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[1] Recordings in western Tibet of Rayleigh and Love
waves at periods less than 70 s from aftershocks of the
2008 Sichuan earthquake cannot be matched by an isotropic
velocity model beneath Tibet. These intermediate‐period
Rayleigh and Love waves require marked radial anisotropy
in the middle crust of Tibet, with the vertically polarized S‐
waves propagating more slowly than S‐waves with horizon-
tal polarization. The magnitude of anisotropy inferred using
paths entirely within Tibet is slightly greater than that ob-
tained previously from a tomographic inversion of a dataset
covering a larger region. Anisotropy in the middle crust
likely reflects deformation of the middle crust, and is consis-
tent with the notion of mid‐crustal flow and thinning of
the crust. Citation: Duret, F., N. M. Shapiro, Z. Cao, V. Levin,
P. Molnar, and S. Roecker (2010), Surface wave dispersion across
Tibet: Direct evidence for radial anisotropy in the crust, Geophys.
Res. Lett., 37, L16306, doi:10.1029/2010GL043811.

1. Introduction

[2] Although formed as a consequence of the northeast-
ward convergence of India with Eurasia, the Tibetan plateau
presently extends with a largely east‐west orientation, and
the preponderance of normal faulting implies crustal thin-
ning [e.g., Molnar and Tapponnier, 1978; Armijo et al.,
1986; England and Houseman, 1989; Zhang et al., 2004].
Although potential energy associated with the elevated
topography is expended during extension [e.g., Molnar and
Lyon‐Caen, 1988; Houseman and England, 1993; Copley
and McKenzie, 2007], the details of the Tibetan plateau
deformation and, in particular, its distribution with depth
remain actively debated. Competing end‐member ideas
include coupled deformation of the crust and the underlying
upper mantle [e.g., Flesch et al., 2005; Wang et al., 2008],
as is implicit in thin viscous sheet models of continental
deformation [e.g., England and McKenzie, 1982; England
and Houseman, 1986], different deformation of crust and
mantle, facilitated by a low‐strength channel in its lower
part [e.g., Royden, 1996; Clark and Royden, 2000;
Beaumont et al., 2006; Klemperer, 2006; King et al., 2007;

Royden et al., 2008], or a mixture of both [e.g., Bendick and
Flesch, 2007].
[3] Deformation of the mantle or crustal rocks leads to

lattice or shape preferred orientations of individual minerals
that, in turn, may result in seismic anisotropy (directional
dependence of seismic properties). Therefore, observations
of this anisotropy constrain the nature and distribution of
deformation, and therefore bear on Tibetan tectonics.
[4] Analysis of core‐refracted shear wave splitting at

numerous sites in and near Tibet indicate that the upper
mantle in this region is markedly anisotropic. Moreover, the
orientations of the faster quasi‐S waves correlate with active
and finite deformation inferred from observations at the sur-
face, making a strong argument in favor of crust‐mantle
coupling [e.g., Davis et al., 1997; Holt, 2000; Flesch et al.,
2005; Wang et al., 2008]. In addition, seismic anisotropy
has also been observed within the Tibetan crust [e.g., Ozacar
and Zandt, 2004; Sherrington et al., 2004; Levin et al., 2008].
[5] Seismic anisotropy can also be inferred from the

simultaneous analysis of dispersion of Love and Rayleigh
waves, which are horizontally and vertically polarized,
respectively. This approach was widely used to study the
radial anisotropy in the upper mantle on a global scale [e.g.,
Ekstrom and Dziewonski, 1998; Shapiro and Ritzwoller,
2002; Beghein et al., 2006; Becker et al., 2008]. More
recently, radial anisotropy within the crust has been dem-
onstrated in regions of active extension and crustal thinning,
such as Tibet [Shapiro et al., 2004; Chen et al., 2009], and
Western United States [Moschetti et al., 2010]. Because they
constrain the depth distribution of structure, surface waves
offer an advantage over near‐vertically propagating tele-
seismic S‐waves. The inversion of a vast surface wave da-
taset by Shapiro et al. [2004] revealed 10% to 20% radial
anisotropy throughout the middle crust (20–50 km depth)
beneath the Tibetan plateau. This result suggests that the
Tibetan middle crust has been deformed, consistent with
channel flow within the crust.
[6] One limitation of that study is that it was based on

tomographic inversion of a dataset where most of surface‐
wave paths sampled large areas outside Tibet. This config-
uration results from the limited number of seismographs.
We used the data from an ongoing Western Tibet PASSCAL
seismic experiment and records of aftershocks of the May
12, 2008 Sichuan earthquake. These new data sample
exclusively the Tibetan plateau (Figure 1), offering an
independent check of the mid‐crustal anisotropy.

