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ABSTRACT 53 

In this paper we characterize the seasonal and inter-annual variabilities of cloud fraction profiles in both 54 

observations and simulation since they are critical to better assess the impact of clouds on climate variability. 55 

The spaceborne lidar onboard CALIPSO, providing cloud vertical profiles since 2006, is used together with a 56 

23-year WRF simulation at 20 km resolution. A lidar simulator helps to compare consistently model with 57 

observations. The bias in observations due to the satellite under-sampling is first estimated. Then we examine the 58 

vertical variability of both occurrence and properties of clouds. It results that observations indicate a similar 59 

occurrence of low and high clouds over continent, and more high than low clouds over the sea except in summer. 60 

The simulation shows an overestimate (underestimate) of high (low) clouds comparing to observations, 61 

especially in summer. However the seasonal variability of cloud vertical profiles is well captured by WRF. 62 

Concerning inter-annual variability, observations show that in winter, those of high clouds is twice the low 63 

clouds one, an order of magnitude that is is well simulated. In summer, the observed inter-annual variability is 64 

vertically more homogeneous while the model still simulates more variability for high clouds than for low 65 

clouds. The good behavior of the simulation in winter allows us to use the 23 years of simulation and 8 years of 66 

observations to estimate the time period required to characterize the natural variability of the cloud fraction 67 

profile in winter, i.e the time period required to detect significant anomalies and trends.  68 

Keywords: lidar, clouds, simulation, Europe, natural variability   69 
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1. INTRODUCTION 70 

Improving our understanding of the internal variability of the European climate is a necessary step to get more 71 

reliable prediction of the temperature evolution in the next two decades over Europe (Hawkins and Sutton 2009). 72 

Actually, using Coupled Model Intercomparison Project (CMIP3) models and despite the fact that these models 73 

may overestimate natural decadal fluctuations, Hawkins and Sutton (2009) show that the climate internal 74 

variability is the most important source of uncertainty to predict the regional temperature in the next two decades. 75 

By comparing different regions of the world, they also showed that this uncertainty is maximal over Europe 76 

compared to other regions. For prediction times of many decades (more than 2 decades), the uncertainty on the 77 

future climate prediction is no more dominated by the lack of knowledge on the inter-annual variability, but by 78 

the uncertainty of the model itself (eg. the difficulty of the model to reproduce the actual state of the atmosphere) 79 

which then becomes the dominant contribution to the uncertainty in the prediction of the future climate at 80 

regional scale. The authors suggest that using observations of the current climate state may help to better 81 

understand the inter-annual variability of the climate system and to reduce model defaults; doing so may 82 

contribute to reduce uncertainties in the prediction of the evolution of the climate at regional scale. 83 

At first order, temperature over Europe is driven by the large-scale atmospheric circulation (e.g. Rojas et al. 2013; 84 

Xoplaki et al. 2004). In particular, in winter and summer, European climate is characterized by the succession of 85 

four weather regimes resulting from the relative location of three pressure centers: the Icelandic low, the Azores 86 

high and the continental highs and lows (Yiou et al. 2007; Cassou et al. 2004, 2005; Vautard 1990). Southern 87 

Europe and Mediterranean Basin climates are influenced by the North Atlantic regimes but are also under the 88 

influence of the Genoa depression and the Atlas lee depression (Reiter 1975), which drive air masses from the 89 

south.  90 

However, large-scale circulation cannot explain all the variability. According to Yiou et al. (2007) temperature 91 

anomalies are more and more often influenced by other factors. Clouds are one of these factors and play a major 92 

role in the natural temperature variability due to their radiative effects. Chiriaco et al. (2014) showed the spatial 93 

correlation between the area of positive temperature anomaly which occurred during July 2006 over Western 94 

Europe and the lack of low clouds, using satellite observations. Using observations over 1984-2007, Tang et al. 95 

(2012) suggest that clouds over Europe are better indicator of summer maximum temperature changes than the 96 

proxies of soil moisture anomalies, and that the summer temperature increase is correlated with total cloud cover 97 
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decrease. However, clouds remain an important source of uncertainties in our understanding of climate 98 

variability (Soden and Held 2006) due to the complex cloud feedbacks with surface and boundary layer, 99 

orography and tropospheric environment (air entrainment and humidity). These processes influence the internal 100 

variability of climate response and enhance the model uncertainties. Despite these uncertainties, several studies 101 

using models have investigated the role of clouds on the present and future climate over Europe. They suggest 102 

the increasing of future summer temperature variability particularly for central Europe (Lenderink et al. 2007), a 103 

future annual precipitation increase over northern Europe (Kjellström et al. 2011) and a decrease trend of the 104 

cloud cover in summer over Europe (Tang et al. 2012). Other authors have shown how model biases in present 105 

climate influence the model response to greenhouse gases forcing. For instance, Boé and Terray (2014) show 106 

that climate models with surface temperature strongly sensitive to cloudiness simulate a larger future decrease of 107 

cloud cover than other models (over land, in summer). Lenderink et al. (2007) studied temperature variability 108 

and the surface energy budget over control period (1961-1990) and future climate (2071-2100) in an ensemble of 109 

regional climate models and show that i) temperature variability is overpredicted in the control simulations; ii) 110 

temperature variability is very correlated with surface energy budget variability in the models; iii) clouds and 111 

radiation are critical to determine the climate sensitivity on Western Europe in summer in regional models.  112 

The goal of this study is to characterize and understand clouds natural variability in the current climate to better 113 

assess its effect on European climate characteristics (future work). We will focus on the vertical distribution of 114 

clouds because: (i) the clouds radiative effect depend on the vertical distribution of microphysical and macro-115 

physical properties of clouds (Stephens 2005), and (ii) the vertical distribution of clouds is a much more robust 116 

signature of climate variability than vertically integrated variables (total cloud cover or radiative fluxes) 117 

(Chepfer et al. 2014). Three main questions are then addressed in the current paper: (1) What is the seasonal 118 

variability of the cloud vertical distribution over Euro-Mediterranean area? (2) What is its inter-annual 119 

variability? (3) Are simulations able to reproduce the amplitude of these variabilities?  120 

To address these questions we used Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations 121 

(CALIPSO) that provides very detailed vertical description of clouds’ distribution (Winker et al. 2003) since 122 

2006. This study only focuses on nighttime profiles since cloud detection is more accurate than during daytime 123 

(Winker et al., 2009) (see section 2.1). Eight years (since 2006) are a priori not sufficient to cover the entire 124 

natural variability. Moreover, the satellite under-sampling of the Europe-Mediterranean area due to the sun-125 

synchronous orbit could be an issue for covering the cloud variability. Then, we use a simulation in addition to 126 
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CALIPSO observations. Requirements for the simulation are (i) covering the Euro-Mediterranean region, (ii) a 127 

good spatio-temporal resolution in order to take into account the complex terrain and the influence of the 128 

different air masses that characterize the area of study and which influence the cloud formation, (iii) at least 20 129 

years as it is the period where the internal variability is the principal source of uncertainty in the simulation of 130 

European climate (Hawkins and Sutton 2009), iv) a nearly 'perfect' dynamics to better evaluate and estimate the 131 

fluctuations linked to clouds. A WRF (Weather Research and Forecast Model; Skamarock and Klemp 2008) 132 

simulation performed in the framework of HyMex (HYdrological cycle in Mediterranean EXperiment; 133 

Drobinski et al. 2014) and MED-CORDEX (Mediterranean COodinated Regional climate Downscaling 134 

EXperiment; Ruti et al. 2015) programs is used as it presents these characteristics: 23 years with outputs every 3 135 

hours, 20×20 km² horizontal resolution, and the nudging option towards ERA-interim reanalysis for wind, 136 

temperature and humidity above the boundary layer. Also, the same diagnosis of clouds is needed for both 137 

observations and simulation. Since WRF simulates concentration of liquid water, snow and ice which are not 138 

directly comparable with the lidar, a lidar simulator (Chiriaco et al. 2006; Chepfer et al. 2008) developed for 139 

Global Circulation Models (GCMs) in Cloud Feedback Model Intercomparison Project (CFMIP) Observation 140 

Simulator Package (COSP, Chepfer et al. 2008) has been adapted to WRF and used in this study. 141 

These tools are presented in Sect. 2. An important issue for this regional climate variability study is the satellite 142 

under-sampling effect: this issue is addressed in Sect. 3 using two different samplings of the simulation. Also, 143 

the vertical distribution of clouds has been carefully evaluated in GCMs, in particular with the GCM-Oriented 144 

CALIPSO Cloud Product (GOCCP; Chepfer et al, 2008; Cesana and Chepfer 2012) developed to evaluate clouds 145 

representation in GCMs. But it has not been evaluated in regional simulation except for some case studies (e.g. 146 

Chaboureau et al. 2012 for some convective precipitating clouds over western Europe; Chiriaco et al. 2006 for 147 

some cirrus clouds in the Paris area). Then, the WRF/MedCordex simulation's representation of the clouds' 148 

vertical structure over Euro-Mediterranean area and in particular its ability to reproduce the amplitude of the 149 

seasonal variability is addressed in Sect. 4. In sect 5, the inter-annual variability of cloud profiles is studied in 150 

both observations and simulation: the ability of the model to detect climate extremes, and the question of the 151 

number of years required to cover the entire natural variability are addressed. Conclusions and prospects of this 152 

work are presented in Sect. 6. 153 

 154 
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2. TOOLS 155 

2.1.  CLOUD PRODUCTS FROM OBSERVATIONS 156 

CALIOP is a two-wavelength polarization-sensitive lidar that provides high-resolution vertical profiles of clouds. 157 

This study is based on the 532-nm channel in parallel polarization analysis. This wavelength is in the visible 158 

spectrum making the signal-to-noise ratio reduced during daytime due to solar radiations, affecting the detection 159 

of daytime clouds (Winker et al. 2009). Thus, this study only focuses on nighttime profiles. It corresponds to a 160 

satellite overpass between 23 UTC and 03 UTC for this region. Results can be different for daily clouds, in 161 

particular for low clouds (z < 3.2 km corresponding to P > 680 hPa) that have an important diurnal cycle. 162 

