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[1] A nearest neighbor fragmentation model, previously
developed to explain observations of power law particle
distributions in 3D with mass dimension D3 � 2.6 (D2 �
2.6 in 2D section) in low-strain fault gouge and breccia, is
extended to the case of large strains to explain recent
observations of D3 � 3.0 (D2 � 2.0 in 2D section) in the
highly strained cores of many exhumed fault zones. At low
strains, the elimination of same-sized nearest neighbors has
been shown to produce a power law distribution which is
characterized by a mass dimension near D3 � 2.6. With
increasing shear strain these isolated same-size neighbors
can collide, in which case one of them fractures. The
probability of two same size neighbors colliding and
fragmenting in a simple shear flow is a function of the
size and density of the two particles. Only for a power law
distribution with D3 = 3.0 is this collision probability
independent of the size of the particles. Citation: Sammis,

C. G., and G. C. P. King (2007), Mechanical origin of power law

scaling in fault zone rock, Geophys. Res. Lett., 34, L04312,

doi:10.1029/2006GL028548.

1. Introduction

[2] Faults that have large displacements are often mod-
eled as a nested layered structure [Chester and Logan, 1986;
Chester et al., 1993, 2004; Chester and Chester, 1998]. At
the center is a ‘‘core’’ comprised of a few centimeters of
fine-grained ‘‘cataclasite’’ which appears to have accom-
modated most of the displacement. This cataclasite is
usually cohesive, often has foliated flow structures and
commonly contains narrow planar structures a few milli-
meters thick, which appear to be sites of further shear
localization. Chester et al. [2005] have shown that the
fragments within one such planar localization follow a
power-law (fractal) distribution over a size range spanning
nearly three orders of magnitude from 400 mm down to
60 nm. In 2-D section, they measured a mass dimension of
D2 = 2.0 (Figure 1). We use the term ‘‘mass dimension’’ to
characterize the power law particle distributions rather than
‘‘fractal dimension’’, which is usually reserved for the
Hausdorff dimension [see Schroeder, 1991]. The two meas-
ures are identical for simple geometrical fractals. Also, we
use D3 and D2 to denote the mass dimension of particles
imbedded in 3D and 2D respectively.
[3] The core is bordered by wider zones of fault gouge

and breccia that can be meters thick with particle sizes
ranging from microns to centimeters. The gouge and breccia

is generally non-cohesive, usually shows no sign of signif-
icant shear strain, and also tends to have a power-law size
distribution, but with a mass dimension closer to D2 = 1.6
[Sammis et al., 1987]. Particle distributions in cataclasite
and gouge are compared in Figure 1.
[4] The gouge and breccia zones are bordered, in turn, by

fractured (but not fragmented) wall rock in which the
fracture density (damage) decreases to the regional back-
ground level over a distance on the order of 100 meters
[Chester and Logan, 1986; Wilson et al., 2003; King and
Sammis, 1992]. There is a wide range of variation in this
basic structure, particularly in the widths of the constitutive
layers and in degree of symmetry about the core [Ben-Zion
and Sammis, 2003; Biegel and Sammis, 2004].
[5] Field studies by Chester et al. [1993] and Billi and

Storti [2004] have documented an increase in mass dimen-
sion within a single fault zone from a value near D3 = 2.6 in
the breccia and gouge to a value near D3 = 3.0 in and near
zones of shear localization (Figure 2). A similar increase in
fractal dimension near shear localizations was also docu-
mented in detachment faults in Death Valley, CA, by
Hayman [2006].
[6] To explain the self-similarity found in low strain

gouge and breccia, Sammis et al. [1987] proposed a
‘‘constrained comminution’’ model in which the observed
dimension D2 = 1.6 is a direct consequence of a particle’s
fracture probability being controlled by the relative size of
its nearest neighbors. This model differs from those that
describe commercial crushing and milling operations in
which a particle’s fracture probability is determined by its
distribution of starter flaws, usually assumed to be Pois-
sonian, and which results in exponential particle distribu-
tions [Prasher, 1987]. These differences reflect the fact that
the particles are free to move relative to each other in the
commercial processes, but are tightly locked in place
during compressive shear loading in a fault zone. Under
compressive shear, stress is transmitted along grain bridges
that rotate to produce dilatation and are continuously
forming and failing to accommodate shear deformation
(Figure 3). A grain bridge is weakest when it contains
two adjacent particles the same size. Compressive point
loading between two same-size particles produces internal
tension causing one of them to fragment. This process
begins at the largest (and hence weakest) particle size in
the initial distribution and continues until no particle of any
size has a same-sized nearest neighbor. The topological
property of having no same-sized nearest neighbors at any
scale is a characteristic of the Sierpinski carpet that has a
mass dimension of D2 = 1.58, close to D2 = 1.6 observed
in 2D sections of gouge. Steacy and Sammis [1991]
showed that the systematic elimination of same-sized
neighbors in a cellular automaton produces a random
fractal with dimension near D2 = 1.6. Biegel et al.
[1989] used a double-shear friction apparatus to generate
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a power law gouge with D2 = 1.6 in the laboratory. In
these experiments, the evolution to a self-similar structure
was observed to be associated with the transition from
stable sliding to a stick-slip friction instability. A distribu-
tion with D2 = 1.6 produces minimum dilatation in shear,
which favors shear localization. Shear localization in gouge
and breccia produces the highly-strained cataclasite core
structure described above.

