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S U M M A R Y
The coupling that exists between surface processes and deformation within both the shallow
crust and the deeper mantle-lithosphere has stimulated the development of computational
geodynamic models that incorporate a free surface boundary condition. We introduce a treat-
ment of this boundary condition that is suitable for staggered grid, finite difference schemes
employing a structured Eulerian mesh. Our interface capturing treatment discretizes the free
surface boundary condition via an interface that conforms with the edges of control volumes
(e.g. a ‘staircase’ representation) and requires only local stencil modifications to be performed.
Comparisons with analytic solutions verify that the method is first-order accurate. Additional
intermodel comparisons are performed between known reference models to further validate
our free surface approximation. Lastly, we demonstrate the applicability of a multigrid solver
to our free surface methodology and demonstrate that the local stencil modifications do not
strongly influence the convergence of the iterative solver.

Key words: Numerical solutions; Dynamics of lithosphere and mantle; Mechanics, theory,
and modelling.

1 I N T RO D U C T I O N

Formally, the surface of the Earth (delimited on top by the atmo-
sphere) corresponds to an interface along which both shear and
normal stresses vanish and, hence, deforms freely in response to
the motion of the material located below such as, for instance, tec-
tonic processes (Hager et al. 1985). Dynamic processes occurring
in the crust, lithosphere, and/or deeper in the mantle, have a strong
influence on the topographic evolution (e.g. dynamic topography
associated with slab detachment, Duretz et al. 2011a). Conversely,
the development of topography generates buoyancy forces that af-
fect the lithosphere (Willett 1999) and mantle dynamics (Gurnis
et al. 1996). Furthermore, the presence of such a ‘free surface’ ap-
pears to be a crucial ingredient within the plate tectonics framework
by controlling, for instance, the initiation of single-sided subduc-
tion zones at convergent plate boundaries (Crameri et al. 2012b).
This interface also constitutes the place where surface processes
(erosion and deposition) occur and can, depending on their nature
and efficiency, affect tectonic behaviour (e.g. Willett 1999; Braun &
Yamato 2010). Unravelling the interactions between mantle circula-
tion, crustal/lithosphere deformation and the evolution of the Earth’s
surface thus constitutes a long standing objective in geodynamics.
In order to address this issue, the geodynamic community has de-
veloped numerical modelling tools specifically designed to study
the coupling between tectonic processes and topographic evolution.

In considering grid based geodynamic simulations, the evolution
of Earth’s surface can be modelled using either conforming, or non-
conforming computational meshes. A method employing a mesh
which conforms to the topography implies that edges (or faces in
3-D) of the cells within the mesh are aligned with the interface.

Conforming mesh based methods employ either a Lagrangian
framework or an Arbitrary Lagrangian–Eulerian (ALE) framework.
In the Lagrangian approach, the computational mesh is advected
with the fluid velocity (Fig. 1A). An evolving topography is ex-
plicitly tracked via the nodes of the mesh, thus the computational
grid may require frequent re-meshing procedures in order to main-
tain solution accuracy (Poliakov & Podladchikov 1992). In the ALE
framework, the surface of the mesh advects with the fluid velocity
while the coordinates of the interior nodal points are adapted in a
manner to preserve mesh quality without consideration of the fluid
velocity (Fig. 1B). A re-meshing procedure is required along the
explicit surface being tracked and within the interior of the domain.
The nature of the ALE formulation allows a structured mesh to be
used. While a re-meshing procedure is required, the process is con-
siderably simplified compared to the case of an unstructured mesh.
For this reason ALE approaches represent an attractive alternative to
model topographic evolution (Fullsack 1995). Both Lagrangian and
ALE approaches are standard for finite element and finite volume
discretizations. Moreover, these methods offer a natural treatment
of the free surface boundary condition.
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Figure 1. Classification of methods employed to model a free surface (here
in dashed line). (A) Lagrangian body fitted mesh, (B) arbitrary Lagrangian–
Eulerian (ALE) mesh, (C) marker-in-cell (MIC) method employing a uni-
formly spaced structured mesh.

In the case of a non-conforming approach, the numerical grid is
typically Eulerian and therefore cannot adapt to an evolving topog-
raphy. A free slip boundary condition can be imposed at the top of
the model. In this case, a dynamic topography can be derived from
the normal stress resulting from mantle dynamics and acting on
the free slip surface assuming instantaneous adjustment of topog-
raphy (McKenzie 1977). This method however does not take into
account the effect of time-dependent redistribution of topographic
loads on mantle dynamics. This limitation was circumvented by
some authors (e.g. Gurnis et al. 1996; Zhong et al. 1996) using
the computed dynamic topography to define a vertical topographic
load (normal stress) distributed along the free surface, thereby al-
lowing a transient influence of dynamic topography on mantle flow.
This approach captures vertical topographic displacements but not
horizontal components. The latter can be however important in nu-
merous geodynamic contexts (e.g. trench retreat and advances in a
subduction zone).

An alternative non-conforming interface method which approx-
imates the free surface boundary condition is the ‘sticky air’ ap-
proach (Schmeling et al. 2008; Crameri et al. 2012a). The sticky
air method is defined by introducing a layer of low viscosity and
low density material on top of the model (blue stars in Fig. 1C).
The term ‘sticky air’ comes from the fact that, for practical reasons,

the viscosity of this weak layer is usually on the order of 1017–
1019 Pa s, which is unrealistically large in comparison to true air
viscosity. The sticky air method can however reasonably approxi-
mate free surface geodynamic flows (e.g. Schmeling et al. 2008;
Crameri et al. 2012a). While it is common to define the sticky air
layer on set of Lagrangian markers, it is also possible to track the
interface between the sticky air and the lithosphere using a level set
representation (e.g. Hillebrand et al. 2014).

The sticky air method has several advantages: (i) including a
sticky air layer only requires the definition of an additional material
phase, its implementation is therefore straightforward; (ii) when the
sticky air method is used in combination with Lagrangian markers,
the method is naturally sensitive to subgrid topography variations.
In other words, topographic variations that are below the numerical
mesh resolution can, to some extent, influence the flow below the
surface (see case 1 of Crameri et al. 2012a). This is an attractive
feature for mantle circulation models in which the spatial resolution
of the mesh is usually, at most, on the order of 1 km.