CALIOP’s vertical resolution is 30 m from ground to 8.2 km of altitude and 60 m above. Its horizontal 163 

resolution is 330 m. Cloud products used in this study are the GOCCP products. They are specially developed 164 

for comparison with models, in particular GCM.  In GOCCP, while the original horizontal resolution of 165 

CALIOP is kept, the original vertical resolution is modified and the profiles are vertically averaged on a GCM 166 

typical vertical resolution of 480m (Chepfer et al. 2010). Here, they are adapted for comparison with regional 167 

model simulation. Two cloud products are defined:  168 

- SRGOCCP (z) is based on Scattering Ratio (SR) values, which highlight the contribution of particles (condensed 169 

water or aerosols) to the lidar signal (Annex 1, eq1). SR is equal to 1 in absence of clouds and aerosols. SR > 1 170 

traduces the existence of particles; it is either aerosols or condensed water. The more optically thick clouds, the 171 

higher SR values. When the lidar signal is fully attenuated by optically thick clouds, the layers below are 172 

obscured and SR values at lower levels become very low (< 0.01). SRGOCCP (z) keeps the GOCCP original 173 

resolution horizontally and vertically (over 34 levels from the ground). 174 

- CFGOCCP (z) is the Cloud Fraction computed from SR profiles at 330 m horizontal resolution over the 20 × 20 175 

km
2
 horizontal resolution of the simulation (see Sect. 2.2) over the 34 vertical layers. Figure 1 shows the model 176 

grid and the number of CALIPSO nighttime overpasses during June-July-August (JJA) 2008 over each grid 177 

point.  With this resolution, some parts are never covered by CALIPSO and the overpass number on the covered 178 

grid-boxes varies between 3 and 6 over one season but the number of observed profiles over one grid point is 179 

increased by the horizontal resolution of 330m. Cloud detection is based on SR thresholds following Chepfer et 180 

al. (2008, 2010): 0.01 < SR ≤ 1 clear, 1.2 < SR <5 (existence of particles, could be optically thin clouds or 181 
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aerosols), and the threshold of cloud detection is set to 5 (SR ≥ 5). These thresholds are used for each profile at 182 

each vertical level (Fig. 10 annex 1). The cloud fraction over a gridbox is then the percentage of cloudy profiles 183 

(SR(z)≥ 5) by the total number of profiles that are not fully attenuated (SR(z)≥ 0.1). 184 

In the current study, SRGOCCP and CFGOCCP profiles observed throughout the period 06/2006 to 12/2011 are used, 185 

as it is the common period with the simulation (Sect. 2.2).  186 

2.2. CLOUD PRODUCTS FROM SIMULATION 187 

2.2.1. SIMULATION SET-UP 188 

A 23-year simulation with the WRF model of the National Center for Atmospheric Research (NCAR) 189 

(Skamarock and Klemp 2008) was performed at 20 × 20 km² resolution over the Mediterranean basin in the 190 

framework of COordinated Regional climate Downscaling Experiment (CORDEX; Giorgi et al. 2009.  Note that 191 

MED-CORDEX is the Mediterranean focus of CORDEX; Ruti et al. 2015) and HYMEX programs (Drobinski et 192 

al. 2014). It performs a dynamical downscaling of the ERA-interim data (Dee et al. 2011) over the period 1989-193 

2011. The model has 28 sigma-levels in the vertical. A complete set of physics parameterizations is used: the 194 

Single-Moment 5-class microphysical scheme (WSM5; Hong et al. 2004), the Kain-Fritsch convection scheme 195 

(Kain 2004), the YonSei University (YSU) planetary boundary layer (PBL) scheme (Noh et al. 2003) and a 196 

parameterization based on the similarity theory (Monin and Obukhov 1954) for the turbulent fluxes. The 197 

radiative scheme is based on the Rapid Radiative Transfer Model (RRTM) (Mlawer et al. 1997) and the Dudhia 198 

(1989) parameterization for the longwave and shortwave radiations, respectively. The lower boundary conditions 199 

of the WRF model are provided by the land surface model (LSM) Rapid Update Cycle (RUC) (Smirnova et al. 200 

1997, 2000). Nudging above the boundary layer is used in order to avoid the small-scale variations to generate a 201 

large-scale that would diverge from the observed large-scale structures inside the limited area (Stauffer and 202 

Seaman 1990; Salameh et al. 2010; Omrani et al. 2013). Hence it allows us to compare the structure of clouds 203 

with the same large-scale environment.  204 

This simulation has been already used for several studies and has been evaluated against data for temperature 205 

(e.g Chiriaco et al. 2014; Stefanon et al. 2014), precipitation (e.g Flaounas et al. 2013, 2014; Lebeaupin-Brossier 206 

et al. 2015; Vaittinada et al. 2015) and wind (Omrani et al. 2014).  207 

Cloud outputs are mixing ratios of ice, snow and liquid and are interpolated on the same vertical resolution as 208 
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GOCCP between the ground and 16 km, which corresponds to 34 levels. They are available every 3h. 209 

2.2.2. LIDAR SIMULATOR AND DATASETS 210 

To compare WRF outputs with CALIPSO lidar observations, we use a methodology similar to the one followed 211 

by Chepfer et al. (2008) and Cesana and Chepfer (2012) comparing CALIPSO observations with a GCM. Also 212 

we define two datasets to better assess the issue of sampling. The methodology then consists in i) extracting two 213 

different datasets of WRF vertical profiles: one that uses the total grid of the simulation and another one using 214 

the satellite horizontal and temporal resolutions (see details below) ii) from these extracted profiles, computing 215 

the lidar profiles that would be observed by CALIPSO if the satellite were flying above the simulated 216 

atmosphere (Chepfer et al. 2008), iii) using the same SR bins as the ones used for GOCCP, iv) computing the 217 

cloud fraction from the simulated SR profiles as the percentage of SR (z) ≥ 5 per grid-box as done to produce 218 

CFGOCCP (see Sect. 2.1.).  219 

The first dataset is obtained by extracting one profile per night, at 00 UTC, over each grid box. It corresponds to 220 

about 2.10
6
 profiles for one season. The covered period is 1989-2011. The second dataset corresponds to the 221 

profiles that are coincident with CALIPSO tracks, at the closest time of CALIPSO overpass (i.e either 00 or 03 222 

UTC). As CALIPSO horizontal resolution is 330 m while the WRF one is 20 km, the number of CALIPSO 223 

profiles that fall into one WRF grid-box varies between 0 (Fig. 1a) and 85 (depending on the fact the track 224 

crosses the box along its diagonal or only at its corner or not at all). The WRF profiles are duplicated to obtain a 225 

CALIPSO like track with the same number of CALIPSO profiles over a grid-box, to give to each grid box the 226 

corresponding weight. However, we have tested the extraction of cloud profiles without duplicating the profiles 227 

(using only one WRF profile per grid-box that is crossed over) and the differences are very negligible for the 228 

current study. Over one season, the number of profiles of this second dataset is about 8.10
7
 (obtained from 5.10

4
 229 

profiles, before duplicating). The available period is 2006-2011.  230 

A lidar simulator is associated to these WRF outputs. It consists on computing the lidar signal (equation 2 in 231 

annex 1) from WRF outputs considering the effective radius r and size distribution n(r, z) of each meteor (here 232 

liquid, ice and snow). Since these parameters are not direct outputs of the model and since the simulator is 233 

offline the model, they are computed from the mixing ratio of ice (Qi), snow (Qs) and liquid (Ql) (outputs of the 234 

model) using the microphysical equations used in the parameterization (here WSM5). WRF outputs (Qi, Ql, Qs, 235 

pressure and temperature) are interpolated on a regular vertical grid first and then the lidar signal is computed 236 
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giving SR profiles for the two datasets. Afterwards, cloud fraction profiles are computed following the same 237 

method as for observations (Sect. 2.1). The variables obtained are SRWRF+sim
T
(z) and CFWRF+sim

T
(z) for the first 238 

dataset and SRWRF+sim(z) and CFWRF+sim(z) for the second dataset, both over period 2006-2011 (Tab. 1). The 239 

exposant T is for the total simulation dataset.  240 

Figure 2a is a randomly picked scene showing an example of the vertical profiles of SRGOCCP(z) along a 241 

CALIPSO track (2009-01-19 at night) between 30°N and 50°N latitudes and 3°E and 5°E longitudes. The same 242 

scene is represented in Fig. 2b with the simulated total condensed water mixing ratios, while Fig. 2c shows 243 

SRWRF+sim(z). The red shadows in Figs. 2a-c show the cloud structures, the dominant blue represents the clear sky 244 

and the dark blue indicates that the signal is fully attenuated. As the model does not simulate aerosols, the 245 

boundary layer is not properly represented in the simulated profiles (Figs. 2b and c).  246 

Clouds detected by CALIOP shown in Fig. 2a are simulated by the model most of the time (Fig. 2.b and c) 247 

despite few differences (around 32°N, around 49°N). In this case study, the vertical cloud structure is less 248 

variable in the simulation than in the observations. This result of bigger and more persistent clouds in terms of 249 

occurrence and lifetime in regional simulation over Europe is expected and has been shown in previous studies 250 

with mesoscale models: e.g the evaluation of some cirrus clouds case studies (1-2 months) of the fifth-generation 251 

Pennsylvania State University-NCAR Mesoscale Model (MM5) with ground-based measurements over France 252 

(Chiriaco et al. 2006) and over Europe with Ice, Cloud and land Elevation Satellite (IceSat) lidar observations 253 

(Chepfer et al. 2007).  254 

The comparison between Fig. 2b and c illustrates the importance of comparing lidar observations with a similar 255 

simulated signal:  256 

- the lidar signal can be fully attenuated, masking lower clouds even if they are simulated: for instance at 257 

43°N, between 5 and 7 km, high mixing ratio are simulated, while SR(z) value is less than 0.01.  258 

- a weak mixing ratio may be associated to significant SR value (e.g. between 40 and 41°N or between 46 259 

and 48°N). It’s due to the fact that SR (z) is a signature of the optical depth and optical properties of 260 

clouds (type of particles, size, concentration), and not only of the particles concentration (Chepfer et al.  261 

