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Abstract
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial

cryosphere and plays a major role in the climate system through strong positive feedbacks

related to albedo. The snow-albedo feedback is invoked as an important cause for the polar

amplification of ongoing and projected climate change, and its parameterization across

models is an important source of uncertainty in climate simulations. Here, instead of devel-

oping a physical snow albedo scheme, we use a direct insertion approach to assimilate sat-

ellite-based surface albedo during the snow season (hereafter as snow albedo assimilation)

into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic

EcosystEms) and assess the influences of such assimilation on offline and coupled simula-

tions. Our results have shown that snow albedo assimilation in both ORCHIDEE and

ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique)

improve the simulation accuracy of mean seasonal (October throughout May) snow water

equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to

snow albedo assimilation is more pronounced in the coupled simulation than the offline sim-

ulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ.

We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ

due to snow albedo assimilation are significantly improved during the spring in particular

over the eastern Siberia region. This is a result of the fact that high amounts of shortwave

radiation during the spring can maximize its snow albedo feedback, which is also supported

by the finding that the spatial sensitivity of temperature change to albedo change is much

larger during the spring than during the autumn and winter. In addition, the radiative forcing

at the top of the atmosphere induced by snow albedo assimilation during the spring is esti-

mated to be -2.50 Wm-2, the magnitude of which is almost comparable to that due to CO2

(2.83 Wm-2) increases since 1750. Our results thus highlight the necessity of realistic repre-

sentation of snow albedo in the model and demonstrate the use of satellite-based snow
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albedo to improve model behaviors, which opens new avenues for constraining snow

albedo feedback in earth system models.

Introduction
Snow albedo can exert a control over shortwave forcing in climate change and provides a
strong feedback to the atmosphere, primarily because of the contrast in albedo between snow
covered and snow free land surfaces [1, 2]. Snow albedo is also amongst the most important
local parameters in the shaping of spatiotemporal variations in snowpack—solar radiation that
is absorbed by the snowpack is one of the principal energy sources in its evolution. Our recent
study reported that an increase of absorbed solar energy due to the reduction of snow albedo
acted as an amplifying factor in shaping below-normal spring snow cover extent at high-lati-
tude regions [3]. Therefore, snow albedo strongly influences the mass balance, and in particular
the ablation, of the snowpack (e.g. [4]).

Snow-covered albedo is affected by many factors including snow grain size, solar zenith
angle, liquid water content, snow impurities, layer structure in the snowpack, and snow depth
[5–8]. Among these factors, snow grain size is the most important variable controlling snow-
covered albedo. However, snow grain size is difficult to predict and is crudely parameterized in
terms of the snow age and its temperature history (e.g. [9]). Thus, the parameterizations of
snow-covered albedo are empirical in many land surface models (e.g. [10]), including the
multi-layer snow module that has recently been developed in ORCHIDEE (ORganizing Car-
bon and Hydrology In Dynamic EcosystEms, [11]) [12]. Although physically based snow
albedo models (e.g. [8], [13]) have emerged in recent years, they are not sufficiently validated
in global applications. In addition to snow-covered albedo, the snow albedo scheme in the land
surface model used for large-scale climate studies also needs a representation of snow cover
fraction (SCF), the accuracy of which has been recognized as crucial in snow and climate simu-
lations. For example, Wang and Zeng [14] evaluated snow albedo formulations among the four
major weather forecasting and climate models and found that the bias in snow albedo simula-
tion from three of models is mainly caused by their unrealistic SCF parameterizations. Previous
studies (e.g. [15, 16]) have also identified that one of the largest uncertainties in modeling snow
and its interactions with the atmosphere stems from SCF formulations at a grid cell scale in
land surface-atmospheric models. Despite efforts in the development of SCF parameterizations
in the past, the representation of SCF in land surface models including ORCHIDEE is still
needed to be refined (e.g. [17]).

Our previous study at the site level has shown that the correction to the snow albedo scheme
at exposed sites in ORCHIDEE could significantly improve snow simulations [12], but the bias
in simulated albedo during the snow season after correction still exists. Snow albedo scheme in
ORCHIDEE has an explicit treatment of the vegetation canopy by allowing snow albedo to
vary with time [18], which definitely has strengths than some models using a fixed snow albedo
over forests throughout the snow season (e.g. [19]). But this parameterization could still suffer
from certain deficiencies since it does not consider the complex processes of canopy snow
interception and unloading that may significantly impact snow albedo especially in boreal ever-
green needleleaf forests [20]. This gives rise to the following question: to what extent can we
expect improvements in snow simulations by further improving snow albedo simulation in
ORCHIDEE? In addition, previous studies (e.g. [1]) have documented that the discrepancy in
parametrizations of snow albedo (including both snow-covered albedo and SCF) across earth
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system models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5)
leads to a large model spread of snow albedo feedback that is a source of uncertainty in climate
simulations. Then, to what extent does realistic snow albedo representation improve air tem-
perature due to the propagation of surface albedo changes to the atmosphere?

