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Abstract. Global distributions of atmospheric ammonia
(NH3) measured with satellite instruments such as the In-
frared Atmospheric Sounding Interferometer (IASI) contain
valuable information on NH3 concentrations and variabil-
ity in regions not yet covered by ground-based instruments.
Due to their large spatial coverage and (bi-)daily overpasses,
the satellite observations have the potential to increase our
knowledge of the distribution of NH3 emissions and as-
sociated seasonal cycles. However the observations remain
poorly validated, with only a handful of available studies
often using only surface measurements without any verti-
cal information. In this study, we present the first validation
of the IASI-NH3 product using ground-based Fourier trans-
form infrared spectroscopy (FTIR) observations. Using a re-

cently developed consistent retrieval strategy, NH3 concen-
tration profiles have been retrieved using observations from
nine Network for the Detection of Atmospheric Composition
Change (NDACC) stations around the world between 2008
and 2015. We demonstrate the importance of strict spatio-
temporal collocation criteria for the comparison. Large dif-
ferences in the regression results are observed for changing
intervals of spatial criteria, mostly due to terrain characteris-
tics and the short lifetime of NH3 in the atmosphere. The sea-
sonal variations of both datasets are consistent for most sites.
Correlations are found to be high at sites in areas with con-
siderable NH3 levels, whereas correlations are lower at sites
with low atmospheric NH3 levels close to the detection limit
of the IASI instrument. A combination of the observations
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from all sites (Nobs = 547) give a mean relative difference of
−32.4± (56.3) %, a correlation r of 0.8 with a slope of 0.73.
These results give an improved estimate of the IASI-NH3
product performance compared to the previous upper-bound
estimates (−50 to +100 %).

1 Introduction

Humankind has increased the global emissions of reactive
nitrogen to an unprecedented level (Holland et al., 1999;
Rockström et al., 2009). The current global emissions of re-
active nitrogen are estimated to be a factor of 4 larger than
pre-industrial levels (Fowler et al., 2013). Consequently, at-
mospheric deposition of reactive nitrogen to ecosystems has
substantially increased as well (Rodhe et al., 2002; Den-
tener et al., 2006). Ammonia (NH3) emissions play a ma-
jor role in this deposition with a total emission of 49.3 Tg in
2008 (Emission Database for Global Atmospheric Research
(EDGAR), 2011). Although NH3 emissions are predomi-
nantly from agriculture in the Northern Hemisphere, wild-
fires also play a role, with biomass burning contributing up
to 8 % of the global emission budget (Sutton et al., 2013).
NH3 has been shown to be a major factor in the acidification
and eutrophication of soil and water bodies, which threatens
biodiversity in vulnerable ecosystems (Bobbink et al., 2010;
Erisman et al., 2008, 2011). Through reactions with sulfu-
ric and nitric acid, NH3 also contributes to the formation of
particulate matter, which is associated with adverse health
effects (Pope III et al., 2009). Particulate ammonium salts
contribute largely to aerosol loads over continental regions
(Schaap et al., 2004). Through its role in aerosol formation,
NH3 also has an impact on global climate change as hygro-
scopic ammonium salts are of importance for the aerosol cli-
mate effect and thus the global radiance budget (Adams et
al., 2001). Furthermore increased NH3 concentrations in the
soil also enhance the emission of nitrous oxide (N2O), which
is an important greenhouse gas and an ozone-depleting sub-
stance (Ravishankara et al., 2009). Finally nitrogen availabil-
ity is a key factor for the fixation of carbon dioxide (CO2) and
thus it is an important factor in climate change.

Despite the fact that NH3 at its current levels is a major
threat to the environment and human health, relatively little
is known about its total budget and global distribution (Sut-
ton et al., 2013; Erisman et al., 2007). Surface observations
are sparse and mainly available for northwestern Europe,
the United States, and China (Van Damme et al., 2015a).
At the available sites, in situ measurements are mostly per-
formed with relatively poor temporal resolution due to the
high costs of performing reliable NH3 measurements with
high temporal resolution. These measurements of NH3 are
also hampered by sampling artefacts caused by the reactiv-
ity of NH3 and the evaporation of ammonium nitrate (Slan-
ina et al., 2001; von Bobrutzki et al., 2010; Puchalski et al.,

2011). As the lifetime of atmospheric NH3 is rather short, on
the order of hours to a few days, due to efficient deposition
and fast conversion to particulate matter, the existing surface
measurements are not sufficient to estimate global emissions
without inducing large errors. The lack of vertical profile in-
formation further hampers the quantification of the budget,
with only a few reported airborne measurements (Nowak et
al., 2007, 2010; Leen et al., 2013; Whitburn et al., 2015).

Advanced IR sounders such as the Infrared Atmospheric
Sounding Interferometer (IASI), the Tropospheric Emission
Spectrometer (TES), and the Cross-track Infrared Sounder
(CrIS) enable retrievals of atmospheric NH3 (Beer et al.,
2008; Coheur et al., 2009; Clarisse et al., 2009; Shephard
et al., 2011; Shephard and Cady-Pereira, 2015). The avail-
ability of satellite retrievals provides a means to consistently
monitor global NH3 distributions. Global distributions de-
rived from IASI and TES observations have shown high NH3
levels in regions not covered by ground-based data. In this
way, more insight was gained into known and unknown NH3
sources worldwide including biomass burning, industry, and
agricultural areas. Hence, satellite observations have the po-
tential to improve our knowledge of the distribution of global
emissions and their seasonal variation due to their large spa-
tial coverage and (bi-)daily observations (Zhu et al., 2013;
Van Damme et al., 2014a, 2015b; Whitburn et al., 2015;
Luo et al., 2015). However, the satellite observations remain
poorly validated with only a few dedicated campaigns per-
formed with limited spatial, vertical, or temporal coverage
(Van Damme et al., 2015a; Shephard et al., 2015; Sun et al.,
2015).