2013). 262 
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In the current study, these tools are used to characterize the seasonal and interannual variabilities of the vertical 263 

structure of clouds over the Euro-Mediterranean region. As shown by Fig. 1, the orbit of the satellite does not 264 

allow us to evaluate the spatial variability of clouds at these spatial and time scales.  265 

Before using the tools for inter-annual variability studies, two steps are necessary: (i) evaluate the biases caused 266 

by the satellite under-sampling (Sect. 3), and ii) evaluate the biases of the modeled clouds (Sect. 4).  267 

 268 

3. BIAS DUE TO SATELLITE UNDER-SAMPLING  269 

The number of satellite tracks over one season is limited in a grid-box. Figure 1a shows that CALIPSO does not 270 

overfly all the grid elements at 20×20 km² resolution, and that the maximum number of overpasses over one 271 

grid-box is 6 in one given season. To study cloud variability at this spatial scale and resolution, it is then 272 

necessary to cumulate enough profiles temporally or spatially. This section aims at quantifying the bias in the 273 

cloud variability due to the satellite under-sampling, depending on the number of seasons cumulated. 274 

 275 

3.1. CLOUD FRACTION PROFILES 276 

The effect of satellite under-sampling on cloud fraction profiles is examined here by using only the simulation, 277 

as a complete sampling is by definition not available in observations. Comparing complete sampling and satellite 278 

sampling of the same dataset (here the simulation) will allow only focusing on biases due to the sampling (so not 279 

also the biases of the simulation). Black lines (computed over around 2.10
6 

profiles) in Fig. 3 represent 280 

CFWRF+sim
T
(z), cloud fraction profiles extracted every 00 UTC over the entire domain, i.e one profile per grid box. 281 

They are compared to the red lines (computed over 5.10
4 

profiles) representing CFWRF+sim(z), cloud fraction 282 

profiles following the CALIPSO sampling, i.e either 0 profile over a grid box or several profiles duplicated to 283 

get the same number of WRF profiles than CALIPSO profiles in this grid box. Cloud fraction profiles are 284 

computed from the WRF/MED-CORDEX simulation using the lidar simulator (Sect. 2.2.b) and averaged over 285 

the domain and over the years (2006-2011) for each season.  286 
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For the four seasons (Fig. 3), CALIPSO sampling does not generate real bias on lidar cloud fractions, 287 

CFWRF+sim(z) being very similar to CFWRF+sim
T
(z). Note that the differences are only observable for high levels (z > 288 

6.5 km corresponding to pressure P < 440 hPa) because of the small cloud fraction values below 6 km (Fig. 3). 289 

This aspect will be discussed in section 4. For high levels, the maximum errors of cloud fraction for one layer are 290 

around 3 % over one season (Tab. 2).  291 

The absolute value of the relative errors averaged vertically over high levels are smaller in winter (5%) and 292 

spring (7%) than in fall (9%) and summer (21%). The errors may seem large in fall and summer; it is due to the 293 

small vertical shift of the profiles, which enhances the relative difference between the two profiles at levels 294 

where the cloud fraction is not maximal. The maximum of difference in cloud fraction is approximately the same 295 

for the four seasons and less than 5%. This shift of high clouds level due to satellite under-sampling may be 296 

linked to the occurrence of deep convection happening in summer and fall inducing local mesoscale clouds 297 

(Funatsu et al., 2009) that are more likely to be missed by the satellite because of their short lifetime and small 298 

spatial extent (Rysman et al., 2013).  299 

For mid and low levels, the values of cloud fraction differences between CFWRF+sim(z) and CFWRF+sim
T
(z) are very 300 

small (around 0.1 %). The average relative errors at these levels remain weak though: 6% in fall, 9% in spring 301 

and 11% in summer. Notice that in winter, the biases for mid-levels reach 13% related to a vertical shift at 6 km. 302 

The origin of the underestimate of low and mid clouds is discussed in the next section.  303 

3.2. HISTOGRAMS OF SCATTERING RATIO 304 

To go further in details and have an idea about the physical properties of clouds overestimated/ missed with the 305 

CALIPSO under-sampling, 3D SR histograms are analyzed (Fig. 4). These histograms provide detailed vertical 306 

information on cloud optical and physical properties. Two simulated SR histograms are compared: (1) the 307 

distributions of SR(z) occurrence for each altitude and SR bin when cumulating SR profiles following CALIPSO 308 

tracks (SRWRF+sim(z), Fig 4a); (2) the same but with the full resolution of the simulation (SRWRF+sim
T
(z), Fig 4b).  309 

In each histogram, the first bar is the percentage of fully attenuated profiles (0 ≤ SR(z) < 0.01) and the second 310 

bar corresponds to clear sky profiles (0.01 ≤ SR(z) < 1.2). The 3
rd

 and 4
th
 bars are for unclassified profiles (1.2 ≤ 311 

SR(z) < 5). The subsequent bars are for cloudy profiles (SR(z) ≥ 5). Figures 4a and b are very similar: great 312 
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attenuation below 7 km, many high clouds with 5 ≤ SR(z) < 20 and some low level clouds with 40 ≤ SR(z) < 60. 313 

The similitudes show that the total SR distribution is not significantly affected by the sampling of the satellite.   314 

Figure 4c shows the absolute difference between Fig. 4a and 4b. In average, the differences due to CALIPSO 315 

sampling for 1.2 ≤ SR(z) < 20 below 7km and for the SR(z) values ≥ 20 (all altitudes) are under 0.25% (grey 316 

shade). For 5 ≤ SR(z) < 20, the differences at high levels are around 2%. The largest differences occur for the 317 

0.01 ≤ SR(z) < 3 (clear sky and unclassified profiles) at altitudes between 12 and 14 km.  318 

Figure 4c is then separated onto seasons (Fig. 4d to f). Focusing on one season leads to greater biases due to 319 

under-sampling, as fewer profiles are cumulated. Nevertheless, differences remain very low whatever the season 320 

as for the total SR histogram, and most differences are detected whether for high levels or mid-levels in winter 321 

and spring. The greatest errors in terms of magnitude (for values passing the threshold of cloud detection SR(z)= 322 

5) are detected in fall and summer consistently with Fig.3 but the differences appear on more levels in spring and 323 

winter (than fall and summer) in cloud fraction profiles (Fig. 3). Consequently, the biases of sampling detected 324 

in cloud fraction profiles (sect. 3.1) correspond mostly to SR values between 5 and 20. Also, for high clouds 325 

(above 8 km) the errors are maximal in fall in Fig.4 while it was summer in Fig 3: this is linked to the definition 326 

of the cloud fraction (cf. sect. 2.1.) explaining that the cloud fraction depends on cloudy profiles but also on fully 327 

attenuated profiles. Between 8 and 10km, there are more differences of fully attenuated profiles in fall than in 328 

summer (signal drowned in the grey shade): this explains why the errors of cloud fraction are bigger in summer 329 

even though SR shows more differences of cloudy profiles in fall. The overestimate and underestimate of SR 330 

values due to CALIPSO under-sampling depend on the levels. Around 9-10 km, where the maximum of clouds 331 

is detected, the satellite under-sampling always leads to an overestimate of SR values (as the cloud fraction in 332 

Fig3). 333 

Only simulation is used in this section, despite the fact it very likely contains biases in the representation of 334 

clouds. The estimation of these biases is the purpose of the next section, and in particular concerning the 335 

seasonal cycle of clouds. Further computations of sampling errors that would have been estimated by 336 

observations are presented in table 3 and discussed in the conclusion.   337 

 338 
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4. CHARACTERIZATION OF THE SEASONAL CYCLE AND 339 

ABILITY OF THE MODEL TO REPRODUCE IT 340 

For meso-scale models, cloud biases have been detected in previous studies, but only for some case studies 341 

(Chiriaco et al. 2006; Chepfer et al. 2007; Chaboureau et al. 2002). The aim of this section is to provide an 342 

evaluation of clouds over the entire Euro-Mediterranean region and throughout several years of observations. 343 

Hence, both the mean annual and seasonal biases of the vertical distribution of clouds and the difference of 344 

amplitude of the seasonal cycle will be assessed. The average annual cycle is studied using observations and the 345 

simulation over the period June 2006 to December 2011. Only the simulation along the satellite tracks is used 346 

here in order to be consistent with observations. The seasonal variability of cloud fraction profiles is studied 347 

separately over continental Europe and over the Mediterranean Sea. Using land/sea mask, continent stands for 348 

the grid-boxes over continental Europe in the blue rectangle in Fig.1a while sea stands for the grid-boxes located 349 

over the Mediterranean Sea in the red rectangle of the same figure.  Note that we also studied the variability over 350 

the Atlantic Ocean and as the results were very similar to the continent they are not shown in this paper.  351 

 352 

4.1. CLOUD FRACTION PROFILES  353 

4.1.1. SEASONAL CYCLE 354 

In this sub-section, only observations are examined to describe the seasonal cycle of vertical distribution of 355 

clouds. Pink solid lines in Fig. 5a shows CFGOCCP(z) averaged over the continent from 2006/06 to 2011/12. 356 

Figure 5b is same as Fig.5a but averaged over the sea. Notice that in our case, continent is located between 40°N 357 

and 52°N while the Mediterranean Sea is between 30° and 42°. The Mediterranean Sea is under the influence of 358 

both mid latitude synoptic disturbances that affects the European climate (in particular winter; Cassou et al. 2004, 359 

Yiou et al. 2007) and the subtropical storms (Rysman et al. 2013). The average profile from observations shows 360 

that:  361 

- the maximum of cloud fraction occurs around 9km (Fig. 5a and b). 362 
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- at a given level, the cloud fraction is greater over the continent than over the sea (Fig. 5a and b). This 363 

might be explained by the fact that frontal (ascending large scale motions) clouds and stratocumulus 364 

clouds (light subsiding motions and near surface instability) are more frequent over Europe (land) than 365 

over Mediterranean Sea (Cheruy and Aires 2009). 366 

- over the continent, low clouds occurrence is equivalent to high clouds occurrence, while over the sea 367 

high clouds are a little more frequent than low clouds (Fig. 5b). This might be linked to a lack of 368 

stratocumulus and stratus clouds over the Mediterranean (Cheruy and Aires 2009). 369 