In this study, instead of developing a physical-based snow albedo scheme (e.g. [8]) in
ORCHIDEE, we relax the modeled surface albedo during the snow season towards observa-
tions at each observed time step and quantify the changes in offline and coupled (land surface-
atmosphere) simulations after this relaxation (or assimilation). To date, only a few examples
exist of the assimilation of albedo into land surface models on the continental scale (e.g. [21]);
let alone exploring impacts of snow albedo assimilation in the coupled land-atmosphere mod-
els. This is primarily because most albedo products have large spatial and temporal gaps that
hamper their assimilation into such models. Our snow albedo assimilation framework not only
uses in-situ albedo measurements at the site level but also capitalizes on a newly released
global-covered albedo product (GlobAlbedo, [22]) with no data gap at the continental level.
Use of this newly released snow albedo product and a recently developed ORCHIDEE snow
module could enable us to quantify the simulation errors owing to model deficiency in snow
albedo representation. The primary purpose of this paper is thus to demonstrate the impor-
tance of appropriately representing surface albedo during the snow season in both ORCHIDEE
and the coupled ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorolo-
gie Dynamique) model.

Materials and Methods

Study sites
We use two sites (Weissfluhjoch and Col De Porte) to investigate the impacts of snow albedo
assimilation on simulated snow depth and upward shortwave radiation in ORCHIDEE. Weiss-
fluhjoch (WFJ, 1992–1993) is a high-elevation site at 2540 m with flat topography, located in
the eastern Swiss Alps (46.83°N, 9.81°E) and managed by the Swiss Federal Institute for Snow
and Avalanche Research. The average air temperature during the period of continuous snow
cover is -2.9°C. Rainfall does not occur from mid-October to mid-May. Snow continuously
accumulates from mid-October until mid-April and then melts through May and June owing
to temperatures above the melting temperature. On this site, the meteorological forcing used
for driving ORCHIDEE is provided. Evaluation data comprise hourly observations of snow
depth from an ultrasonic sensor and daily snow albedo. Data from this site have been used in
the assessment of many snow models (e.g. [23–25]).

The Col De Porte (CDP, 1997–1998) experimental site (1325 m altitude, 45.8°N, 5.75°E) is
situated in the Chartreuse mountain range near Grenoble, France. This site is located in a
grassy meadow surrounded by a coniferous forest. The snow often begins in November and
ends at the beginning of May. Winter air temperature can occur intermittently above the freez-
ing point throughout the winter, and rainfall episodes can thus be common during the snow
season. The soil generally does not freeze. Besides hourly observations of meteorological data
used for driving ORCHIDEE, hourly snow depth from an ultrasonic sensor and daily snow
albedo are also provided. This site has been widely used to evaluate snow schemes (e.g. [12],
[24–27]).

Large-scale datasets
Climate forcing. The meteorological forcing CRUNCEP is used to drive ORCHIDEE in

an offline mode. CRUNCEP is a merged product of the Climate Research Unit (CRU) monthly
0.5° climatology (v5.3.2, 1901–2012) observations and the NCEP (National Centers for
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Environmental Prediction) reanalysis data with a high temporal resolution. This merged prod-
uct has a six-hourly temporal and 2° spatial resolution. In addition, climatological variables
(e.g. air temperature at 2 m and incoming shortwave radiation) in CRUNCEP are also used for
evaluating the coupled ORCHIDEE-LMDZ simulations.

GlobAlbedo product. The GlobAlbedo product is generated by employing multiple sen-
sors (SPOT4-VEGETATION, SPOT5-VEGETATION2 and MERIS) [22]. Both black-sky
(Direct Hemispherical Reflectance) and white-sky (BiHemispherical Reflectance) albedo in
three spectral broadband ranges (shortwave: 400–3000 nm, visible: 400–700 nm and near- and
shortwave-infrared: 700–3000 nm) are provided. A detailed description of the GlobAlbedo
processing system can be found at: (http://www.globalbedo.org/). To achieve assimilation of
surface albedo during the snow season into the land surface model ORCHIDEE, we need the
blue-sky albedo (αblue) that refers to the instantaneous surface albedo measured under natural
daylight illumination. αblue can be approximately expressed as a linear combination of black
(αblack) and white-sky albedo (αwhite) [28, 29].

ablue ¼ ð1� DÞablack þ Dawhite ð1Þ
Where D denotes the fraction of diffuse skylight. We use 8-day diffuse and direct downward

radiation data from the National Centers for Environmental Prediction (NCEP) reanalysis to
obtain D (e.g. [30]). Fig 1 shows mean D during the autumn (October and November), winter
(December, January and February) and spring (March, April and May) over the period 1998–
2011. The computed blue-sky albedo in the shortwave range with an 8-day period and a spatial
resolution of 0.5 degrees is then used for snow albedo assimilation in ORCHIDEE. In addition,
SCF from GlobAlbedo product is also used. Both blue-sky albedo and SCF are resampled to 2°
x 2° for offline model runs and 3.75° x 2.5° for coupled model runs. The albedo refers to blue-
sky albedo in the following text.

