baseline of the data, we
expect the sensitivity to increase greatly over the next few years.
Especially the combination of the EPTA data sets with the data of
the other PTA projects seems promising.

The raw telescope data must first undergo careful reduction and
modelling before it can be analysed by the Bayesian algorithm.
We have provided some discussion of these processes and have
motivated our choice of model for the TOAs. As part of our analy-
sis, we have studied the probability distribution of the pulsar noise
parameters, and highlighted the crucial importance of precise char-
acterization of the red component of pulsar timing noise.
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APPENDI X A :

Here we show the timing solutions (see Table A1) of all data sets
used in this work, combined with the posterior distributions (Figs
A1 & A2) for the timing noise.
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Figure A1. The marginalized posteriors of all data sets, as a function of the EFAC and EQUAD parameters. The contours are at the 1σ , 2σ and 3σ level,
indicating a respective volume inside that region of 68, 95 and 99.7 per cent. For the J1713-0747 posterior, the TEMPO2 χ2 estimate is not shown because it has
the off-scale value of 4.4.
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Figure A2. The marginalized posterior of all data sets, as a function of the power-law red noise parameters: the amplitude and the spectral index. The contours
are at the 1σ , 2σ and 3σ level, indicating a respective volume inside that region of 68, 95 and 99.7 per cent. The more negative the value of α, the steeper
the power-law spectrum, with the spectrum approaching a white spectrum at the right of the plot. We also note that the amplitude of the red noise cannot be
trivially scaled linearly to an rms value of the timing residuals.
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