Only a few studies have explored the quality of the IASI-
NH3 product. A first evaluation of the IASI observations
was made over Europe using the LOTOS-EUROS model and
has shown the respective consistency of the measurements
and simulations (Van Damme et al., 2014b). A first com-
parison using ground-based and airborne measurements to
validate the IASI-NH3 dataset was made in Van Damme et
al. (2015a). They confirmed consistency between the IASI-
NH3 dataset and the available ground-based observations and
showed promising results for validation by using indepen-
dent airborne data from the CalNex campaign. Nevertheless,
that study was limited by the availability of independent mea-
surements and suffered from representativeness issues for
the satellite observations when comparing to surface concen-
tration measurements. One of the key conclusions was the
need for vertical profiles (e.g. ground-based remote sensing
products or upper-air in situ measurements to compare sim-
ilar quantities). Recently, Dammers et al. (2015) developed
a retrieval methodology for Fourier transform infrared spec-
troscopy (FTIR) instruments to obtain remotely sensed mea-
surements of NH3 and demonstrated the retrieval character-
istics for four sites located in agricultural and remote areas.
Here we explore the use of NH3 total columns obtained with
ground-based FTIR at nine stations with a range of NH3 pol-
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lution levels to validate the IASI-NH3 satellite product by
Van Damme et al. (2014a).

First, we concisely describe the ground-based FTIR re-
trieval and IASI-NH3 product datasets in Sects. 2.1 and 2.2.
Next we describe the methodology of the comparison in
Sect. 2.3 followed by the presentation of the results in Sect. 3,
which are then summarized and discussed in Sect. 4.

2 Description of the satellite and FTIR datasets and
validation methodology

2.1 IASI-NH3 product

The first global NH3 distribution was obtained by a conven-
tional retrieval method applied to IASI spectra (Clarisse et
al., 2009), followed by an in-depth case study, using a more
sophisticated algorithm, of the sounder’s capabilities depend-
ing on the thermal contrast (defined in Van Damme et al.,
2014a, as the temperature differences between the Earth sur-
face and the atmosphere at 1.5 km altitude; Clarisse et al.,
2010). In this study we use the NH3 product developed by
Van Damme et al. (2014a). Their product is based on the
calculation of a dimensionless spectral index (hyperspectral
range index: HRI), which is a quantity representative of the
amount of NH3 in the total atmospheric column. This HRI is
then converted into NH3 total columns using look-up tables
based on numerous forward simulations for various atmo-
spheric conditions. These look-up tables relate the HRI and
the thermal contrast to a total column of NH3 (Van Damme
et al., 2014a). The product includes an error characterization
of the retrieved column based on errors in the thermal con-
trast and HRI. Important advantages of this method over the
method by Clarisse et al. (2009) are the relatively small com-
putational cost, the improved detection limit, and the ability
to identify smaller emission sources and transport patterns
above the sea. One of the limitations of this method is the use
of only two NH3 vertical profiles: a “source profile” for land
cases and a “transported profile” for sea cases (illustrated in
Van Damme et al., 2014a, Fig. 3). Another limitation of the
product is that it does not allow the calculation of an aver-
aging kernel to account for the vertical sensitivity of the in-
strument sounding to different layers in the atmosphere. In
this paper we will use NH3 total columns retrieved from the
IASI-A instrument (aboard of the MetOp-A platform) morn-
ing overpass (AM) observations (i.e. 09:30 local time at the
Equator during overpass), which have a circular footprint of
12 km diameter at nadir and an ellipsoid shaped footprint of
up to 20 km× 39 km at the outermost angles. We will use ob-
servations from 1 January 2008 to 31 December 2014. Fig-
ure 1 shows the mean IASI-NH3 total column distribution
(all observations gridded to a 0.1◦× 0.1◦ grid) using observa-
tions above land for the years 2008–2014. The mean columns
are obtained through a weighting with the relative error (see

Van Damme et al., 2014a). The bottom left inset shows the
corresponding relative error.

2.2 FTIR-NH3 retrieval

The FTIR-NH3 retrieval methodology used here is described
in detail in Dammers et al. (2015), and a summary is given
here. The retrieval is based on the use of two spectral mi-
crowindows, which contain strong individual NH3 absorp-
tion lines. The two spectral windows [930.32–931.32 cm−1,
MW1] and [962.70–970.00 cm−1, MW2] or the wider ver-
sions for regions with very low concentrations [929.40–
931.40 cm−1, MW1 Wide] and [962.10–970.00 cm−1, MW2
Wide] are fitted using SFIT4 (Pougatchev et al., 1995; Hase
et al., 2004, 2006) or a similar retrieval algorithm (Hase et
al., 1999) based on the optimal estimation method (Rodgers,
2000) to retrieve the volume mixing ratios (in ppbv) and to-
tal columns of NH3 (in molecules cm−2). Major interfering
species in these windows include H2O, CO2, and O3. Mi-
nor interfering species are N2O, HNO3, CFC-12, and SF6.
For the line spectroscopy, the HITRAN 2012 (Rothman et
al., 2013) database is used with a few adjustments for CO2
(ATMOS, Brown et al., 1996), and sets of pseudo-lines gen-
erated by NASA-JPL (G. C. Toon) are used for the broad
absorptions by heavy molecules (i.e. CFC-12, SF6). The a
priori profiles of NH3 are based on balloon measurements
(Toon et al., 1999) and scaled to fit common surface con-
centrations at each of the sites. An exception is made for
the a priori profile at Réunion Island, where a modelled pro-
file from the MOZART model is used (Louisa Emmons, per-
sonal communication, 2014). There, the profile peaks at a
height of 4–5 km, as NH3 is expected to be due to transport
of biomass burning emissions on Réunion Island and Mada-
gascar. For all stations, the a priori profiles for interfering
species are taken from the Whole Atmosphere Community
Climate Model (WACCM, Chang et al., 2008). Errors in the
retrieval are typically ∼ 30 % (Dammers et al., 2015), which
are mostly due to uncertainties in the spectroscopy in the line
intensities of NH3 and the temperature and pressure broad-
ening coefficients (HITRAN 2012).