GlobSnow SWE product. The monthly snow water equivalent (SWE) from GlobSnow
[31]) is adopted to evaluate mean seasonal (October throughout May) SWE over the region
north of 40 degrees. GlobSnow SWE product is derived from a combination of ground based
data and satellite microwave radiometer-based measurements (SMMR, SSM/I and AMSR-E
sensors) from 1979 until present [31]. The GlobSnow SWE processing system uses passive
microwave observations and weather station observations in an assimilation scheme to pro-
duce maps of SWE estimates over the Northern Hemisphere. The complete algorithm evalua-
tion, including an overview of the algorithms, reference datasets, and the results are presented
in the GlobSnow design justification file [31]. The product with mountainous regions
unmasked is used in this study. Previous validation of the GlobSnow SWE retrievals demon-
strated RMSE values of 30 to 40 mm for SWE values below 150 mm and acknowledged that
further improvement is necessary to better account for land cover and forest properties and the
effect of lakes [31].

Snow albedo assimilation in ORCHIDEE
The default snow albedo scheme. In the absence of fresh snow, snow-covered albedo

decreases exponentially with time from its fresh value to an old value that is specific for each
plant function type (PFT) in ORCHIDEE. The snow-covered albedo for each PFT is parame-
terized using the following equation,

ajvsnow ¼ Ajv
old þ Bjv

decayexpð�
sage
5

Þ ð2Þ

Where ajvsnow denotes snow-covered albedo for each PFT jv, Ajv
old and B

jv
decay denote minimum
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snow-covered albedo after aging (old snow) and decay rate of snow-covered albedo for each

PFT, respectively (Table 1). Ajv
old þ Bjv

decay corresponds to albedo measured for fresh snow. The

sage (in days) represents snow age that is parameterized as,

sageðt þ 1Þ ¼ ðsageðtÞ þ ð1� sageðtÞ
50

Þ � dt
86400

Þ � expð� snowf ðtÞ
0:3

Þ ð3Þ

dt (1800s) is the model time step that is expressed in days. snowf is defined as snowfall amount
(m) during dt. Snow age sage is updated at each model time step dt, and decreases with snowf.

The snow-covered albedo at the grid scale (αsnow) is then computed as the sum of PFT-spe-
cific snow-covered albedo, weighted by the PFT fraction fjv.

asnow ¼
X

jv¼1

fjva
jv
snow ð4Þ

The SCF on each grid box is a function of snow depth (SD) and snow density (SRHO), as

Fig 1. Mean diffuse skylight ratio derived from NCEP data for autumn (October and November), winter (December, January and February) and
spring (March, April and May) seasons over the period of 1998–2011.

doi:10.1371/journal.pone.0137275.g001

Table 1. Default snow albedo parameters for different plant function types in ORCHIDEE.

Plant function type Old snow (Aold) Decay rate (Bdecay)

Bare soil/grass/crop 0.55 0.30

Temperate needleleaf evergreen 0.14 0.06

Temperate broad-leaved evergreen 0.15 0.14

Temperate broad-leaved summergreen 0.15 0.14

boreal needleleaf evergreen 0.14 0.06

boreal broad-leaved summergreen 0.15 0.25

boreal needleleaf summergreen 0.14 0.06

doi:10.1371/journal.pone.0137275.t001
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given by,

SCF ¼ tanhð SD
0:025� SRHO

50

Þ ð5Þ

The total surface albedo at the grid scale is then computed as the sum of snow-free albedo
(αns) and snow-covered albedo (αsnow), weighted by SCF.

asurf ¼ SCF � asnow þ ð1� SCFÞ � ans ð6Þ

The surface albedo is used to compute the absorbed shortwave radiation that is an impor-
tant radiative flux in surface energy budget, from which skin temperature over the snow surface
can be resolved in ORCHIDEE. The impacts of albedo on snow dynamics (snow accumulation
and ablation) are then manifested through changing the snow temperature profile, which is
updated from the skin temperature at each model time step using backward-difference implicit
integration scheme of ORCHIDEE.

