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24Astronomisches Institut der Ruhr-Universität Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
25Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH
26Astro Space Center of the Lebedev Physical Institute, Profsoyuznaya str. 84/32, Moscow 117997, Russia
27Astronomical Institute ’Anton Pannekoek’, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands
28Center for Information Technology (CIT), University of Groningen, The Netherlands
29Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 av Charles André, 69561 Saint Genis Laval Cedex, France
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ABSTRACT
Faint undetected sources of radio-frequency interference (RFI) might become visible in long
radio observations when they are consistently present over time. Thereby, they might obstruct
the detection of the weak astronomical signals of interest. This issue is especially important
for Epoch of Reionisation (EoR) projects that try to detect the faint redshifted HI signals from
the time of the earliest structures in the Universe. We explore the RFI situation at 30–163 MHz
by studying brightness histograms of visibility data observed with LOFAR, similar to radio-
source-count analyses that are used in cosmology. An empirical RFI distribution model is
derived that allows the simulation of RFI in radio observations. The brightness histograms
show an RFI distribution that follows a power-law distribution with an estimated exponent
around -1.5. With several assumptions, this can be explained with a uniform distribution of
terrestrial radio sources whose radiation follows existing propagation models. Extrapolation
of the power law implies that the current LOFAR EoR observations should be severely RFI
limited if the strength of RFI sources remains strong after time integration. This is in contrast
with actual observations, which almost reach the thermal noise and are thought not to be
limited by RFI. Therefore, we conclude that it is unlikely that there are undetected RFI sources
that will become visible in long observations. Consequently, there is no indication that RFI
will prevent an EoR detection with LOFAR.

Key words: atmospheric effects – instrumentation: interferometers – methods: observational
– techniques: interferometric – radio continuum: general – dark ages, reionisation, first stars

1 INTRODUCTION

Radio astronomy concerns itself with the observation of radiation
from celestial sources at radio wavelengths. However, astronomi-
cal radio observations can be affected by radio-frequency interfer-
ence (RFI), which might make it difficult to calibrate the instrument
and achieve high sensitivities (Pankonin & Price 1981; Thompson
et al. 1991; Lemmon 1997; Fridman & Baan 2001). The careful
management of spectrum allocation and the construction of radio-
quiet zones help to limit the number of harmful transmitters. If
harmful RFI is observed nevertheless, the use of RFI mitigation
methods can sometimes clean the data sufficiently to allow succes-
ful calibration and imaging. Many techniques have been designed
to mitigate the effects of RFI, such as detection and flagging of
data (Weber et al. 1997; Leshem et al. 2000; Ryabov et al. 2004;
Baan et al. 2004; Niamsuwan et al. 2005; Flöer et al. 2010; Of-
fringa et al. 2010a), adaptive cancellation techniques (Barnbaum
& Bradley 1998; Briggs et al. 2000) and spatial filtering (Leshem
et al. 2000; Ellingson & Hampson 2002; Smolders & Hampson
2002; Boonstra 2005; Kocz et al. 2012; Offringa et al. 2012b).

Typical radio observations record a few hours of data, and the
results are integrated. In these cases, excising only the interference
that is apparent and thus above the noise often suffices, i.e., the ob-
servation can still reach the thermal noise limit of the instrument.
A new challenge arises, however, when one desires much deeper
observations, and hundreds of hours of observations need to be in-
tegrated. In such a case, weak interference caused by stationary
RFI sources might not manifest itself above the noise in individual
observations, but might be persistently present in the data. Subse-
quently, when averaging these data, the interference might become
apparent and occlude the signal of interest. This is very relevant
for the 21-cm Epoch of Reionisation (EoR) experiments, because
they involve long integration times. Several such experiments are
underway, to either measure the angular power spectrum (Paciga
et al. 2011; De Bruyn et al. 2011; Jacobs et al. 2011; Williams
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et al. 2012) or the global signal (Bowman & Rogers 2010). Ground-
based Cosmic Microwave Background (CMB) experiments are an-
other class of experiments involving long integration times (e.g.,
Subrahmanyan & Ekers 2002). For these experiments, it is impor-
tant to know the possible effect of low-level interference on the
data, as these might overshadow or alter the signal of interest.

In this article, we will connect new insights about RFI to the
angular EoR experiment that is using the Low-Frequency Array
(LOFAR) (De Bruyn et al. 2011, Van Haarlem et al. 2013). The
LOFAR EoR project aims to detect the redshifted 21-cm signals
from the EoR using the LOFAR HBA antennas (115–190 MHz,
zHI=11.4–6.5). Several fields will be observed over 100 nights, to
achieve sufficient sensitivity to allow the signal extraction. An EoR
calibration pipeline has been designed that solves for ionospheric
and instrumental effects in approximately hundred directions us-
ing the SAGE algorithm (Kazemi et al. 2011). Initial results from
commissioning observations show that in a single night the thermal
noise level can almost be reached (Yatawatta et al. 2013).

