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Radial fall has historically played a momentous role. It is one of the most classical problems, the solutions of which represent the level of understanding of gravitation in a given epoch. A gedankenexperiment in a modern frame is given by a small body, like a compact star or a solar mass black hole, captured by a supermassive black hole. The mass of the small body itself and the emission of gravitational radiation cause the departure from the geodesic path due to the backaction, that is the self-force. For radial fall, as any other non-adiabatic motion, the instantaneous identity of the radiated energy and the loss of orbital energy cannot be imposed and provide the perturbed trajectory. In the first part of this letter, we present the effects due to the self-force computed on the geodesic trajectory in the background field. Compared to the latter trajectory, in the Regge-Wheeler, harmonic and all others smoothly related gauges, a far observer concludes that the self-force pushes inward (not outward) the falling body, with a strength proportional to the mass of the small body for a given large mass; further, the same observer notes an higher value of the maximal coordinate velocity, this value being reached earlier on during infall. In the second part of this letter, we implement a self-consistent approach for which the trajectory is iteratively corrected by the self-force, this time computed on osculating geodesics. Finally, we compare the motion driven by the self-force without and with self-consistent orbital evolution. Subtle differences are noticeable, even if self-force effects have hardly the time to accumulate in such a short orbit.

Ironically, if the two bodies are not only of different mass value, but also of different composition, a violation of the EP may counteract the acceleration difference due to the different mass values, and provide a null result.

Anyway, on the Earth and in its surroundings, the Newtonian self-force appears negligible (≈ 10 -25 m s -2 for each kg), given the current technology for the upcoming measurements [5].

II. COORDINATE EFFECTS FOR GEODESIC TRAJECTORIES

With the advent of general relativity, the Earth -the reference for several gedankexperimente -was replaced by the black hole [START_REF]The first solution of the Einstein equations was proposed[END_REF]. Observers in general relativity describe the phenomena according to their chosen coordinate system or gauge; thus the importance of finding and dealing with gauge invariant quantities. Nevertheless, non-invariant quantities are also meaningful, when the associated coordinate system is clearly spelled out. A well-known coordinate dependent description dictates that a particle never crosses the horizon of a black hole for a far observer, while an observer at the particle crosses the horizon.

Despite the mathematical simplicity, a controversy on a falling mass into Schwarzschild-Droste (SD) geometry [START_REF] Spallicci | Mass and motion in general relativity[END_REF]6] took place from 1916, before decaying after the '80s. The debate, often reignited for the oblivion of earlier literature, reflected the unawareness of coordinate choice, while the debaters showed affection to a frame considered more 'physical'. The question was: is there an effect of repulsion? Or does the particle speed reach a maximal velocity and then slows down? Oblivion of earlier literature has caused the concepts of repulsion and critical velocity to be 'rediscovered' again and again. Since critical velocity is advocated in high energy astrophysics, we explain how the concept originated.

Four types of measurements (-, +, +, + signature) might be envisaged: affected by gravity dl, dτ , or not (a far observer) dr, dt (dl = (1 -r g /r) -1/2 dr and dτ = -(1 -r g /r) 1/2 dt, r g = 2GM/c 2 the gravitational radius). Following Thirring [7] and Sexl [8], Cavalleri and Spinelli [9,[START_REF] Spinelli | 5 th Marcel Grossmann Meeting[END_REF] define the velocities and accelerations as renormalised, id est, proper (dl/dτ and d 2 l/dτ 2 ), non-renormalised (dr/dt and d 2 r/dt 2 ), and semi-renormalised (dl/dt and d 2 l/dt 2 or dr/dτ and d 2 r/dτ 2 ). The quantities dl/dt and d 2 l/dt 2 are measured by a far observer who uses his own clock, but equivalently measures distances with a meter stick placed at the particle, or by comparing the position of objects which are local to the particle, or by integrating the echo times of signals reflected by the particle, as suggested by Jaffe and Shapiro [START_REF] Jaffe | [END_REF]12].