Snow albedo assimilation technique. In this study, we use a direct insertion data assimila-
tion approach. This relatively simple method differs from more advanced techniques (such as
the Kalman filter) which statistically combine model forecasts with observations based on their
uncertainties (e.g. [32, 33]). In default albedo scheme of ORCHIDEE, several PFTs can exist in
one grid cell. If each PFT has one parameter used for tuning (e.g. old snow albedo Aold), more
than one parameter should then be tuned to match observed surface albedo for grid cells with
several PFTs co-exist. This is almost impossible for us since a relatively simple assimilation
technique will be used in this study. Thus, we replace the default snow albedo scheme in
ORCHIDEE (Eqs 2 and 4) with the one that is adapted from the U.S. Army Corps of Engineers
[34], and which has already been implemented in many land surface models (e.g. [35, 36]). In
this scheme, the snow-covered albedo αsnow at the grid scale is parameterized as:

asnow ¼ atune � AsageB ð7Þ

Where the two decay parameters A and B are prescribed as global constants. The values of two
decay parameters defined differently for dry and wet snowpack. The parameters A and B are
equal to 0.94 and 0.58 (0.82 and 0.46), respectively, during accumulation (melt) phase. The cri-
terion for decay is simulated skin temperature from ORCHIDEE reaches 273.15 K, such that
when it is below (at) freezing, the albedo is computed using the accumulation (melt) decay
rate. sage (in days) representing snow age is computed based on Eq 3. αtune is recognized as the
albedo value of fresh snow in the original formulation [34], and its value is set to be 0.85.

To match the modeled surface albedo to observed albedo during the snow season, modeled
SCF is directly replaced with GlobAlbedo SCF and αtune (related to snow-covered albedo) then
becomes the only tunable parameter (e.g. [37]) in the following Eq 8. We do not tune snow-
free albedo (αns) in Eq 8 given that the magnitude of snow-free albedo is always smaller than
snow-covered albedo. The variation of surface albedo during the snow season can then be
mainly attributed to changes in snow-covered albedo.

asurf ¼ SCF � atune � AsageB þ ð1� SCFÞ � ans ð8Þ

Since ORCHIDEE simulates albedo on a half-hourly timescale, αtune is tuned only at the
first model time-step of each 1-day period (or 8-day period) to match the corresponding sur-
face albedo during the snow season from in-situ measurements (or satellite products) over the
same period. There are 48 (or 384) model time-steps within each 1-day (or 8-day) period. αtune
would thus be maintained over the course of the remaining time-steps within either of these
time periods. This snow albedo update from the observations does not affect the decay rates

Snow Albedo Assimilation in ORCHIDEE

PLOSONE | DOI:10.1371/journal.pone.0137275 September 14, 2015 6 / 19



and the integrity of the albedo physics is preserved. Note that the modeled SCF will be replaced
with GlobAlbedo SCF at each model time step (dt = 1800s) in Eq 8. Since GlobAlbedo SCF is
reported at the time scale of 8 days, the linear interpolation between 8-day values is simply
adopted to obtain the SCF at each model time step. This simple linear interpolation may intro-
duce the bias especially during the late snowmelt season since the decrease of spring snow
cover can be non-linear, which highlights the use of high temporal resolution dataset (e.g.
MODIS daily SCF) in the future study. To be consistent with the albedo data, we still use 8-day
GlobAlbedo SCF in this study.

At the continental scale, assimilation of surface albedo only occurs when GlobAlbedo SCF is
larger than 10%. Although albedo from GlobAlbedo product was used for assimilation, it is
also employed for evaluating the success degree of snow albedo assimilation in ORCHIDEE
since GlobAlbedo has a much coarser time resolution (8-day period) than the model time step
(30 min).

Experimental design
Offline experiments. At the site level, in order to explore the impact of the frequency of

albedo observations on modeled results, we compare simulations that were assimilated with
daily in-situ albedo (hereafter ASS1) against those using albedo sampled over each 8 day period
that was derived from an average of daily in-situ albedo (hereafter ASS8). All site simulations
are carried out by setting a snow fraction of 1, which is recommended for local scale applica-
tions with an emphasis on studying snow physics (e.g. [12, 27]). In addition, this is also consid-
ered because SCF is not available at the site level.

At the continental scale, we perform CTRL (an open-loop simulation based on the default
snow albedo scheme) and ASSALB (a simulation that assimilates SCF and albedo based on the
snow albedo scheme adapted from the U.S. Army Corps of Engineers) experiments from Janu-
ary 1998 to December 2011 in the region north of 40 degrees. In addition, in order to quantify
the contribution of importing GlobAlbedo SCF to snow albedo simulation in ORCHIDEE, we
also carry out an additional experiment called ASSSCF that only assimilates GlobAlbedo SCF
using the default snow albedo scheme. That’s to say, we use the default snow albedo scheme in
ORCHIDEE to simulate the snow-covered albedo for each grid cell (Eqs 2–4) and replace the
simulated SCF with GlobAlbedo SCF at each model time step (dt = 1800s) in Eq 6. We use the
default snow albedo scheme in ASSSCF given that the albedo scheme used in snow albedo
assimilation has the same parameter (αtune) independent of PFTs, which is less realistic than
the default snow albedo scheme having PFT-specific parameter values (Table 1).

