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The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational
wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We
present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular,
inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in
the ∼2–90 nHz band shows consistency with isotropy, with the strain amplitude in l > 0 spherical
harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will
become standard tools to probe the angular distribution of source populations.

DOI: 10.1103/PhysRevLett.115.041101 PACS numbers: 04.80.Nn, 04.30.-w, 97.60.Gb, 98.65.Fz

Introduction.—Pulsar timing arrays (PTAs) are currently
being used to search for, and to eventually characterize,
the nanohertz stochastic gravitational wave background
(SGWB) by looking for correlated deviations in the pulse
times of arrival (TOAs) of multiple radio millisecond
pulsars distributed across the sky. The SGWB in the
nanohertz regime is thought to be generated by the
incoherent superposition of a large number of weak and
unresolved GW sources, including supermassive black
hole binaries (SMBHBs) [1–7], decaying cosmic-string
networks [8–11], or primordial GWs [12,13]. Previous

analyses have assumed background isotropy, which
emerges as a special case from the more general anisotropy
framework presented here. Although GWs have not yet
been directly detected, limits on the angular power dis-
tribution of a nanohertz SGWB may constrain the distri-
bution of low redshift structure [14], the location of several
particularly bright nearby sources dominating the signal
strain budget [15,16], and open a new avenue to explore
the population characteristics of SMBHBs. Moreover, if a
significant fraction of SMBHBs stall rather than merge, or
are rapidly driven to merger via strong couplings to the
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galactic nuclear environment, then we may expect a
depleted nanohertz GW signal dominated by only a few
bright sources [17]. As such, the tools implemented here
may provide new and novel insights into the final-parsec
problem (see, e.g., Ref. [18]). This research is a result of the
common effort to directly detect gravitational waves using
pulsar timing, known as the European Pulsar Timing Array
(EPTA) [19,20].
Limits on the SGWB are usually reported in terms of

the characteristic-strain spectrum hcðfÞ of a background
that is composed of purely GW-driven, circular, inspiraling
SMBHBs, which obeys a simple power law

hcðfÞ ¼ Ahðf=yr−1Þ−2=3; ð1Þ

where Ah is the strain amplitude reported at a reference
frequency f ¼ yr−1 [21]. The correlations induced by a
SGWB in pulsar TOAs can be understood by considering a
perturbation to the space-time metric along the Earth-pulsar
line of sight causing a change in the perceived rotational
frequency of the pulsar [22–25]. The fractional frequency
shift δνðtÞ=ν0 of a signal from a pulsar at rest frequency ν0
is the difference in the metric perturbation at the Solar
System barycenter (SSB), and at the pulsar. This frequency
shift is integrated over time to give the induced timing
residuals, rðtÞ≡ R

t δνðt0Þ=ν0dt0, which are cross-correlated
between pulsars in an effort to boost the detection prob-
ability of GW signals at Earth. The expectation value of
the cross-correlated timing residuals between pulsars a
and b is proportional to the overlap reduction function
(ORF, Γab)—a dimensionless function that quantifies the
response of a pair of pulsars to the stochastic GW back-
ground [26,27]. In this Letter, we use analytically com-
puted anisotropic ORFs [28,29] and recently developed
Bayesian techniques [30] to constrain the angular power
distribution of the SGWB.
Fitting a pulsar timing model.—The average pulse

profiles of millisecond pulsars are remarkably stable and
reproducible. This stability permits high-precision timing,
which is crucial to GW searches: the minimum detectable
GW strain is hc ∝ 10−15ðσrms=100 nsÞðT=10 yrÞ−1, where
σrms is the root-mean-square of the pulsar timing residuals,
and T is the total observation time span [5]. Therefore, high
timing precision and long-term observations are required to
distinguish the GW signal from noise, as well as boost the
signal-to-noise ratio (SNR) in a search.
Pulsar observations lead to a catalog of TOAs, which

can then be analyzed to search for GWs. A timing model
describing all deterministic contributions to a pulsar’s
TOAs [rotational frequency, spin-down rate, dispersion
measure (DM), etc.] is iteratively fit with the analysis
package, TEMPO2 [31,32]. The difference between the
measured TOAs and the refined timing model prediction
is the post-fit timing residual, which constitutes the input
data in our GW analysis.