Despite the simplicity of the sticky air method, the approach
suffers from a number of limitations:

(i) The sticky air layer is represented by a finite volume of mate-
rial located above the free surface. As such, the sticky air method
naturally extends the size of the computational domain and thus in-
troduces additional degrees of freedom which in turn increases the
computational cost associated with solving the discrete problem.

(ii) The accuracy of the free surface approximation is highly
dependent on the viscosity of the air and the thickness of the air
layer (Crameri et al. 2012a). A priori estimates of the quality of
the sticky air approximation can be derived for idealized model
configurations (Crameri et al. 2012a). However, given an arbitrary
initial condition, it is difficult to evaluate the quality of the free
surface approximation.

(iii) The sticky air is characterized by a low viscosity material,
hence the air/lithosphere interface exhibits a strong viscosity jump.
Large and sharp viscosity contrast (η∗ ≈ 102−103) are known to
deteriorate the convergence of iterative methods used to solve the
discrete flow problem (May & Moresi 2008; Tackley 2008). It is
thus preferable to avoid the use of sticky air when using iterative
schemes (i.e. geometric multigrid). Nonetheless iterative solvers are
preferable over direct solver when modelling mantle convection, or
lithospheric deformation in 3-D.

(iv) The treatment of surface processes with the sticky air method
can be cumbersome since the method does not explicitly define the
location of the free surface. Instead, the topographic profile must
be inferred by region of space defined between the material points
defining the crust and the material points defining the sticky air.
Within the geodynamic community, there is no agreement on the
manner to extract the coordinates of the free surface from a sticky
air implementation. Moreover, when markers are used to represent
the sticky air, the position of the markers located in the vicinity of
the sticky air/crust implicit interface fluctuates. This issue known as
the ‘marker fluctuation’ problem (Crameri et al. 2012a) necessitates
additional treatments.

(v) Under certain conditions, fluid motion within the sticky air
layer can be much faster than that within the lithosphere. This can
therefore lead to drastic time-step restrictions, and in the worse case
lead to unphysical dynamics near the surface.

(vi) If Lagrangian markers are employed to track the sticky air
layer, it is common that the air markers will be entrained within
the lithosphere (e.g. along a subduction interface; Schmeling et al.
2008). While air entrainment is fluid-dynamically consistent with
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the mathematical model, it is however geomechanically inconsis-
tent. Hence, in the event of air entrainment, ad-hoc treatments must
be adopted to remove the entrained air markers.

(vii) In thermomechanical simulations, the treatment of the
boundary conditions for the conservation of energy at the free sur-
face is not straightforward. Thermal parameters of the sticky air
(i.e. conductivity, specific heat) need careful investigation in order
impose the desired boundary condition (i.e. constant temperature
or heat flux).

To address the short-comings of the sticky air method, we propose
a new interface capturing technique specifically designed for the
staggered grid finite difference scheme. The key idea of the interface
capturing scheme is to (i) approximate the free surface interface via
a staircase-like interface which conforms with the edges of the
control volumes, and then (ii) locally modify the finite difference
stencil along the staircase boundary to enforce the required free
surface boundary condition. The structure of the paper is as follows.
First, we describe the governing equations and the discretization
of the free surface boundary condition. We then demonstrate the
validity of the method by (i) showing that the free surface boundary
condition is grid-convergent and (ii) reproducing results from free
surface benchmarks used by the geodynamic community. Lastly, we
discuss the technical and practical implications of the free surface
discretization, as well as its limitations.

2 M AT H E M AT I C A L M O D E L

For the purpose of modelling mantle and lithosphere dynamics,
we consider that material deformation is governed by the Stokes
equations

∂τi j

∂x j
− ∂p

∂xi
= ρ(x)gi , (1)

where τ ij represents the deviatoric stress tensor, p is the total pres-
sure, gi is the gravity vector and ρ is the material density. In this
work, we employ a linear viscous rheology, thus the deviatoric stress
tensor is related to the deviatoric strain rate tensor ε̇ ′

i j via:

τi j = 2η(x)ε̇ ′
i j , (2)

where η is the dynamic viscosity. In the following applications, the
viscosity and density vary in space, however the value at material
points is constant throughout time, for example,

Dη

Dt
= 0,

Dρ

Dt
= 0. (3)

The following formulation of the free surface boundary condition is
also valid for fluids with time-dependent density and viscosity (e.g.
temperature and pressure-dependent). For the geodynamic applica-
tions under consideration, we assume that the fluid is incompressible
and thus we employ the following statement for the conservation of
mass:

∂vi

∂xi
= 0, (4)

in which vi represents the velocity vector. We note that under the
assumption of incompressibility, the total strain rate tensor ε̇i j is
equal to the deviatoric strain rate tensor. Eq. (2) hence reduces to
τi j = 2η(x)ε̇i j .

The conservation of momentum (eq. 1) and mass (eq. 4) define
the evolution of velocity and pressure within a time-dependent do-
main �. Considering velocity and pressure as primitive variable,
uniqueness of the solutions are obtained through supplementing the

conservation equations with one of the following boundary condi-
tions at every point x contained on the boundary ∂�;

(1) Dirichlet (prescribed normal and tangential velocity compo-
nents):

vi = v̄i on ∂�D. (5)

(2) Neumann for prescribed normal stress components:

ni (τi j − pδi j )n j = σ̄ on ∂�N, (6)

where nj is the outward pointing unit normal vector from the bound-
ary ∂�.

(3) Neumann for prescribed shear stress component:

tiτi j n j = τ̄ on ∂�N, (7)

where ti is the unit tangent vector to the boundary ∂�.
(4) Dirichlet-Neumann (prescribed normal velocity and tangen-

tial stresses):

vi ni = v̄n, tiτi j n j = τ̄ on ∂�DN, (8)

where tj is the unit vector tangential to the boundary ∂�.

From these general boundary condition definitions, the following
choices lead to the following boundary conditions used in geody-
namic simulations: (i) choosing v̄i = 0 results in a ‘no-slip’ bound-
ary condition; (ii) a ‘free surface’ boundary condition is obtained
by choosing σ̄i = 0 and τ̄i = 0; (iii) setting v̄n = 0, τ̄i = 0 yields a
‘free-slip’ boundary condition.