An effort has been made to gather observations from most
of the station part of the Network for the Detection of At-
mospheric Composition Change (NDACC), which have ob-
tained relevant solar spectra between 1 January 2008 and
31 December 2014. We excluded stations which have only
retrieved or are believed to have NH3 total columns smaller
than 5× 1015 (molecules cm−2) during the study interval
(i.e. Arctic and Antarctic and other stations with concen-
trations below the expected limits of the IASI-NH3 prod-
uct, at best ∼ 5× 1015 for observations with high thermal
contrast). Figure 1 shows the positions of the FTIR sta-
tions used in this study. The retrieved NH3 total columns
(molecules cm−2) for each of the stations are shown in
Fig. 2. The number of available observations per station
varies as does the range in total columns with high val-
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Figure 1. Mean IASI-NH3 total column distribution for the period between January 2008 and January 2015. The total columns are a weighted
average of the individual observations weighted with the relative error. Red circles indicate the positions of the FTIR stations.

ues of ∼ 100× 1015 (molecules cm−2) observed at Bremen
and low values of about 1× 1015 (molecules cm−2) at Saint
Denis, Réunion. The following provides a short description
of each of the sites used in this study and retrieved NH3
columns (molecules cm−2). Additionally, a short summary
can be found in Table 1.

The Bremen site was operated on the university campus
by the University of Bremen in the northern part of the city
(Velazco et al., 2007). Bremen is located in the northwest of
Germany, which is characterized by intensive agriculture. It
is most suitable for comparisons with IASI given the very
high observed concentrations (Fig. 2, blue) and flat geogra-
phy surrounding the station. NH3 sources near the measure-
ment station include manure application to fields, livestock
housing, and exhaust emissions of local traffic. The retrieved
NH3 total columns peak in spring due to manure application
and show an increase in summer due to increased volatiliza-
tion of NH3 from livestock housing and fields when temper-
atures increase during summer.

The Toronto site (Wiacek et al., 2007) is located on the
campus of the University of Toronto, Canada. The city is next
to Lake Ontario with few sources to the south. NH3 sources
are mainly due to agriculture as well as local traffic in the
city. Occasionally, NH3 in smoke plumes from major boreal
fires to the north and west of the city can be observed (Lutsch
et al., 2016). The retrieved columns (Fig. 2, green) show in-
creased values during summers as well as peaks in spring.

The Boulder observation site is located at the NCAR
Foothills Lab in Boulder, Colorado, United States of Amer-
ica, about 60 km northwest of the large metropolitan Denver
area. It is located at 1.6 km a.s.l. on the generally dry Col-
orado Plateau. Directly to the west are the foothills of the
Rocky Mountains and to the east are rural grasslands, as well
as farming and ranching facilities. Among them are large
cattle feed lots to the northeast near Greeley approximately
90 km away. The area is subject to occasional seasonal local
forest fires and also occasionally sees plumes from fires as

distant as Washington or California. The retrieved columns
(Fig. 2, grey) show the largest increase during summers.

The Tsukuba site (Ohyama et al., 2009) is located at
the National Institute for Environmental Studies (NIES) in
Japan. The region is a mixture of residential and rural zones
with mountains to the north. NH3 sources near the measure-
ment site include manure and fertilizer applications and ex-
haust emissions of local traffic in the surrounding city with a
large part originating from the Tokyo metropolitan area. The
retrieved columns (Fig. 2, red) show a general increase dur-
ing the summers due to increased volatilization rates.

The Pasadena site lies on the northern edge of the Los An-
geles conurbation in the United States of America, at the foot
of the San Gabriel Mountains which rise steeply to the north
to over 1.5 km altitude within 5 km distance. Local sources
of NH3 include traffic, livestock, and occasional fires. FTIR
observations typically take place around local noon to avoid
solar obstruction by nearby buildings and morning stratus
clouds, which are common in May–July. The highest re-
trieved columns (Fig. 2, cyan) are observed during the sum-
mers.

The Mexico City site is located on the campus of the
National Autonomous University of Mexico (UNAM) at
2280 m a.s.l., south of the metropolitan area. Surface NH3
concentrations were measured by active open-path FTIR dur-
ing 2003 with typical values between 10 and 40 ppb (Moya
et al., 2007). The megacity is host to more than 22 million
inhabitants, over 5 million motor vehicles, and a wide vari-
ety of industrial activities. Low ventilation during night and
morning causes an effective accumulation of the NH3 and
other pollutants in Mexico City, which is located in a flat
basin surrounded by mountains. The concentration and ver-
tical distribution of pollutants are dominated by the large
emissions and the dynamics of the boundary layer, which is
on average 1.5 km height during the IASI morning overpass
(Stremme et al., 2009, 2013). The retrieved columns (Fig. 2,
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Figure 2. FTIR-retrieved NH3 total columns (in molecules cm−2). Note that the labels on the vertical axis vary for each site.

orange) show an increase during the summers as well as a
large daily variation.

The measurement site on the university campus of Saint
Denis (Senten et al., 2008) is located on the remote Réunion
Island in the Indian Ocean. Observed NH3 columns (Fig. 2,
purple) are usually low due to the lack of major sources near
the site, but increases are observed during the fire season
(September–November) with possible fire plumes originat-
ing from Madagascar, as already observed in another study

involving short-lived species (Vigouroux et al., 2009). Local
NH3 emissions include fertilizer applied for sugar cane pro-
duction and local biomass burning.

The Wollongong site is located on the campus of the Uni-
versity of Wollongong. The city of Wollongong is on the
southeast coast of Australia with the university only about
2.5 km from the ocean. The measurement site is also influ-
enced by a 400 m escarpment 1 km to the west and the city
of Sydney 60 km to the north. NH3 sources come mainly
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from city traffic, as well as seasonal forest fires that can pro-
duce locally high amounts of smoke and subsequent NH3
emissions (Paton-Walsh et al., 2005). The retrieved columns
(Fig. 2, brown) peak during the summer season due to the
higher temperatures and seasonal forest fires.