In Fig. 5a and b, the pink shades represent the range of seasonal variability, when computing a profile by season, 370 

averaged from 2006 to 2011. The purpose of this representation is to estimate the envelope of variability of the 371 

vertical profile during a complete annual cycle (in observations), and evaluate its representation in the simulation 372 

(Sect. 4.2). The amplitude of the observed seasonal variability shows that the variability of high clouds is 373 

equivalent to the variability of low clouds, over the continent as well as over the sea. This seasonal amplitude is 374 

estimated to 5 % in terms of cloud fraction for high and low levels.  375 

In Fig. 5c and d, the shades are envelopes containing 4 profiles of relative anomaly of each season comparing to 376 

the profile averaged over the 4 seasons and 6 years. It shows that over the continent, the observed relative 377 

variability ranges between -40% and 50% of the mean annual cloud fraction profiles (Fig. 5c). This relative 378 

anomaly has equivalent amplitude for the different vertical levels. Over the sea the amplitude of seasonal 379 

variability is greater for low levels (more or less 100 %) than for mid and high levels (more or less 60%) (Fig. 380 

5d).    381 

To go further in details, the four seasons averaged over 2006 to 2011 are plotted separately in Fig. 5e (continent) 382 

and Fig. 5f (sea) for CFGOCCP (z) showing that for both continent and sea, the high clouds in summer and fall (red 383 

and light blue lines) are less frequent (especially summer CFGOCCP (z) around 5%) and occur at higher altitude 384 

(≈10km) than high clouds in winter and spring (≈8 km with CFGOCCP (z) around 9%). This result is expected 385 

because of the altitude of the tropopause that is minimal at the end of winter and maximal at the end of summer 386 

(Appenzeller et al. 1996) and it affects clouds top height (Gettelman and Forster 2002). The figures also show 387 

that the cloud fraction is weak in the mid-levels for the 4 seasons in both continent and sea and particularly in 388 

summer over the sea. The low clouds are frequent in winter over both continent and sea. Summer and fall 389 

profiles show a second maximum at low levels, even if less pronounced than winter, while spring profiles show 390 

more homogeneity from ground up to 6-7 km.   391 
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The great relative variability of CFGOCCP (z) over the sea shown in Fig 5d around 2-3 km is explained by the 392 

small values of CFGOCCP (z) in summer while they are large in winter (Fig. 5f). Note that winter clouds are under 393 

the large scale influence while summer clouds are under mesoscale influence (air-sea fluxes, topography) 394 

(Chaboureau and Claud 2006).  395 

 396 

4.1.2. SIMULATED SEASONAL CYCLE 397 

The seasonal vertical cloud structure has been characterized with CALIPSO observations. The goal of this sub-398 

section is to evaluate this structure in the simulation and focus on the similarities and the differences with the 399 

observed seasonal variability.  400 

As for observations, the average simulated cloud fraction profile is maximal around 9km (blue line in Fig 5a and 401 

b). Nevertheless, in average, the simulation over-estimates high cloud fraction (above 6 km), for both continent 402 

(CFWRF+sim(z=9 km) = 30% while CFGOCCP(z=9 km) = 10%) and sea (CFWRF+sim(z=9 km) = 20% while 403 

CFGOCCP(z=9 km) = 7 %); the difference of the magnitude of the maximum of high clouds between observations 404 

and the simulation is larger over the continent than over the sea. 405 

Under 6 km, the cloud fraction is under-estimated in the simulation over both areas. The fact that WRF 406 

overestimates the high clouds probably enhances the underestimate of low and mid clouds due to the exacerbated 407 

attenuation of simulated lidar profiles. Nevertheless, another study based on comparisons of the same simulation 408 

but with ground-based lidar located near Paris (France) shows that the model actually under-estimates the 409 

amount of low clouds, in particular in summer (Bastin et al., under review). Figures in Annex 2 also confirm that 410 

this underestimate of low clouds is not only due to lidar attenuation: the map of low clouds directly computed 411 

from the total condensed water in the simulation (hence without the lidar simulator) shows that they are almost 412 

absent in summer (less than 10%). The wrong vertical distribution of cloud layers has already been noticed with 413 

a mesoscale model for some case studies (Chaboureau et al. 2012) and the under-estimation of low clouds in 414 

summer is also a known result for GCMs in general over mid-latitudes (Cheruy et al. 2013).  415 

Despite this bias, the range of seasonal variability of CFWRF+sim(z) (blue shade) is by the same order of magnitude 416 

than the range of seasonal variability of CFGOCCP(z) over the continent (Fig. 5a), but is larger over the sea for the 417 
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high clouds and narrower for mid and low clouds (Fig. 5b). It is confirmed by the relative seasonal variability 418 

profiles (blue shades in Fig. 5c and d), showing that: 419 

- Above 9 km, the simulation and the observations have equivalent amplitude of relative variability (more 420 

or less ~50%): even if the result is true over both continent and sea, the simulated variability at this 421 

altitude is closer to the observed variability over the sea.  422 

- For mid and low clouds, the simulated amplitude of the relative variability over continent is twice 423 

greater than the observed amplitude (more or less 100% against 50%). Over the sea, the simulated 424 

relative variability is greater than observed but the magnitude is by the same order.  425 

Both observations and simulation agree that: 426 

- The relative range of variability of mid and low clouds is greater than the relative range of variability of 427 

high clouds: In the simulation, this could be due whether to real seasonal variability of clouds in the 428 

model or a bias due to the very weak amount of clouds at low and mid levels. Actually, a great relative 429 

anomaly could be due to a great absolute anomaly but also to a weak cloud fraction.   430 

- Mid and low levels variability is greater over the sea than over the continent, especially due to summer 431 

differences. 432 

Analyzing separately the four seasons (Fig. 5 g and h) shows that despite the overestimate of high clouds and the 433 

underestimate of low clouds, some characteristics of the observed profiles are well simulated by the model over 434 

both areas: (i) a maximum at 10 km for summer and fall and at 8 km for winter and spring; (ii) less mid clouds 435 

than high clouds over both areas (Fig. 5 e and f), with an almost zero CFWRF+sim(z) at these levels (except for 436 

winter where it’s around 2.5 %); iii) a second maximum at low levels except in spring. This maximum is less 437 

pronounced in simulation than observations but exists except over the sea in summer: Fig. 11 d and e (Annex 2) 438 

show that in summer no mid or low clouds are represented over the sea. This figure also gives an idea of the 439 

spatial variability of occurrence of cloud layers from the simulation, even if not evaluated against observations. 440 

4.2. HISTOGRAMS OF SCATTERING RATIO 441 

Section 4.1. showed that the simulation over-estimates the occurrence of high clouds and under-estimates 442 

occurrence of low clouds, in particular in summer, but reproduces consistently the seasonality of clouds 443 

occurrence at each level and the amplitude of relative seasonal variability over the sea (Fig. 5d). It is now 444 
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necessary to understand which clouds, in term of physical properties, are simulated for each season, in particular 445 

because the occurrence of clouds is not enough to evaluate the properties of clouds that can also present a 446 

significant variability. Since SR values are linked to the optical depth and optical properties of the cloud particle 447 

(type of particle, size, and concentration) (Chepfer et al. 2013), histograms of SR(z) are computed (Fig. 6) 448 

following the same method as in Fig. 4a-b, by cumulating SR profiles from 2006 to 2011 in each season (each 449 

line in the figure).  450 

We first focus on SR(z) values greater than 5, passing the threshold of cloud detection. Both simulation and 451 

observations agree that the SR occurrence is dominant between 6 and 12 km and for 5 < SR(z) < 20 at all 452 

seasons. The overestimate of simulated high clouds (Sect. 4.1.2.) is mostly an overestimate of high clouds with 453 

low SR(z) values (SR(z) < 20), and the occurrence of 5 ≤ SRWRF+sim(z) < 20 is around 7% when occurrence of 454 

SRGOCCP(z) is around 2%. In the observations, low clouds are dominated by strong SR(z) (>60), a cloud category 455 

which is entirely missed by the simulation, whatever the season. Those clouds probably correspond to stratus 456 

clouds that appear mostly over Atlantic Ocean and continental Europe and stratocumulus clouds that appear 457 

particularly over Atlantic ocean but also over Europe and Mediterranean (Cheruy and Aires, 2009). Stratus 458 

clouds are formed when moist air near ground level starts to condensate (Khvorostyanov, 1995) while 459 

stratocumulus clouds are driven by convection and associated most of the time to strong temperature inversion at 460 

the top of the boundary layer (Cheruy and Aires, 2009). For these low clouds, only clouds with 40 ≤ SR(z) < 60 461 

are simulated. For mid-levels, the SR(z) > 60 are also missed by the simulation.  462 

The first bar of each SR histogram (SR(z) ≤ 0.01) represents the full attenuation of the lidar. The number of fully 463 

attenuated profiles is greater in the simulation and the attenuated profiles occur at higher levels than the observed 464 

ones, whatever the season. This is consistent with the overestimate of high clouds and suggests that even if it’s 465 

not the main reason explaining the lack of low and mid clouds, the overestimate of fully attenuated profiles 466 

increases the low and mid clouds deficit in the simulation using the lidar simulator. Also note that SR values for 467 

high clouds in the simulation are less than 20: so, the attenuation is mostly induced by the vertical extent of 468 

clouds as the optical depths of each layer are additive: typically SR(z) = 5 corresponds to an optical depth of 469 

0.07 for a cirrus of 1 km depth at 10 km (Chepfer et al. 2013). This means that for clouds of 5 km depth, the 470 

optical depth is around 0.35. 471 

This histogram representation also confirms that despite the differences between simulation and observations, 472 

the seasonality of SR(z) distribution is respected in the simulation:  473 
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- In winter (Fig 6a and b): the simulation creates, in comparison to other seasons, a large amount of low 474 

thick clouds and some thinner clouds, even if they are underestimated. The large amount of high clouds 475 

with SR(z) < 20 is also simulated. 476 

- Spring (Fig. 6c and d) and fall (Fig. 6g and h) histograms are very similar, with many high and optically 477 

thin clouds in both observations and simulations. The difference between spring and fall, spotted by 478 

observation as well as simulation, is that in spring there are more mid optically thin clouds.  479 