2. Nearest Neighbor Model for Fragmentation
During Flow

[7] We now show how the simple ideas behind the
constrained comminution model can be applied to a simple
shear flow to explain the power law distribution with D2 = 2
observed within highly strained fault cores. We begin with
an analysis in 2D and then make a simple extension to 3D.
In 2D, let NA (d) be the number of particles with diameter d
per unit area. The average spacing between the centers of
these particles is hS(d)i =

ffiffiffiffiffiffiffiffiffiffiffiffi
NA dð Þ

p
(Figure 4). If they are

moving in a simple shear flow with strain rate _e, then the
average time between collisions is ht(d)i = hS(d)/v(d)i where
v(d) is the relative velocity between two particles of
diameter d that collide. The relative velocity of colliding
particles of diameter d varies linearly between 0 for particles
aligned in the shear flow to v = _ed for those that just touch
in passing. The distance between the edges of two colliding
particles also depends on their relative positions in the shear
flow, varying between S(d) � d for particles in line to S(d)
for those that just touch in passing. However, if each
particle is involved in many collisions before it is frag-
mented, then the average distance over which is travels
between collisions approaches S(d) and the average time
between collisions approaches ht(d)i / hS(d)/v(d)i, which
may be written ht(d)i / ( _ed

ffiffiffiffiffiffiffiffiffiffiffiffi
NA dð Þ

p
)�1. The average time

between collisions per unit area of all size d particles is
ht(d)i / ( _edNA (d)

ffiffiffiffiffiffiffiffiffiffiffiffi
NA dð Þ

p
)�1, and the frequency of colli-

sions per unit area for size d particles is

hf dð Þi ¼ 1

ht dð Þi /
_ed NA dð Þ½ 
3=2 ð1Þ

Figure 1. Comparison of the particle distribution in
ultracataclasite with that in gouge and breccia. Note that
both distributions are well described by a power law, but
that the slope (fractal dimension) is larger for the
ultracataclasite.

Figure 2. Fractal dimensions as a function of position in
fault zones. (a) The increase in fractal dimension of fault
gouge adjacent to the core of the San Gabriel Fault zone
relative to the gouge and breccia at greater distances.
Redrawn from Chester et al. [1993]. The distribution in the
gouge and breccia from the Lopez Canyon fault from
Sammis et al. [1987] is also shown for comparison. Note the
fall-off in particle density for the larger particles in the
sample adjacent to the fault core. This is an edge-effect
produced by large strain and is discussed in the text. (b) An
increase in fractal dimension in localized shear bands with
the core of the Mattinata Fault in southern Italy. Redrawn
from Billi and Storti [2004].

Figure 3. Low-strain fault gouge. (a) Stress paths. The
stress between the largest particles shown (A and B in
yellow) is transferred by a number of paths. Within the
dashed square inset, the same geometry occurs at a smaller
scale where the largest particles are now A0 and B0 in
orange. This self-similarity can occur at successively
smaller scales. (b) Grain bridges form when the material
is strained. The increase in stress along the bridge causes
particles to fracture in tension. The reduction in normal
stress perpendicular to the bridges (associated with the
rotation) further enables this tensile splitting. At any scale
the tensile stress within a particle is greatest when in contact
with a particle of similar size. Thus one of two adjacent
particles of the same size is preferentially broken.
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The fraction of d-sized particles fragmented per unit time is