3 N U M E R I C A L M E T H O D

The Stokes (eq. 1) and continuity equations (eq. 4) are discretized
using the finite difference method on a staggered grid in 2-D
(Harlow & Welch 1965). This type of discretization is commonly
used in the geodynamic community (e.g. Tackley 2008; Gerya 2010;
Furuichi et al. 2011) as (i) the staggered arrangement of the prim-
itive variables (vi, p) satisfies the inf-sup stability criterion (i.e. no
spurious pressure modes) (Shin & Strikwerda 1997) and (ii) the
stencil associated with the discrete operators contains few entries
(11 in 2-D, 17 in 3-D), thereby reducing memory requirements and
floating point operations. In case of smooth spatial variations of ma-
terial properties (i.e. viscosity and density), the staggered grid offers
second order spatial accuracy. In the presence of material discon-
tinuities across the control volumes, the accuracy of the staggered
grid is first order accurate (Deubelbeiss & Kaus 2008; Duretz et al.
2011b). The standard staggered grid discretization is however re-
stricted to using grids which are orthogonal to the coordinate system
(e.g. Cartesian, cylindrical, spherical). Such a restriction imposes
strong limitations on its geometric flexibility and, subsequently, on
the ability to represent time-dependent free surface geometries.

4 F R E E S U R FA C E D I S C R E T I Z AT I O N

In this section, we describe an implementation of the free surface
boundary condition which can resolve topographic profiles that are
not aligned with our finite difference (FD) grid. Given previous
work examining the order of accuracy of the staggered grid FD
discretization in the presence of discontinuous viscosity structures,
our main goal is to design a free surface boundary condition which
is at least first order accurate. A secondary objective of our imple-
mentation is that it can be readily implemented into existing FD
geodynamic numerical codes.
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To that end, we propose to represent the free surface boundary
condition on a structured Eulerian grid, with the topography dis-
cretized in a staircase manner. In practice the procedure can be
divided into two steps: (i) the identification of the cells (‘cell flag-
ging’) that are below the free surface and, (ii) the introduction of
local stencil modifications which need to be applied at the surface
cells to enforce the vanishing stress boundary condition. One should
note that the overall approach shares a number of similarities with
the original work of Harlow & Welch (1965).

4.1 Cell flagging

We assume that the free surface is defined by a contour φ(x) and
that there exists a mean to query whether a point xi is ‘inside’
the contour φ (fluid domain) or ‘outside’ the contour. In other
words, φ(x) corresponds to the y coordinate of the free surface
for any given x coordinate. We identify as active cells (‘A-cells’)
the fluid-filled cells which have a centroid xc inside the contour φ

(Fig. 2A). The velocity and pressure degrees of freedom of the active
cells will be included in the discrete solution. Cells not identified as
A-cells are flagged as void cells (‘V-cells’). The degrees of freedom
associated with cells which are not identified as active are not part
of the discrete solution. Any neighbour cell n of an A-cell which
is not an A-cell is labelled as an interface cell (I-cell) (open circles
in Fig. 2A). The pressure degree of freedom associated with I-cells
are used to enforce a zero pressure Dirichlet boundary condition.

4.2 Stokes stencil modification

Once both the active and interface cells have been identified, the
Stokes and continuity equations can be discretized while taking
into account a free surface boundary condition. Whereas the dis-
cretization of the continuity equation remains unchanged, the sten-
cils corresponding to the momentum equations require some modi-
fications. In the cells that are located along the free surface (I-cells),
a typical 11 nodes stencil cannot be assembled in 2-D as all the
velocity nodes located above the surface are deactivated (Figs 2B
and C). Instead we use the free surface constraints to discretize the
momentum equations which imply that both the normal stresses
(σ xx, σ yy) and the shear stress (τ xy) should vanish at the free sur-
face. The pressure gradient across the free surface can be evaluated
in the usual manner as the pressure node in any adjacent I-cell is
defined as a Dirichlet boundary condition. The general stencil for
the x-momentum equation can be spelled as:

Fu = 1

hx

(
τE

xx − τW
xx

) + 1

hy

(
τN

xy − τ S
xy

)

− 1

hx

(
pE − pW

) − F x
Dirichlet − F x

Neumann, (9)

where Fu represents the residual of the x-momentum equation, hi

stands for the grid spacing and the superscripts E, W, N, S corre-
sponds to the cardinal directions. The terms F x

Dirichlet and F x
Neumann

correspond to contributions from the Dirichlet and Neumann bound-
ary conditions respectively. For the interface geometry depicted in
Fig. 2(B), the modified stencil can written as:

Fu = 1

hx

(−τW
xx

) + 1

hy

(−τ S
xy

) − 1

hx

(
pE − pW

)
−F x

Dirichlet − F x
Neumann, (10)

Figure 2. (A) Cell flagging scheme for the free surface boundary condi-
tions. The black dashed line represents the topographic function φ(x), the
blue line represents the corresponding staircase topography. Above the blue
line, degrees of freedoms are not activated, except for the first row of pres-
sure nodes (open red circles), which correspond to zero pressure Dirichlet
boundary conditions. Below the blue line, filled circles and bars represent
activated pressure and velocity degrees of freedom. Open red squares and
stars indicate the location of the surface stress tensor components. These
nodes are not explicitly included in the system of equations (i.e. they are
not additional degrees of freedoms) but are used to enforce the free surface
stencil. (B) Stencil corresponding to the x component of the momentum
balance equation (eq. 1). The green symbols correspond to nodes required
to evaluate the equation at the given location (Fu). The black crosses indicate
the deviatoric stress tensor components involved in the calculation of Fu.
(C) Same as (B) but for the y-momentum balance equation (Fv).

assuming that τE
xx = 0 and that τN

xy = 0 since both velocity gradients
across the free surface which contribute to the shear stress τN

xy =
ηN( ∂vx

∂y + ∂vy

∂x )N vanish. In the case the surface would be horizontal

the expression of τN
xy would be τN

xy = ηN( ∂vy

∂x )N, as only the vertical
velocity gradient would vanish. Respectively, in the case of a verti-
cal surface, the shear stress would take the form of τN

xy = ηN( ∂vx
∂y )N.

