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Abstract: 14 

 15 

Syros Island is worldwide known for its preservation of HP-LT parageneses in the 16 

Cycladic Blueschist Unit (CBU) providing one of the best case-studies to understand the 17 

tectonometamorphic evolution of a subduction channel. Conflicting structural interpretations 18 

have been proposed to explain the geological architecture of Syros, in part reflecting a lack of 19 

consensus about the tectonic structure of the CBU. In this study, the geological and 20 

tectonometamorphic maps of Syros have been entirely redrawn in order to decipher the 21 

structure of a fossilized subduction channel. Based on structural and petrological observations, 22 

the CBU has been subdivided into three subunits separated by major ductile shear zones. New 23 

observations of the Vari Unit confirm that it rests on top of the CBU through a detachment or 24 

exhumation fault. While retrograde top-to-the E/NE shearing overprinting prograde 25 
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deformation is widespread across the island, the prograde deformation has been only locally 26 

preserved within the less retrograded units. We show that after the prograde top-to-the S/SW 27 

shearing deformation, the CBU was exhumed by an overall top-to-the E/NE shearing from the 28 

depth of the eclogite-facies all the way to the depth of the greenschist-facies and finally, to the 29 

brittle crust. The exhumation process encompassed the syn-orogenic stage (contemporaneous 30 

of subduction, within the subduction channel - Eocene) to the post-orogenic stage 31 

(contemporaneous with the formation of the Aegean Sea - Oligocene to Miocene). From syn-32 

orogenic to post-orogenic exhumation, deformation progressively localized toward the base of 33 

the CBU, along large-scale ductile shear zones, allowing the preservation of earlier HP-LT 34 

structures and HP-LT metamorphic parageneses. Finally, this study brings new insights on the 35 

tectonometamorphic evolution of a subduction channel showing how strain localizes during 36 

the history of an accretionary complex, both during the prograde and retrograde history. 37 

 38 
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1) New geological and tectonometamorphic maps of Syros (Cyclades, Greece) 44 

2) The Cycladic Blueschist Unit (CBU) was exhumed by an overall top-to-the east shearing  45 

3) The CBU was exhumed as separate subunits with distinct P-T evolutions  46 

4) Exhumation process encompassed syn- to post-orogenic stage 47 

5) During exhumation, strain localized downward along major extensional shear zones 48 
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1) Introduction 51 

 52 

 High-pressure low-temperature (HP-LT) metamorphic rocks are generally attributed to 53 

former subduction zones. Intense retrograde deformation often overprints the early prograde 54 

events, but in some key-areas, the prograde and metamorphic peak deformation can provide 55 

insights on the tectonometamorphic history of a subduction zone (Alpine Corsica: Brunet et 56 

al., 2000; Vitale-Brovarone et al., 2011; Norwegian Caledonides: Austrheim and Griffin, 57 

1985; Andersen et al., 1994;  Labrousse et al., 2004; Terry and Heidelbach, 2006; Raimbourg 58 

et al., 2005; Himalaya: Burg et al., 1983; Liou et al., 2004; Epard and Steck, 2008; New 59 

Caledonia: Bell and Brothers, 1985; Aegean domain: Keiter et al., 2004, 2011; Philippon et al., 60 

2011).  61 

The Aegean domain and specifically the Cyclades Archipelago, form a natural 62 

laboratory for studying a former subduction zone. Syros Island, located in the central part of 63 

the Cyclades (Fig. 1a), is worldwide known for its spectacular preservation of deformed HP-64 

LT metamorphic rocks such as eclogites and is considered to be the type locality of 65 

glaucophane (Hausmann, 1845). Rocks of this island have been the focus of many 66 

petrological, geochronological and structural studies, leading to different interpretations 67 

regarding: 1) the overall geometry of the CBU, 2) metamorphic peak conditions and 3) the 68 

role of major tectonic contacts (Fig. 1b; Trotet et al., 2001a, 2001b; Rosenbaum et al., 2002; 69 

Ring et al., 2003; Keiter et al., 2004, 2011; Schumacher et al., 2008; Philippon et al., 2011; 70 

Soukis and Stöckli, 2013). Despite excellent outcropping conditions, these differences are 71 

sometimes drastic, thus hindering our understanding of this classical example of a fossilized 72 

subduction channel. 73 

This paper focuses on the tectonometamorphic evolution of the Cycladic Blueschist 74 

Unit. New maps and profiles are here further discussed in terms of their situation within the 75 
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subduction channel. We demonstrate a progressive top-to-the E/NE continuum of deformation 76 

from eclogite- to greenschist-facies. Most of the deformation completely overprinted the 77 

prograde subduction-related deformation. However, we highlight areas where syn-burial 78 

tectonometamorphic features are preserved. In addition, we confirm the existence of the Vari 79 

Detachment recently challenged by Philippon et al. (2011) as an extensional detachment 80 

partly responsible for the exhumation of the CBU. Finally, deep-seated subduction processes 81 

are then discussed in the framework of the Hellenic subduction zone. 82 

 83 

 84 
Figure 1: Localization of the studied area and Pressure-Temperature-deformation paths of Syros available in 85 
literature. a) Tectonic map of the Cyclades showing the major tectonic structures such as the North Cycladic 86 
Detachment System (NCDS), the West Cycladic Detachment System (WCDS) and the Paros-Naxos Detachment 87 
(PND), as well as kinematic indicators, after Jolivet et al. (2015). b) Representation of the different calculated P-88 
T paths for the CBU in Syros. D1, D2 and D3 phases of deformation after Trotet et al. (2001a, 2001b), Keiter et 89 
al. (2004), Philippon et al. (2011) highlight the conflicting prograde or retrograde interpretations of the main 90 
deformation observed on Syros. Facies: AM, amphibolite; EA, epidote-amphibolite; EB, epidote-blueschist; EC, 91 
eclogite; GS, greenschist; LB, lawsonite-blueschist; LC, lawsonite-chlorite; PA, pumpellyite-actinolite; PrAc, 92 
prehnite-actinolite; PrP, prehnite-pumpellyite; ZE, zeolite (after Peacock, 1993). Lawsonite + glaucophane-out 93 
reactions after Evans (1990) and Schümacher et al. (2008). 94 
 95 

 96 

 97 

 98 
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2) Geological setting 99 

 100 

2.1) Tectonometamorphic evolution of the Cycladic Blueschist Unit 101 

 102 

The Aegean domain, part of the eastern Mediterranean Sea, experienced a two steps 103 

tectonometamorphic evolution. Firstly, the late Cretaceous-Eocene formation of the 104 

Hellenides-Taurides chain resulted from the subduction and collision of the Apulian 105 

microcontinent with Eurasia (Bonneau and Kienast, 1982; Dercourt et al., 1986; van 106 

Hinsbergen et al., 2005). The entrance of the Apulian crust in the subduction zone led to an 107 

episode of crustal thickening and syn-orogenic exhumation of HP-LT metamorphic units such 108 

as the Cycladic Blueschist Unit (CBU; Fig. 1a; Blake et al., 1981; Bonneau and Kienast, 1982; 109 

Jolivet et al., 2003, 2004; Brun and Faccenna, 2008; Jolivet and Brun, 2010; Ring et al., 2010). 110 

Secondly, post-orogenic extension in the Rhodope from 45 Ma and in the Aegean Sea from 111 

35 Ma was associated with the retreat of the African slab (Jolivet and Faccenna, 2000; Brun 112 

and Sokoutis, 2010; Jolivet and Brun, 2010; Ring et al., 2010). In the Aegean domain, part of 113 

western Anatolia and in the Rhodope Massif, back-arc extension of the previously thickened 114 

crust was accommodated by several regional-scale detachments such as the North Cycladic 115 

Detachment System (NCDS) or the West Cycladic Detachment System (WCDS) (Fig. 1a; 116 

Jolivet et al., 2010; Grasemann et al., 2012). 117 

Located in the center of the Aegean domain, the Cyclades correspond to the deepest 118 

exhumed parts of the Hellenides-Taurides chain and are mainly composed by the CBU (Fig. 119 

1a). This unit is mainly made of marbles, metapelites and metabasites all showing peak P-T 120 

conditions in the blueschist- or eclogite-facies (Blake et al., 1981; Bonneau, 1984; Okrush and 121 

Bröcker, 1990; Avigad and Garfunkel, 1991; Trotet et al., 2001b; Schumacher et al., 2008). 122 

The CBU experienced alpine tectonic and metamorphic evolution, with an early burial in HP-123 
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LT conditions reaching ~18-20 kbar and 500-550 °C (Fig. 1b; Dürr et al., 1978; Bröcker and 124 