- In summer, the minimum of mid clouds observed with GOCCP (Fig. 6e) in comparison with other 480 

seasons is also simulated.  481 

To summarize, the simulation overestimates high clouds with low SR(z) values whatever the season over 482 

different layers (more than 6 layers with our vertical resolution) and this leads to a lot of attenuation of the 483 

simulated lidar signal. Low clouds as detected by a lidar are underestimated in the simulation, in particular the 484 

low very thick clouds that are present in the observations: it is both a consequence of the over-estimation of the 485 

fully attenuated profiles and a real underestimate of low clouds as it was explained in Sect. 4.1. However, the 486 

seasonality of SR(z) histograms is well captured by the model.  487 

As expected, the simulated clouds’ vertical structure showed high differences with the vertical structure observed 488 

by CALIPSO. This highlights the importance of the vertical structure: the overestimate of high clouds would 489 

compensate with the underestimate of low clouds when computing cloud cover and the model biases would have 490 

been smaller (computing the vertically averaged cloud fraction: simulation 5%, observations 3.7% over the sea 491 

and 8% versus 5.6% over the continent). A new important result is the ability of the model to simulate the 492 

amplitude of the seasonal variability of the cloud distribution (vertical distribution and SR(z) values distribution). 493 

This allows us to use these datasets (simulation and observations) to address the issue of the inter-annual 494 

variability of cloud vertical profile. 495 

5. INTER-ANNUAL VARIABILITY 496 

5.1. AMPLITUDE OF INTER-ANNUAL VARIABILITY 497 

The goal of this section is to study the inter-annual variability of the vertical cloud structure over Europe with 498 

observations and evaluate the simulation’s ability to reproduce it over the 6 common years. Shades in Fig. 7a 499 
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(continent) and b (sea) show the standard deviation (STD) of the 2006 to 2011 winter cloud fraction profiles for 500 

both simulation and observations. Figures 7c and d are the same but for summer. This STD calculation is an 501 

estimation of the inter-annual variability in a given season. The altitude where the observed variability (pink 502 

shade) is maximal or minimal is well reproduced by the simulation (blue shade), for winter over both continent 503 

and sea and for summer over the sea.  504 

In winter, the range of inter-annual variability of the observed cloud fraction is greater for high levels than for 505 

mid and low levels (Fig. 7.a and b). The smaller variability of low clouds over the sea and the continent is not 506 

related to a smaller occurrence of clouds since Fig. 5e and f indicate that the cloud fraction of high clouds is 507 

equivalent to the cloud fraction of low clouds for both continent and sea, in the observations. The simulation 508 

well reproduces the behavior of the observed inter-annual variability with greater amplitude for the high levels.  509 

In summer (Fig7 c and d), the amplitude of the observed inter-annual variability shows a different behavior from 510 

winter. Over the continent, mid-level cloud occurrence is variable from one year to another, such as for low 511 

clouds. High clouds occurrence is more stable from one year to another. Over the sea, the high cloud occurrence 512 

is a little bit more variable than the mid and low ones. Simulation does not well reproduce this variability: the 513 

variability is large at high levels only for both areas. The weak variability of simulated low clouds is probably 514 

due to the small cloud fraction simulated in summer (Fig. 5g and h, red profiles).  515 

Anyway, the simulation always over-estimates the range of inter annual variability for high clouds, whatever the 516 

season and the area (Fig. 7a to d). This over-estimation is enhanced when considering the total envelope of 517 

variability of clouds (maximums and minimums for each layer) traducing the behavior of extreme values (solid 518 

lines in Fig. 7e, f, g and h) instead of the mean one (shades in Fig. 7). For high clouds, the inter-annual 519 

variability is very large in the simulation, and the extreme events in terms of cloudiness are intense in winter and 520 

in summer over the continent. The relative range of the total variability of high clouds is around 25 to 50% 521 

greater than the STD in the simulation (comparing the solid blue line with the blue shade) versus 30 to 60% 522 

greater for observations (comparing the solid pink line with the pink shade) over both continent and sea for 523 

winter and summer. 524 

Extremes are less intense at low and mid-levels, in particular in summer for the simulation where there are 525 

almost no clouds.  526 
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To compare this variability with the uncertainty linked to the satellite sampling, CFWRF+sim
T
 (z) (i.e. with the 527 

complete simulation sampling) STD is also plotted in black line in Fig. 7a and b. The inter-annual variability of 528 

the CFWRF+sim
T
 (z) has the same behavior than the inter-annual variability of CFWRF+sim (z) with some differences 529 

that depend on the levels, the season and the area. In winter, the relative errors of estimation of the amplitude of 530 

inter-annual variability of high clouds are around 15% over the continent and 20% over the sea where it’s more 531 

dependent on the altitude; the maximum of error is reached at 8km (50%). In summer, the variability is strongly 532 

modulated by local events (storms and mesoscale convective systems). These events, occurring typically at 533 

spatial scales ranging between 10 km to 100 km during less than 3 hours (Rysman et al. 2013), are more easily 534 

missed by CALIPSO considering its undersampling. It generates significant differences of variability between 535 

the two samplings (Fig. 7c and d), the total one being less variable than the CALIPSO one. It is then more 536 

questionable to study the inter-annual variability of clouds in summer from observations at this spatial resolution 537 

of 20x20 km
2
.  538 

5.2. CLOUDS NATURAL VARIABILITY IN WINTER 539 

The purpose of this section is to analyze the 8 years of observations and 23 years of simulation taking into 540 

account the model biases evaluated previously to try to estimate the natural variability of clouds and how much 541 

these respective datasets can be used i) to detect extremes and ii) as a referent period to detect possible trends. 542 

The simulation‘s full resolution (one profile per night extracted at 00UTC for each grid-box) is used. Only 543 

winter is considered: actually Sect.5.1 showed that the inter-annual variability is better simulated in winter than 544 

in summer, and is less affected by the satellite sampling.  545 

Figure 8a shows the CFWRF+sim
T
 anomaly simulated profiles averaged over the Mediterranean Sea for every 546 

winter from 1990 (December 1989, January and February 1990) to 2011 (December 2010, January and February 547 

2011) compared to winter mean 2007-2011 (blue profile in Fig. 5h; this period is used as it is the common period 548 

for observations and simulations, which is important when computing anomalies). Figure 8b is the same as Fig. 549 

8a for observations for each winter with available observations from 2007 to 2013. The anomaly is compared to 550 

winter mean 2007-2011 (pink profile in Fig. 5f). Fig. 8c and d are the same as Fig. 8a and b over the continent.  551 

Despite the model biases leading to an overestimate of high clouds and an underestimate of mid and low clouds 552 

and despite the biases due to satellite under-sampling in winter (cf. 5.1), the sign of observed anomalies are most 553 

of the time reproduced by the simulation during the 5 years and at the right altitudes: the 2008 strong negative 554 
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anomaly of high clouds over both sea and continent, the 2011 positive anomaly of high clouds over the sea and 555 

mid clouds over the continent and also the 2010 strong positive anomaly signal of high clouds over both 556 

continent and sea that are detected with CALIPSO are also simulated by the model. Some observed anomalies 557 

are poorly simulated by the model, particularly over the continent. The obvious ones are: the positive anomaly of 558 

2007 observed at 8 km (Fig. 8.d) that is negative with the simulation (Fig. 8.c) and the almost null observed 559 

anomaly of 2009 around 8km is simulated as a strong positive anomaly. Also, the variability of the maximum 560 

altitude of the anomalies are most of the time well reproduced by the model (e.g. in 2010 over the continent, 561 

altitude max= 10km, 2009 low clouds altitude max = 2km) and sometimes not (altitude max of high clouds 562 

anomaly over the sea in 2007 = 12km for observations and 9km in the simulation). Some other particular 563 

anomalies are noticed over the 22 years: e.g. the 1996
th

 high clouds signal but at a different altitude than in 2010 564 

over the sea, the 1991-1993 enhanced low clouds signal also over the sea, the 1994 high clouds signal over the 565 

continent.  566 

Some high cloud strong anomalies only appear over the continent (high clouds positive anomaly in 1994) or over 567 

the sea (negative anomaly of low clouds in 2007) while others appear over both areas (2010 high clouds 568 

anomaly). This highlights the importance of the spatial distribution of clouds that is not very discussed in this 569 

paper because it cannot be seriously evaluated. However, the separation between sea and continent is useful.  570 

Winter 2010 shows a strong anomaly of high clouds occurrence, even when compared to the 22-year-time series 571 

(Fig. 8a and c). The horizontal map of high cloud fraction of winter 2010 anomaly relative to the cloud fraction 572 

averaged over the 22 winters of the simulation is shown in Fig. 12 (annex 3). As discussed by Cattiaux et al. 573 

(2010), winter 2010 is associated with a particularly cold season resulting from the persistence of the negative 574 

phase of the North Atlantic Oscillation (NAO
-
). During the negative phase of the NAO, storms bring moist air 575 

from the Atlantic into the Mediterranean Sea and dry and cold air over northern Europe (Trigo et al. 2002) and 576 

cloud systems are frequent over the western part of the Mediterranean Basin (Chaboureau and Claud 2006): the 577 

signature of high clouds storm track over southern Europe and the Mediterranean Basin (CF anomaly around 5%) 578 

is noticeable in Fig. 12 (annex 3), as well as the advection of dry and cold air favoring clear sky (and hence 579 

negative anomaly of clouds) over Northern Europe (Trigo et al. 2002). However, winter 2010 shows an even 580 

stronger cloud fraction anomaly over the eastern part of the domain where it reaches 9%. Deeper analysis of this 581 

winter in terms of interactions between clouds and dynamics is then needed but beyond the scope of this study. 582 
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ERA-Interim reanalysis, which forces the simulation, contains the large-scale conditions which drive cloud 583 

anomalies: it is then rational that the simulation is able to reproduce these specific anomalies. It gives us 584 

confidence to use the complete time-period of this simulation to quantify the amplitude of cloud variability over 585 

two decades. It should allow determining how many years are needed to cover the effect of internal climate 586 

variability on cloud vertical profile, at present and without any external forcing. 587 