For a null velocity at infinity, Droste [START_REF] Droste | Het zwaartekrachtsveld van een of meer lichamen volgens de theorie van Einstein[END_REF][START_REF] Droste | Proc. Acad. Sci. Amsterdam[END_REF] already shows that d 2 l/dt 2 turns positive for either r ≤ 4GM/c 2 or else |dl/dt| ≥ c 1/2 1 -r g /r; sharing the same conviction, von Laue [START_REF] Laue | Die relativitätstheorie. Die allgemeine relativitätstheorie[END_REF], Bauer [START_REF] Bauer | Mathematische einführung in die gravitationstheorie Einsteins, nebst einer exakten darstellung ihrer wichtigsten ergebnisse (F. Deuticke[END_REF], McVittie [START_REF] Mcvittie | General relativity and cosmology[END_REF], Møller [START_REF] Møller | The theory of relativity[END_REF], and the proposers of a satellite experiment [START_REF] Kutschera | [END_REF]. Still for null velocity at infinity, Droste [START_REF] Droste | Het zwaartekrachtsveld van een of meer lichamen volgens de theorie van Einstein[END_REF] finds that the acceleration d 2 r/dt 2 is positive for either r ≤ 6GM/c 2 or else |dr/dt| ≥ c 1/3(1 -r g /r); on the same stand, Hilbert [20], Page [21], Eddington [22], Treder [START_REF] Treder | Die relativität de trägheit[END_REF][START_REF] Treder | [END_REF], Carmeli [25,[START_REF] Carmeli | Classical fields: general relativity and gauge theory[END_REF].

von Laue himself [START_REF] Laue | La théorie de la relativité[END_REF] and Drumaux [START_REF] Drumaux | [END_REF] propose first the proper acceleration d 2 l/dτ 2 for which no repulsion occurs; on this line opposing any repulsion, Landau and Lifshits [START_REF] Landau | The classical theory of fields[END_REF], von Rabe [START_REF] Rabe | [END_REF], Whittaker [START_REF] Whittaker | A history of the theories of aether and electricity[END_REF], Zel'dovich and Novikov [START_REF] Zel | Relyativistskaya astrofyzika (Izdatel'svo Nauka[END_REF], and others [START_REF] Markley | [END_REF]34]. For other views on the matter see [35][36][START_REF] Rindler | Essential relativity[END_REF][START_REF] Shapiro | Black holes, white dwarfs, and neutron stars: the physics of compact objects[END_REF][START_REF] Frolov | Black hole physics[END_REF][START_REF] Bolòs | [END_REF][41][42][43].

Geodesic motion and particle speed at the horizon were also discussed [44][45][46][47][48][49][50][51]. McGruder III points out that repulsion is depending upon the relation between radial and transverse velocities [52]; Kerr and Kerr-Newman geometries were also analysed [53].

From Blinnikov et al. [START_REF] Blinnikov | Festschrift dedicated to the 60th birthday of Holger Bech Nielsen[END_REF][START_REF] Blinnikov | [END_REF], for a null starting value at r 0 , we draw that the non-renormalised velocity |dr/dt| = -g 00 c[1 -g 00 /g 00 (r 0 )] 1/2 reaches the maximal value of |dr/dt| max = 2c(r 0 -r g )/(3 √ 3r 0 ) at r max = 3r 0 r g /(r 0 + 2r g ), for g 00 being the SD metric time coefficient. For the coordinate acceleration being null at r max , the local velocity

is |dl/dτ | = -g -1 00 dr/dt is c(r 0 -r g )/[(r 0 + r g ) √ 3 
]. In far field, the preceding extends to other asymptotically flat coordinates.