GW analysis pipeline.—We use the signal modeling
techniques described in Ref. [33] (from hereon L15).

The posterior probability of the model parameters ~Θ, given
the concatenated post-fit timing residuals from all pulsars
~δt, is a multivariate Gaussian:

pð~Θj ~δtÞ ∝ pð~ΘÞ exp ð−
1
2
~δtTGðGTCGÞ−1GT ~δtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½2πðGTCGÞ�

p ; ð2Þ

where pð ~ΘÞ is the prior probability distribution of model
parameters, and projecting all quantities with the matrix G
marginalizes this posterior probability over all timing
model parameters (see Ref. [34]). The covariance of the
pre-fit timing residuals is defined as C ¼ Cred þ N, where
Cred includes the SGWB, intrinsic pulsar red noise, and
DM variation components, while N denotes all white-noise
components. This red covariance is decomposed in terms of
a low-rank approximation such that Cred ¼ FφFT , where F
is a block-diagonal matrix of Fourier basis vectors, and φ is
a spectral covariance matrix [35–37]. Intrinsic red noise
and SGWB are expanded in the same Fourier basis, while
the DM-variation signal is expanded in basis functions
that differ only by an extra multiplicative factor of ∝ 1=ν2o,
where νo is the observing frequency of the pulses. The
matrix N is diagonal, with entries given by the squared
TOA errors that have been corrected by previous single
pulsar analyses [33]. We apply a multiplicative factor to all
error bars of a given pulsar (referred to as the GEFAC
parameter) which is searched over here.
The matrix φ has band-diagonal structure, since Fourier

modes between different pulsars may be correlated due to
the presence of a SGWB or correlated noise. Therefore,

½φ�ai;bj ¼ Γabρiδij þ ϵiδij þ ηiδabδij þ κaiδabδij; ð3Þ

where i and j index the discretely sampled signal or
noise frequencies in our analysis of pulsar TOAs;
ρ ¼ hcðfÞ2=ð12π2f3TmaxÞ is the power spectrum of the
SGWB, with Tmax equal to the timing baseline of the PTA;
ϵ is the spectrum of a completely correlated red-noise
process, which may result from modeling inaccuracies due
to drifts in the observatory and global time standards; η is
the spectrum of a common, but uncorrelated, red-noise
process that may originate from common physical proc-
esses inside the neutron stars, see, e.g., Refs. [38,39]; and
κa is the individual red-noise and DM-variation spectrum
for pulsar a. All these spectra are modeled with power laws,
ðA2=12π2TmaxÞðfn=yr−1Þ2α−3 yr2, where A ¼ Ah for the
SGWB; α is a spectral index that equals −2=3 for the
SGWB; and fn are the n frequencies at which we sample
the spectra of red-noise processes, where in this analysis
n ¼ 50.
The ORF Γab is the average of the overlap of the pulsars’

antenna response functions FA
aðΩ̂Þ (see, e.g., Refs. [28,30]),
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over GW propagation directions Ω̂, and weighted by the
SGWB angular power distribution PðΩ̂Þ:

Γab ¼
3

8π
ð1þ δabÞ

Z
S2
dΩ̂PðΩ̂Þ

X
q

Fq
aðΩ̂ÞFq

bðΩ̂Þ; ð4Þ

where q labels the fþ;×g GW polarization. An excess in
PðΩ̂Þ in a particular region of the sky may indicate
a particularly bright single source, or a hot spot of
several sources [28,30,40,41]. In the following, we decom-
pose the SGWB angular distribution such that
PðΩ̂Þ≡Plmax

l¼0

P
l
m¼−l clmYlmðΩ̂Þ, with normalizationR

S2 PðΩ̂ÞdΩ̂ ¼ 4π, where Ylm are the real spherical har-
monics. Inserting this decomposition into Eq. (4) and
proceeding as in Ref. [28], we expand Γab into a sum