Enders, 2001; Trotet et al., 2001b; Parra et al., 2002; Tomaschek et al., 2003; Augier et al., 125 

2015) during the Eocene (~50-35 Ma; Tomaschek et al., 2003; Putlitz et al., 2005; Lagos et al., 126 

2007). During the Oligocene and for the whole Miocene, this event was followed by LP-HT 127 

greenschist- to amphibolite-facies overprint of variable intensity (Fig. 1a; Altherr et al., 1979, 128 

1982; Wijbrans and McDougall, 1986; Buick, 1991; Keay et al., 2001; Vanderhaeghe, 2004; 129 

Duchêne et al., 2006; Bröcker et al., 2013; Beaudoin et al., 2015). On top of the CBU, the 130 

Upper Cycladic Unit (UCU) corresponds to the uppermost parts of the nappe stack. The UCU 131 

is composed of Permian to Mesozoic metasediments, minor orthogneisses and ophiolites 132 

equilibrated in greenschist- to amphibolite-facies metamorphic conditions during the 133 

Cretaceous, sometimes covered with Oligocene to Miocene sediments (Sanchez-Gomez et al., 134 

2002; Kuhlemann et al., 2004; Lecomte et al., 2010; Menant et al., 2013). Structurally below 135 

the CBU, the Cycladic Continental Basement (CCB) crops out as large-scale tectonic 136 

windows on several islands in the central and southern part of the Cyclades (Fig. 1a; e.g. 137 

Paros, Naxos, Ios or Sikinos; Andriessen et al., 1987). This unit is composed of Variscan 138 

orthogneisses enveloped by metasediments that locally retain metamorphic relics of 139 

amphibolite-facies assemblages suggesting a complex pre-alpine history (Bonneau and 140 

Kienast, 1982; Andriessen et al., 1987; Keay, 1998; Photiades and Keay, 2003; Gupta and 141 

Bickle, 2004; Huet et al., 2009; Augier et al., 2015). Late exhumation stages of both the CBU 142 

and the CCB were accompanied by emplacement of syn-tectonic Miocene intrusions (i.e. 143 

Tinos, Mykonos, Ikaria, Naxos, Serifos, Lavrio; Fig. 1a; Jansen, 1973; Altherr et al., 1982; 144 

Faure et al., 1991; Lee and Lister, 1992; Altherr and Siebel, 2002; Pe-Piper et al., 2002; 145 

Grasemann and Petrakakis, 2007; Iglseder et al., 2009; Bolhar et al., 2010; Lecomte et al., 146 

2010; Stouraiti et al., 2010; Denèle et al., 2011; Laurent et al., 2015; Rabillard et al., 2015).  147 

 148 
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2.2) Geology of Syros 149 

 150 

 Located in the central part of the Aegean domain, Syros is mainly composed by the 151 

CBU except for the Vari Unit (Fig. 2a). Vari Unit, composed of greenschist mylonites and 152 

orthogneiss, corresponds to a distinct tectonic unit attributed to UCU, separated from the CBU 153 

by the Vari Detachment (Trotet et al., 2001a; Keiter et al., 2004, 2011; Soukis and Stöckli, 154 

2013). The basal part of the CBU crops out in the southwestern part of the island and is 155 

mainly composed of albitic micaschists and rare gneisses (e.g. the Komito gneiss; Fig. 2a; 156 

Hecht, 1985). Structurally above, the central part of Syros is dominated by alternating 157 

sequences of marble and micaschist layers (Fig. 2a). In this area, metabasites are a minor 158 

component and often occur as dismembered boudins intercalated within the metamorphic 159 

series. Conversely, in other parts of the island and especially in the north, metabasites form 160 

the dominant lithology and often occur as kilometer-scale massive bodies (e.g. Hecht, 1985; 161 

Keiter et al., 2004, 2011; Philippon et al., 2011). Metabasites are locally turned into massive 162 

eclogite-facies rocks but also occur as blueschist- or greenschist-facies rocks (Trotet et al., 163 

2001a).  164 

 165 

2.3) Pressure-Temperature-time evolution 166 

 167 

Petrological studies yielded contrasting estimates for metamorphic peak conditions 168 

from 15-16 kbar and 500°C (Schliestedt et al., 1987; Okrusch and Bröcker, 1990; Avigad and 169 

Garfunkel, 1991; Schmädicke and Will, 2003; Schumacher et al., 2008) to 19-20 kbar and 170 

525-550°C (Fig. 1b; Trotet et al., 2001b; Groppo et al., 2009; Dragovic et al., 2012; Ashley et 171 

al., 2014). Timing and duration of this subduction-related P-T evolution have been quite well 172 

constrained since the 1980s, using a large panel of isotopic systems such as K-Ar, 
40

Ar/
39

Ar, 173 
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Rb-Sr, U-Pb, Lu-Hf, Sm-Nd systems on various minerals (Fig. 2b; Altherr et al., 1979, 1982; 174 

Andriessen et al., 1979; Wijbrans and McDougall, 1986; Maluski et al., 1987; Wijbrans et al., 175 

1990; Bröcker et al., 1993, 2013; Bröcker and Franz, 1998, 2006; Bröcker and Enders, 1999; 176 

Tomaschek et al., 2003; Putlitz et al., 2005; Lagos et al., 2007; Huet, 2010; Dragovic et al., 177 

2012). Studies attempting to date the burial culmination led to ca. 53-49 Ma ages (Tomaschek 178 

et al., 2003; Putlitz et al., 2005; Lagos et al., 2007). Then, the retrogression in the greenschist-179 

facies has been dated between 25 and 21 Ma (Bröcker et al., 2013). Final exhumation stages 180 

of the CBU were recently constrained by low-temperature thermochronological tools between 181 

12 and 8 Ma (Fig. 2b; Ring et al., 2003; Soukis and Stöckli, 2013).  182 

 183 

 184 
Figure 2: Previous geological and geochronological works on Syros. a) Metamorphic map of Syros showing the 185 
main tectonic structures, after Trotet et al. (2001a). b) Compilation of previous geochronological data calculated 186 
after U-Pb (Bröcker & Enders, 1999; Tomaschek, et al., 2003), Lu-Hf (Lagos, et al., 2007), 

40
Ar/

39
Ar (Maluski et 187 

al., 1987; Tomaschek, et al., 2003; Putlitz et al., 2005; Huet, 2010; Bröcker et al., 2013), Rb-Sr (Bröcker & 188 
Enders, 2001; Bröcker et al., 2013), (U-Th)/He (Soukis and Stöckli, 2013) and fission track methods (Ring et al., 189 
2003). 190 
 191 

 192 
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2.4) Main controversies 193 

 194 

 The relative importance of the prograde and retrograde deformations, compression vs 195 

extension, syn-orogenic vs post-orogenic exhumation is still debated. Hecht (1985) elaborated 196 

the geological map of Syros at the scale 1: 50000 and interpreted all basal contacts of 197 

metabasites as tectonic, mostly as thrusts, contradicting the initial interpretation of metabasite 198 

occurences as olistoliths within a flysch sequence (Bonneau et al., 1980a, 1980b; Blake et al., 199 

1981). Recently, Keiter et al. (2011) remapped the entire island at the scale 1: 25000. These 200 

authors argued that an important result of their study is the identification of a significant late 201 

brittle deformation on Syros that was so far poorly constrained. In parallel, Philippon et al. 202 

(2011) reinterpreted the geological map of Syros, based on the original map of Hecht (1985). 203 

These authors disconfirmed the existence of the Vari Detachment, correlating the Vari and 204 

Komito gneisses and repositioning the Vari Unit at the base of the CBU. Soukis and Stöckli 205 

(2013) challenged this conclusion, restoring the original interpretation of Gautier (1995), 206 

Trotet et al. (2001a) or Ring et al. (2003), thus recognizing the juxtaposition of the Vari Unit 207 

onto the CBU by the Vari Detachment. A second controversy relates to the regional and 208 

tectonic significance of the deformation recorded by HP-LT rocks. According to Trotet et al. 209 

(2001a), the main deformation phase is retrograde and was acquired during exhumation of the 210 

CBU from eclogite- to greenschist-facies (D1 to D3; Fig. 1b). For these authors, exhumation 211 

occurred during a continuum of top-to-the E/NE shearing deformation from the early Eocene 212 

(syn-orogenic exhumation) to the early Miocene (post-orogenic exhumation). In contrast, 213 

Keiter et al. (2004, 2011) interpreted the main deformation event affecting the CBU as 214 

prograde, implying therefore a rigid body exhumation of the whole structure (D1 to D3; Fig. 215 

1b). Finally, Philippon et al. (2011) describe two distinct ductile phases of deformation (Fig. 216 
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0 