2. Data Selection

[7] Because of its complex source time function, the
mainshock is not suitable for dispersion measurements. We
also excluded from the analysis hours immediately after the
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main event because of the large number of aftershocks that
were closely spaced in time and, therefore, whose surface
waves were difficult to isolate. We selected 9 aftershocks
with magnitudes ranging from 5.5 to 6.1 (Figure 1 and
Table 1). These events are strong enough to excite energetic
intermediate and long period surface waves (Figures 2a
and 2b) and at the same time their source time functions
are simple enough that they can be approximated by delta
functions. After visually inspecting the seismograms and the
corresponding frequency‐time diagrams, we selected a set of
60 traces for Rayleigh waves and 53 traces for Love waves
(Table 1).

3. Group Velocity Measurements

[8] For every selected event‐station pair we used the
vertical component record to analyze Rayleigh waves, and we
rotated horizontal components to get a transverse component
record to analyze Love waves (Figure 2). The Rayleigh wave
exhibits clear reverse dispersion (high frequencies arriving
before low frequencies) at periods between 10 and 40 s
but the Love wave is characterized by normal dispersion
at the same periods.

[9] We applied Frequency‐Time Analysis (FTAN) [Barmin
et al., 1989] to measure group velocities of the selected
waveforms between 10 s and 100 s (Figure 2).
[10] Previous local studies with earthquake‐station paths

located within the Western Tibet showed that Rayleigh
waves propagate slightly faster in the northern part of the
plateau than in its southern part [e.g., Rapine et al., 2003]. In
our study, we use the measurements from long (∼1500 km)
paths aligned in the East–West direction and covering the
area extending ∼300 km in the North–South direction. This
extent is about the size of the Fresnel zone for a 30–40 s
Rayleigh wave, making it impossible to recover lateral
variations in the crustal properties.
[11] Therefore, the measurements from all selected

records have been combined to compute average Rayleigh‐
and Love‐wave group velocity dispersion curves and their
standard deviations (Figures 3a and 3c). Rayleigh wave
dispersion exhibits a clear Airy phase with an unusual
marked minimum at ∼35 seconds, which suggests that the
speeds of vertically polarized shear waves (SV) within the
crust are relatively low. Such a minimum is not observed for
Love waves implying that horizontally‐polarized S‐waves
(SH) may propagate faster than the vertically polarized SV
waves and therefore, that crustal radial anisotropy char-

Figure 1. Map of the studied region showing earthquake to stations paths where dispersion curves have been measured.

Table 1. List of Rayleigh Wave and Love Wave Dispersion Measurements, per Station, and per Event

Date, in 2008 Coordinates Mw GARY MONS NOMA NPUK PURG RUTK SQAH Total

134 07:07:08 (30.89, 103.19) 5.8 R L R L R L R L R L R L R L 7 7
137 05:25:47 (31.35, 103.35) 5.6 R L R L R L L R L R L R L 6 7
138 17:08:25 (32.24, 104.98) 5.8 R R L R L R L R L R L 6 5
146 08:21:49 (32.56, 105.42) 6.1 R L R L R L R L R L R L R L 7 7
148 08:37:51 (32.71, 105.54) 5.7 R L R L R L R L R L R L R L 7 7
205 19:54:44 (32.75, 105.50) 5.5 R R R L R L R R R 7 2
206 07:09:30 (32.75, 105.54) 5.7 R L R L R L R L R L R L R L 7 7
214 08:32:43 (32.03, 104.72) 5.7 R R L R L R L R L R L 6 5
218 09:49:17 (32.76, 105.49) 6.0 R R L R L R L R L R L R L 7 6
Total 9 5 8 7 9 9 8 9 9 8 9 7 8 8 60 53
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acterizes the Tibetan plateau as Shapiro et al. [2004] had
inferred.

4. Inversion of Dispersion Curves for Average
Crustal Structure

[12] We simultaneously invert the measured Rayleigh and
Love wave dispersion curves to deduce an average 1D
shear‐wave velocity structure of the Tibetan crust. The
inversion is based on a modified Monte‐Carlo method of
Shapiro et al. [1997], and consists of testing randomly
generated models by computing synthetic group velocity
dispersion curves for Rayleigh and Love wave fundamental
modes and by comparing them with observations. The
computations are done with Herrmann’s [1987] subroutines.
To introduce radial anisotropy we consider shear‐wave
speeds when calculating dispersion curves for Rayleigh and
Love waves. Models are parameterized as a set of layers
(four in the crust and two in the uppermost mantle) with
constant seismic speeds and densities. During the inversion,
layer thicknesses, shear wave speed and amount of radial
anisotropy (difference between VSV and VSH) are perturbed
randomly. P‐wave speeds and densities are scaled to S‐wave
speeds via constant Vp/Vs ratio (1.73) and empirical