In Fig. 9a, the mean value of CF at 9.5 km (altitude where CF is maximal in 2010) is extracted each year over 588 

the Mediterranean Sea. It gives 22 values of CF9.5. The blue bars represent the standard deviation (STD) of these 589 

CF9.5 (y-axis) estimated by varying the number of years (x-axis): the first blue bar is the CF9.5 STD over 5 years 590 

(from 2007 to 2011), the second over 6 years (2006 to 2011 for the simulation (blue axis)), and so on. Pink bars 591 

and pink axis are the same but for observations. Fig. 9b is the same as Fig. 9a but over the continent.  592 

When considering the same years for observations and simulation, the simulated inter-annual variability at this 593 

altitude is greater than the observed one for both continent and sea. This is consistent with results in Sect. 5.1. 594 

(Fig. 7b and 7f for high clouds). The interannual variability of cloud fraction at 9.5km is greater over the 595 

continent (≈ 4.5%) than over the sea (≈ 3.8%). Also, the variability is more dependent on the years considered 596 

over the continent than over the sea: STD of CF9.5 ranges from 3.4% to 4% over the sea and from 4.1% to 4.9% 597 

over the continent. We notice that over the continent the STD computed over 13 and more years is around 4.1%: 598 

it varies of 0.1% between 13 and 22 years, while it varies of 0.7% between 5 and 22 years. The STD of CF9.5 is 599 

less dependent on the number of years when computed over 13 and more years. Over the sea this statement is not 600 

valid: the variability of STD of CF9.5 stabilizes between 13-20 years (0.2% compared to 0.6%) but decreases 601 

significantly between 21 and 22 years (making the STD variability between 13 and 22 years around 0.5%).  602 

The blue dots are the winter 2010 CF9.5 anomaly computed relative to the mean CF9.5 averaged over different 603 

time periods as indicated by the blue axis, for the simulation. The pink dots are the same as the blue dots for 604 

observations. This winter 2010 specific anomaly is confirmed in Fig. 9, where both observations and simulation 605 

agree that 2010 is a particular winter, identifying a particular event in terms of cloud occurrence since the 606 

anomaly is greater than the corresponding STD. For observations, over both sea and continent, the CF9.5 anomaly 607 

in winter 2010 is greater than 1.5 STD. It’s up to twice STD for the simulation over the sea, in particular for time 608 

periods more than 10 years. The 2010 CF anomaly is less marked over the continent than over the sea with the 609 

simulation (Fig. 9b).  610 
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This takes us back to the question of spatial distribution that is not very discussed in this paper and that is 611 

necessary to understand some processes. Why the anomaly is more marked over the sea? Which feedbacks does 612 

this imply? Also, it appears that even if the simulation captures the anomaly, its intensity against the natural 613 

variability keeps uncertain despite we consider a winter nighttime situation where most of variability is driven by 614 

large scale. As discussed by Hawkins and Sutton (2009), internal variability and model uncertainties are strong. 615 

However, this study paves the way for a better assessment of clouds trends.  616 

 617 

6. CONCLUSION 618 

 619 

The goal of this study was to characterize the nighttime cloud vertical profile variability over Europe. Actually, 620 

analyzing the behavior of the seasonal and inter-annual vertical structure of clouds over the Euro-Mediterranean 621 

region is necessary to understand some climate anomalies that are not entirely explained by large scale 622 

dynamics.   623 

We used CALIPSO-GOCCP observations and one WRF/MedCordex simulation that is nudged towards the 624 

reanalysis ERA-interim to reduce the biases due to dynamical effects. As the CALIPSO footprint has a small 625 

swath (the lidar essentially documents a curtain), it under-samples the area, which can impact the study. Hence, 626 

we first estimated the bias on the cloud fraction profile due to CALIPSO under-sampling in comparing simulated 627 

cloud profiles under the satellite flight track with simulated cloud profiles over the entire area. This comparison 628 

shows that biases on cloud fraction profiles due to CALIPSO under-sampling mainly depend on: i) clouds 629 

occurrence, ii) clouds spatial distribution and iii) clouds temporal variability. In particular, the bias can be non-630 

negligible during fall and summer seasons, when convective clouds are more frequent than during the rest of the 631 

year. Nevertheless, the detailed lidar height-intensity histograms (SR(z)) show that the effect of under-sampling 632 

mostly occurs in the non-cloudy bins. However, this assessment is based on simulation, which does not properly 633 

simulate cloud properties. As a consequence, in reality, the actual bias due to under-sampling might be different 634 

of the one estimated here. Combining the sampling errors estimated by the simulation and the model biases, an 635 

estimation of the actual sampling biases is presented in Table 3. The computation method is presented in Annex 636 

4. Actual errors of sampling averaged over the seasons are shown to be smaller than 1% in average in terms of 637 
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cloud fraction while the relative errors estimated are 12% for low clouds, 25% for mid clouds and 7% for high 638 

clouds. These values are comparable to the ones estimated by the model. These values can be larger for some 639 

levels (16% for high clouds, 19% for low clouds and up to 35% for mid clouds).  640 

Then we addressed the three following questions in the current paper: (1) What is the seasonal variability of the 641 

cloud vertical distribution over Euro-Mediterranean area? (2) What is its inter-annual variability? (3) Are 642 

simulations able to reproduce the amplitude of these variabilities?  643 

1) The seasonal variability of the cloud vertical distribution over Euro-Mediterranean area has been documented 644 

using 8 years of CALIPSO observations during nighttime. It results that clouds are more frequent (around 2% 645 

more clouds) over the continent than over the sea. This is probably linked to the geographical position of the 646 

Mediterranean as a transition region between Northern fluxes that are wet and cool and African fluxes that are 647 

dry and hot (Mariotti et al. 2015). Cheruy and Aires (2009) show that 70% of clouds population over the Euro-648 

Mediterranean area is whether frontal (ascending large scale motions), stratocumulus or shallow cumulus 649 

(subsiding motions and near-surface instability) clouds. They also show that frontal and stratocumulus clouds are 650 

frequent over land while shallow cumulus clouds are frequent over both land and sea. Also, complex topography 651 

over land, particularly mountains, are favorable to the formation of cloud systems.  652 

But the clouds are less variable from one season to another over the continent (less than 50% relative variability) 653 

than over the sea (relative variability reaches 100% in low levels). Besides, high clouds occurrence is shown 654 

(with observations) to be equivalent to low clouds occurrence in summer and winter while mid clouds are around 655 

5% smaller in terms of cloud fraction.  656 

2) The cloud inter-annual variability is linked to the large scale circulation generating intra-seasonal variability 657 

and spatial distribution that are not discussed in this paper. Nevertheless, the eight years of CALIPSO 658 

observations show that winter inter-annual variability is around 4% for high clouds and 1% for low and mid 659 

clouds. Boé and Terray (2014) showed that cloud cover in 2031-2050 is expected to decrease by 3% over 660 

southern Europe and Mediterranean Sea when compared to 1961-1990. This decrease is within the range of the 661 

inter-annual variability of observed cloud fraction and weaker than the one simulated by this model and might 662 

not be totally associated to climate change. 663 
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3) Then we evaluated clouds vertical distribution in the WRF/MedCordex simulation. Comparisons between the 664 

observations and the “model+lidar simulator” outputs showed that the model overestimates the high clouds (20% 665 

more cloud fraction) and underestimates the mid and low clouds (5% less cloud fraction). This seems to be a 666 

persistent feature in models over Europe, which does not depend on spatial and temporal resolution of the model 667 

nor the model type (e.g Chiriaco et al. 2006 and Chaboureau et al. 2002 for mesoscale models; Cheruy et al. 668 

2013 for GCMs, Cesana and Chepfer 2012, Nam et al. , 2012; Tsushima et al. 2013). This default was pointed 669 

out using case studies observations (ground base sites and field campaigns) in the previous studies, and it is 670 

confirmed here using eight years of satellite observations by active sensors. As mentioned by Hawkins and 671 

Sutton (2009), there is room to reduce model uncertainty, in particular by improving physical parameterizations 672 

leading to this wrong vertical distribution of cloud layers. Despite these biases, the model is able to simulate 673 

realistic seasonal cycle. 674 

Regarding the inter-annual variability in winter, the model simulates realistic inter-annual variability of spatially 675 

averaged CF in winter that is overestimated for high clouds (up to twice larger than observations for high clouds). 676 

The range of variability of CF in the simulation varies sometimes at different altitudes and with different 677 

intensity from the observations, particularly in summer. This is part of the model uncertainty that might be more 678 

complicated to reduce as it is also associated to clouds feedback.    679 
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TABLE CAPTION 866 

Table 1: Definition of the datasets used for the study. Columns define the sampling method. Lines stand for the 867 

product used. SR is the scattering ratio measured by the lidar (annex 1) and CF is the percentage of clouds per 868 

gridbox. 869 

Table 2: Maximal differences (i.e. absolute – “abs.” – errors) between simulated cloud fractions extracted with 870 

full resolution and simulated cloud fraction extracted with CALIPSO sampling [CFWRF+sim (z) – CFWRF+sim
T
 (z)] 871 

for high, mid and low clouds. Relative (“rel.”) errors are computed as follow: |
CF WRF+sim(z)−CF WRF+sim

T (z)

CF WRF+sim
T  (z)

| × 100  872 

and represent the average value of the layer (low, mid, or high). CFWRF+sim (z) and CFWRF+sim
T
 (z) are averaged 873 

over 2006-2011 by seasons (columns). 874 

Table 3: Estimation of the sampling errors in average (over the years and spatially) considering the sampling 875 

estimation evaluated by the simulation and the average model biases. “Avg” stands for errors estimated in 876 

average over the layer (low, mid or high) while “max” stands for the maximal error detected over one level. α 877 

values are the results of section 4.1.1. while β values are the results of section 3. 878 

Table 4: Computing model biases over continent (α = 
𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚(𝑧)