over anisotropic ORFs, ΓðabÞ
lm , with associated weights clm

to be constrained by the analysis and which characterize the
SGWB angular power distribution. We note that the leading

function in this expansion, c00Γ
ðabÞ
00 , corresponds to the

ORF applicable to the monopole moment of PðΩ̂Þ (also
known as the Hellings and Downs curve [42]). Hence,
current analysis strategies for isotropic SGWBs emerge
from our fully general anisotropy framework as a spe-
cial case.
Each pulsar has 5 stochastic parameters to be constrained

in a Bayesian analysis: intrinsic red noise (A; α), DM
variation (A; α), and a GEFAC parameter. The fully
correlated red-noise component ϵ will contribute 2
power-law parameters, as will the common, uncorrelated
process η. The spectrum of the SGWB is modeled with a
fixed slope of −2=3 and an amplitude Ah to be constrained,
while lmax > 0 analyses will include ½ðlmax þ 1Þ2 − 1�
additional parameters. The priors on the parameters
are log10A ∈ U½−20;−10�, α ∈ U½−2.0; 1.5�,
GEFAC ∈ U½0.1; 10.0�. The clm coefficients are con-
strained by a prior requiring the implied distribution of
GW power to be positive at all sky locations [30], called the
“physical prior”. The prior on Ah is treated separately from
other red-noise components, and is uniform in the range
½10−20; 10−10�. Applying a uniform prior on Ah with
logarithmic priors on the amplitudes of all other red
components will provide the most conservative upper limits
on the strain-spectrum amplitude of the SGWB.
Results.—We parametrize the angular distribution of

the SGWB down to the angular resolution of the PTA.
The most anisotropic SGWB signal is one dominated
by a single source. Hence the angular resolution, and thus
lmax, is a function of the number of pulsars, Npsr, which
significantly contribute to a single-source detection, and the
SNR of that detection [43]. Sesana and Vecchio [43] find
that the angular resolution of a PTA for a resolvable GW
source is ΔΩ ∝ 50ð50=NpsrÞ1=2ð10=SNRÞ2 deg2, and this
resolution sets an upper bound on l via l ¼ 180=θ, where
θ ¼ ffiffiffiffiffiffiffiffi

ΔΩ
p

[29]. We analyze a subset of the six best pulsars

in the EPTA [19] that encapsulate ∼95% of the full-array
SNR in simulated continuous GW searches [44]:
PSRs J0613− 0200, J1012þ 5307, J1600 − 3053,
J1713þ 0747, J1744 − 1134, J1909 − 3744, where
Tmax ¼ 17.7 years and the GW frequencies with which
we characterize red-noise components are
∈ ½1=Tmax ¼ 1.79; 50=Tmax ¼ 89.7 nHz�. Hence, in our
array subset lmax ≲ 4. Carrying out searches with the noise
characteristics of each pulsar fixed, we find the upper limits
on the strain amplitude remain consistent whether we
analyze this six-pulsar subset or the full array. Including
more pulsars of comparably high timing quality would
contribute a larger number of pulsar pairs
[Npairs ¼ NpsrðNpsr − 1Þ=2], which would serve to increase
the SNR and resolving power (lmax) of any search for
anisotropy. This comes at the cost of longer likelihood
evaluation times, making the systematic study presented
here currently intractable. Our goal is to provide the first
constraints on anisotropy in the SGWB via a systematic
study with current techniques—we do so with the 15
distinct pulsar pairings afforded by a six-pulsar array.
All analysis is performed with parallel-tempering
Markov chain Monte Carlo (MCMC) analysis.
The 95% upper limits on Ah from our analyses are shown

in Table I. First, we perform searches with a single set of
anisotropy coefficients clm across the entire band, which
we call the all-band anisotropy parametrization,
(cf. Table I). We also perform frequency-dependent
searches by parametrizing each frequency with indepen-
dent clmðfÞ coefficients. We split our band into 5 equal
subbands (Δf ¼ 17.9 nHz), and independent clmðfÞ
coefficients constrained in each, called the frequency-
dependent anisotropy parametrization (i). Finally, moti-
vated by the results of L15—where most of the SGWB
constraints were found to come from the lowest three
frequencies—we apply independent clmðfÞ coefficients to
the lowest four frequencies in our analysis
(f ¼ ½1; 2; 3; 4�=Tmax ¼ ½1.79; 3.59; 5.38; 7.18� nHz), with
the remainder of the band (f¼½5;…;50�=Tmax¼
½8.98;…;89.7�nHz) parametrized by a single set of coef-
ficients. This is reported as frequency-dependent