1b), i) a first top-to-the SW prograde deformation (D1) and, ii) a second extensional top-to-217 

the NE penetrative shear (D2) affecting the entire CBU. 218 

As long as these discrepancies are not addressed, the deep processes and long-term 219 

evolution of the CBU in the subduction channel will remain poorly understood. 220 

 221 

3) A new geological map of Syros 222 

 223 

3.1) Method and mapping technique 224 

 225 

 In order to complement existing geological maps and put constraints on the geometry 226 

of Syros, the whole island has been remapped based on field observations and satellite-images 227 

interpretation (Fig. 3). Lithology and tectonic boundaries have been redrawn following our 228 

observations all over the island. For mutual comparison, the color code of the legend is the 229 

same as in the geological map of Keiter et al. (2011), with simplified lithologic subdivisions 230 

for the purpose of our tectonometamorphic study. Calcitic and dolomitic marbles were 231 

merged together into a unique metacarbonate comprehensive unit. Similarly, further 232 

subdivisions within the mafic protoliths were abandoned. Anyway, principal occurrences of 233 

serpentinite and eclogite are reported on the map (Fig. 3). Additionally, the finite strain 234 

markers were studied as well as the link with the metamorphic record. Results are given on 235 

figure 3. 236 
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 237 
Figure 3: New geological map of Syros showing the main tectonic structures and lithologic distributions 238 
(geometry of the Vari Unit after Soukis and Stöckli, 2013). Cross-sections are traced with black lines and 239 
highlight the architecture of Syros. Planar (foliation planes) and linear (stretching lineations) fabrics are 240 
represented with their associated metamorphic facies. Also shown are the localities cited in the text. 241 
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 242 
Figure 3 (continue)243 
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3.2) Large-scale structure 244 

 245 

 From a lithological point of view, our new geological map does not significantly differ 246 

from the one of Keiter et al. (2011) with only few areas where minor changes are reported; the 247 

map thus seems relatively robust. As examples of differences, we highlight larger outcrops of 248 

metabasites in several parts of the island, like in Mavra Vounakia peninsula or near the 249 

Delfini Bay (Fig. 3). 250 

The most obvious changes are related to the structural aspects in a broad sense, and 251 

particularly the way the metamorphic sequence is structured in coherent units. Our approach 252 

consisted first in the identification of high strain zones (i.e. major shear zones) where 253 

deformation is concentrated, and second, in the recognition of subunits characterized by their 254 

lithological content and metamorphic record. This mapping approach allows us redefining the 255 

stack of the CBU, subdividing it in three subunits delimited by major shear zones, which are 256 

from bottom to top: 257 

1) Posidonia Subunit, which is lithologically subdivided in two parts: the structurally lower 258 

felsic gneiss of Komito with intercalated boudins of metabasite, overlain by albitic 259 

micaschists, few metabasites and thin marble layers (Fig. 3). The entire basal unit has been 260 

overprinted in the greenschist-facies with only few areas preserving high-pressure relics in 261 

centimeter-scale mafic boudins (Fig. 3). The Achladi-Delfini Shear Zone delimits the 262 

Posidonia Subunit from the upper Chroussa Subunit. 263 

2) Chroussa Subunit, which is composed of a lithostratigraphic sequence of alternating 264 

micaschists, thick marble layers and metabasites (Fig. 3). Although some areas are more 265 

overprinted in the greenschist-facies, blueschist-facies parageneses are well preserved in this 266 

subunit. Fresh eclogites are sometimes preserved in the core of metabasic boudins of any 267 

scale (Fig. 3). The Kastri Shear Zone delimits the Chroussa Subunit from the upper Kampos 268 
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Subunit.  269 

3) Kampos Subunit, which is mainly composed of a mélange of metabasites, including 270 

metagabbros, metabasalts, and locally still visible remains of metapillow-lavas (see Keiter et 271 

al., 2011 for details) wrapped by strongly foliated metapelites and/or serpentinites. Within this 272 

subunit, eclogite- and blueschist-facies parageneses are preserved, with only few narrow 273 

zones overprinted in the greenschist-facies (Fig. 3). The Vari Detachment delimits the top of 274 

Kampos Subunit, and at larger scale the entire CBU, from the upper Vari Unit. 275 

 Finally, the Vari Unit is formed from bottom to top by a greenschist mylonitic unit and 276 

the gneiss of Vari intruding amphibolite-facies metabasites (see also Soukis and Stöckli, 277 

2013). High-pressure rocks were not recognized in the Vari Unit. 278 

 279 

4) Deformation and metamorphic record in the CBU 280 

 281 

 Finite strain markers were studied throughout the island. In parallel, physical conditions 282 

of the deformation were evaluated by the recognition of syn-kinematic minerals in 283 

metabasites and other types of lithologies. All three subunits experienced HP-LT imprint in 284 

the eclogite-facies conditions. This initial record is however unevenly distributed. In this 285 

section we explore the relationships between the preservation/retrogression of HP-LT 286 

parageneses and the relative intensity of deformation. 287 

 288 
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 289 
Figure 4: Stereograms of the planar and linear fabric measured on Syros and their associated metamorphic facies 290 
or lithology if mineralogy does not allow identifying the metamorphic-facies. a1, b1, c1) Geological maps 291 
highlighting respectively the Posidonia, Chroussa and Kampos subunits and localizing the pictures displayed on 292 
the figures 5, 6 and 7. a2, b2, c2) Rose diagram of the poles of foliation planes in each subunit. a3, b3, c3) Rose 293 
diagram of stretching lineations in each subunit. 294 

 295 

 296 

 297 
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4.1) Posidonia Subunit 298 

 299 

 Foliation in Posidonia Subunit dips shallowly toward NNW to NNE (Fig. 4a). A syn-300 

greenschist facies stretching lineation is observed almost systematically, marked by the 301 

stretching of syn-kinematic chlorite and/or albite in rocks showing only greenschist 302 

parageneses (Fig. 4a). Syn-blueschist lineations were observed in only four outcrops (Fig. 3). 303 

For each of these areas, HP-LT markers are preserved within up to a few meters thick mafic 304 

to ultra-mafic boudins hosted in greenschist-facies rocks. The trend of stretching lineations 305 

varies between N60°E to N100°E with a dominant E-W orientation (Fig. 4a). Foliation planes 306 

and stretching lineations measured in the Mavra Vounakia Peninsula (Fig. 3) are slightly 307 

different from those observed in the rest of Posidonia Subunit. There, foliation planes 308 

measured in gneiss and metabasites are NW-SE trending with oscillating dip direction toward 309 

the NE or SW and carried stretching lineations oriented between N120°E and N140°E (Fig. 3). 310 

 In Posidonia Subunit, markers of non-coaxial ductile deformation are observed as 311 

shear bands, sigma-clast systems, drag folds or asymmetric boudinage. For more than 90% of 312 

visited outcrops, these markers indicate a consistent syn-greenschist top-to-the east sense of 313 

shear (Figs. 3, 5a, 5b). Additionally, the rocks of Posidonia Subunit are tightly to isoclinally 314 

folded, with fold axes either parallel or perpendicular to the stretching direction (Figs. 5c, 5d). 315 

 316 
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 317 
Figure 5: Syn-greenschist top-to-the east shearing characterizing the Posidonia Subunit. Localization of pictures 318 
is showing on figure 4a1. a, b) Syn-greenschist top-to-the east shear bands (GPS coordinate: 37°23’16.2’’ / 319 
24°54’21.5’’) c) Greenschist folds characterized by orthogonal fold axes compared to syn-greenschist stretching 320 
lineations (GPS coordinate: 37°26’40.5’’ / 24°53’53.8’’). Data are plotted on the stereogram. d) Parallel fold 321 
axes and syn-greenschist stretching lineations observed in the contact zone with the Chroussa Subunit near the 322 
village of Danakos (GPS coordinate: 37°26’06’’ / 24°54’05.1’’). Data are plotted on lower hemisphere 323 
stereograms. 324 

 325 

4.2) Chroussa Subunit 326 

 327 

 Chroussa Subunit consists of a succession of marble layers, micaschists and 328 

metabasites, showing both syn-blueschist and syn-greenschist deformation (Fig. 4b). 329 

Measured foliation planes shallowly dip to north (Fig. 4b) with local variations. Within 330 

blueschist-facies rocks, a group of N-S striking foliation planes dips eastward (Fig. 4b). Two 331 

other orientations of foliation planes were measured in marbles, dipping toward the NE or the 332 

NW (Fig. 4b). As for Posidonia Subunit, only a few foliation planes dip southward. The 333 

planar fabric observed in Chroussa Subunit is often associated with a stretching lineation 334 

marked by glaucophanes needles in blueschist-facies rocks and chlorite and/or albite pods in 335 
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greenschist-facies rocks (Fig. 4b). Overall, the bulk of measured stretching lineations shows a 336 

constant orientation with a rather low dispersion between N70°E and N100°E. A subordinate 337 