Maximal velocities are discussed in high energy astrophysics [56,57]. Therein it is claimed that tidal forces exhibit a peculiar behaviour due to the maximal velocity. A mass of finite size, falling with a speed lower than the maximal value towards a Kerr black hole, is stretched along the longitudinal axis, supposed coincident with the rotation axis, and compressed along the transversal axes, just like in Newtonian physics. But for a higher speed, the same mass would conversely be compressed along the longitudinal axis and stretched on the transversal ones. The ultrarelativistic particles near a gravitationally collapsed system or in the accretion process are thus tidally decelerated in a cone around the rotation axis of the collapsed system, and correspond to jets from neutron stars and X-ray binaries. Meanwhile, the ultra-relativistic particles that result from tidal acceleration outside the cone transfer their tidal energy to the ambient particles, thus inducing extremely energetic cosmic rays.

Maximal velocity has been considered for stars orbiting black holes [58]. The stars are disrupted by tidal forces and produce luminous flares, followed by a declining phase, as X-ray observations suggest. The authors speculate that the disruption of a rapidly rotating star due to a velocity dependent tidal force is quite different from that of a non-relativistic star.

These papers refer to Fermi coordinates [59][60][61], for which the maximal velocity is c/ √ 2. The Fermi coordinates were originally conceived for a small region relative to the length scale. Therefore, the implications that these authors draw on the observations for other observers are not evident [62,63].

Concerning photons, for a far observer, they indeed "slow down" when approaching a mass, forming the radio echo delay [START_REF] Jaffe | [END_REF]12,64].

III. IMPACT OF THE SELF-FORCE ON THE TRAJECTORY

In the '70s, Zerilli computes the gravitational radiation emitted during infall [65][66][67]. Forty years later, back-action -without orbital evolution -was partially analysed only in two works [68,69], and with contrasting predictions (the former suggests the back-action to be repulsive for some modes and attractive for others, conversely to the second which attributes always an attractive feature). Though we present herein only new results, we comment the previous literature [96]. Needless to say, the time shortness of the fall forbids any important accumulation of back-action effects but, from the epistemological point of view, radial fall for gravitation remains the most classical problem of all, and raising the most delicate technical questions. The dependence of the back-action on gauge is also not a valid argument to dismiss the eldest problem in physics, as gauge dependence is also present in the geodesic fall without back-action; it is inherent in general relativity, and even surfaces in Newtonian physics. Finally, the results herein are obtained (and coincide) in two gauges which are most used.

In particle physics, namely transplanckian regime and black hole production, back-action has a pivotal role in head-on collisions [70].

The modern frame to study back-action is provided by the Extreme Mass Ratio Inspiral (EMRI) sources. Gravitational waves from compact stars or solar size black holes orbiting supermassive black holes are targeted by Space Laser Interferometry (SLI) [97], now officially in the European Space Agency planning. The community aims to trace the most complex -but astrophysically plausible -orbits around rotating black holes. The last stages of EMRI plunge (a quasi-radial case) were analysed for discriminating supermassive black holes from boson stars [71], being the latter horizonless objects, and for signatures of dark matter [72].

Self-force refers to the MiSaTaQuWa-DeWh approaches [73][74][75] to compute the back-action, see [START_REF]Mass and motion in general relativity[END_REF] for an introduction to the techniques for self-force computation.

It is essential to recall that radial fall benefits of a regular gauge transformation [START_REF] Barack | [END_REF] between the harmonic (H) [98] and the Regge-Wheeler (RW) [78] gauges.

The quantities in [68] were computed in the RW gauge, using the Riemann-Hurwitz ζ function [79,80] (the ζ regularisation acts on the full perturbations h µν , without a splitting of the singular and regular parts). The metric is given by g µν + h µν , where g µν represents the background. The coordinate of the particle is r = r + ∆r, where ∆r is the displacement due to the back-action. In the pragmatic method, the second order coordinate time derivative of the displacement is given by [START_REF] Spallicci | Mass and motion in general relativity[END_REF]68,81,82] ∆r = a 1 (g µν ; r, ṙ) ∆r + a 2 (g µν ; r, ṙ) ∆ ṙ + a self (h µν ; r, ṙ) ,