The Lauder (Morgenstern et al., 2012) National Institute of
Water and Atmospheric Research (NIWA) station in Central
Otago, New Zealand, is located in a hilly region with NH3
emissions in the valley surrounding the station mostly due
to livestock grazing and fertilizer application. The observed
columns (Fig. 2, black) show a general increase during sum-
mers due to increased volatilization rates.

2.3 FTIR and satellite comparison methodology

2.3.1 Co-location and data criteria

NH3 is highly variable in time and space, which complicates
the comparison between the IASI and FTIR observations.
Therefore collocation criteria were developed to investigate
and mitigate the effect of the spatial and temporal differences
between the FTIR and IASI observations on their correlation.
So far, there is no model to describe the representativeness of
a site for the region so a simple criterion was initially derived
by analysing the terrain around each site and comparing the
correlation of the IASI and FTIR observations for multiple
time and spatial differences to find the best correlation. To
illustrate the differences between the representativeness of
the sites we take the stations at Bremen, Lauder, and Wol-
longong as examples. Around Bremen the terrain is flat with
high reported NH3 emissions (Kuenen et al., 2014) in the re-
gion surrounding the city. In contrast, Lauder is located in
a hilly region with low NH3 emissions mostly due to local
livestock grazing and fertilizer application in the surround-
ing valleys (EDGAR, 2011). Owing to the flat terrain, the
region around Bremen should, in principle, have more ho-
mogeneous concentrations than Lauder. A more extreme case
for geographical inhomogeneity is Wollongong. Wollongong
is located at the coast near a 400 m escarpment without ma-
jor nearby NH3 sources. Hence increasing distances between
the satellite measurement pixel centre and the station may
negatively impact the comparison due to the short lifetime
of NH3, and the limitation on transport of NH3 to the site
by the terrain (i.e. representativeness problems). Because no
uniform criterion was found that would enable a good com-
parison for all stations, multiple criteria with a maximum dif-
ference of between 10 and 50 km will be used to analyze the
optimal setting for each of the sites. Vertical sampling differ-
ences are not taken into consideration in this study. However,
the IASI selection criterion on the thermal contrast is conser-
vative, and only those measurements for which IASI has a
good sensitivity to surface concentrations are selected.
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Table 2. Applied data filters to the IASI-NH3 product.

Filter Filter criteria

Elevation |FTIR station – IASI_Observation|< 300 m
Thermal contrast Thermal contrast> 12 K
Surface temperature T > 275.15 K
IASI-NH3 retrieval error None
Cloud cover fraction < 10 %
Spatial sampling difference 50 km→ 10 km, 1x = 5 km
Temporal sampling difference < 90 min

Topography

Any hill or mountain range located between the satellite pixel
and the FTIR station may inhibit transport and decrease their
comparability. To account for the topography we only used
observations that have at maximum an altitude difference of
300 m (in) between the location of the FTIR and the IASI
pixel position. The 300 m criterion was chosen based on
tests using the FTIR and satellite observations from Lauder.
For the calculation of the height differences we used the
Space Shuttle Radar Topography Mission Global product at
3 arcsec resolution (SRTMGL3, Farr et al., 2007).

Temporal variation

NH3 concentrations can vary considerably during the day,
with lifetimes as short as a few hours not being uncom-
mon (Dentener and Crutzen, 1994; Bleeker et al., 2009). The
variability of the concentrations mainly arises from the vari-
ability in emission strengths as influenced by agricultural
practices; meteorological and atmospheric conditions such
as temperature, precipitation, wind speed, and direction; the
development of the boundary layer (which is important as
the IASI satellite observations take place around 09:30 local
time and thus the boundary layer has not always been fully
established), pollution level, and deposition rates. To mini-
mize the effects of this variability on the comparability of
the IASI and FTIR observations, satellite observations with a
time difference to FTIR observation of no more than 90 min
were used.

Product error

The error of the IASI-NH3 columns derives from errors on
the HRI and the thermal contrast (Van Damme et al., 2014a).
Applying relative error filters of 50, 75, and 100 % showed
that mostly lower concentrations are removed from the com-
parison. Consequently, introducing any criteria based on the
associated (relative) error will bias any comparison with
FTIR columns towards the higher IASI total columns. There-
fore, we decided not to filter based on the relative error as it
skews the range of NH3 column totals.

Meteorological factors

The lowest detectable total column of the retrieval depends
on the thermal contrast of the atmosphere (Van Damme et al.,
2014a). For example, the retrieval has a minimum detectable
NH3 column of around 5× 1015 molecules cm−2 at a thermal
contrast of about 12 K for columns using the “transported”
profile. A thermal contrast of 12 K is chosen as the threshold
to ensure the quality of the IASI observations, which repre-
sents a lapse rate of around 8 K km−1 altitude, near standard
atmospheric conditions. We excluded data for Tskin temper-
atures below 275.15 K to introduce a basic filter for snow
cover and conditions with frozen soils. The Tskin tempera-
tures are obtained from the IASI L2 temperature profiles,
which have an uncertainty of ∼ 2 K at the surface (August
et al., 2012). Finally, only IASI observations with a cloud
cover below 10 % are used.

The complete list of selection criteria is summarized in
Table 2.

Quality of the FTIR observations

No filters were applied to maximize the number of observa-
tions usable in the comparison. The resolution and detection
limit of the FTIR instruments is usually better than that of the
IASI instrument, leading to retrieved columns with, in prin-
ciple, less uncertainty. Overall the FTIR retrievals show an
error of∼ 30 % or less with the largest errors due to the spec-
troscopic parameters (Dammers et al., 2015). While artefacts
are possible in the data we did not investigate for specific
artefacts and possible impacts.