N20°E set of lineations is observed in blueschist-facies rocks (Fig. 4b).  338 

 Rocks of Chroussa Subunit are strongly deformed at all scales. Markers of non-coaxial 339 

ductile deformation are similar to those observed in Posidonia Subunit. Likewise, this subunit 340 

shows top-to-the E/NE ductile deformation for both syn-blueschist and syn-greenschist 341 

markers (Figs. 6a, 6b, 6c). In the northern part of Syros, near Trachilia Beach, top-to-the 342 

northeast shear bands affecting lawsonite pseudomorphs in metapelites occur (Fig. 6b). In few 343 

places, we observed in the Chroussa Subunit shear bands or asymmetric boudinage showing 344 

retrograde top-to-the west deformation (Figs. 3, 6c). Folds are also common in Chroussa 345 

Subunit showing curved axes locally parallel to the stretching lineation and axial closures like 346 

in sheath folds (Fig. 6d). 347 

 348 

 349 

 350 

 351 

 352 
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 353 
Figure 6: Shearing criteria observed in Chroussa Subunit. Outcrop location is shown on figure 4a2. a) Syn-354 
greenschist top-to-the east shear bands (GPS coordinate: 37°28’24.1’’ / 24°55’11.6’’). b) Top-to-the northeast 355 
shear bands affecting preserved pseudomorphs of lawsonite (GPS coordinate: 37°30’07.9’’ / 24°54’54.4’’). c) 356 
Retrograde top-to-the west shearing observed locally in the Chroussa Subunit (GPS coordinate: 37°24’49.3’’ / 357 
24°55’45.5’’). The steep shear planes are secondary shear zones rotating top west with an antithetic sense of 358 
shear. d) Curved axis fold observed in micaschists, sub-parallel to the stretching lineation and showing closure 359 
typical of sheath fold (GPS coordinate: 37°30’39.4’’ / 24°52’39.3’’). 360 

 361 

 362 

4.3) Kampos Subunit 363 

 364 

Kampos Subunit displays rocks equilibrated in eclogite- and blueschist-facies. 365 

Foliation planes dip toward north or northwest (Fig. 4c). Stretching lineations are mainly 366 

oriented between N70°E and N100°E and dominantly marked by elongated glaucophane 367 

minerals along a main stretching direction (Fig. 4c). N-S syn-blueschist stretching lineations 368 

are common in the metabasites near Kampos village (Figs. 3, 4c). In some outcrops (e.g. Kini, 369 

Kampos or near the airport), metabasite bodies show only incipient deformation with 370 

preserved metapillow-lavas or metabasaltic dykes crosscutting metagabbros (Fig. 7a). 371 

Conversely, in others outcrops, rocks experienced intense top-to-the-east shearing recorded 372 

during retrogression of eclogites in blueschist-facies conditions (Fig. 7). This characteristic 373 
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top-to-the east ductile deformation increases up-section toward the contact with Vari Unit, 374 

defining a single strain gradient accompanied by a gradient of eclogite retrogression. 375 

 376 

 377 
Figure 7: Intense syn-eclogite to blueschist-facies deformation of Kampos Subunit illustrating top-to-the east 378 
sense of shear. Localization of pictures is showing on figure 4a3. a) Metabasaltic dyke cross-cutting a massive 379 
metagabbro unit showing no deformation (GPS coordinate: 37°26’43.6’’ / 24°53’20.4’’). b) Isoclinal folds 380 
characterized by sub-horizontal axes parallel to the stretching lineation. These folds show intense thinning during 381 
shearing with pure shear component during deformation (GPS coordinate: 37°29’19.2’’ / 24°54’03.4’’). c, d) 382 
Syn-blueschist top-to-the east shearing affecting high-pressure metabasites (GPS coordinate: c) 37°25’05.3’’ / 383 
24°57’42.9’’ d) 37°29’22.6’’ / 24°55’42.1’’). 384 

 385 

 386 

4.4) Brittle deformation 387 

 388 

 Ductile features are affected by late, sometime pervasive, brittle deformation recorded 389 

in all units by both low and high-angle normal faults. These normal faults are well exposed 390 

near Sirigas where they offset two large boudinaged marble layers (Fig. 8a). Two normal 391 

faults, occurring between Sirigas and Papouri and close to Kini, reach the critical size to be 392 

followed at map scale (Fig. 3). Near Galissas (see location on Fig. 8b), the strongly 393 
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retrogressed rocks of Posidonia Subunit are in contact with the HP-LT blueschist- and 394 

eclogite-facies metabasites of Kampos Subunit (Figs. 3, 8b). Quaternary slope deposits cover 395 

this contact. Along the road between Finikas and Galissas, a west-dipping fault zone with 396 

cataclasites and striations crops out for about 50 m-long, showing oblique normal kinematics 397 

with top-to-the W-SW sense of movement (Figs. 8b, 8c, 8d, 8e). On top of this fault plane, a 398 

3-4 m-thick brittle fault gouge is observed. Moreover, south of Finikas, we observed normal 399 

faults trending N-S with similar top-to-the southwest kinematics (Fig. 8b, 8f). These two 400 

outcrops characterize a 4 km-long late brittle normal fault, the Finikas-Galissas Fault (Figs. 3, 401 

8b). 402 
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 403 
Figure 8: Field photographs of observed brittle normal faults. a) Panorama (Chroussa Subunit) showing coeval 404 
top-to-the east and west ductile-brittle to purely brittle normal faults. b) Zoom of the geological map showing 405 
location of outcrops along the Finikas-Galissas Fault. c) Associated stereogram showing measured brittle normal 406 
fault planes that indicate top-to-the W/SW kinematic. d) Brittle fault plane observed along the main road 407 
between Finikas and Galissas. e) Zoom on the striated fault plane showing the normal sense of motion. f) 408 
Stereogram showing brittle normal fault planes measured near Finikas village that indicate top-to-the southwest 409 
kinematic. 410 
 411 

 412 

 413 

 414 

 415 
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5) Geometry, kinematics and metamorphic conditions of the major contacts 416 

 417 

 If the Vari Detachment has already been described in previous works (Soukis and 418 

Stöckli, 2013), some of the major contacts described below were so far either neglected (i.e. 419 

Achladi-Delfini Shear Zone), or not fully understood in previous works. The new map, 420 

supported by field data and satellite observation, allows us to identify their main 421 

characteristics and role in the island overall architecture. 422 

 423 

5.1) Posidonia-Chroussa subunits contact: the Achladi-Delfini Shear Zone 424 

 425 

 The Posidonia-Chroussa subunits contact is exposed between Achladi Cape and 426 

Delfini (Fig. 9, see location on Fig. 3). In its southern limit, the trace of the shear zone can be 427 

followed over more than 3 km in the landscape, shown by the non-coaxial deformation of 428 

marbles layers (Fig. 9a). Some marble layers are affected by brittle normal faults, while others 429 

are boudinaged and separated by ductile shear zones rooting in the contact between Chroussa 430 

and Posidonia subunits. Whatever the regime of deformation and the physical conditions that 431 

prevailed, ductile or brittle, clear top-to-the east deformation is observed in the form of a thick 432 

shear zone (Fig. 9a). Below, the intensity of greenschist-facies retrogression increases in the 433 

vicinity of the shear zone, where metabasites are turned into chlorite-albite prasinites in which 434 

former HP-LT imprint is not detectable in the field. For example, west of Cape Achladi along 435 

the southern coast of the island, rocks of the Posidonia Subunit are strongly overprinted by 436 

greenschist-facies parageneses. At the cape, a metaconglomerate of Posidonia Subunit 437 

consisting of basic and calcitic pebbles embedded in heavily retrogressed metapelitic matrix 438 

crops out just below the contact. Within this metaconglomerate, pebbles are ductilely sheared 439 

with a top-to-the east kinematic (Fig. 9b). Structurally a few meters above, a ca. 20 m-long 440 
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outcrop of preserved blueschist-facies metabasite is associated with eclogite boudins (Fig. 9c). 441 

This sharp transition from well-preserved blueschists and eclogites above strongly retrograded 442 

rocks below also supports the presence of a major shear zone between the Posidonia and 443 

Chroussa subunits, named in this study the Achladi-Delfini Shear Zone. 444 

 Furthermore, the same contact between Posidonia and Chroussa subunits is exposed 445 

around Delfini Bay that is bounded to the west by a small peninsula (Fig. 9d). Along a SW to 446 