For τ S
xy , the four velocity nodes involved in the evaluation of the two

velocity gradients are contained within the computational domain,
its calculation remains unchanged. Similar stencil modifications
can further be applied to the y component (Fig. 2C). The unmod-
ified stencil corresponding to the y-momentum equation is spelled
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Figure 3. Convergence of the free surface boundary condition and sticky air method with decreasing grid size h. (A) Model configuration used for the
convergence test. (B) Pressure and velocity fields from the analytic solution. (C,D) Pressure and velocity errors (L1 norm) for both the free surface boundary
condition and the sticky air approach. For the sticky air models, the viscosity contrast is denoted via η∗. The results were computed using 6 × 6 markers per
cell.

as:

Fv = 1

hy

(
τN

yy − τ S
yy

) + 1

hx

(
τE

yx − τW
yx

)

− 1

hy

(
pN − pS

) − ρgy − F y
Dirichlet − F y

Neumann, (11)

where gy corresponds to the vertical component of the gravitational
acceleration vector. The modified stencil is given by:

Fv = 1

hy

(−τ S
yy

) + 1

hx

(
τE

yx

) − 1

hy

(
pN − pS

)

−ρgy − F y
Dirichlet − F y

Neumann, (12)

assuming that both τN
yy and τE

yx vanish. We note that these stencil
modifications do not alter the symmetry of the resulting discrete
Stokes operator.

In this work, the discrete velocity and pressure solutions are ob-
tained by sparse direct factorization of the discrete Stokes operator.
The benefits of the free surface boundary condition in the context
of iterative solvers are discussed and exemplified in Section 8.1.2.

5 A C C U R A C Y O F T H E S C H E M E

The accuracy of the proposed free surface discretization is evaluated
by comparing with the analytic solution of Schmid & Podladchikov
(2003). This analytic solution is used as it is valid in the limit
when the inclusion viscosity vanishes (i.e. it is inviscid). Under this
condition, normal and shear stresses vanish at the matrix/inclusion
interface and the pressure in the inclusion vanishes. This configura-
tion provides equivalent boundary condition as that used to describe

a free surface. Moreover, the interface in this analytic solution is
curved, and therefore it is non-trivial to resolve using an orthog-
onal mesh—a scenario which reflects the general case of interest
involving non-flat topography.

Here we use the same approach as in Duretz et al. (2011b) where
we determine the order of accuracy of the discretization by comput-
ing velocity and pressure errors for different grid resolutions. The
pressure discretization error (evaluated in the L1 norm) we use is
given by:

‖perr‖L1(�) = 1

V

∫
�

|p − ph | dV, (13)

where ph is the numerical solution, p is the analytic pressure field,
and V corresponds to the volume of the computational domain �.

We define an inviscid inclusion centred at (0, 0) with radius r =
0.5 and employ a model domain defined by � = [−0.25, 0.25] ×
[−0.75, −0.25]. The chosen model domain thus contains a curved
segment of the inclusion, thereby mimicking a free surface (see
Fig. 3A). The viscosity of the matrix (below the surface) is set
to 1. In the numerical simulation, the coordinates of the material
interface are used to initialize the topographic function on which
the free surface boundary condition is enforced. We use Dirichlet
boundary conditions for the lateral and bottom boundaries, which
receive normal and tangential velocity values evaluated with the
analytic solution. The grid convergence test is carried out on a
sequence of seven grids using N × N control volumes, where N =
{30, 60, 120, 240, 480, 960, 1920}. The side lengths of each control
volume (hx, hy) are equal and will simply be denoted via h.
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In Fig. 3(C) we report how the pressure discretization error varies
with decreasing grid spacing. The pressure error is observed to
decrease linearly with decreasing grid spacing h. The slope of this
line is −1.001, which indicates that the pressure approximation is
first order accurate in L1. We also report first order accuracy for
the velocity discretization error (Fig. 3D). Additionally, we carried
out a similar test using the sticky air approach. In these tests, the
material above the curved interface was considered as a less viscous
sticky air and along the top of the model domain we prescribed a ve-
locity Dirichlet boundary condition given by the analytic solution.
In Fig. 3(C) we also report the measured L1 pressure error obtained
using viscosity contrasts η∗ which reflect those commonly by the
community when adopting the sticky air approximation. Whereas
first order accuracy was obtained for velocity errors (Fig. 3D, pres-
sure errors are observed to stagnate with decreasing grid spacing.
The supplied script (FreeSurfaceAccuracyTest.m) can be used to
reproduce the grid convergence using the free surface boundary
condition.

6 T I M E - D E P E N D E N T F R E E S U R FA C E
E V O LU T I O N

One of the main interests of direct numerical models is to track
deformation with time. This is particularly important concerning
the free surface because topography constitutes one of the first
order feature of the models that can be compared with natural
observations. Since different methods can be used (e.g. level set
functions), we briefly describe our tracking method here. Further
details can be found in Appendix A.

The free surface φ(x, t) evolves temporally according to

∂φ

∂t
+ v · ∇φ = 0 → Dφ

Dt
= 0, (14)

subject to the initial condition φ(x, 0) = φ∗(x).
We will classify methods to represent the free surface as either

‘explicit’ or ‘implicit’. Explicit methods track the coordinates of
φ, while implicit methods indirectly define the location of the in-
terface. With an implicit interface representation, a reconstruction
is required if the coordinates of the interface are needed. The fol-
lowing techniques are all of the implicit variety: level sets (Suckale
et al. 2010), volume of fluid, particles level set method (Samuel
& Evonuk 2010), phase field methods, or marker-in-cell (MIC) as
long as the markers are used for tracking volumes (Weinberg &
Schmeling 1992). Explicit methods are by definition generally La-
grangian schemes, with notable examples being: the marker-chain
approach of van Keken et al. (1997), contour tracking, front-tracking
using meshes fitted to the interface.