 𝐶𝐹𝐺𝑂𝐶𝐶𝑃(𝑧)
 ) for low clouds (1st row), mid clouds (2

nd
 879 

row) and high clouds (3
rd

 row) by testing different undersampling (test 1 means we extract 1 profile over 20 and 880 

test 8 means we extract all the profiles). 881 

 882 

883 
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FIGURE CAPTION 884 

Fig.1 Total area of study with an illustration of the number of CALIPSO overpass in each 20×20 km
2
 grid-box 885 

during one season (here JJA 2008) 886 

Fig.2 Example of a CALIPSO track in 2009/01/19 during night, around 5°E longitude. (a) SR (z) observed by 887 

CALIOP lidar; (b) the total condensed water Q(z) simulated by WRF; (c) SR(z) simulated by WRF using COSP 888 

lidar simulator 889 

Fig.3 Simulated cloud vertical profiles cumulated over the entire area of study and averaged over 2006-2011. (a) 890 

Summer (JJA), (b) fall (SON), (c) winter (DJF), (d) spring (MAM). Red profiles correspond to simulation with 891 

the sampling that follows CALIPSO tracks (CFWRF+sim(z) and black profiles are for the entire simulation 892 

sampling (CFWRF+sim
T
(z)) ; For each of the subplots, around 4.10

5
 profiles have been used to construct the red 893 

profiles while 2.10
6
 profiles have been used to construct the black ones. 894 

Fig.4 SR(z) histograms cumulated from 2006/06 to 2011/12 for simulation: (a) SR(z) simulation extracted 895 

following CALIPSO sampling SRWRF+sim(z) in logarithmic scale; (b) same as (a) following WRF sampling 896 

SRWRF+sim(z); (c) is (a)-(b); (d) same as (c) only for summers; (e) fall; (f) winter; (g) spring. Colorbars are 897 

percentage of the normalized occurrence at each level (the sum of one line is 100%). The vertical black lines 898 

represent the SR = 5 threshold for cloud detection 899 

Fig.5 Seasonal variability of observed and simulated cloud fraction profiles. (a) Mean cloud fraction profile on 900 

2006-2011 for the simulation (blue) and observations (pink) horizontally averaged over the continent; the shades 901 

represent the envelope of the four seasons averaged profiles; (b) same as (a) over the sea; (c) Envelope of the 902 

seasonal anomaly computed relative to the mean cloud fraction profile over the continent in the simulation (blue 903 

shade) in the observations (pink shade); (d) same as (c) over the sea; (e) Mean cloud fraction profile on 2006-904 

2011 for each season for observations horizontally averaged over the continent; (f) same as (e) over the sea; (g) 905 

same as (e) for simulated profiles; (h) same as (g) over the sea. In (e) to (h), blue is for winter, green is for spring, 906 

red is for summer, and light blue is for fall 907 

Fig.6 Same as Fig. 4a for observations and simulation in CALIPSO sampling. First column is for observations 908 

SRGOCCP(z), and second column is for the simulation SRWRF+sim(z). (a) and (b) are for winter, (c) and (d) are for 909 
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spring, (e) and (f) are for summer, (g) and (h) are for fall. Black bars are for the threshold of cloud detection (SR 910 

=5). Colorbar is in logarithmic scale   911 

Fig.7 Inter-annual standard deviation of averaged cloud fraction profiles from 2006 to 2011. (a) For winter in the 912 

continent; (b) winter in the sea; (c) summer in continent; (d) summer in sea. Pink shade is for observations, blue 913 

are for simulation under CALIPSO sampling, and the black line for the simulation in the full sampling. (e) The 914 

shade represents -/+ the envelope of the standard deviation shown in (a). The blue line is the maximal anomaly 915 

values for the simulation. Pink lines are the same as blue lines for observations. (f), (g) and (h) are the same as (e) 916 

for winter in the sea, summer in the continent and (d) summer in the sea 917 

Fig.8 CF winter anomaly compared to mean 2007-2011 for different years and altitudes, spatially averaged (a) 918 

over the Mediterranean Sea for the simulation from 1989 to 2011; (b) over the Mediterranean Sea for 919 

observations from 2007 to 2013; (c) and (d) same as (a)and (b) over the continent 920 

Fig.9 (a) Standard deviation of the simulated CF value at z = 9.5 km (CF9.5) computed over the Mediterranean 921 

Sea for different number of winters (blue bars). The blue x-axis explains the time period associated to the 922 

number of years on which these standard deviations were computed (e.g. the first blue bar is the standard 923 

deviation computed over 5 years of simulation and corresponds to the winters 2007 to 2011). The pink bars and 924 

pink x-axis are the same as blue bars and blue x-axis but for observations. The blue dots are the CF9.5 winter 925 

2010 anomalies relative to the average CF9.5 computed over the different time periods. Pink dots are the same as 926 

blue dots for observations.  (b) same as (a) over the continent  927 

Fig.10 Two instantaneous observed SR vertical profiles (blue around [5°E; 47°N] and red around [5°E; 43°N]) 928 

in 2009/01/19 at night, and vertical black line represents the SR = 5 threshold for cloud detection. Red box in (a) 929 

represents the Mediterranean Sea area while the blue box is for Europe area 930 

Fig.11 Winter cloud fraction maps (CFWRF
T
: cloud fraction computed from the model without lidar simulator) 931 

averaged from 2006 to 2011 for simulation low clouds (a), mid-clouds (b) and high clouds (c).  d, e and f are the 932 

same but for summer 933 

Fig.12 Winter 2010 high clouds anomaly computed with CFWRF+sim
T
 relative to the average high cloud map of 934 

winters from 1990 to 2011 935 

 936 
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 937 

 

CALIPSO sampling: using only grid-

boxes along the satellite track 

WRF sampling: using all the domain 

grid-boxes 

GOCCP 

observations  

06/2006 - 12/2011 

SRGOCCP (z) 

CFGOCCP (z) 

- 

WRF simulation + 

COSP simulator 

06/2006 - 12/2011 

SRWRF+sim (z) 

CFWRF+sim (z) 

SRWRF+sim
T
 (z) 

CFWRF+sim
T

 (z) 

Table 1: Definition of the datasets used for the study. Columns define the sampling method. Lines stand for the 938 

product used. SR is the scattering ratio measured by the lidar (annex 1) and CF is the percentage of clouds per 939 

gridbox. 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 
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 952 

 953 

 Summer Fall Winter Spring 

Low clouds 

(7 levels from the ground to 3.2 km) 

Maximal abs. errors + 0.18 %  + 0.25 %  + 0.75 %  + 0.14 %  

rel. errors 11% 

6% 8 % 8 % 

Mid clouds 

(7 levels from 3.2 to 6.5 km) 

Maximal abs. errors - 0.05 % - 0.28 %  - 1.5 %  - 0.57 % 

rel. errors 11 % 7 % 13 % 9 % 

High clouds 

(13 levels from 6.5 km to 13 km) 

Maximal abs. errors - 3.2 % - 2.6 %  + 2.0 % + 1.5 % 

rel. errors 21 % 9 % 5 % 7 % 

Table 2: Maximal differences (i.e. absolute – “abs.” – errors) between simulated cloud fractions extracted with 954 

full resolution and simulated cloud fraction extracted with CALIPSO sampling [CFWRF+sim (z) – CFWRF+sim
T
 (z)] 955 

for high, mid and low clouds. Relative (“rel.”) errors are computed as follow: |
𝐶𝐹 𝑊𝑅𝐹+𝑠𝑖𝑚(𝑧)−𝐶𝐹 𝑊𝑅𝐹+𝑠𝑖𝑚

𝑇 (𝑧)

𝐶𝐹 𝑊𝑅𝐹+𝑠𝑖𝑚
𝑇  (𝑧)

| ×956 

100  and represent the average value of the layer (low, mid, or high). CFWRF+sim (z) and CFWRF+sim
T
 (z) are 957 

averaged over 2006-2011 by seasons (columns).  958 

 959 

 960 

 961 

 962 
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 963 

 964 

 CF Relative 

model bias  

α=
𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚

𝐶𝐹𝐺𝑂𝐶𝐶𝑃
 

CALIPSO undersampling error estimated by 

simulated cloud fraction 

β = |𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚 − 𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚
𝑇 |  

ε= 
𝛽

𝛼
 

Low clouds 0.36 Avg=0.15% ; max=0.33% Avg=0.4% ; max=0.9% 

Mid clouds 0.43 Avg=0.4% ; max=0.6% Avg=0.9% ; max=1.4% 

High clouds 2.32 Avg=1.4% ; max=2.35% Avg=0.6% ; max=1% 

Table 3: Estimation of the sampling errors in average (over the years and spatially) considering the sampling 965 

estimation evaluated by the simulation and the average model biases. “Avg” stands for errors estimated in 966 

average over the layer (low, mid or high) while “max” stands for the maximal error detected over one level. α 967 

values are the results of section 4.1.1. while β values are the results of section 3. 968 
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Fig.1 Total area of study with an illustration of the number of CALIPSO overpass in each 20×20 km
2
 grid-box 969 

during one season (here JJA 2008) 970 
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971 
Fig.2 Example of a CALIPSO track in 2009/01/19 during night, around 5°E longitude. (a) SR (z) observed by 972 

CALIOP lidar; (b) the total condensed water Q(z) simulated by WRF; (c) SR(z) simulated by WRF using COSP 973 

lidar simulator 974 

 975 

 976 

 977 

 978 
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 979 

Fig.3 Simulated cloud vertical profiles cumulated over the entire area of study and averaged over 2006-2011. (a) 980 

Summer (JJA), (b) fall (SON), (c) winter (DJF), (d) spring (MAM). Red profiles correspond to simulation with 981 

the sampling that follows CALIPSO tracks (CFWRF+sim(z)) and black profiles are for the entire simulation 982 

sampling (CFWRF+sim
T
(z)) ; For each of the subplots, around 5.10

4
 profiles have been used to construct the red 983 

profiles while 2.10
6
 profiles have been used to construct the black ones. 984 
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 985 

Fig.4 SR(z) histograms cumulated from 2006/06 to 2011/12 for simulation: (a) SR(z) simulation extracted 986 

following CALIPSO sampling SRWRF+sim(z) in logarithmic scale; (b) same as (a) following WRF sampling 987 