Coupled experiments. We use ORCHIDEE-LMDZ to quantify impacts of snow albedo
assimilation on air temperature and SWE. LMDZ is a global atmospheric general circulation
model designed for climate studies, and the coupling between LMDZ and ORCHIDEE is
described in Hourdin et al. [38]. We performed two simulations using a uniform horizontal
resolution of 3.75 in longitude and 2.5 in latitude and 19 vertical layers. The first simulation,
referred to as CTRL-COU, is the control experiment. The second simulation, referred to as
ASSALB-COU, is identical to the control, except that it assimilates SCF and surface albedo
from GlobAlbedo. Multi-year (1998–2011) mean SCF and surface albedo from GlobAlbedo are
used in ASSALB-COU. All experiments are driven by 14-year (1998–2011) climatological
monthly mean sea surface temperature and sea ice concentration with a spatial resolution of 1
degree taken from PCMDI (Program for Climate Model Diagnosis and Intercomparison).
Each simulation is conducted for 19 years with the first 5 years as spin-up.

Snow Albedo Assimilation in ORCHIDEE
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Results and Discussion

At the site level
Fig 2 shows that simulated daily albedo from ORCHIDEE becomes close to the observations in
both ASS1 and ASS8, which suggest that snow albedo assimilation into ORCHIDEE has been
successful on both WFJ and CDP sites. For example, mean error (ME) approaches zero for
both ASS1 and ASS8. The simulated daily albedo from ASS1 has a much smaller root mean
square error (RMSE) than that from ASS8 (Fig 2), which indicates that higher temporal resolu-
tion of the assimilated albedo is required, in order to achieve improved simulation accuracy.
But we do still observe the difference between observations and simulated albedo from ASS1.
This is due to the fact that snow albedo in ORCHIDEE is simulated on a half-hourly timescale
and only the first model time step within a day (that is composed of 48 model time-steps) is
relaxed towards the in-situ measured albedo of that day. We do not assess the potential utility
of the albedo that is extracted from GlobAlbedo with a temporal resolution of eight days. This
is predominantly because the albedo obtained from GlobAlbedo, of a relatively low spatial res-
olution (5 km2), could have difficulty in representing accurately the in-situ measured albedo at
the site level.

Fig 2 also displays the comparison between observed and simulated snow depth from
CTRL, ASS1 and ASS8 on both sites. The multi-layer snow module in ORCHIDEE [12] gener-
ally performs well in CTRL, so there is not much room for improvement in snow depth simula-
tions assimilated with in-situ measured albedos in terms of error statistics. If we take a closer
look at the simulations during the snowmelt period, CTRL significantly underestimates the
snow depth in the period of April to May at both sites, a bias that does not exist in either ASS1
or ASS8. This implies that a correct snow albedo appears to be more important during the
snow ablation period. Furthermore, the decrease in RMSE (Wm-2) after albedo assimilation
may be clearly observed in upward shortwave radiation, especially in ASS1 (Fig 2). For exam-
ple, the RMSE decreases from 17.2 to 3.7 Wm-2 onWFJ site (Fig 2a) and from 14.2 to 2.8 W
m-2 on CDP site (Fig 2b). Furthermore, this is much more evident during the snowmelt period
of high solar radiation. Compared to CTRL, the decrease of RMSE for both snow depth and
upward shortwave radiation from ASS8 is smaller than that from ASS1, but there is still signifi-
cant improvement from ASS8 particularly for upward shortwave radiation. This promotes our
confidence in snow albedo assimilation using satellite images with a relatively low temporal
resolution (8-day period).

Offline simulations at the continental level
Upward shortwave radiation. The CTRL analysis reproduces well the observed spatial

pattern of mean upward shortwave radiation for the area north of 40 degrees over the period
1998–2011 during the autumn (October and November), winter (December, January and Feb-
ruary) and spring (March, April and May) (Fig 3). The observed upward shortwave radiation is
approximated by multiplying GlobAlbedo albedo with CRUNCEP incoming shortwave radia-
tion. The upward shortwave radiation over the boreal zone (thick black line in Fig 3) has a low
value relative to other regions. On the one hand, this arises from the fact that received short-
wave radiation is lower than that of the regions further south. On the other hand, this is due to
the masking of snow albedo by widely distributed forests within the boreal zone (e.g. [39]).
However, these masking effects have been overestimated by CTRL. Mean upward shortwave
radiation over the boreal zone from CTRL during autumn, winter and spring is 11.3, 11.4 and
41.8 Wm-2, respectively, which is lower than the equivalent observed figures of 14.0, 15.4 and
53.6 Wm-2.
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Fig 2. Comparisons of albedo, snow depth (m) and upward shortwave radiation (SWU) among
observation, CTRL, ASS1 and ASS8 on bothWeissfluhjoch (a) and Col De Porte (b) sites.CTRL
denotes the ORCHIDEE control simulation without snow albedo assimilation. ASS1 and ASS8 represent
ORCHIDEE simulations assimilated with daily albedo and albedo sampled on each 8-day period,
respectively. ME and RMSE denote mean error and root mean square error respectively.