Vs‐density relation based on CRUST2.0 [Mooney et al.,
1998; Bassin et al., 2000]. We start the inversion with an
isotropic initial model obtained by averaging CUB2.0
[Shapiro and Ritzwoller, 2002] across the region of study. A
random exploration of the model space is then performed
until 1000 models that fit the data below the pre‐defined
acceptable misfit level are found.
[13] When we did not include radial anisotropy in the

crust (VSV = VSH), as expected for Tibet, we find a thick
crust with Moho located at approximately 65 km. Also,
relatively low velocities are found in the upper and the
middle crust above 45 km. At the same time, we could not
find an isotropic model that simultaneously fits the observed
Rayleigh and Love wave dispersion curves within the error
bars. At periods between 20 and 60 s, the predicted Rayleigh
wave group velocities are systematically faster than
observed, and the predicted Love‐wave velocities are too
low.
[14] To resolve the observed Rayleigh‐Love discrepancy,

we introduced radial anisotropy in the crust. After testing
different combinations of anisotropic layers, we found that
models with anisotropy in the middle crust (between 15 and
45 km) fit the observed dispersion curves within their

Figure 2. Results of the frequency‐time analysis of the event on day 205 recorded at station MONS. (a and b) Vertical and
transverse component records lowpassed at 0.1 Hz. (c and d) Frequency‐time diagrams corresponding to records shown in
Figures 2a and 2b. Amplitudes were normalized to 1 at every period. Black points show measured group velocities.
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uncertainties (Figures 3c and 3d), and offered the best trade‐
off between simplicity and fit to the data.
[15] To obtain a quantitative comparison of results, we

selected best‐fit models from inversions with and without
anisotropy, and computed their RMS misfit to observed
average dispersion curves in the period range between 15 and
70 s where we could get most reliable measurements. With
the isotropic parameterization, the RMS misfits are 44.9 m/s
and 82.3 m/s for Rayleigh and Love waves, respectively.
After introducing the mid‐crustal radial anisotropy, they
become 20.2 m/s and 12.7 m/s implying variance reduction
of more than 80% relative to the isotropic parameterization.

5. Conclusions

[16] Our analysis of records of May 12, 2008 Sichuan
earthquake aftershocks from stations of the Western Tibet
PASSCAL seismic experiment clearly demonstrates that the
intermediate‐period Rayleigh‐Love discrepancy is a wide-
spread feature characterizing surface waves propagating
across the Tibetan plateau. To explain this observation, we
allow radial anisotropy in the crustal layers during the
inversion of the observed dispersion curves. The results of
the inversion show that a strong radial anisotropy in the
middle crust (between 15 and 45 km) is required to fit

simultaneously observations of dispersion of Rayleigh and
Love waves.
[17] This result, based on waves propagating entirely

within the Tibetan plateau, agrees with that previously
reported by Shapiro et al. [2004] from a tomographic
inversion of a dataset sampling a larger area. For quantita-
tive comparison, we follow the approach by Shapiro et al.
[2004] and compute the vertically averaged magnitude of
the radial anisotropy as the idealized travel time difference
between VSV and VSH waves that are imagined to propagate
vertically through the middle crust. The average value of
tSV − tSH characterizing most of Tibet is 0.58 ± 0.11 s. This
is slightly larger than the 0.5 ± 0.18 s value for the high
plateau reported by Shapiro et al. [2004], indicating that the
tomographic inversion could slightly under‐estimate the
magnitude of the radial crustal anisotropy beneath Tibet.
Moreover, because our estimate is an average for the whole
path, but the results of Shapiro et al. [2004] suggested that
radial anisotropy is greatest in the high part of the plateau,
our data are consistent with yet large radial anisotropy than
that given by 0.58 ± 0.11. Modeling anisotropic receiver
functions at two sites in western Tibet, Levin et al. [2008]
found a likely crustal contribution to the SKS splitting sig-
nal to be under 0.3 s, a compatible value considering large
differences in periods of seismic waves used. The presence
of the radial anisotropy in the middle crust beneath the

Figure 3. Results of the inversion of dispersion curves with isotropic parametrization and with radial anisotropy in the
middle crust. (a and c) Group velocity dispersion curves. Rayleigh and Love wave observations are shown with black
and light grey thin lines and error bars, respectively. Light and dark grey lines show Rayleigh and Love dispersion curves
computed for models selected during the inversion. (b) Shear‐wave velocity profiles for ensemble of acceptable models
obtained during the inversion with isotropic parameterization. (d) Shear‐wave velocity profiles for ensemble of acceptable
models obtained during the inversion with allowing radial anisotropy in the middle crust. VSV and VSH are shown with light
grey and dark grey lines, respectively.
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Tibetan plateau implies that this layer is strongly deformed
and, therefore, supports geodynamic models that include the
presence of a relatively low‐strength channel at depths
between 15 and 45 km.
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