Here we have used a combination of the different techniques
listed above. We have chosen to (i) discretize φ using the marker
chain approach (van Keken et al. 1997) and to (ii) discretize material
below the free surface using a MIC approach. The markers used to
discretize the free surface and the volume domain are advected using
fourth order accurate in space first order in time Runge–Kutta (RK4)
method. A standard bilinear node to marker interpolation (Gerya
2010) is used to define the velocity at each marker coordinate.
Following the advection of all markers, we use the surface markers to
reconstruct a continuous function (C0 continuity) corresponding to a
piecewise linear representation of φ within each control volume (see
Appendix A). The reconstruction uses standard distance-weighted
linear interpolation (Gerya 2010). The reconstructed surface φ̂ is
used to ‘remesh’ the surface markers through uniform re-sampling
within each control volume. Furthermore, φ̂ is used to define subgrid

variations in topography through a fluid volume weighted correction
which we describe in Section 6.1.

As is common in geodynamic modelling, we assume the cou-
pling between the surface evolution (eq. 14) and the conservation
of momentum and mass for the fluid (eqs 1 and 4) is weak and
thus we solve these two systems in de-coupled (explicit) fashion.
Specifically, at each time step, we solve the conservation of mo-
mentum and mass for the fluid velocity (vh) and pressure (ph).
The resulting velocity is then used to update the discrete form of
eq. (14), which requires performing an RK4 step to update the
surface markers coordinates (see Appendix A for further details).

6.1 Subgrid topographic sensitivity

The staircase free surface representation described in Section 4 is
inherently dependent on the vertical and horizontal spacing. In cases
where the amplitude of topographic variations is below the grid
resolution, the latter would not be captured by the discretization and
could not possibly influence the flow field. In order to circumvent
this aspect, we introduce a surface density correction. The density
in the surface cells is thus modified by the relative volume of fluid
present in the current cell:

ρeff
i = ρi

V f

hx hy
, (15)

where ρeff
i correspond to the corrected density evaluated at the cell

centre, ρ i is the real material density, and Vf corresponds to the
volume of fluid in the current cell. This quantity is evaluated by
integrating the topography function φ̂ using a one point quadrature
rule. The influence of this surface density correction is emphasized
in Section 7.1.

7 C O M PA R I S O N W I T H C O M M U N I T Y
B E N C H M A R K S

7.1 Topography benchmark

We first consider the two test cases presented in Crameri et al.
(2012a). Both cases were designed to study the evolution of to-
pography above a two-layer system (lid, mantle) in the presence of
gravity (see fig. 1 of Crameri et al. 2012a, for the initial model
configuration).

7.1.1 Case 1

In the first case, the initial topography is characterized by a cosinu-
soidal perturbation. This perturbation provides the driving force for
viscous relaxation and the topography tends to flatten out with time.
We ran models using a grid resolution of 100 × 100 cells, six sur-
face markers per cell column and a constant time step (CTS, �t = 5
× 109 s) and tested the influence of the surface density correction.
The time-step value is chosen such that it is smaller than the viscous
relaxation time corresponding to this test (14.85 kyr or 4.74 × 1011

s, cf. Crameri et al. 2012a). The maximum topography is recorded
every five time steps and is compared against results previously ob-
tained with the codes MILAMIN_VEP (Kaus 2010) (which uses
a free surface) and STAGYY (Tackley 2008) (which uses the sticky
air approximation). The comparison between the different models
is depicted in Fig. 4 (cf. fig. 2 of Crameri et al. 2012a). The model
that was run with the surface density correction (see Section 6.1)
shows good agreement with MILAMIN_VEP (Kaus 2010) and
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Figure 4. Case 1 topography benchmark of Crameri et al. (2012a). Models
were computed with and without subgrid density correction. Reference
results of STAGYY (using three different sticky air layer thickness) and
MILAMIN_VEP (free surface) are shown for comparison.

the STAGYY (Tackley 2008) simulation which used a sticky air
layer thickness and viscosity of 200 km and 1019 Pa s respectively.
We observed that neglecting the surface density correction does
not provide an accurate evolution of topography. In this case, the
maximum topography clearly deviates from the benchmark results
as the amplitude of topographic variations is lower than the vertical
grid spacing (hy = 7 km).

7.1.2 Case 2

In the second case, the topography is initially flat and a buoyant
inclusion is located within the mantle. The flow induced by the

rise of the buoyant inclusion causes the development of topography.
In this test, we monitor the evolution of the maximum topography
over a 20 kyr time period and compare it to the solution obtained
with the code MILAMIN_VEP which we consider as a reference
model (Fig. 5; cf. fig. 6 of Crameri et al. 2012a). We carried out
six numerical models in total, in the first series of three simulations
we used two different spatial resolutions (300 × 200 cells and
400 × 300 cells). The simulations were run with adaptive time
stepping (ATS) and using a Courant number (C) given by

C = �t

(
max(vx , vy)

min(hx , hy)

)
= 1

2
.

Models which were run with surface density correction compare
well with the reference model (Fig. 5A). The model computed with
the highest resolution shows the best agreement with the reference
solution. On the other hand, the simulation performed without sur-
face density correction fail to reproduce the results of the reference
model. This further emphasizes the importance of considering sub-
grid topographic variations. The second series of three simulations
were conducted using a mesh resolution of 300 × 200 cells, 6 sur-
face markers per cell column, and three different CTS value. The
three models take into account the surface density correction. The
evolution of the maximum topography is depicted in Fig. 5(B), in
which the focus is set on the initial stages of topographic build up
(<1 Myr). Whereas the models computed with the largest time step
tend to initially undershoot the reference topography, we observe
that decreasing the size of the time step leads to a closer agreement
with the reference solution.