TABLE I. 95% upper limits on SGWB strain amplitude Ah.
The first column is the all-band anisotropy parametrization, the
second and third correspond to the frequency-dependent
anisotropy parametrizations (i) and (ii), respectively, described
in the text.

lmax Ah; all-band clm Ah; clm ¼ clmðfÞðiÞ Ah; clm ¼ clmðfÞðiiÞ
0 3.94 × 10−15 N/A N/A
1 4.09 × 10−15 4.06 × 10−15 4.06 × 10−15

2 4.06 × 10−15 4.07 × 10−15 4.02 × 10−15

3 4.06 × 10−15 3.98 × 10−15 4.01 × 10−15

4 4.03 × 10−15 3.95 × 10−15 3.99 × 10−15
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anisotropy parametrization (ii). The recovered upper limit
does not deteriorate through the increased number of
parameters in our higher multipole searches. The monopole
upper limits do not precisely match those found in L15 due
to several variations in the analysis specifics: namely,
(i) our prior on the amplitude of red-noise components
is uniform in logarithm of the amplitudes, which provides a
more conservative upper limit on the SGWB strain ampli-
tude; (ii) we do not consider Solar System ephemeris errors
in our correlated noise modeling; and (iii) we employed a
pure time-domain likelihood in the initial single pulsar
analysis to correct the TOA errors in each pulsar. Hence,
our monopole upper limits are higher than in L15 by
∼1 × 10−15. However, moving beyond the first analysis
presented here, our more general anisotropy framework can
be easily incorporated into all existing and planned pipe-
lines to become a standard tool set, since it recovers the
isotropic SGWB constraints as a special case. The upper
limits on the strain amplitude in each anisotropic multipole
of the search are shown in the left panel of Fig. 1, where the
constraints are entirely dominated by the restrictions
imposed on the clm’s by the physical prior. Our data are
not informative enough to update the prior knowledge we
have about the anisotropy of the GW sky.
Rather than impose a specific decomposition of the

SGWB sky during sampling, we can recover the cross-
correlation values between pulsar pairs and map these to a
chosen basis in postprocessing. We perform a Bayesian
search for the distinct elements of the Cholesky factor of
the residual cross-correlation matrix, which ensures pos-
itive definiteness of the final matrix [35,45]. After sampling
we define a mapping between the coefficients of the ORF in

a particular basis, ~c, and the cross-correlation values, ~Γ,
such that ~Γ ¼ H~c. A single row of the matrix H will have

entries corresponding to the ORF between pulsars a and b
evaluated for all basis terms. In the spherical-harmonic

basis, such a row would consist of ðΓðabÞ
00 ΓðabÞ

1−1 � � �ΓðabÞ
lm Þ,

and for a pixel basis this is ðΓðabÞ
Ω̂1

ΓðabÞ
Ω̂2

� � �ΓðabÞ
Ω̂N

Þ. Having
recovered posterior samples of the vector ~Γ, we map these

to samples of ~c via ~c ¼ Hþ~Γ, whereHþ corresponds to the
Moore-Penrose pseudoinverse of the matrixH [46,47]. The
results for mappings to the spherical-harmonic basis with
varying lmax are shown in Fig. 1 (right). The data support
such strong anisotropy signatures in this model because the
joint posterior in the cross-correlation values are consistent
with essentially the entire range of ½−1; 1�, which when
mapped to a spherical-harmonic ORF basis leads to large
clm values. There is nothing to penalize these large
anisotropy coefficients, which lead to highly anisotropic
(and possibly negative) GW power distributions and would
otherwise be restricted by the physical prior. This supports
our claim that the constraints in Fig. 1 (left) are prior
dominated.
We also map our recovered cross-correlation samples to