doi:10.1371/journal.pone.0137275.g002
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The ASSALB analysis (Fig 3d) shows significant improvements in simulating upward short-
wave radiation with spatial correlations of 0.97~0.99, MEs of -0.5~3.5 Wm-2 and RMSEs of
1.6~5.8 Wm-2 when compared against observations in different seasons (Fig 3a). In contrast,
for the CTRL case, the corresponding spatial correlations, MEs and the RMSEs are 0.66~0.90,
-11.1~-4.0 Wm-2 and 8.1~18.8 Wm-2 respectively (Fig 3b). North of 40°N, the difference in
upward shortwave radiation between CTRL and ASSALB can be as high as 7.5 Wm-2 from
October to May.

The ASSSCF analysis only assimilated with GlobAlbedo SCF indicates that the improve-
ments in the simulation of upward shortwave radiation are mainly found in the north of 50
degrees but the simulations are degraded in the southern boundary especially during the spring
(Fig 3c). Further analyses have shown that the region with degraded simulation has a lower
SCF from ORCHIDEE than that from GlobAlbedo (data not shown). Since surface albedo is
computed based on the combination of SCF, snow-covered and snow-free albedo (Eq 6) and
snow-covered albedo is generally larger than the snow-free albedo, the over-estimation of
upward shortwave radiation from ASSSCF in the southern boundary (Fig 3c) can then be
mainly attributed to over-estimation of snow-covered albedo in ORCHIDEE. In addition, the

Fig 3. Mean upward shortwave radiation (SWU) (Wm-2) during the period from 1998 to 2011 shown for observation, CTRL, ASSSCF and ASSALB
for autumn (October and November), winter (December, January and February) and spring (March, April and May) seasons in the region north of
40 degrees.Observations are computed from CRUNCEP-derived incoming solar radiation multiplied by albedo from GlobAlbedo. CTRL represents the
control simulation from ORCHIDEE, ASSALB denote the offline simulation that assimilates only GlobAlbedo SCF, and ASSALB is the offline simulation that
assimilates both albedo and SCF from GlobAlbedo product. ‘r’ and RMSE represent the spatial correlation of simulation with observation and root mean
square error, respectively.

doi:10.1371/journal.pone.0137275.g003
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improvements over the region north of 50 degrees are relatively small in ASSSCF compared to
those from ASSALB (Fig 3d). This highlights the necessity of improving snow-covered albedo
simulations in ORCHIDEE. One potential alternative is to utilize satellite-based albedo prod-
ucts (e.g. GlobAlbedo, MODIS) along with SCF maps to re-parameterize the default snow
albedo scheme in ORCHIDEE (e.g. [14, 40]).

Snow water equivalent. The gridded SWE dataset generated by combining satellite mea-
surements with ground stations is used to assess the spatial distribution of simulated SWE. Fig
4 shows the spatial distribution of multi-year (1998–2011) mean seasonal (October throughout
May) SWE from different simulations (CTRL, ASSSCF and ASSALB) over the region north of
40 degrees. The CTRL analysis roughly captures the spatial pattern of GlobSnow SWE with a
spatial correlation, ME and RMSE of 0.50, -12.6 mm and 30.7 mm, respectively. However,
there is still a high bias e.g. in the Siberia region, which may be ascribed to the inaccuracy of cli-
mate forcing because of sparse meteorological stations at high-latitude regions. Moreover, the
bias in boreal zone may also be contributed by the inability of ORCHIDEE (i.e. the surface
energy budget is based on the “big-leaf” approach) in modeling sub-canopy environments that
may significantly affect snow accumulation and ablation in forested regions. This issue could
be alleviated in the near future if the multi-layer snow scheme used in this study was intro-
duced into a recently developed ORCHIDEE branch (called ORCHIDEE-CAN) in which a
multi-layer land surface energy budget has been implemented [41].

Compared to CTRL (Fig 4c), minor improvements in SWE simulations are found in
ASSSCF (ME = -12.3 mm; RMSE = 30.3 mm) (Fig 4b) and ASSALB (ME = -11.8 mm;
RMSE = 29.5 mm) (Fig 4d). Compared to CTRL, the SWE changes in ASSSCF and ASSALB
are relatively small (Fig 4b and 4d). This can be seen if the relative change of mean seasonal
(October throughout May) SWE between ASSALB and CTRL (in percentage) were aggregated
into different bins (Fig 5a). For example, more than 85% of pixels north of 40 degrees have a
magnitude of relative SWE change less than 20% (gray bar). In this study, impacts of SCF
assimilation on SWE are manifested through changing the surface albedo in ORCHIDEE, and
this should be distinguished from previous studies that used SCF observations to directly
update SWE in the model through establishing a physical link between SCF and SWE (e.g.
[42, 43]).