2.3.2 Application of averaging kernels

When performing a direct comparison between two remote
sensing retrievals, one should take into account the vertical
sensitivity and the influence of a priori profiles of both meth-
ods. One method to remove the influence of the a priori pro-
file and the vertical sensitivity is the application of the av-
eraging kernels of both retrievals to the retrieved profiles of
both products. The IASI-NH3 HRI-based product scheme,
however, does not produce averaging kernels. Thus it is not
possible to account for the vertical sensitivity of the satel-
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Figure 3. Correlation r (blue lines, left figures), slope (red lines, left figures) regression results, mean relative difference (MRD, green lines,
right figures) and mean absolute difference (MAD, black lines, right figures) between IASI and FTIR observations as a function of xdiff for
a selection of sites. Bars indicate the standard deviation of the slope of the individual regression results. The numbers in the bottom of each
subfigure show the number of matching observations. The numbers on the left and right side of the stations name give the mean FTIR and
IASI total columns for an xdiff< 25 km.

lite retrieval. The effect of the lack of the satellite averaging
kernel is hard to predict, so the satellite vertical sensitivity
is only taken into account through the selection criterion on
the thermal contrast. Nonetheless following the method de-
scribed in Rodgers and Connor (2003), the FTIR averaging
kernel A is applied to the IASI profile xsat to account for the
effects of the a priori information and vertical sensitivity of
the FTIR retrieval (the assumed profiles, called “land” and
“sea” are described in Van Damme et al., 2014a). The IASI
profiles are not fully retrieved profiles but fixed shape profiles
used as an assumption in the IASI retrieval (see Van Damme
et al., 2015a). These fixed profiles are used for scaling pur-
poses to be able to account for the FTIR averaging kernel. A
total column averaging kernel could be used instead, but in
principle is similar to the procedure described here. The IASI
profile is first mapped to the altitude grid of the FTIR profile
by using interpolation, forming x

mapped
sat . Applying Eq. (1),

the smoothed IASI profile x̂sat is calculated indicating what
the FTIR would retrieve when observing the satellite profile,
which is then used to compute a total column. This profile
can then be compared with the FTIR profile.

x̂sat = x
apriori
ftir +A(xmapped

sat − x
apriori
ftir ) (1)

After the application of the averaging kernel, for each FTIR
observation, all satellite observations meeting the coincident

criteria are averaged into a single mean total column value
to be compared with the FTIR value. If multiple FTIR obser-
vations match a single satellite overpass, taking into account
the maximum time difference, the FTIR observations are also
averaged into a single mean total column value.

3 Results

3.1 The influence of spatial differences between
observations

Following the approach of Irie et al. (2012) we will first show
the correlation r , the slope as well as the mean relative dif-
ference (MRD), and the mean absolute difference (MAD) be-
tween satellite (y axis) and FTIR NH3 total columns (x axis)
for each of the sites, as a function of the maximum allow-
able spatial difference between the observations (xdiff). The
relative difference (RD) is defined here as

RD=
(IASI column−FTIR column)× 100

FTIR column
. (2)

A maximum relative difference of 200 % was used to remove
extreme outliers from the data, typically observations under
wintertime conditions. The left side of Fig. 3 shows the cor-
relation coefficients (blue lines) and slope (red lines) for a

Atmos. Chem. Phys., 16, 10351–10368, 2016 www.atmos-chem-phys.net/16/10351/2016/



E. Dammers et al.: An evaluation of IASI-NH3 with ground-based FTIR measurements 10359

Figure 4. Time series of NH3 for IASI and FTIR datasets with xdiff < 25 km and tdiff< 90 min (FTIR: blue and IASI: red). Scattered values
are the observations for each day of year (multiple years of observations). The lines show the monthly mean total columns of the respective
sets.

selection of sites as a function of xdiff using a maximum al-
lowed sampling time difference of 90 min. The right side of
Fig. 3 shows the MRD and MAD between the satellite and
FTIR observations as a function of xdiff. The numbers on the
bottom of each of the subfigures show the number of obser-
vations used in the comparison. The values in bold beside
the title of each subplot give the mean concentrations of the
IASI and FTIR observations. The bars indicate the standard
deviation of the slope (left-side figures) and the relative and
absolute differences (right-side figures).

For most stations an increasing xdiff (Fig. 3) means a de-
creasing correlation (blue lines) and a changing slope (ei-
ther decreasing or increasing with distance, red lines). This
can be explained by the local character and high variation of
NH3 emissions/concentration in combination with the loca-
tions of the stations. Moving further away from a source will
then generally decrease the relation between the concentra-
tion in the air and the emission source. The same is true for
satellite observations of the air concentrations, which have
a large footprint compared to the local character of a point
measurement (FTIR) and the emissions. The steepness of this
decrease (or increase) tells us something about the local vari-
ation in NH3 concentrations, which can be large for sites near
heterogeneous emission sources or in cases with low trans-
port/turbulence and thus overall relatively low mixing.

Overall the highest correlations are seen at the Bremen
site, which can partially be explained by the overall high
number of observations with high concentrations (more than
15–20× 1015 molecules cm−2), which generally favours the
correlations. The mean column totals as well as the MRD and
MAD do not change much except for the smallest xdiff cri-
teria. The larger changes for observations within 15 km are
probably due to the smaller number of observations (which

follows from the relatively few IASI observations directly
above or near the stations). The results show an underesti-
mation of observed columns by IASI with the “all stations”
slopes in between ∼ 0.6–0.8. The stations with a lower mean
FTIR column totals, such as Toronto and Boulder (as well
as Pasadena, Mexico City, and Lauder shown in Appendix
Fig. A1), show lower correlations with most having slopes
below 1. The correlations decreasing with mean column to-
tals point towards the product detection limits of the IASI-
NH3 product. The Toronto site has lower correlation coeffi-
cients for the smallest xdiffs, but this seems to be due to the
large drop in number of observations for an xdiff of < 15 km.
For higher xdiff criteria the correlation of the Toronto site
shows results similar to Bremen. The observations at Boulder
also show large differences when including more observa-
tions further away from the station. This can be explained by
the land use surrounding the Boulder site. Immediately west
of the measurement site is a mountain range which together
with our elevation filter leads to rejection of the observations
to the west. To the northeast there are some major farming
areas surrounding the river banks. Correlations do increase
with a decreasing xdiff, suggesting that IASI is able to re-
solve the large gradients in the NH3 concentrations near the
site.