7.2 Free surface Rayleigh–Taylor instability

Here we consider the topographic evolution generated by a con-
vecting two fluid system driven by buoyancy variations. The free
surface Rayleigh–Taylor instability is initiated by prescribing an

Figure 5. Case 2 topography benchmark of Crameri et al. (2012a). (A) Long-term evolution of the maximum topography over 20 kyr. Models were calculated
with and without subgrid density correction. An adaptive time stepping (ATS, C = 0.5) strategy was employed. (B) Topographic evolution in the early stages
of the simulation (isostatic timescale). Models were computed using constant time step (CTS). The reference results of MILAMIN_VEP are plotted in each
panel.
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Figure 6. (A) Rayleigh–Taylor instability test. Simulations were run using three different grid resolutions and adaptive time stepping (ATS). The results of
Kaus et al. (2010) (solid line) were computed using a body-fitted finite element method (MILAMIN_VEP) that serves as an accurate reference model. (B)
Topography and material phases after 5.54 Myr of simulation time for model ATS with resolution 300 × 300 cells. Dark grey corresponds to the dense lid
whereas light grey depicts the buoyant diapir. The black line indicates the topography (coordinates of the surface markers).

initial condition of the fluid–fluid interface which is gravitationally
unstable. The complete definition of this model is described in Kaus
et al. (2010). We ran models on three different grid resolutions (100
× 100 cells, 200 × 200 cells, and 300 × 300 cells) using ATS with a
Courant number equal to 0.5. The models employed 6 surface mark-
ers per cell column and utilized the surface density correction. This
model configuration may lead to spurious instability when evolving
material fields with an explicit advection scheme (Kaus et al. 2010).
Implementing a free surface stabilization algorithm was found nec-
essary in order to perform this simulation. Using the free surface
stabilization algorithm described in Duretz et al. (2011b) together
with the free surface boundary condition implies two modifica-
tions. Establishing density gradients across the free surface require
knowledge of the density above and below the free surface. The
density above the free surface can be set to a pre-defined value (air
or water density). The density below the surface uses the effective
values obtained via the surface density correction (see Section 6.1).
Models were run with the stabilization parameter, θ , set to 1.0.The
model results are compared against a reference model computed
with MILAMIN_VEP (Fig. 6, cf. fig. 5 of Kaus et al. 2010). We
obtain reasonable agreement with the reference model. Our results
tend towards the reference model with increasing mesh resolution.

7.3 Subduction benchmark

This case 1 subduction benchmark simulates the initiation of
buoyancy-driven subduction, in the absence of upper plate. The
topography is initially flat and develops with ongoing subduction
and the trench migrates laterally due to the effect of slab rollback.
The initial model configuration is depicted in fig. 1 of Schmeling
et al. (2008). We ran two different simulations using grid resolu-
tion of 200 × 150 cells and 400 × 300 cells, 6 surface markers
per cell column and ATS (C = 0.5). We track the maximum depth
of the slab (i.e. slab tip depth) with time. Our results are com-
pared against those computed with codes employing a free surface,
namely LAMEM and FEMS-2D (Schmalholz 2006). Reasonable
agreement is achieved between our models and those of LAMEM

but strongly differ with those of FEMS-2D (Fig. 7A, cf. fig. 10
of Schmeling et al. 2008). This discrepancy is explained by the
fact that we used arithmetic viscosity averaging (as in LAMEM),
whereas no viscosity averaging is used in the FEMS-2D calculation
which employs a Lagrangian framework (see discussion in Schmel-
ing et al. 2008). Nevertheless, with increased mesh resolution, the
results obtained with our method tend towards those of FEMS-2D.
The free surface approach well captures the dynamics of topogra-
phy development associated with the motion of large scale tectonic
motions. This behaviour is illustrated in Fig. 7(B), which depicts the
location of both trench and forebulge associated with the sinking of
the slab into the mantle.

8 D I S C U S S I O N

8.1 Benefits over the sticky air method

The free surface boundary condition described in this work over-
comes a number of drawbacks of the sticky air approximation (see
Section 1). Our free surface implementation reduces the total num-
ber of the degrees of freedom since the velocity and pressure fluid
associated with stick air layer do not need to be included in the com-
putational model domain. Subsequently it also reduces the number
of Lagrangian markers required (if an MIC approach is adopted)
as we do not need to track deformation within the sticky air layer.
The free surface discretization does not require calibration nor tun-
ing of parameters unrelated to the physical problem of interest (i.e.
thickness of the air layer, material and thermal properties of the air,
choice of boundary condition above the sticky air). With a suitable
discretization of the interface defining the free surface, our free
surface boundary condition implementation will resolve subgrid
topographic variations. Moreover, our approach naturally prevents
from any entrainment of sticky air markers below the surface of
the model, and additionally our approach avoid potential time-step
restrictions which might occur due to fast dynamics present within
a sticky air layer.
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Figure 7. Subduction benchmark of Schmeling et al. (2008), Case 1. (A) Simulations of spontaneously retreating subduction were run using two different
grid resolutions (see caption). Results computed with FEMS-2D and LAMEM, which also employed a true free surface, are plotted for comparison. (B)
Topography (upper panel) and material phases configuration (lower panel) after 74.6 Myr of simulation time (model ATS, 400 × 300 cells). The grey materials
represent the lithosphere (dark) and the asthenosphere (light), the black line corresponds to the surface markers depicting the position of the free surface.

8.1.1 Convergence

Our results indicate that the sticky air approximation adopted in
many geodynamic simulations is not convergent as the spatial dis-
cretization parameter h (size of the control volume) is continually
reduced (Fig. 3C). The accuracy of the sticky air approximation
depends on both the grid spacing and the viscosity ratio, hence
convergence can be recovered by increasing the viscosity contrast
together with decreasing the grid spacing. The observed lack of
convergence under mesh refinement (at fixed viscosity ratio) can
be understood in the following way. Considering a stationary prob-
lem with a linear, iso-viscous rheology, then the total error for the
numerical simulation can be expressed as:

E(�)L1 = ‖v − vh‖1 + ‖p − ph‖1

+EDirichlet
BC + ENeumann

BC + Esolve. (16)

The first two terms are the usual velocity and pressure errors associ-
ated with the discrete solution (vh, ph). Esolve is the error associated
with solving the discrete equations Ax = b. EDirichlet

BC , ENeumann
BC are

the errors associated with the Dirichlet and Neumann type boundary
conditions.