a pixel basis with 12288 equal-area pixels on the sky. We
supplement our mapping with the additional normalization

constraint that
R
S2 PðΩ̂ÞdΩ̂ ≈

PNpix

i¼1 cðΩ̂iÞΔΩ̂i ¼ 4π. The
resulting SGWB power in each pixel is marginalized
over all other pixels and truncated to obtain the positive
1D-marginalized power PDF before it is integrated over to
obtain the upper limit on the strain amplitude in that pixel.
The result is shown in Fig. 2, where we see the distinctive
overlapping antenna patterns of the pulsars mapping out the
sensitivity of the PTA to the background strain amplitude.
The constraints on Ah from each pixel are quite poor, and in
some cases are more than an order of magnitude worse than
the all-sky upper limit. As we decrease the resolution of the

FIG. 1 (color online). 95% upper limits on the strain amplitude, where Cl ¼
P

l
m¼−l jclmj2=ð2lþ 1Þ. Left: all-band anisotropy

parametrization and frequency-dependent parametrization (ii). The right axis is the ratio of the upper limit to the monopole. The inset
figure shows 95% upper limits on ðCl=4πÞ1=4, which are marginalized over the strain amplitude for the all-band anisotropy
parametrization and a constant likelihood analysis. Our limits reflect the constraints of the physical prior. Right: all-band anisotropy
parametrization, where the clm values are obtained by mapping cross-correlation values to the spherical harmonic basis, without physical
prior rejection.

PRL 115, 041101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JULY 2015

041101-4



pixelation the constraints in each pixel become tighter, until
we reach the limit of one pixel, which recovers the usual
all-sky upper limit. Figure 2 can also help to explain the
results in the right panel of Fig. 1, where we see that the
distribution of pulsars in our array leads to the suboptimal
overlapping of the antenna response functions, which in
turn causes insensitivities around the 4 clustered pulsars
and on large angular scales. Hence, we will lack sensitivity
to large angular scale anisotropy (l ∼ 1), which is reflected
in the right panel of Fig. 1. Moreover, this sensitivity map
illustrates the importance of timing pulsars from all over the
sky to ensure a more uniform sensitivity to GW strain,
which will be possible through international collaborations
such as the International PTA [48].
Conclusions.—Our analyses suggest that this data set is

not informative enough to update our prior knowledge of
the angular distribution of the nanohertz SGWB. Using a
prior that enforces a positive SGWB distribution, we find
that the 95% upper limit on the strain amplitude in
multipoles of the background distribution with l > 0 is
≲40% of the monopole strain. No evolution of these upper
limits as a function of GW frequency is found since the
constraints are a reflection of the prior. Additionally, we
can recover the joint posterior distribution of the cross-
correlation values between pulsar pairings, and sub-
sequently map these to a spherical-harmonic or pixel
ORF basis. With the only constraint being positive defi-
niteness of the cross-correlation matrix, the strain ampli-
tude in l > 0 multipoles is ≲400% of the monopole value.
The strain-amplitude upper limits as a function of location
on the sky reflect the overlapping antenna pattern behavior
of the full PTA, where the limits can often be more than an
order of magnitude worse than the all-sky limit. A full
description of all techniques employed here, and their
efficacy, will be provided in a follow-up methods paper.

Forthcoming advanced radio instruments such as the
Five-Hundred-Metre Aperture Spherical Radio Telescope
[49,50], MeerKAT [51], and the Square Kilometre Array
[52] will enhance the detection and inference prospects
for anisotropic GW skies by detecting large numbers of
millisecond pulsars and timing them to unprecedented
precision. Upcoming studies will investigate how we can
combine galaxy catalogs with frequency-dependent maps
of the nanohertz GW sky to probe whether the strain budget
is being dominated by a few bright nearby sources, or is
more diffuse. We hope that the work presented here,
together with these future studies, will provide important
insights into the demographics, evolution, and assembly of
SMBHBs not accessible by any other means.
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