The impacts of snow albedo assimilation on air temperature and SWE in
the coupled simulation

Surface albedo and upward shortwave radiation. If we use upward shortwave radiation
that is calculated by multiplying GlobAlbedo-based albedo with CRUNCEP-based downward
shortwave radiation as observation, ASSALB-COU has an improved performance in upward
shortwave radiation simulation than CTRL-COU. For example, during the spring, ASSALB--
COU (r = 0.97, ME = -6.2 Wm-2, RMSE = 9.8 Wm-2) has an enhanced spatial correlation and
reduced errors compared to CTRL-COU (r = 0.79, ME = -9.1 Wm-2, RMSE = 19.7 Wm-2)
(Fig 6e and 6f). This is also found during the autumn and winter (data not shown).

The surface albedo and upward shortwave radiation from CTRL-COU are generally lower
than those from ASSALB-COU during the winter (Fig 7a and 7b). By contrast, they are
reversely found during the autumn. During the spring, compared to ASSALB-COU,
CTRL-COU generally has a higher albedo and upward shortwave radiation in Eurasia south of
60 degrees but a lower albedo and upward shortwave radiation elsewhere (Fig 7a and 7b). We
have noticed that in offline simulations the surface albedo and upward shortwave radiation
from CTRL are generally lower than those from ASSALB in all seasons (e.g. Fig 3b). This is not
surprising since the surface albedo is sensitive to climate forcing data (e.g. snowfall amount
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Fig 4. Spatial distribution of mean seasonal (October throughout May) snowwater equivalent (SWE, mm) over the period 1998–2011 shown for
GlobSnow, CTRL, ASSSCF, ASSALB, CTRL-COU and ASSALB-COU in the region north of 40 degrees.CTRL-COU represents the control simulation
from the coupled ORCHIDEE-LMDZmodel and ASSALB-COU denotes the coupled simulation that assimilates both albedo and SCF from GlobAlbedo
product. The meanings of CTRL, ASSSCF and ASSALB are the same with those of Fig 3.

doi:10.1371/journal.pone.0137275.g004
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and its timing determine snow age and albedo) and the simulated climate from CTRL-COU is
different from CRUNCEP used in CTRL (especially for total precipitation; data not shown).

Furthermore, the radiative forcing is calculated to quantify the instantaneous perturbation
to Earth’s top-of-atmosphere energy balance induced by snow albedo assimilation in the cou-
pled model. We define the radiative forcing as the difference of net radiation flux at the top of
the atmosphere between ASSALB-COU and CTRL-COU over the region north of 40 degrees.
The radiative forcing over the snow season (October-May) is estimated to be -1.82 Wm-2, with
a peak in spring of -2.50 Wm-2. The magnitude of the spring value is much larger than that
(0.45 Wm-2) due to surface albedo changes induced by snow and ice from 1979 to 2008 in

Fig 5. Histograms of relative change in mean seasonal (October throughout May) snowwater equivalent (SWE, mm) over the period 1998–2011 in
the offline simulation (a) and the coupled simulation (b).

doi:10.1371/journal.pone.0137275.g005
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Northern Hemisphere [44] and comparable to that (2.83 Wm-2) due to increase in CO2 con-
centration since 1750 [45]. This highlights the necessity of realistically representing snow
albedo in the coupled simulation.

Air temperature. If air temperature from CRUNCEP was regarded as observations, spring
temperature simulation has been improved in the coupled model due to snow albedo assimila-
tion (Fig 6h and 6i). For example, ASSALB-COU (RMSE = 2°C) has less errors than
CTRL-COU (RMSE = 2.6°C) over pixels with GlobAlbedo SCF larger than 10%. This is notably
found in the eastern Siberia region where a negative bias of simulated albedo in CTRL-COU

Fig 6. Mean spring (March, April and May) albedo (a-c), upward shortwave radiation (SWU) (d-f) and air temperature at 2 m (°C) (g-i) over the period
1998–2011 shown for observation, CTRL-COU and ASSALB-COU. The meanings of CTRL-COU and ASSALB-COU are the same with those of Fig 4.

doi:10.1371/journal.pone.0137275.g006
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(Fig 6b) has been largely removed in ASSALB-COU (Fig 6c). We could also see an improve-
ment in autumn temperature simulation due to snow albedo assimilation (data not shown),
although which is not as strong as that in spring temperature. But there is little benefit for win-
ter temperature simulation (data not shown).