Assuming that each term can be expressed as ei = Ci hni , where
Ci is an unknown constant independent of h, then in the limit of h
→ 0, E(�)L1 will have an order of accuracy (bounded from above)
given byO(hm), where m = min (ni). That is, the order of accuracy of
the method is dominated by the term in eq. (16) which converges the
slowest, e.g. the term with the smallest exponent ni. For example, for
E(�)L1 to be first order accurate, we require that all terms in eq. (16)
converge at a rate of O(h) or higher in L1. From previous work, we
know that the velocity and pressure errors converge as O(h2) and
O(h). Our implementation of Dirichlet boundary conditions is also
known to be O(h2) accurate. We have also used an exact sparse
direct solver, thus Esolve can be taken to be of machine precision
(negligible error).

In the context of a sticky air calculation, ENeumann
BC is connected

with the approximation of σ ijnj = 0 along the free surface. The
quality of the approximation is a function of the values chosen for
ηair and Lair (thickness of the sticky air layer) and is not a function
of the mesh resolution h. Thus, in the limit h → 0, ENeumann

BC →
Ch0 = constant, thus E(�)L1 has an order of accuracy of O(1). For
the numerical experiments we considered in Section 5, the O(1)

pressure error in the free surface approximation was observed to
dominate E(�)L1 when h ≈ 2 × 10−3 for the model with η∗ = 102.

From numerical experiments, the method proposed in this paper
to approximate the free surface is observed to be first order accu-
rate (in L1). The error in our free surface approximation is purely
geometric and stems from our staircase representation of the free
surface interface. This geometric error has an order of accuracy
of O(h). The slowest converging terms in eq. (16) are thus associ-
ated with the pressure approximation and the Neumann boundary
condition approximation, both of which have an O(h) error. Thus,
in the limit of h → 0, E(�)L1 will have an order of accuracy
of O(h).

In addition to the stationary calculations performed in Sec-
tion 5, the comparisons performed in Sections 7.1–7.3 with time-
dependent free surface reference models employed in geodynamics
confirm that our free surface treatment possesses both spatial and
temporal discretization errors that converge with increasing spatial
and temporal resolution.

8.1.2 Applicability of multigrid solvers

Robust convergence of iterative solvers is difficult to obtain when
solving Stokes problems with a highly variable viscosity structure
(e.g. May & Moresi 2008). Iterative methods are however necessary
to solve the discrete Stokes problem associated with high resolution
2-D and 3-D simulations. The inclusion of sticky air layer naturally
implies that a large viscosity contrast should be used in a simulation
and will thus adversely affect the convergence of iterative solvers.
With the free surface boundary condition proposed here, the free
surface is imposed as a boundary condition, therefore no viscosity
contrast is needed to simulate free surface dynamics.

In order to illustrate this aspect, we have tested the proposed
free surface treatment together with an iterative Stokes solver em-
ploying the geometric multigrid method described in chap. 14 of
Gerya (2010). This method employs V-cycles and relies on a Gauss–
Seidel smoother. At each smoothing step, we sweep through grid
(horizontal direction first, followed by the vertical direction) and
subsequently update velocity and then the pressure corrections. We
have designed a test setup for gravity-driven flow (Fig. 8A). The
material configuration is similar to that used in Section 5 such that
the free surface is curved. All the boundaries are free slip (except
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Figure 8. Convergence of an iterative geometric multigrid solver in the presence of a free surface or a sticky air layer (SA models). (A) Model configuration
employed for the test. The iterative velocity and pressure residuals are reported in panels (B) and (C), respectively. Fp corresponds to the residual of the
continuity equation (divergence). Sticky air and free surface models were run with different smoothing parameters (see Section 8.1.2), which allowed both
models to converge at optimal rates.

for the free surface tests) and the models used 50 × 50 cells (upper
cells are deactivated for the free surface cases). The simulations
employing sticky air (with η∗ = 103) were run with a smoothing
relaxation parameter equal to 1.0 and 0.05 for the momentum and
continuity equations respectively. However, the free surface simu-
lations, which are iso-viscous, were run with a relaxation parameter
equal to 1.0 for both the momentum and continuity equations. Such
solver settings allowed both model configurations to converge to
machine precision with optimal convergence rates.

We report the results of the convergence of the multigrid solver
for both the sticky air and the free surface case in the L2 norm
(Figs 8B and C). In general, models using a free surface boundary
condition converge faster that those using a sticky air approximation
since they do not require any large viscosity contrast across the free
surface. In the experiments performed with a three level multigrid
hierarchy, the free surface models converged ∼5 times faster than
those using sticky air. We hence expect our free surface treatment
will be beneficial to 3-D models which employ an iterative flow
solver.

8.2 Limitations

The proposed free surface representation suffers from a number of
caveats. The discretization of the free surface boundary condition
does not conform to the free surface interface, hence the method
is limited to being first order accurate in the L1 norm. In terms
of discretization the staircase free surface approach is similar to
having a sharp material jump across a control volume, in other
words the pressure discretization errors located along the surface
will not converge in the L∞ norm (see Deubelbeiss & Kaus 2008).
This is however acceptable for modelling geophysical flows since
the absolute value of the dynamic pressures close the Earth’s surface
are relatively small.

For the time dependent free surface models shown here, our
choice of a Lagrangian marker chain to discretize the evolving free
surface interface is not ideal as (i) it does not naturally extend to
3-D implementations, (ii) it implicitly assumes that the interface

remains a continuous, unbroken line connecting the left and right
boundaries. For large deformations of the free surface, maintaining
continuity with the marker chain approach may lead to prohibitive
computational cost. Using an alternative interface tracking scheme
such as level sets would alleviate these two issues. We also note that
the discretization of the free surface boundary condition naturally
permits multiple closed, unconnected interfaces to exists within a
single computational domain, in case several internal free surfaces
need to be modelled.