hF dð Þi ¼ h �f dð Þi
NA dð Þ / _ed

ffiffiffiffiffiffiffiffiffiffiffiffi
NA dð Þ

p
ð2Þ

For a fractal distribution of particles, NA (d) / d�D2 and
equation (2) can be written hF(d)i / _edx where x = 1 �
D2/2. Note that if D2 = 2, x = 0 and hF(d)i is independent
of d. This means that if D2 = 2 the number of particles in
each class will be reduced by the same fraction in a given
time increment and, if the new fragments are distributed
among the smaller size classes in a scale-independent way,
the distribution will remain at D2 = 2. If D2 < 2 then x > 0
and larger particles will be preferentially fractured increas-
ing the dimension toward D2 = 2. If D2 > 2 then x < 0 and
smaller particles will be preferentially fractured decreasing
the dimension toward D2 = 2.
[8] These scaling arguments also work for a 3D distri-

bution of particles characterized by a volume distribution
NV (d) and an average spacing of S = 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NV dð Þ

p
. Since the

simple shear flow is 2D, the average velocity between two
particles of size d is again proportional to d and the average
frequency of collision of all size d particles is h f (d)i / _ed
[NV (d)]4/3. For a fractal distribution of particles, NV(d) /
d�D3 and hF(d)i / _edx. In this case x = 1 � D3/3 so that if
D3 = 3, x = 0 and hF(d)i is independent of d. Hence, D3 = 3
is the stable dimension for fragmentation during simple
shear flow in 3D.
[9] The stability of D2 = 2 in 2D can be illustrated by a

simple computer automaton that operates on a discrete
distribution in which the particles are grouped into classes
n = 1, 2, 3, . . . where the size of a particle in class n is d(n) =
(1/2)n. At each time step, a random number generator
chooses the class in which a particle is to be fractured based
on the relative probabilities calculated using equation (1).
The probability P(n) that a class n particle will fracture in a
time interval Dt is proportional to the frequency of colli-
sions, and may be written P(n) = Po ( _e, Dt)d(n)[NA (n)]3/2

in 2D. The number of particles in the chosen class is
decreased by 1 while the number in the next smallest class

is increased by 4 in order to conserve mass. The relative
probabilities are then recalculated using the new values of
NA (d) and the selection process is repeated.
[10] Figure 5 shows how the application of the automaton

to an initial Sierpinski distribution (D2 = 1.58) generates a
stable distribution with D2 = 2. Note that the there are fewer
large particles in Figure 5 than expected for the fractal
distribution. This is an edge effect that occurs because the
largest particles are being fragmented but they are not being
re-supplied by the fragmentation of particles larger than the
upper fractal limit. A similar breakdown in self-similarity at
large scales is often observed in real data (see Figure 2a).
[11] The evolution of a particle distribution toward D3 =

2.6 at low strain and D3 = 3.0 at high strain has been
simulated in a 3D particle-based computer model by Abe
and Mair [2005]. In their model, breakable bonds between
individual particles allow the simulation of fracture during
shear of large aggregate grains, each of which was initially
composed of 8,000 individual particles.

3. Discussion and Conclusions

[12] In conclusion, observations of power law scaling of
the particles in natural fault zones find different dimensions.
For low-strain gouge a mass dimension of D3 = 2.6 is
observed while cataclasites that have been subject to larger
shear strain exhibit a value close to D3 = 3.0. If fragmen-
tation is controlled by nearest neighbor particle interactions
in which a particle is most likely to split when it encounters
a particle of similar size, the two different mass dimensions
can be simply explained. The measurement of mass dimen-
sion thus offers a way to distinguish regions that have been
shattered at low strain from those that have been fragmented
by significant shear.
[13] It may seem surprising that such a simple mechanism

controls fragmentation, especially in the core of a fault
where complex thermo-poro-elasto-dynamic processes are
known to be important [see, e.g., Rice, 2006]. The impli-

Figure 4. High strain fault gouge. For large strains,
particles of the same dimensions that are isolated in the
low-strain comminution can, as a result of flow, come into
contact and cause one to fracture. Symbols in the figures are
defined in the text.

Figure 5. Evolution of an initial particle distribution
having D = 1.58 into one having D = 2.0 using the
fragmentation automaton described in the text. The deviation
of large particles from the D = 2.0 line is an edge effect, since
there are no particles being supplied at this end of the
distribution from the fragmentation of still larger particles.
Compare with the distribution in natural gouge adjacent to
the core of the San Gabriel fault in Figure 2a.
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cation is that the accommodation of strain by particle
fragmentation is controlled by local geometrical constraints,
and is largely independent of these additional complica-
tions. This argument is analogous to King’s [1983] expla-
nation of the widely observed Guternberg-Richter scaling of
earthquake magnitude with b = 1 in terms of local geomet-
rical constraints of strain accommodation, independent of
stress transfer, crustal fluids, and ductile relaxation also
known to be important processes in regional seismicity.
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