NE transect through Delfini peninsula, two blue- to greenschist-facies shear zones are 447 

observed (Figs. 9d, 9e). Top-to-the east kinematic indicators such as shear bands, sigmoidal 448 

pressure shadows on garnets or drag folds associated with crystallization of syn-kinematic 449 

chlorite and albite are observed within the Delfini peninsula (Figs. 9f, 9g). These two 450 

metamorphic transition zones, distant of ca. 500 m, define the contact between Posidonia and 451 

Chroussa subunits. These shear zones have each accommodated a part of the total 452 

displacement and can be considered at large-scale as a single structure, the Achladi-Delfini 453 

Shear Zone (Fig. 3). 454 

 Despite poorer outcrop conditions within the island, the trace of this contact was 455 

followed by combining structural and metamorphic observations, looking especially for the 456 

preservation of HP-LT minerals. These field observations were strengthened by detailed 457 

analysis of aerial pictures. At map-scale, the resulting geometry of the Achladi-Delfini Shear 458 

Zone shows a sinuous contact extending over 13 km through the island (Fig. 3). 459 



13 1

3 

 460 
Figure 9: The top-to-the east Achladi-Delfini Shear Zone. a) Satellital image of the Achladi-Delfini Shear Zone 461 
observed above Achladi Cape and its interpretation showing top-to-the east sense of shear. b) Top-to-the east 462 
shearing in a greenschist metaconglomerate unit located just below the contact. c) Structurally few meters above, 463 
in the Chroussa Subunit, massive glaucophanites are observed with eclogitic boudins. d) Satellital image of the 464 
Delfini peninsula and its geological interpretation. e) Geological cross-section through the Delfini peninsula 465 
illustrating the architecture of the Achladi-Delfini Shear Zone. f) Top-to-the east kinematic indicators observed 466 
in retrogressed greenschist-facies rocks. g) Syn-blueschist top-to-the east shearing observed in the Chroussa 467 
Subunit. 468 
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5.2) Chroussa-Kampos subunits contact: the Kastri and Lia Shear Zones 469 

 470 

 The contact between Chroussa and Kampos subunits is well exposed in the northern 471 

part of the island, along the Kampos metabasite belt (Fig. 10; see also Keiter et al., 2004, 472 

2011). This metabasic unit shows an E-W orientation and dips toward the north on the 473 

western side. It strikes more N-S dipping westward in its eastern half (Fig. 10). The northern 474 

and southern contact zones of the Kampos Subunit, i.e. the basal and roof contacts, are nicely 475 

exposed along the coast, especially on the way to Lia Beach (Fig. 10). 476 

 477 
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 478 
Figure 10: Geological architecture of the northern part of Syros. a) Geological map showing locations of cross-479 
sections and figures 12 and 13. b) Cross-section illustrating the organization and deformation of structures. Note 480 
that large shear zones surround the western part of the Kampos metabasite belt. c) Detailed cross-section of the 481 
eastern part of the Kampos metabasite belt. 482 
 483 

 484 

 The basal contact of Kampos Subunit with Chroussa Subunit can be seen in the 485 

landscape near Kastri (Fig. 11a). At the contact, the marble layers of Chroussa Subunit are 486 

boudinaged and sheared, some of them showing large-scale sigmoids (Fig. 11a). These 487 

structures define a large-scale top-to-the northeast shear zone, named in this study the Kastri 488 

Shear Zone. Just below the contact, tightly folded marble intercalations occur as a result of 489 

intense shearing along this major shear zone (Fig. 11b). In contrast to the Kampos Subunit 490 
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that preserved eclogite- to blueschist-facies parageneses, rocks of the Chroussa Subunit are 491 

strongly overprinted in greenschist-facies conditions all along the contact (Figs. 11c, 11d). 492 

 493 

 494 
Figure 11: Basal contact of the Kampos metabasite belt: the Kastri Shear Zone. Pictures are located on the Fig. 495 
12. a) Field view and its interpretation of the eastern part of the Kastri Shear Zone. Large-scale asymmetric 496 
boudins of marble are observed in the contact zone and show top-to-the northeast sense of deformation. b) Zoom 497 
showing the intense folding of black marbles below this contact. c) Directly below the contact, the Chroussa 498 
Subunit is highly retrogressed and displays syn-greenschist top-to-the east sense of shear. d) High-pressure 499 
glaucophanites bearing lawsonite pseudomorphs are well preserved up to the contact on Lia Beach.  500 

 501 
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Although the Kampos Subunit composes the upper structural part of the CBU, a klippe 502 

with a lithology similar to Chroussa Subunit is observed above the Kampos metabasite belt 503 

(Fig. 10). The contact zone between this klippe and the roof of the Kampos metabasite belt 504 

displays intense deformation and occurs between foliated serpentinite and metapelite (Figs. 505 

12a, 12b). The foliation is parallel to the contact and is cut by a significant number of east-506 

dipping shear zones decorated with syn-kinematic glaucophanes (Figs. 12b, 12c, 12d). This 507 

shear zone also shows asymmetrical boudins of metabasites included in a sigmoidal foliation 508 

compatible with top-to-the east shearing deformation and folds with curved axes mostly 509 

parallel to the stretching lineation, suggesting sheath folds (Figs. 12e, 12f). All these 510 

structures define the existence of a major syn-blueschist top-to-the east shear zone located at 511 

the roof of the Kampos metabasite belt, which we called the Lia Shear Zone. 512 

 513 



18 1

8 

 514 
Figure 12: Roof contact of the Kampos metabasite belt. a) Field view of the western part of the Kampos 515 
metabasite belt and its geological interpretation. b, c, d) This contact is characterized by serpentinites below and 516 
metapelites on top, both affected by top-to-the east syn-blueschist shear bands. e) Asymmetric boudinage of a 517 
metabasite layer included in a sigmoidal foliation compatible with top-to-the east shearing deformation. f) Folds 518 
with curved axes sub-parallel to the stretching lineation and showing closed contour building the typical eye-519 
structure of sheath folds. 520 

 521 

 522 
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5.3) CBU-Vari Unit contact: the Vari Detachment 523 

  524 

 The contact between the CBU and Vari Unit is a debated topic in literature. The contact 525 

itself is hidden by Quaternary deposits and probably affected by late normal faults. However, 526 

field investigations into the footwall unit, i.e. the CBU, allow proposing new arguments on 527 

the internal architecture of the Vari Detachment from bottom to top as it crops out from Cape 528 

Katerghaki to Vari (Fig. 13). 529 

 Below the contact, trending parallel to the stretching lineation, the whole section is 530 

characterized by a shallow northeast-dipping foliation showing that Vari Unit structurally 531 

overlain Kampos Subunit (Figs. 13a, 13b). As the rest of Kampos Subunit, these mafic rocks 532 

preserve HP-LT metamorphic parageneses such as eclogites and blueschists (see also Trotet et 533 

al., 2001a), and display a gradient of retrogression from eclogite- to blueschist-facies toward 534 

the contact. Indeed, the southwestern part of Cape Katerghaki (see location on Fig. 3) is 535 

composed of 10 m-thick massive eclogite bodies, which are more and more retrogressed in 536 

the blueschist-facies toward Vari Unit. All along this gradient, rocks show evidence of syn-537 

eclogitic stretching reworked by syn-blueschists top-to-the east ductile shearing with HP-LT 538 

minerals such as glaucophanes decorating shear zones (Figs. 13c, 13d). South of Fabrika 539 

beach, structurally 20-30 m below the contact, a metaconglomerate composed of eclogitized 540 

mafic pebbles comprised within a marble matrix show top-to-the east sense of shear (Fig. 13e). 541 

Conjugate northeast-striking normal faults displace the inherited high-pressure structure by a 542 

few tens of meters. This may be due to conjugate normal faults (Figs. 13a, 13b). 543 

Just above the contact and within the Vari Unit, mylonitic greenschists are observed, 544 

displaying only greenschist-facies metamorphism without any evidence of prior HP-LT stage, 545 

in contrast with the greenschist-facies metamorphic rocks observed in the bulk of the CBU. 546 

These rocks are strongly foliated and top-to-the E/NE shear criteria are observed such as 547 



20 2

0 

sigmoidal pressure shadows on pyrite showing top-to-the east kinematic in the north of 548 

Fabrika beach, and top-to-the northeast shear bands south of Azolimnos village. On top of 549 

these greenschist-facies mylonites, the Vari orthogneiss shows a plano-linear ductile fabric 550 

with a stretching lineation oriented N70°E, intercalated in some places with fine-grained 551 

amphibolites. This unit is affected by brittle deformation, expressed as several 10 m-thick 552 

zones of cataclasites cutting through the orthogneiss (Fig. 13f; see also Soukis and Stöckli, 553 