From the correlation analysis as a function of spatial co-
incidence, we conclude that an xdiff value of 25 km is rec-
ommended to make a fair comparison between IASI-NH3
and FTIR. Any criterion smaller than 15 km greatly reduces
the number of observations and statistics. xdiff values beyond
25 km further decrease the correlations for the combined set.
From this point onward an xdiff value of 25 km will be used.
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Figure 5. Correlations between the FTIR and IASI total columns
with filters thermal contrast> 12 K, tdiff< 90 min, xdiff< 25 km.
The trend line shows the results of the regression analysis.

3.2 Comparison of FTIR and IASI NH3 data

Observations from multiple years are used to show the coin-
cident seasonal variability of the FTIR and IASI-NH3 prod-
ucts for each of the sites (Fig. 4, FTIR: blue, IASI: red). Ob-
servations are grouped together into a typical year as there
are insufficient collocated observations to show an inter-
annual time series. Note the different scales on the y axis.
Similar seasonal cycles are clearly observed in both datasets
for most stations. Enhanced concentrations in spring are ob-
served for Bremen and Toronto as well as Boulder due to
manure application. Most of the sites show an increase of
NH3 during the summer months, which is likely due to the
increased volatilization of NH3 as an effect of higher tem-
peratures. Fire events that were captured earlier by FTIR at
Saint Denis in November, as well as in the IASI data, are
not observed in the collocated sets, which is due to a lack of
coincident observations. Furthermore, there is a lack of ob-
servations in wintertime for most of the stations either due to
low thermal contrast or due to overcast conditions. Tsukuba
has observations above the detection limit but only 1 year
of infrequent observations, which is insufficient to show an
entirely clear seasonal cycle. A similar thing can be said for
Pasadena, where there are too few coincident observations
to make meaningful conclusions about the seasonal cycle.
In conclusion, IASI reflects similar pollution levels and sea-
sonal cycles as deduced from the FTIR observations.

Figures 5 and 6 show a direct comparison of the FTIR and
IASI NH3 total columns for each station as well as a com-
bination of all the observations. Correlations, number of ob-
servations, and slope are shown in the figures. The MRD and
these statistics are also summarized in Table 3. The compar-
ison shows a variety of results. As before, of all nine stations
Bremen shows the best correlation with a coefficient of deter-
mination of r = 0.83 and a slope of 0.60. The intercept is not
fixed at zero. The stations with overall lower observed total

Table 3. Summarized results of the comparison between FTIR-NH3
and IASI-NH3 total columns within the coincidence criteria thresh-
old (xdiff< 25 km, tdiff< 90 min).N is the number of averaged total
columns, MRD is the mean relative difference (in %), r and slope
are the correlation coefficient and slope of the linear regression.

Sites N MRD in % (rms 1σ ) r slope

Bremen 53 −22.5± (54.0) 0.83 0.60
Toronto 170 −46.0± (47.0) 0.79 0.84
Boulder 38 −38.2± (43.5) 0.76 1.11
Tsukuba 15 −28.3± (35.6) 0.67 0.57
Pasadena 16 −47.9± (30.1) 0.59 0.83
Mexico 65 −30.8± (43.9) 0.64 1.14
Saint Denis 20 −61.3± (78.7) 0.65 1.26
Wollongong 62 6.0± (74.3) 0.47 0.92
Lauder 108 −29.7± (57.3) 0.55 0.77

Combined 547 −32.4± (56.3) 0.80 0.73

columns (less than 10× 1015 molecules cm−2) show lower
correlations. Stations with intermediate concentrations like
Toronto and Boulder show correlations r =∼ 0.7–0.8. Fig-
ure 5 also shows the relatively low number of high observa-
tions for both the FTIR and IASI values as a result of the
relatively few FTIR observations during events. The few out-
liers can have a disproportional effect on the slope as most of
the lower observations are less accurate due to the detection
limits of the instruments. Overall most stations, except Saint
Denis, Boulder, and Mexico City, indicate an underestima-
tion by IASI of the FTIR columns ranging from 10 to 50 %.
The mean relative differences for most stations are negative
with most showing values within −22.5± (54.0) % for Bre-
men down to a −61.3± (78.7) % for Saint Denis. The bias
shows some dependence on the total columns with the un-
derestimation being higher at stations with high mean total
columns and lower at stations with low mean total columns.
An exception to this is stations with the lowest mean total
columns (i.e. Saint Denis and Wollongong). The differences
at Saint Denis could be explained by the fact that most IASI
observations are positioned above water due to restrictions
for terrain height differences. A similar thing can be said
for Wollongong, which is situated on the coast with hills
directly to the inland. Most observations are on the border
of water and land, which might introduce errors in the re-
trieval. The combination of all observations gives a MRD of
−32.4± (56.3) %.

4 Discussion and conclusions

Recent satellite products enable the global monitoring of at-
mospheric concentrations of NH3. Unfortunately, the vali-
dation of the satellite products of IASI (Van Damme et al.,
2014a), TES (Shephard et al., 2011), and CrIS (Shephard and
Cady-Pereira, 2015) is very limited and, so far, only based
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Figure 6. Correlations between the FTIR and IASI total columns with filters thermal contrast> 12, tdiff< 90 min, xdiff< 25 km. The trend
lines show the results of the regression analysis.

on sparse in situ and airborne studies. Dammers et al. (2015)
presented FTIR total column measurements of NH3 at sev-
eral places around the world and demonstrated that these
data can provide information about the temporal variation
of the column concentrations, which are more suitable for
validation than ground-level concentrations. Ground-based
remote sensing instruments have a long history for valida-
tion of satellite products. FTIR observations are already com-
monly used for the validation of many satellite products, in-
cluding carbon monoxide (CO), methane (CH4), and nitrous
oxide (N2O) (Wood, 2002; Griesfeller et al., 2006; Dils et
al., 2006; Kerzenmacher et al., 2012). Furthermore, MAX-
DOAS systems are used for the validation of retrievals for
reactive gases (e.g. Irie et al., 2012), whereas AERONET is
widely used to validate satellite-derived aerosol optical depth
(e.g. Schaap et al., 2008). The comparison between FTIR and
IASI NH3 column reported here can be seen as a first step in
the validation of NH3 satellite products.