where the first two terms form the background geodesic deviation (gd), while a self is the perturbation dependent term (for their explicit expressions, see [START_REF] Spallicci | Mass and motion in general relativity[END_REF]). Equation 1 corresponds to the first order deviation from geodesic motion (in proper time) found by Gralla and Wald [83,[START_REF] Gralla | Mass and motion in general relativity[END_REF], in the H gauge, Eq. 2. For an introduction see [85] in this journal. For h R µν being the tail or radiative part of the perturbations [73][74][75], the second order proper time covariant derivative is given by (

x α = x α + ∆x α ) [83-85] D 2 ∆x α dτ 2 = -R µβν α u µ ∆x β u ν Background geodesic deviation - 1 2 (g αβ + u α u β )(2h R µβ;ν -h R µν;β )u µ u ν Self-acceleration (proper time) = F α self /m , (2) 
where R α µβν is the Riemann tensor and u α the four-velocity. We have determined a self , Eq. 1, via the Mode-Sum regularisation [86]. In the H gauge the SF is obtained by subtracting the singular part of the force from the retarded force [85] F

α(H) self = F α(H) ret -F α(H) S . (3) 
We recall the expression of the Mode-Sum decomposition in H gauge by Barack and Ori [86], and that the RW gauge is regularly connected to the H gauge for purely radial orbits [START_REF] Barack | [END_REF]. Furthermore, it has been shown that the components of the transformation gauge vector are not only regular at the position of the particle but they be made vanishing. That is to say, the regularisation parameters share the same expression in RW and H gauges. The SF is thus gauge invariant for RW, H and all other gauges interrelated via a regular transformation gauge vector. Further, the RW gauge has the distinct advantage of giving easy access to the components of the perturbation tensor, instead strongly coupled in the H gauge (see appendix).

From Eq. 1, Fig. 1, we plot the coordinate quantities a self , ∆r, ∆ ṙ, and ∆r versus r/r g for r 0 = 15r g and null initial velocity. The displacement ∆r is always negative, and four different zones can be identified, Tab I. In zone I (3.5 r g < r ≤ r 0 = 15 r g ), the particle falls faster than in a background geodesic. Approaching the potential, it radiates more and it undergoes a breaking phase: in zone II (2.2 r g < r < 3.5 r g ), the acceleration deviation ∆r becomes positive, but the velocity deviation ∆ ṙ remains negative; in zone III (1.2 r g < r < 2.2 r g ), the breaking is stronger and even the velocity deviation turns positive. Finally, in zone IV (r g < r < 1.2 r g ), the acceleration deviation reappears negative, but not sufficiently to render the velocity deviation again negative. Close to the horizon, all quantities approach zero, and thereby agree with the classic stand point of a far observer who doesn't see the particle crossing the horizon. In Fig. 2, we plot the contributions to ∆r, ∆ ṙ, and ∆r by ∆r gd , ∆r self . The contributions are obtained through a system of coupled equations ∆r gd = a 1 ∆r + a 2 ∆ ṙ and ∆r self = a self , where ∆r = ∆r gd + ∆r self . The self-quantities act always inward the black hole. Conversely, the geodesic deviation is repulsive (except the acceleration close to the horizon), and often of larger magnitude than self-quantities. Incidentally, a 1 ∆r and a 2 ∆ ṙ opposite signs. The maximal coordinate velocity |dr/dt| max is not any longer 0.3592c but increases of 5m/M %, while r max = 2.647r g moves towards larger r. There is an uniform behaviour of a ret and a self vis à vis the different ℓ modes, and there is no diverging behaviour at the horizon, Fig. 3. The back-action is dominated by the l = 2 mode, about 55% of the total. Increasing r 0 , Fig. 4, ∆r increases (like ∆ ṙ). 