2013). Several E-W trending normal faults are observed in this area, cutting across the 554 

orthogneiss foliation at distance from the contact with the CBU, at variance with Philippon et 555 

al.’s (2011) interpretation of the regional structure. Our interpretation is confirmed at larger 556 

scale. Philippon et al. (2011) correlated the Vari basement lithologies with the so-called 557 

gneiss observed in the lower part of our Posidonia Unit, but we have seen that Posidonia Unit 558 

has seen the same peak of metamorphism as the other CBU of Syros with the local 559 

preservation of blueschists- or eclogite-facies metabasites while the Vari Unit has never been 560 

through HP-LT conditions. 561 

 562 
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 563 
Figure 13: The Vari Detachment. a) Field photography showing that the CBU is structurally below the Vari Unit. 564 
b) Cross-section showing the architecture of the Vari Detachment and its top-to-the east sense of motion. c, d, e) 565 
Below the Vari Detachment, rocks of the CBU display a significant number of top-to-the east syn-blueschist 566 
shear bands affecting eclogites. f) Large-scale cataclastic zones observed upon the Vari Detachment within the 567 
gneiss of Vari. 568 

 569 

 570 

6) Discussion 571 

 572 

 Although our new geological map matches the one of Keiter et al. (2011) from a 573 

lithological point of view, its structural interpretation is drastically different. This is 574 

particularly evident in the analysis of large-scale geometries, unit and subunit subdivisions 575 
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and in the analysis of metamorphic record, which allowed us to identify several orders of 576 

shear zones due to strain localization. 577 

 578 

6.1) What is left of the original nappe structure of the Cycladic Blueschist Unit? 579 

 580 

We have recognized three distinct tectonic subunits composing the CBU in Syros, 581 

from top to base, the Kampos, Chroussa and Posidonia subunits, all resting structurally below 582 

the Vari Unit, which shows no evidence of HP. These subunits are characterized by their 583 

lithology and predominant metamorphic facies as seen in the field. All three subunits have 584 

seen the P-T conditions of the eclogite-facies but they have been subjected to different 585 

degrees of retrogression during exhumation. Following our observations, we propose a new 586 

metamorphic map based upon the study of predominant metamorphic facies, as well as on 587 

kinematic indicators and their relation to metamorphic parageneses (Fig. 14). This map, where 588 

colors correspond to the predominant metamorphic facies, displays the first-order distribution 589 

of the main parageneses.  590 

The recognition of remains of eclogite within all three subunits implies that Kampos, 591 

Chroussa and Posidonia subunits have all undergone a HP-LT metamorphic event in the 592 

eclogite-facies. It ensues that local blueschist- or greenschist-facies rocks abundance is 593 

retrograde. The degree of retrogression, whether it occurred under blueschist and/or 594 

greenschist metamorphic conditions, is entirely different. Retrogression increases from top to 595 

bottom of the CBU, which points to important differences in the P-T-time evolution of the 596 

different subunits during exhumation, as previously proposed by Trotet et al. (2001b). The 597 

imprint of deformation during exhumation has been different in each of these subunits, 598 

intense in the lowermost Posidonia Subunit (where the entire subunit has been sheared and 599 

pervasively retrogressed), weaker in the uppermost Kampos Subunit (where blueschist- and 600 
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then greenschist-facies deformation is localized along preferential shear zones). The Achladi-601 

Delfini Shear Zone best shows this contrast. These features are similar to those observed on 602 

Sifnos (Roche et al., submitted) and seem characteristic of the large-scale structure acquired 603 

by the CBU within the subduction channel before those rocks were reworked by greenschist-604 

facies deformation during Oligocene to Miocene extension. We now discuss the 605 

tectonometamorphic evolution of the subunits within the subduction channel. 606 

The apparent inverse metamorphic gradient defined by the transition from the 607 

preserved high-pressure Kampos Subunit to the strongly retrograded Posidonia Subunit raises 608 

petrological questions. Indeed, very different P-T histories were so far published for Syros in 609 

terms of peak P-T conditions and shape of retrograde P-T path (Fig. 1b). Exhumation 610 

scenarios with a single retrograde P-T path for the whole CBU (Keiter et al., 2004, 2011; 611 

Schumacher et al., 2008) cannot explain the different degrees of retrogression observed in the 612 

CBU. Maximum P-T conditions around 15kbar and 500°C (Schumacher et al., 2008) just 613 

fringe the eclogite-facies (Fig. 1b) while eclogites are abundantly observed on Syros as well 614 

as on Sifnos (Trotet et al., 2001a). To justify these apparent contradictions, Schumacher et al. 615 

(2008) hypothesized that eclogites of Syros are the product of an earlier metamorphic event 616 

and were juxtaposed with the rest of the CBU by tectonic contacts. As result of our 617 

observations, the presence of eclogite boudins and lenses in all subunits cropping out on Syros, 618 

except the Vari Unit, does not fit the interpretation of Schumacher et al. (2008). An 619 

alternative explanation would be that the glaucophane-bearing marbles studied by 620 

Schumacher et al. (2008) were formed during the retrograde path in P-T conditions for which 621 

this assemblage is in equilibrium or that the amphibole mineralogy and stability is chemically 622 

buffered by the lithology. Indeed, much of the blueschist-facies parageneses on Syros are syn-623 

kinematic and show top-to-the east sense of shear and clearly postdates the eclogite-facies. 624 

Consequently, our structural observations best fit the petrological analyses of Trotet et al. 625 
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(2001b), for whom all subunits of the CBU attained the same metamorphic peak in the P-T 626 

field of eclogite-facies, and followed different retrograde P-T paths, leading to different grade 627 

of retrogression in the CBU during the continuous activity of large-scale top-to-the east shear 628 

zones between Kampos, Chroussa and Posidonia subunits all over the exhumation (Fig. 1b). 629 

According to this interpretation, the tectonic history and the metamorphic path to the surface 630 

differ from the one envisaged by Keiter et al. (2004, 2011), who suggested rigid block 631 

exhumation mechanisms of the whole CBU as a single block. It remains true however that 632 

deformation progressively localized during exhumation along shear zones and that entire parts 633 

of the islands escape from the low-temperature deformation, these domains are those where 634 

the HP-LT parageneses are best preserved, as discussed in the next section. 635 
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 636 
Figure 14: New metamorphic map of Syros showing an apparent inverse metamorphic gradient. The G-G'' cross-637 
sections represent a synthetic view over the overall tectonometamorphic structure of Syros. The architecture of 638 
the CBU is subdivided here in three subunits separated by large-scale shear zones. Note that in our interpretation, 639 
the Vari Detachment juxtaposed with a top-to-the east motion the CBU and the uppermost Vari Unit. 640 
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6.2) Prograde or retrograde deformation? 641 

 642 

 A number of previous structural studies reported that prograde deformation is 643 

observed in Syros (Rosenbaum et al., 2002; Keiter et al., 2004, 2011; Philippon et al., 2011). 644 

Some of these studies postulated that this deformation took place just before or during peak 645 

metamorphism with no or only local retrograde deformation (Rosenbaum et al., 2002; Keiter 646 

et al., 2004, 2011). Three main arguments are presented in the literature. 1) The observation 647 

of deformed pseudomorphs of lawsonite: Philippon et al. (2011) noted that these 648 

pseudomorphs are always sheared with top-to-the S/SW kinematics and they correlated this 649 

sense of shear with subduction-related prograde thrusting. 2) The presence of large thrust 650 

zones, often described at the base of metabasic units. 3) The widespread preservation of 651 

aragonite pseudomorphs supports the view that no pervasive retrograde deformation occurred 652 

subsequently to the main prograde to peak metamorphism deformation event. The frequent 653 

presence of aragonite pseudomorphs in the Kampos Subunit, for instance in 654 

metaconglomerates, indeed shows that no significant deformation occurred at those places in 655 

the greenschist-facies and that parts of this subunit were exhumed as rigid bodies once they 656 

had exited blueschist-facies conditions (Schumacher et al., 2008). 657 

Our study shows that the three subunits composing the CBU are each separated by 658 

top-to-the E/NE shear zones (Figs. 3, 14). This top-to-the E/NE deformation event observed 659 

within the entire volume of the CBU on Syros also affects lawsonite pseudomorphs (Fig. 6b) 660 

in contradiction with Philippon et al.’s observations (2011). Therefore, these structures are not 661 

only markers of prograde deformation, but also characterize early retrograde deformation. 662 

Indeed, taking into account the new lawsonite + glaucophane out reaction calculated for Fe-663 