To further understand the seasonal discrepancy in influences of snow albedo assimilation
on air temperature, we calculate spatial sensitivity of T2m change to albedo change (the differ-
ence between ASSALB-COU and CTRL-COU), which is defined as the linear coefficient
between T2m change and albedo change across pixels with GlobAlbedo SCF larger than 10%.
We find that the absolute magnitude of spatial albedo sensitivity of temperature is higher

Fig 7. Spatial distribution of the difference between ASSALB-COU and CTRL-COU (ASSALB-COUminus CTRL-COU) in albedo (a), upward
shortwave radiation (SWU) (b), air temperature at 2 m (c) shown for autumn (October and November), winter (December, January and February)
and spring (March, April and May). The meanings of CTRL-COU and ASSALB-COU are the same with those of Fig 4.

doi:10.1371/journal.pone.0137275.g007
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during the spring (-0.85°C per 10% change in albedo, r = 0.70, p< 0.01) than during the
autumn (-0.44°C per 10% change in albedo, r = 0.42, p< 0.01) and winter (-0.17°C per 10%
change in albedo, r = 0.24, p< 0.01), implying that snow albedo feedback is much stronger
during the spring than during the autumn and winter. Our results suggest that realistic repre-
sentation of surface albedo is more important in the simulation of air temperature during the
spring with high shortwave radiation than during the winter with minimum shortwave
radiation.

Snow water equivalent. CTRL-COU has a better performance in capturing the spatial pat-
tern of mean seasonal (October throughout May) GlobSnow SWE than CTRL in the boreal
zone of Eurasia but not in North America (Fig 4a, 4c and 4e). The mean spatial error of sea-
sonal SWE switches from a relatively large under-estimation (-12.6 mm) from CTRL (Fig 4c)
to a slight over-estimation (3.9 mm) from CTRL-COU (Fig 4e). This is partly a result of the
fact that CTRL-COU has a higher amount of precipitation than CRUNCEP. In consistent with
offline simulations, we could also identify an improvement in the simulation of spatial SWE in
the coupled model after snow albedo assimilation (Fig 4e and 4f). For example, ASSALB-COU
(r = 0.71, ME = 2.6 mm, RMSE = 27.8 mm) has an enhanced spatial correlation and reduced
errors compared to CTRL-COU (r = 0.58, ME = 3.9 mm, RMSE = 31.0 mm).

Since the feedback of albedo on surface climate (e.g. temperature and precipitation) is
allowed in the coupled mode, the change in mean seasonal SWE (the percentage difference
between CTRL-COU and ASSALB-COU) due to snow albedo assimilation (Fig 5b, gray bar) is
found to be more pronounced in the coupled simulation than its counterpart in the offline sim-
ulation (Fig 5a, gray bar). For example, nearly 30% of all pixels north of 40 degrees have the
magnitude of SWE change greater than 30%, which is higher than 8% from the offline
simulations.

Conclusions
This study implements a direct insertion methodology to assimilate snow albedo from observa-
tions in the land surface model ORCHIDEE. In both offline and coupled simulations, our
study demonstrates the feasibility and utility of snow albedo assimilation from satellite images
with a relatively low temporal resolution (8 days in our case), which is relatively easy to obtain
compared to the high temporal resolution data (e.g. daily). The assimilation of only snow cover
fraction in the offline model does not always lead to an improved simulation in surface albedo,
since which may also be dependent upon the simulation accuracy of snow-covered albedo in
ORCHIDEE. It highlights the necessity of improving the current snow albedo scheme for
snow-covered albedo on different PFTs in ORCHIDEE. This can be achieved by optimizing
PFT-specific parameters (albedo decay rate and albedo for old snow) using GlobAlbedo prod-
uct. More importantly, this study is the first attempt to quantify impacts of snow albedo assimi-
lation in the coupled model. We have demonstrated that a realistic representation of surface
albedo during the snow season can partly remove the bias in temperature simulations, which is
particularly found during the spring when the strength of snow albedo feedback is the largest.
This has significant implications for our ongoing work. More specifically, it will help us to re-
evaluate the strength of snow albedo feedback during the spring and quantify the contribution
of snow albedo feedback to recent changes in spring temperatures over the Northern Hemi-
sphere. Moreover, it will also assist us in testing the proposed mechanism linking increasing
autumn snow cover to the recent widespread winter cooling in the boreal region [46].

A potential criticism of this study is that we do not take into account any potential errors in
the satellite dataset and albedo from GlobAlbedo product is assumed to be accurate with
respect to model simulations. In reality, significant artifacts exist at high latitudes (north of
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70°) in the GlobAlbedo product because of problems with snow detection, although a prelimi-
nary validation of the GlobAlbedo product displayed a generally good agreement with the
MODIS albedo product on the global scale [47]. But this issue is not specific to the GlobAlbedo
product. For example, an inter-comparison of nine satellite-derived datasets has shown that
albedo differences are large for early spring (February-April) in the northern hemisphere and
also for the winter season particularly at high latitudes [30]. Therefore, more work is necessary
in order to understand and resolve inconsistencies amongst these datasets, especially during
winter and spring seasons (e.g. [30, 48]).
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