IV. THE SELF-CONSISTENT METHOD

The adiabatic approximation requires that a given orbital parameter changes slowly when compared to the orbital time-scale. The above condition is not satisfied for radial fall [87]. As we have seen, the feebleness of cumulative effects does not imply the non-existence of the self-force, and the lack of adiabaticity obliges to add the uppermost care in the computation.

Gralla and Wald consider than any perturbation scheme is doomed to failure at late times, and suggest to evolve the most relativistic orbits through the iterative application of the back-action on the particle world-line, id est, the self-consistent approach [83,[START_REF] Gralla | Mass and motion in general relativity[END_REF]. We implement it for the least adiabatic orbit of all, that is radial infall, and for the first time. It is worth stating that the strict self-consistency implies that the applied self-force at some instant is what arises from the actual field at that same instant. So far this has been done only for a scalar charged particle around an SD black hole [88], and never for a massive particle. In other works [89,90], the applied self-force is what would have resulted if the particle were moving along the geodesic that only instantaneously matches the true orbit. Herein, we adopt the latter acception. Our approach in orbital evolution (in RW gauge) consists thus in computing the total acceleration through self-consistent (osculating) geodesic stretches of orbits of iterative index n (Fig. 5) FIG. 6: a self , ∆r, ∆ ṙ, and ∆r from the pragmatic and self-consistent (osculating) methods, and their difference. r = a 0 g µν ; r, ṙ + a self h µν ; r, ṙ ,

where a self is the (coordinate) self-acceleration at first order

a 0 = - 1 2 g 00 (r) dg 00 (r) dr 1 - 3 ṙ2 g 00 (r) 2 .
At each integration time-step t = t n and at the P n point, a geodesic r n (t) osculating the perturbed trajectory rn (t) is searched. The identification of a new (t 0 , r 0 ) starting point is sufficient to determine such geodesic, that passes at P n at the right time and velocity. The self-acceleration is then computed along the geodesic until the point P n . The solution of the ordinary differential equation, Eq. 4, leads to the new P n+1 point.

In Fig. 6, for z 0 = 15r g , we show (pragmatic and self-consistent methods) a self , ∆r, ∆ ṙ, and ∆r. The amplitude of these quantities, when computed self-consistently, differ of about 3% after 4r g , and the four zones are slightly shifted towards the horizon. In our simulation, differences between the pragmatic and self-consistent (osculating) methods appear in the values of motion related quantities.

V. CONCLUSIONS AND PERSPECTIVES

In the Regge-Wheeler and de Donder (harmonic) gauges and all other smoothly related gauges, a far observer concludes that the self-force pushes inward the falling body, with a strength proportional to the mass of the small body for a given large mass. Further, the value of the maximal coordinate velocity raises, this value being reached earlier on during infall. When a self-consistent approach is adopted, and thereby the trajectory is iteratively corrected by the self-force, these effects are further emphasised.

We have clarified the relation of the back-action with radial fall, also in terms of epistemological significance. For future developments, the self-consistent method appears a truly innovative technique to tackle the complex highly relativistic and non-adiabatic orbits that compact objects trace around supermassive black holes.
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TABLE I :

 I The four zones according to the sign of ∆r, ∆ ṙ, ∆r.

	Zone	IV	III	II	I
		rg -1.2 rg 1.2 rg -2.2 rg 2.2 rg -3.5 rg 3.5 rg -r0
	∆r	-	-	-	-
	∆ ṙ	+	+	-	-
	∆r	-	+	+	-
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Appendix

For F r,t self , radial and time components of the self-force ("ret" the retarded field; ℓ the (polar) mode, L = ℓ + 1/2; A,B,C,D the regularisation parameters computed in RW gauge), we have

after averaging, (B a = g 00 mg 00 (r 0 ) [B r -ṙB t ]), the (coordinate) self-acceleration is

With a proper gauge choice, the ℓ = 1 -polar mode -vanishes. The second and third terms are numerically and analytically obtained, respectively (the latter through the polygamma function, related to the ζ function [91]; error ≤ 0.1% for ℓ max = 8).