9 C O N C LU S I O N S

We have developed and tested an alternative free surface boundary
condition discretization for geodynamic codes employing a stag-
gered grid finite difference. The method approximates the geometry
of free surface on an Eulerian grid via a staircase representation.
We have demonstrated that the proposed free surface discretization
converges with increasing grid resolution and is first order accu-
rate in space. In order to treat time-dependent flow problems, we
proposed an algorithm for tracking the location of the free surface
based on a Lagrangian marker chain approach. We have verified
our methodology by performing several community benchmarks.
Results obtained from our method show good agreement with the
community reference models for both the topography evolution and
the internal lithosphere/mantle dynamics. Our new methodology
represents a promising alternative over the extensively used sticky
air approximation since it overcomes several of its major draw-
backs, namely (i) the method does not require arbitrary choices to
be made for material properties associated with a fictitious fluid,
(ii) the proposed free surface discretization converges towards the
true free surface boundary condition under mesh refinement and
(iii) the method does not deteriorate the convergence of iterative
solvers. Our approach hence yields a more accurate representation
of free surface boundary condition while simultaneously reducing
computational cost (i.e. both in terms of CPU time and memory).
Lastly, the stencil modifications required to impose the free surface
boundary condition can also be readily extended to 3-D.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

FreeSurfaceAccuracyTest.m.
FreeSurfaceInclinedTest.m. (http://gji.oxfordjournals.org/lookup/
suppl/doi:10.1093/gji/ggv526/-/DC1).
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : F R E E S U R FA C E
T R A C K I N G

In the time-dependent models presented, we have tracked the posi-
tion of the free surface using a marker chain approach. In the fol-
lowing we describe how we combined the marker chain approach
with the Eulerian flow solver.

A1 Surface markers

The free surface interface is represented by a set of Lagrangian
marker points (Fig. A1A). The horizontal coordinates xp of the sur-
face markers is determined by specifying that each control volume
containing φ̂ must contain a constant number of surface-markers.
The vertical coordinate of each surface marker is defined by eval-
uating yp = φ̂(x p). The marker chain spacing (proportional to the
number of surface markers per cell column) defines the resolution
of the marker chain. This marker-based free surface representation
will be used to track the position of the free surface through time.
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(A)

(B)

(C)

Figure A1. Surface markers and remeshing procedure. (A) Position of the
free surface markers (green stars) after an arbitrary number of time steps.
(B) Interpolation of the topography from the surface markers to the vertex-
based topographic nodes (green squares). The construction of piecewise
linear topographic function (φ̂) for each surface cell is denoted by the blue
line. (C) Regularly spaced redistribution of surface markers using a new
topography value calculated from the piecewise linear function φ̂(x).

A2 Evaluation of the topographic function

A grid-based representation of the free surface is required in order to
discretize the Stokes equations for the current free surface position.
For each cell column i, we represent the free surface by a piece-wise
linear function. The discrete representation of the approximate the
topographic function, φ̂(x) is thus given by

φ̂(x) = ai x + bi , x ∈ [
xW

i , xE
i

]
, (A1)

where ai and bi are the cell-wise defined coefficients describing
the straight line segment and xW,E

i corresponds to the x-coordinate
of the west/east cell edge. The coefficients ai, bi are constructed
in manner which yields a C0 continuous approximation to φ(x).
The coefficients are obtained by first projecting the topography
from the marker chain onto the location of the vertical grid lines.
The procedure is carried out by standard distance-weighted linear
interpolation (Gerya 2010). For each cell column we obtain the
height of the topography on both the west (φW

i ) and east (φE) cell
edges. The slope can thus be evaluated as

ai = φE
i − φW

i

xE
i − xW

i

, (A2)

and the intercept is defined as:

bi = φW
i − ai x

W
i . (A3)

An illustration of the continuous nature of φ̂(x) across cell edges is
depicted in Fig. A1(B). Once the topographic function has been eval-
uated, it is straightforward to proceed to cell flagging (Section 4.1)

using the column-wise definition of φ̂ and then subsequently apply-
ing the spatial discretization (Section 4.2).

A3 Velocity interpolation and advection

After obtaining the solution of the linear system of equations,
the free surface position is evolved using the current flow field.
We use an explicit fourth order in space Runge–Kutta solver to
advect the Lagrangian surface markers. Each Runge–Kutta step ne-
cessitates the projection of the grid-based velocity field onto the
location of the markers. For this purpose, we use a standard bilinear
node to marker interpolation (Gerya 2010). Similar advection and
velocity projection routines are employed to advect the Lagrangian
markers corresponding to the material fields, which are located be-
low the surface. One may note that no Lagrangian marker points are
needed above the current surface position (defined by φ̂(x)) since
this part of the domain is out of the calculation domain.

A4 Remeshing

During the advection step, the surface markers move both vertically
and horizontally. As a result, the horizontal marker spacing may
become strongly variable and it becomes useful to either remesh the
marker chain or add surface markers in regions of strong surface
deformation. Here we opted for a two-step marker remeshing proce-
dure. In the first step, we evaluate the topographic function based on
the updated surface marker positions. In a second, we reset the hori-
zontal coordinate of the surface markers (e.g. using regular spacing)
and we redefine the vertical coordinate of the surface markers based
on its horizontal coordinate and the topographic function of the
corresponding cell column (Fig. A1C). In the presented application,
remeshing was applied at each time step. The remeshing naturally
introduces minor numerical diffusion of the topography.

A P P E N D I X B : A N I N C L I N E D S U R FA C E

We consider gravity driven flow of a fluid due to a linear inclination
of the free surface (i.e. constant slope c). Relationships relating

Figure B1. Pressure and shear stress relationships along an inclined
plane. The results were obtained using the supplied script (FreeSurfaceIn-
clinedTest.m). Expression for expected pressure (ps exp.) and shear stress
distribution (τ s

xy exp. 1 and 2) are provided in Appendix B.
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the pressure, deviatoric normal stress, and shear stress along the
inclined free surface can be established using Cauchy’s formula.
The relation between the pressure and the horizontal deviatoric
stress is

ps = τ s
xx

c2 + 1

c2 − 1
. (B1)

The relationship that links shear stress to the deviatoric normal
stress is

τ s
xy = τ s

xx

2c

1 − c2
. (B2)

This test can reproduced using the supplied script (FreeSurfaceIn-
clinedTest.m). Alternatively the shear stress can expressed as a func-
tion of the pressure such that

τ s
xy = −ps 2c

c2 + 1
. (B3)

In Fig. B1, we compare numerical pressure and shear stress distribu-
tions against semi-analytic predictions. We use numerical values of
deviatoric normal stress and pressure (evaluated just below the free
surface), to predict the pressure (ps exp.) and shear stress (τ s

xy exp. 1
and 2) with the above listed relationships. A good qualitative match
between expected profiles and numerical solutions is obtained.
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