SRWRF+sim(z); (c) is (a)-(b); (d) same as (c) only for summers; (e) fall; (f) winter; (g) spring. Colorbars are 988 

percentage of the normalized occurrence at each level (the sum of one line is 100%). The vertical black lines 989 

represent the SR = 5 threshold for cloud detection  990 

 991 
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 992 

Fig.5 Seasonal variability of observed and simulated cloud fraction profiles. (a) Mean cloud fraction profile on 993 

2006-2011 for the simulation (blue) and observations (pink) horizontally averaged over the continent; the shades 994 

represent the envelope of the four seasons averaged profiles; (b) same as (a) over the sea; (c) Envelope of the 995 

seasonal anomaly computed relative to the mean cloud fraction profile over the continent in the simulation (blue 996 

shade) in the observations (pink shade); (d) same as (c) over the sea; (e) Mean cloud fraction profile on 2006-997 

2011 for each season for observations horizontally averaged over the continent; (f) same as (e) over the sea; (g) 998 

same as (e) for simulated profiles; (h) same as (g) over the sea. In (e) to (h), blue is for winter, green is for spring, 999 

red is for summer, and light blue is for fall  1000 
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  1001 

Fig.6 Same as Fig. 4a for observations and simulation in CALIPSO sampling. First column is for observations 1002 

SRGOCCP(z), and second column is for the simulation SRWRF+sim(z). (a) and (b) are for winter, (c) and (d) are for 1003 

spring, (e) and (f) are for summer, (g) and (h) are for fall. Black bars are for the threshold of cloud detection (SR 1004 

=5). Colorbar is in logarithmic scale   1005 

 1006 
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 1007 

Fig.7 Inter-annual standard deviation of averaged cloud fraction profiles from 2006 to 2011. (a) For winter in the 1008 

continent; (b) winter in the sea; (c) summer in continent; (d) summer in sea. Pink shade is for observations, blue 1009 

are for simulation under CALIPSO sampling, and the black line for the simulation in the full sampling. (e) The 1010 

shade represents -/+ the envelope of the standard deviation shown in (a). The blue line is the maximal anomaly 1011 

values for the simulation. Pink lines are the same as blue lines for observations. (f), (g) and (h) are the same as (e) 1012 

for winter in the sea, summer in the continent and (d) summer in the sea  1013 
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 1014 

Fig.8 CF winter anomaly compared to mean 2007-2011 for different years and altitudes, spatially averaged (a) 1015 

over the Mediterranean Sea for the simulation from 1989 to 2011; (b) over the Mediterranean Sea for 1016 

observations from 2007 to 2013; (c) and (d) same as (a)and (b) over the continent 1017 
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 1018 

Fig.9 (a) Standard deviation of the simulated CF value at z = 9.5 km (CF9.5) computed over the Mediterranean 1019 

Sea for different number of winters (blue bars). The blue x-axis explains the time period associated to the 1020 

number of years on which these standard deviations were computed (e.g. the first blue bar is the standard 1021 

deviation computed over 5 years of simulation and corresponds to the winters 2007 to 2011). The pink bars and 1022 

pink x-axis are the same as blue bars and blue x-axis but for observations. The blue dots are the CF9.5 winter 1023 

2010 anomalies relative to the average CF9.5 computed over the different time periods. Pink dots are the same as 1024 

blue dots for observations.  (b) same as (a) over the continent  1025 

 1026 

 1027 
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Annex 1: Lidar equation 1028 

The scattering ratio SR is given by (1): 1029 

𝑆𝑅(𝑧) =
𝐴𝑇𝐵𝑡𝑜𝑡(𝑧)

𝐴𝑇𝐵𝑚𝑜𝑙(𝑧)
  (1) 1030 

Where 𝐴𝑇𝐵𝑡𝑜𝑡  and 𝐴𝑇𝐵𝑚𝑜𝑙  are respectively the attenuated backscattered signals for particles and molecules and 1031 

for molecules only and are given by (2) and (3):  1032 

𝐴𝑇𝐵𝑡𝑜𝑡(𝑧)  =  (𝛽𝑠𝑐𝑎,𝑝𝑎𝑟𝑡(𝑧)  +  𝛽𝑠𝑐𝑎,𝑚𝑜𝑙(𝑧)). 𝑒
−2𝜂 ∫ (𝛼𝑠𝑐𝑎,𝑝𝑎𝑟𝑡(𝑧) + 𝛼𝑠𝑐𝑎,𝑚𝑜𝑙(𝑧)).𝑑𝑧

𝑧
𝑧𝑇𝑂𝐴  (2) 1033 

𝐴𝑇𝐵𝑚𝑜𝑙(𝑧)  =   𝛽𝑠𝑐𝑎,𝑚𝑜𝑙(𝑧). 𝑒
−2𝜂 ∫  𝛼𝑠𝑐𝑎,𝑚𝑜𝑙(𝑧).𝑑𝑧

𝑧
𝑧𝑇𝑂𝐴  (3) 1034 

ATBmol and ATBtot products are averaged vertically to obtain SR over 40 layers (Chepfer et al. 2008 and 2010).  1035 

βsca,part, βsca,mol are lidar backscatter coefficients (m
-1

 sr
-1

) and αsca,part and αsca,mol attenuation coefficients (m
-1

) for 1036 

particles (clouds, aerosols) and molecules. η is a multiple scattering coefficient that depends both on lidar 1037 

characteristics and size, shape and density of particles. It is about 0.7 for CALIPSO (Winker et al., 2003; 1038 

Chepfer et al., 2008).  1039 

 1040 

Fig.10: Two instantaneous observed SR vertical profiles (blue around [5°E; 47°N] and red around [5°E; 43°N]) 1041 

in 2009/01/19 at night. The vertical black line represents the SR = 5 threshold for cloud detection.  1042 
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Figure 10 illustrates two instantaneous SR profiles to help understand what a lidar signal looks like and how 1043 

cloud detection is computed in this study. Above 10 km, SR(z) is around 1, indicating clear sky for both profiles. 1044 

High clouds are detected in both profiles between 8 km and 10 km: SR(z) of the blue profile reaches the value of 1045 

8 and while SR(z) of the red one goes up to 22. The magnitude of SR(z) depends on the cloud optical thickness 1046 

from the Top Of Atmosphere (TOA) to the level z and the cloud microphysical properties such as the size of the 1047 

particle or its shape.  While the signal is fully attenuated for the red profile below 8 km (SR(z) is almost zero), 1048 

the blue profile still detects low clouds around 2 km. 1049 

Annex 2: Simulated cloud fraction maps 1050 

 1051 

Fig.11 Winter cloud fraction maps (cloud fraction computed from the model without lidar simulator) averaged 1052 

from 2006 to 2011 for simulation low clouds (a), mid-clouds (b) and high clouds (c).  d, e and f are the same but 1053 

for summer 1054 

Fig.11 shows that: for high clouds, a north-south gradient exists in winter with about 10% of clouds over North 1055 

Africa and more than 50% above continental Europe, while in summer, this gradient is north-west/south-east, 1056 

with almost no high clouds over Turkish and eastern part of Mediterranean basin. In winter, most mid and low 1057 

clouds occur above the north-eastern part of Europe. In summer, very few mid and low clouds are simulated and 1058 

they are mostly induced by orography. 1059 

Annex 3: Simulated winter 2010 high clouds anomaly  1060 
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 1061 

Fig12 Winter 2010 high clouds anomaly computed with CFWRF+sim
T
 relative to the average high cloud map of 1062 

winters from 1990 to 2011 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

Annex 4: 1069 

The CALIPSO undersampling error estimation from observed cloud fraction profiles is defined as: 1070 

ε (z)= |𝐶𝐹𝐺𝑂𝐶𝐶𝑃(𝑧) − 𝐶𝐹𝐺𝑂𝐶𝐶𝑃
𝑇 (𝑧)|with 𝐶𝐹𝐺𝑂𝐶𝐶𝑃

𝑇 (𝑧)  a theoretical cloud fraction that we would have with a 1071 

complete sampling (observations over all the grid-boxes every 00UTC). 1072 
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We define α(z) as the relative model bias, so 𝛼 (𝑧) =  
 𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚(𝑧)

𝐶𝐹𝐺𝑂𝐶𝐶𝑃(𝑧)
   1073 

We used a set of different samplings to test if α(z) can be considered as constant, i.e independent of the number 1074 

of profiles in the sampling. To do that, since we need both observations and simulation to test this hypothesis, we 1075 

reduced the CALIPSO sampling using only 1 profile over 2 (test 7), 1 over 3 (test 6), and so on down to one 1076 

profile over 20. Table 4 presents the results of these tests and indicates the α values for low, mid and high clouds. 1077 

This shows that if the number of profiles become greater than 1/15 of the CALIPSO sampling, α(z) can be 1078 

considered as nearly constant.  1079 

We deduce that: 𝛼 (𝑧) =  
 𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚

𝑇 (𝑧)

𝐶𝐹𝐺𝑂𝐶𝐶𝑃
𝑇 (𝑧)

   1080 

and ε (z) can be written as  𝜀 =
|𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚(𝑧)−𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚

𝑇 (𝑧)| 

𝛼 (𝑧)
 =  

𝛽(𝑧)

 𝛼(𝑧)
 with β(z) defined as the error of 1081 

undersampling estimated by the simulation. 1082 

Sampling  Test 1 :  

1 /20 

Test 2 : 

1/15 

Test 3 : 

1/10 

Test 4 : 

1 /5 

Test 5 : 

1/4 

Test 6 : 

1/3 

Test 7 : 

1/2 

Test 8 : 

1/1 

low 0.29 0.43 0.38 0.38 0.4 0.36 0.37 0.36 

mid 0.5100 0.4700 0.4000 0.4000 0.4200 0.4200 0.4300 0.4300 

high 7.9400 2.3300 2.4000 2.1900 2.3300 2.3500 2.3300 2.3200 

Table 4: computing model biases over continent (α = 
𝐶𝐹𝑊𝑅𝐹+𝑠𝑖𝑚(𝑧)

 𝐶𝐹𝐺𝑂𝐶𝐶𝑃(𝑧)
 ) for low clouds (1st row), mid clouds (2

nd
 row) 1083 

and high clouds (3
rd

 row) by testing different samplings (test 1 means we extract 1 profile over 20 and test 8 1084 

means we extract all the profiles).  1085 