In this study, we collected FTIR measurements from nine
locations around the world and followed the retrieval de-
scribed by Dammers et al. (2015). The resulting datasets
were used to quantify the bias and evaluate the seasonal vari-
ability in the IASI-NH3 product. Furthermore, we assessed
the colocation criteria for the satellite evaluation. Additional
selection criteria based on thermal contrast, surface temper-
ature, cloud cover, and elevation differences between obser-
vations were applied to ensure the quality of the IASI-NH3
observations. The FTIR averaging kernels were applied to
the satellite profiles to account for the vertical sensitivity of
the FTIR and the influence of the a priori profiles.

To optimally compare the satellite product to the FTIR
observations it is best to reduce the spatial collocation cri-
terion to the size of the satellite instrument’s footprint and

allow for a time difference as short as possible. These con-
siderations are to reduce effects of transport, chemistry, and
boundary layer growth but limit the number of coinciding ob-
servations significantly. We have shown that the spatial dis-
tance between the IASI observations and the FTIR measure-
ment site is of importance: the larger the distance in space,
the lower the correlation. When there is no exact match in
the position of both observations the variations in the spa-
tial separation lead to correlation coefficients that can greatly
change even when changing the spatial criteria (xdiff) from
10 to 30 km. Reasons for the changes are the local nature of
NH3 emissions, the surrounding terrain characteristics, and
their influence on local transport of NH3. The small values
for spatial and temporal coincidence criteria show the impor-
tance of NH3 sources near the measurement sites when using
these observations for satellite validation. For the validation
of the IASI observations, we used an xdiff of less than 25 km,
which still showed high correlations while a large number of
observations are retained for comparison.

Overall we see a broad consistency between the IASI and
FTIR observations. The seasonal variations of both datasets
look similar for most stations. Increased column values are
observed for both IASI and FTIR during summers as the re-
sult of higher temperatures, with some sites showing an in-
crease in concentrations due to manure application and fer-
tilization events in spring (Bremen, Toronto). In general our
comparison shows that IASI underestimates the NH3 total
columns, except for Wollongong. The Wollongong site has
persistent low background columns, i.e. observations with
a low HRI, to which IASI is not very sensitive, which re-
sults in an overestimation of the observed columns. Over-
all, correlations range from r ∼ 0.8 for stations character-
ized by higher NH3 column totals (with FTIR columns up to
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80× 1015 molecules cm−2) to low r ∼ 0.4–0.5 correlations
for stations, which only have a few to no FTIR observa-
tions above 5× 1015 molecules cm−2. Hence, the detection
limit or sensitivity of the IASI instrument largely explains
the lower correlation values. The combination of all sites
(Nobs = 547) gives a MRD of −32.4± (56.3) %, a correla-
tion r of 0.8 with a slope of 0.73.

In comparison to ground-based in situ systems, the FTIR
observations have the big advantage to provide coarse ver-
tical profiles, from which a column can be derived, which
are more similar to what the satellite measures and there-
fore more useful for validation. Dedicated NH3 validation
datasets are needed that better match the overpass times of
satellite instruments like IASI, TES, and CrIS. This could be
achieved by the addition of NH3 to the NDACC measurement
protocols and matching the overpass time of these satellites
over these measurement stations by using of the right spec-
tral filters for detecting NH3. Furthermore, the low number
of NDACC stations and their locations are not optimal for
a dedicated validation of NH3 satellite products. Although
these provide a starting point, the small set of stations does
not cover the entire range of climate conditions, agricultural
source types, and emission regimes. Hence, our validation re-
sults should be seen as indicative. Additional stations or ded-
icated field campaigns are needed to improve this situation.
New stations should be placed in regions where emissions
and geography are homogenous to ensure that stations are
representative for the footprints of the satellites. For valida-
tion of satellite products using FTIR measurements a moni-
toring and measurements strategy needs to be developed with
a representative mixture of locations in addition to ground-
level data. The latter can cover the spatial variation, and dif-
ferent temporal measurements can be used. The use of IASI
and FTIR observations to study NH3 distributions at ground
level requires a combination of model calculations and ob-
servations (e.g. Erisman et al., 2005a, b). Such techniques
are required to provide all the necessary details to describe
the high spatial and temporal variations in NH3.

The direct comparison of the IASI and FTIR columns is an
addition to earlier efforts by Van Damme et al. (2015a) to val-
idate IASI column observations with surface in situ and air-
borne observations. Our results presented here indicate that
the product performs better than the previous upper-bound
estimate of a factor of 2 (i.e. −50 to +100 %) as reported in
Van Damme et al. (2014a). Although we tried to diminish any
effect of sampling time and position, it cannot be ruled out
completely that these impact the comparison statistics as the
number of stations is small. Still the picture arising from the
different stations is rather consistent, which hints at other is-
sues that may explain the observed bias. A number of impor-
tant issues concerning the retrieval techniques may explain
the observed difference. First, the HRI-based retrieval used
for IASI is intrinsically different to the optimal estimation-
based approach used for the FTIR retrieval. An IASI optimal
estimation retrieval for NH3 called FORLI does exist but is