Mg end-member at XCO2 = 0,01 (Schumacher et al., 2008), and the P-T path of Trotet et al. 664 
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(2001b), it appears that lawsonite could have been sheared with top-to-the east sense of shear 665 

during the first exhumation stages (Fig. 1b). 666 

Geometry of the basal contact of the Kampos metabasite belt is quite complex and 667 

interpreted differently in previous studies. On one hand, Trotet et al. (2001a) describe this 668 

contact as a ductile detachment. For these authors, this contact is marked in the field by an 669 

apparent metamorphic gap between retrograded greenschist-facies rocks below the 670 

detachment and preserved eclogite- and blueschist-facies above (Fig. 2a). On the other hand, 671 

Keiter et al. (2004, 2011) and Philippon et al. (2011) described this contact as a large prograde 672 

thrust related to the subduction phase. Although Keiter et al. (2004) challenged the existence 673 

of a sharp metamorphic transition through this contact, we confirm this observation of Trotet 674 

et al. (2001a). Indeed, the contact zone is clearly marked by retrogression of the upper part of 675 

the underlying Chroussa Subunit over a 100 m-thick greenschist-facies shear zone. Moreover, 676 

all shear criteria observed within this shear zone are top-to-the E/NE, in agreement with syn-677 

greenschist retrograde sense of shear observed within the Achladi-Delfini Shear Zone deeper 678 

down in the CBU. This does not preclude the possibility that the Kampos-Chroussa subunits 679 

contact is originally a thrust as it superimposes the Kampos Subunit, which is mostly 680 

ophiolitic, on top of the Chroussa Subunit, which is mostly made of metasediments. Our 681 

interpretation is that this thrust has been later reactivated as a major top-to-the east shear zone 682 

during exhumation. In the same way, we interpret the klippe of Chroussa Subunit, which is 683 

structurally positioned above the Kampos metabasite belt (Fig. 10), as thrusted onto the 684 

Kampos Subunit during the late prograde phase of subduction or during the early phase of 685 

exhumation. Indeed, this klippe corresponds lithologically to the Chroussa Subunit but shows 686 

only eclogite to blueschist parageneses as the Kampos Subunit (Fig. 14). Our observations 687 

show that this thrust was reactivated only in the blueschist-facies forming the Lia Shear Zone 688 
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(Fig. 12). Then the klippe and the Kampos metabasite belt may have followed, as a single unit, 689 

the same exhumation history.  690 

 In agreement with Trotet et al. (2001a), one of the major results of our study is the 691 

observation of a pervasive continuum of top-to-the E/NE deformation from P-T conditions of 692 

the metamorphic peak (eclogite-facies) to late stages of retrogression in the blueschist- and 693 

then greenschist-facies. In contrast to Rosenbaum et al. (2002), and Keiter et al. (2004, 2011), 694 

we conclude that a large part of the deformation in Syros was acquired during exhumation and 695 

that this deformation was heterogeneously distributed and preferentially localized along 696 

extensional shear zones. 697 

However, it is also clear that locally, criteria of prograde or peak-metamorphism 698 

deformations are preserved. Different structures are most notably inconsistent with a 699 

pervasive top-to-the E/NE retrograde shearing. First, the orientation of stretching lineations is 700 

distinctly scattered in subunits best preserving eclogite and blueschist-facies parageneses (i.e. 701 

Chroussa and Kampos subunits; Figs. 3, 4). Indeed, a group of N-S oriented lineations and 702 

top-to-the S/SW kinematic indicators, already observed by Philippon et al. (2011), can be 703 

found in Kampos Subunit. Then, at a larger-scale, the N-S orientation of the Kampos 704 

metabasite belt (see Keiter et al., 2004, 2011) is inconsistent with E-W oriented deformation 705 

and top-to-the E/NE sense of shear. All these structures appear to be related with a N-S 706 

oriented shearing event and not with the retrograde top-to-the E/NE continuum of 707 

deformation described in this study. A plausible explanation would be that these structures 708 

were acquired during an early N-S oriented prograde event in the subduction channel, leading 709 

to formation of large thrust planes between units that are now found preserved in the highly 710 

metamorphic Kampos and Chroussa subunits. This interpretation is consistent with top-to-the 711 

S/SW prograde sense of shear described by Philippon et al. (2011). Such peak-metamorphic 712 

structures were later reactivated as weak contact zones during exhumation, within a top-to-the 713 
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E/NE non-coaxial regime progressively localizing strain toward the lower structural parts of 714 

the CBU. These features are discussed in the context of the heterogeneous localization of 715 

deformation during exhumation of the CBU. 716 

 717 

6.3) Localization of deformation during exhumation 718 

 719 

The roof contact of the Kampos metabasite belt is only marked by syn-blueschist 720 

deformation, showing that this shear zone was deactivated early in the exhumation process, 721 

and that the deformation localized progressively in the basal contact of Kampos Subunit, 722 

which is characterized by syn-greenschist deformation. In contrast with Posidonia Subunit, 723 

Chroussa Subunit is not totally retrogressed in the greenschist-facies and shows large portions 724 

characterized by the predominance of blueschist-facies parageneses. Once again, this feature 725 

illustrates the progressive localization of deformation during exhumation toward the base of 726 

the CBU, i.e. toward Posidonia Subunit. Finally, the Achladi-Delfini Shear Zone is currently 727 

characterized by syn-greenschist deformation that has overprinted the entire volume of 728 

Posidonia Subunit. 729 

Progressive localization of deformation toward the base of the CBU in Syros during 730 

exhumation is linked with a younging of apparent ages towards the south, from Kampos (45-731 

50 Ma, syn-orogenic period) to Posidonia subunits (20-35 Ma, post-orogenic period), 732 

especially shown by 
40

Ar/
39

Ar and Rb/Sr data on white micas (Fig. 2b; Maluski et al., 1987; 733 

Tomaschek, et al., 2003; Putlitz, et al., 2005; Huet, 2010; Bröcker et al., 2013). A possible 734 

explanation would be that structurally downward strain localization leads to partial resetting 735 

of isotopic systems or even recrystallization in the lowermost units. This migration of 736 

deformation could be enhanced by different factors such as intense fluid circulations in the 737 

basal part of the CBU and/or increased thermal influx at the base of the metamorphic pile 738 
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(Matthews and Schliestedt, 1984; Schliestedt and Matthews, 1987; Avigad, 1993; Trotet et al., 739 

2001b). This localization could be also linked to the different lithologies composing the CBU 740 

on Syros, less and less resistant to deformation toward the base, passing from massive 741 

metabasite in Kampos Subunit to a succession of thick marble layers and metapelites in 742 

Chroussa Subunit and finally metapelites in Posidonia Subunit. During cooling of 743 

metamorphic units, this inherited rheological heterogeneity may have enhanced the downward 744 

localization of deformation toward the weak rheological units. So, while Posidonia Subunit 745 

has been deformed until the P-T conditions of the greenschist-facies, the Kampos Subunit and 746 

parts of the Chroussa Subunit have been only deformed during the first steps of exhumation. 747 

This participated to the local preservation of prograde markers of deformation seen today, 748 

allowing detailed petrological and structural information to be retrieved on the prograde 749 

subduction-related phase of deformation. 750 

 751 

6.4) Thrusting, exhumation and extension 752 

 753 

The contacts between Kampos, Chroussa and Posidonia subunits have a polyphase 754 

history. The first stage corresponds to the stacking of units by thrusting (i.e. nappe stacking), 755 

probably during the prograde evolution and at the pressure peak. A limited number of 756 

outcrops suggest that the sense of shear was toward the south during this first episode 757 

(Philippon et al., 2011). The main evidence of thrusting is that the uppermost HP-LT Kampos 758 

Subunit is mostly made of ophiolitic material, while the lowermost Posidonia Subunit is rich 759 

in metapelites that may have been deposited over a continental basement (Keiter et al., 2004; 760 

2011; Schumacher et al., 2008; Philippon et al., 2011). In a second stage, the contacts were 761 

reactivated during the retrograde evolution and exhumation, via a top-to-the east shearing 762 

deformation, localized along the main contacts or distributed within the whole Posidonia 763 
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Subunit. This continuum of top-to-the east shear thus encompasses two major periods of the 764 

geodynamic evolution of the Aegean: (1) The Eocene construction of the Hellenides nappe 765 

stack and HP-LT accretionary complex of the CBU; (2) the Oligocene to Miocene extension 766 

leading to crustal thinning and formation of the Aegean Sea in the back-arc region of the 767 

Hellenic subduction. The first period corresponds to exhumation of the CBU within the 768 

subduction channel (syn-orogenic exhumation, Jolivet et al., 2003; Jolivet and Brun, 2010), 769 

and the second stage to the formation of metamorphic core complexes of the Cyclades (post-770 

orogenic extension, Huet et al., 2011). 771 

 772 

6.5) The Vari Detachment: an example of a subduction channel roof 773 

 774 

 Several studies describe the existence of the Vari Detachment on Syros, juxtaposing 775 

the Vari Unit above the CBU (Trotet et al., 2001a; Rosenbaum et al., 2002; Ring et al., 2003; 776 