not fully operationally used as it is computationally much
slower than the HRI method. Surprisingly a first comparison
between the FORLI- and HRI-based retrieval (see Fig. 9, Van
Damme et al., 2014a) shows∼ 30 % lower retrieved columns
by the HRI scheme, which is very close to the systematic
difference quantified here. Note that the results are not fully
comparable as the reported HRI–FORLI comparison was for
a limited dataset and no quality selection criteria were ap-
plied. We recommend to further explore the use of the op-
timal estimation-based IASI-NH3 retrieval in comparison to
the FTIR observations. Second, the IASI and FTIR retrievals
incorporate the same line spectroscopy database (HITRAN
2012; Rothman et al., 2013), which removes a possible error
due to different spectroscopy datasets. The spectroscopy is
the largest expected cause of error in the FTIR observations
with measurement noise being the close second for sites with
low concentrations. An improvement to the line parameters
(i.e. line intensity, pressure, and temperature effects) would
greatly benefit both the FTIR and IASI retrievals. Thirdly, the
HRI-based scheme uses the difference between spectra with
and without the spectral signature of NH3. A plausible cause
for error in this scheme is the influence and correlation of in-
terfering species in the same spectral channels. H2O lines oc-
cur near most of the NH3 spectral lines and interfere with the
NH3 lines at the resolution of the IASI instrument. Humidity
levels vary throughout the year with an increased amount of
water vapour in summer conditions. The HRI-based scheme
uses a fixed amount of water vapour, and varying amounts
of water vapour may interfere with the HRI value attributed
fully to the NH3 columns. As there is a seasonality in the wa-
ter vapour content of the atmosphere (Wagner et al., 2006),
any error attributed to water vapour should show a seasonal-
ity in the difference between the IASI and FTIR observations.
A seasonality was, however, not visible although it may be
that the number of coincident observations was too small to
recognize it. This again shows the need for dedicated NH3
validation data (e.g. dedicated FTIR observations). Fourth,
the negative bias of the satellite observations can be expected
by the lack of sensitivity to concentrations near the surface.
This is of course where the ammonia concentrations usually
peak. The FTIR observations however do fully observe the
lower layers in the troposphere, thus causing a discrepancy.
Normally one can correct for this using the averaging ker-
nel of the satellite observations. However, the IASI-NH3 re-
trieval does not produce an averaging kernel, meaning it is
not possible to calculate the exact effect. The use of a typi-
cal averaging kernel will cause more uncertainty as there is
a large day-to-day variability in the averaging kernels as ear-
lier retrievals showed (Clarisse et al., 2009). Finally, another
possible cause of error is the lack of a varying NH3 profile
and the proxy used for thermal contrast to describe the state
of the atmosphere. The sensitivity of the scheme to the con-
centrations of NH3 in the boundary layer is described by us-
ing a fixed profile for land and sea observations in combina-
tion with a thermal contrast based on two layers (surface and
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1.5 km) as it is expected that most of the NH3 occurs in the
boundary layer. In reality the NH3 profile is highly dynamic
due to a varying boundary layer height and changing emis-
sions as well as temperature changes (e.g. inversions) occur-
ring throughout the planetary boundary layer. Not accounting
for this can introduce an error and future HRI-based schemes
should focus on estimating the possible effects of using only
a specific profile. The use of multiple NH3 profiles in com-
bination with multiple temperature layers would be a better
approximation of the state of the atmosphere, although com-
putationally more expensive. The sharp difference between
the sea and land retrieval introduces strong variability in ob-
servations near the coast. Furthermore, observations that are
directly on the transition between water and land can intro-
duce problems due to the varying emissivity. Similar issues
have been reported for aerosol retrievals (e.g. Schaap et al.,
2008).

Although the FTIR observations offer some vertical infor-
mation, studies combining this technique with tower or air-
borne observations are needed to further improve knowledge
and sensitivity of the FTIR and satellite observations to the
vertical distribution of NH3. Without this knowledge, it is
not possible to use the observations for quantitative emission

estimates and modelling purposes as no uncertainty on the
new estimate can be given. Approaches similar to the recent
study by Shephard et al. (2015) using an airborne instrument,
possibly in combination with an FTIR system focused on the
overpass of multiple satellite systems for an extended period
of time, should be used to establish the sensitivities and bi-
ases of the different retrieval products available from satellite
instruments as well as the bias between the satellite and sur-
face instruments. The use of IASI and FTIR observations to
study NH3 distributions at ground level requires a combina-
tion of model calculations and observations. Such techniques
are required to provide all the necessary details to describe
the high spatial and temporal variations in NH3.

5 Data availability

The IASI-NH3 product is freely available at http://
www.pole-ether.fr/etherTypo/index.php?id=1700&L=1 (Van
Damme et al., 2015a). FTIR-NH3 data (Dammers et al.,
2015) can be made available on request (M. Palm, Institut für
Umweltphysik, University of Bremen, Bremen, Germany).
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Appendix A

This section further covers the other stations, in addition to
the sites covered by Sect. 3.1.

The results for Mexico City show an overall constant cor-
relation coefficient except for small criteria < 20 km. The
slope also decreases towards values seen at other stations.
This effect could be due to a large number of sources in-
side the city, i.e. automobile and agricultural emissions in and
near the city, increasing the heterogeneity of the found col-
umn totals. Réunion and Tsukuba have few coincident obser-
vations leading to only a few significant comparisons. This,
combined with the low concentrations measured at Réunion,
leads to large differences in the mean and standard devia-
tions of the subsequent xdiff sets. The Réunion and Wollon-
gong observations are at the sensitivity limit of the IASI-NH3
retrieval, which limits the usefulness of the sites for the val-
idation. As there are only a few observations for Tsukuba
it is hard to make meaningful conclusions on the variability
around the site.

Figure A1. Correlation r (blue lines, left figures), slope (red lines, left figures) regression results, mean relative difference (MRD, green lines,
right figures) and mean absolute difference (MAD, black lines, right figures) between IASI and FTIR observations as a function of xdiff for
all sites. Bars indicate the standard deviation of the slope of the individual regression results. The numbers in the bottom of each subfigure
show the number of matching observations. The numbers on the left and right side of the station name give the mean FTIR and IASI total
columns for an xdiff < 25 km.
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