Jolivet et al., 2010; Keiter et al., 2011; Soukis and Stöckli, 2013). It is also suggested that this 777 

detachment reappears on the neighboring island of Tinos (Maluski et al., 1987; Patzak et al., 778 

1994; Jolivet et al., 2010; Soukis and Stöckli, 2013). This assumption is based on similar 779 

structural and metamorphic features of the footwall and hangingwall of the detachment 780 

outcropping in each island. On the other hand, Philippon et al. (2011) drastically revised the 781 

interpretation of this contact, repositioning the Vari Unit below the CBU. According to them, 782 

these rocks have to be correlated with the Cycladic Continental Basement cropping out in the 783 

southern part of the Cyclades (cf. Huet et al., 2009; Augier et al., 2015). On the contrary, we 784 

demonstrated here, that clear field evidences support the original interpretation putting the 785 

Vari Unit on top of the CBU (Figs. 13a, 13b). The Vari Detachment is generally considered as 786 

responsible for the exhumation of the CBU (Trotet et al., 2001a; Jolivet et al., 2010; Soukis 787 

and Stöckli, 2013). Trotet et al. (2001a, 2001b) and Jolivet et al. (2010) argued that the Vari 788 
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Detachment has accommodated part of the exhumation since the syn-orogenic period, 789 

whereas Ring et al. (2003) conclude that this structure only allowed the final exhumation of 790 

the CBU. Ring et al. (2003) obtained different retrograde cooling paths at the footwall and at 791 

the roof of the Vari Detachment with fission-tracks data on apatite and zircon gathered on 792 

Syros (Fig. 2b) and Tinos. From their results, they derive that intra-arc distributed extension 793 

caused only the final 6-9 km of vertical exhumation, and they conclude that the Vari 794 

Detachment was characterized by fast extension but caused little exhumation. But this 795 

detailed study is based upon fission-track data, which put only T-t constraints on the final 796 

parts of exhumation. Our structural observations show that the top-to-the E/NE deformation 797 

affecting the rocks located at the footwall of the Vari Detachment started in eclogite to 798 

blueschist P-T conditions and evolved progressively toward the conditions of the greenschist-799 

facies. Cataclastic deformation observed in the Vari Detachment testifies that this detachment 800 

has continued to operate in brittle conditions, but not that this detachment started in brittle 801 

conditions as asserted by Ring et al. (2003). Huet et al. (2009) and Jolivet et al. (2010) 802 

hypothesized that the Vari Detachment represents the Eocene roof of the subduction channel. 803 

Then, with the Oligocene to Miocene southward slab retreat, the Vari Detachment was 804 

transferred in a back-arc position in the Late Miocene as attested by its present position. 805 

 806 

6.6) Tectonometamorphic evolution of a subduction channel 807 

 808 

 Integrating the above presented and discussed new observations with the one available 809 

in literature, we propose a new tectonometamorphic evolution sequence. This scenario is 810 

divided in four steps: 811 

1) From the early Paleocene (65 Ma) to the early Eocene (50 Ma): 812 
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From the end of the Cretaceous, the Apulian continental block subducted below the southern 813 

margin of Eurasia (Jolivet and Brun, 2010). During this N-S oriented subduction phase, the 814 

Hellenic nappe stack was progressively constructed. The Pindos oceanic domain probably 815 

started to subduct around 55 Ma (Menant et al., 2015) forming at depth the CBU (Bonneau 816 

and Kienast, 1982; Jolivet and Brun, 2010). Between 55 and 50 Ma, CBU rocks were strongly 817 

deformed, forming the observed N-S trending stretching lineation, resulting in the thrusting of 818 

subunits such as the Kampos Subunit with a resultant top-to-the S/SW sense of shear 819 

associated with prograde shear zones (Philippon et al., 2011) and large-scale open folds 820 

(Keiter et al., 2011; see also Roche et al., submitted, for Sifnos Island). 821 

2) From the early Eocene (50 Ma) to the early Oligocene (35-30 Ma): 822 

The CBU started to exhume, following an initial cold retrograde P-T path able to preserve 823 

HP-LT parageneses. Ductile shear zones associated with syn-blueschist top-to-the east sense 824 

of shear accommodated this exhumation below the Vari Detachment that represented the roof 825 

of the subduction channel. During this syn-orogenic phase, deformation started to localize at 826 

the interface between large lithological units, probably along former thrusts, delimiting the 827 

subunits detached from the overlying plate. During this period, a top-to-the south thrust, 828 

observed on Ios Island and located at the base of the CBU (Huet et al., 2009), was active and 829 

exhumation of the CBU was accommodated within the subduction channel of a slowly 830 

retreating subduction zone while the thrust front was propagated southward (Jolivet et al., 831 

2003; Brun and Faccenna, 2008, Jolivet and Brun, 2010; Ring et al., 2010). 832 

3) From the early Oligocene (30-35 Ma) to the early Miocene (23-19 Ma): 833 

A drastic change in kinematic boundary conditions occurs at 30-35 Ma with a decrease of the 834 

absolute northward motion of Africa and the southward retreat of the subducting slab (Jolivet 835 

and Faccenna, 2000). This drastic change marks the transition from syn-orogenic exhumation 836 

to post-orogenic extension and the formation of the Aegean Sea. The post-orogenic 837 
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extensional regime is still characterized by top-to-the E/NE sense of shear as observed in the 838 

Achladi-Delfini Shear Zone. During exhumation, deformation progressively localized in 839 

lower structural levels of the CBU where retrogression is almost complete. 840 

4) From the Early Miocene (23-19 Ma) to the present: 841 

The final exhumation of the CBU is first controlled by ductile-brittle normal faults and finally 842 

by purely brittle normal faults. The Achladi-Delfini Shear Zone displays ductile-brittle 843 

deformation with top-to-the E/NE sense of shear, like some outcrops in the Chroussa Subunit. 844 

Large-scale brittle normal faults can finally affect the exhumed units such as the 4 km 845 

Finikas-Galissas Fault, which juxtaposes well-preserved eclogite- to blueschist-facies rocks 846 

with strongly retrogressed units (Figs. 3, 8b). 847 

 848 

7) Conclusion 849 

 850 

In this study, new geological and metamorphic maps and cross-sections of Syros have 851 

been proposed, described and discussed. Field mapping combined with structural and 852 

petrological observations allow us to subdivide the CBU into three subunits, Kampos, 853 

Chroussa and Posidonia subunits, separated by major ductile shear zones. Eclogite is found 854 

within all three subunits. This implies that, despite their entirely different degree of 855 

retrogression (from eclogite at the top to greenschist at the base), the subunits have undergone 856 

the same HP-LT metamorphic peak in eclogite-facies, pointing to important differences in P-857 

T-time evolution during exhumation. Large-scale ductile shear zones delimiting the subunits 858 

record a multi-stage structural evolution. They may have formed during burial with the 859 

development of a currently N-S trending eclogite to blueschist stretching lineation 860 

accompanied by top-to-the S/SW sense of shear. From the P-T conditions of the metamorphic 861 

peak and during exhumation, the contacts were reactivated as top-to-the east ductile 862 
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extensional shear zones. New observations of the Vari Detachment, which juxtaposes the low-863 

pressure Vari Unit onto the CBU, show consistent top-to-the-east shear sense. We infer that, 864 

after the prograde top-to-the S/SW deformation, the CBU was exhumed by an overall top-to-865 

the east shearing all the way from the depth of the eclogite-facies to the greenschist-facies and 866 

finally, into the brittle crust. During exhumation, deformation progressively localized 867 

downward in the CBU, along several large-scale ductile shear zones, allowing preservation of 868 

earlier HP-LT structures and metamorphic parageneses. 869 

This study brings new insights on the tectonometamorphic evolution of a subduction 870 

channel, showing progressive strain localization, during both the prograde and retrograde 871 

history. The rate of this progressive strain localization is however unknown, and in general, 872 

poorly known in similar geological contexts. Are all shear zones coeval, do they work at the 873 

same time or can we see a sequential development until final localization on the brittle Vari 874 

Detachment? As an open question left for further work, we can say that modeling the 875 

evolution of the CBU accretionary complex and understanding the mechanical behavior of the 876 

subduction interface requires quantifying the rate of strain localization. Acquisition of 877 

detailed time constraints along the P-T path is fundamental in determining the role and the 878 

importance of the shear zones bounding the subunits of Syros, it is a pre-requisite for further 879 

considerations on exhumation mechanisms. 880 
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