This work explores the information that is present in inter-
ference distributions, in order to analyse possible low-level inter-
ference that is not detectable by standard detection methods. Our
approach is similar to the radio-source-count analyses that are used
in cosmology (Condon 1984), also named logN – logS analyses,
where N and S refer to the celestial source count and brightness
respectively. The slope in such a plot contains information about
source populations, their luminosity functions and the geometry of
the Universe. We analyse such a double-logarithmic plot for the
case of terrestrial sources, with the ultimate goal of estimating their
full spatial and brightness distributions. This results in a better in-
sight into the effects of low-level interference and allows one to
simulate the effects of interference more accurately.

This paper is organised as follows: in Sect. 2, we calculate a
model for terrestrial interfering source distribution based on vari-
ous assumptions. Sect. 3 presents the methods that we use to gen-
erate and analyse brightness histograms of LOFAR data. Sect. 4
describes the two LOFAR data sets that have been used to perform
the experiment. The results of analysing the sets are presented in
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Sect. 5. Finally, in Sect. 6 the results are discussed and conclusions
are drawn.

2 MODELLING THE BRIGHTNESS DISTRIBUTION

Interference is generated by many different kinds of transmitters,
and these will have different spatial and brightness distributions
(“spatial” refers here to the distribution on the Earth). For exam-
ple, aeroplanes and satellites have widely different heights, while
other sources are ground-based. Even ground-based sources might
be spread differently. For example, it can be expected that citizens’
band (CB) devices, that are often used in cars, are distributed dif-
ferently from broadcasting transmitters. For deliberate transmitters,
the frequency at which interference occurs can identify the involved
class of devices, because devices are constrained by the bands that
have been allocated for the given class.

In time-frequency space, interfering sources can have com-
plex structures. They can also be intermittent and different sources
might overlap in time-frequency space. An example of interfering
sources can be seen in Fig. 1, which shows raw visibility data of one
baseline of a LOFAR observation in a dynamic spectrum. Because
many sources change over time, are repetitive or affect multiple
channels, many sources produce multiple unconnected features in
time-frequency space. It is often not clear what constitutes a single
interfering source, hence it is hard to count individual sources. In-
stead, we will count the number of times a given brightness occurs
in time-frequency space. This — as well as many other effects —
will of course influence the distribution. If sources overlap in the
time-frequency space, the situation is somewhat similar to the case
where multiple unresolved celestial radio sources in the reception
pattern of a telescope only allow observation of a sum of sources.
However, in that case it is still possible to validate radio source
models by comparing logN – logS histograms (Scheuer 1957).

It is common knowledge that in a uniform Euclidian Universe
source counts behave like power-law distributions. The differential
source-count distribution for sources on a flat surface is a power
law with -2 exponent. We will derive this expected intrinsic source
distribution for interfering radio sources. After that, we will analyse
the issues that arise when measuring the distribution by counting
samples.

In every dynamic spectrum we can measure the number of
times that the flux density is within a particular range. Dividing
this quantity by the total number of samples yields the relative
number of events as a function of intensity. We will refer to this
quantity with the term “rate density”. We will now start by estimat-
ing the rate density function of ground-based interfering sources.
Consider an interfering point source of strength I that denotes the
transmitting power normalized by the observational channel res-
olution (e.g., measured in W/Hz). This source is observed by an
interferometer that consists of two antennas or stations with gains
g1, g2, which include all instrumental effects. The antennas are lo-
cated at distances r1, r2 from the source. The interferometer will
record an apparent instantaneous strength S of

S(r1, r2) = I
g1g2

4πr1r2
, (1)

with (real-valued amplitude) gains g1, g2 > 0 and rL > r1, r2 > 0.
Here, rL is a limiting distance, which will be well below the diam-
eter of the Earth. The formula represents a spherically propagating
wave in free space. We will limit our analysis to cross-correlated
antennas; the auto-correlations will be ignored.

We assume that the source observed is fully coherent, but a

possible de-coherence factor can be absorbed in the gains. Due to
the small bandwidth of most interfering sources, most RFI will be
received coherently, because of the narrow-band condition. With a
frequency resolution ∆ν = 0.76 kHz, the narrow-band condition
∆ν � (2πτ)−1 with correlation delay τ will hold for baselines
up to a few km, because it holds as long as the baseline length is
significantly less than ∆x = c(2π∆ν)−1 ≈ 50 km. Because the
velocity resolution of LOFAR is 1.5 km/s at 150 MHz, and larger at
lower frequencies, a Doppler frequency shift due to movement of
the source will only be significant if its velocity is at least 1.5 km/s
relative to the antennas. Since the relative velocities towards dif-
ferent antennas in the array will be similar for such high-velocity
transmitters (i.e., satellites), there will be hardly any decorrelation
because of Doppler shifting.

Although two antennas do not necessarily observe the same
RFI sources, for source-count analysis we can treat the interferom-
eter geometrically as a single point, as both antennas will see the
same distribution. Then, we can express the received amplitude S
for a given distance r and interferometric gain g = g1g2 as

S(r) =
Ig

4πr2
. (2)

Next, we assume that all RFI sources have equal constant
strength I and follow a uniform spatial distribution in the local
two-dimensional horizontal plane. These assumptions are obvi-
ously simplications, but we will address these later. Using these
assumptions, we can express the expected inverse cumulative rate
density of sources at distance r as

Fdistance>r(r) = N − ρπr2, (3)

with N the total number of sources and for some constant ρ that
represents the number of sources per unit area. The cumulative
number of sources Famplitude6S that have an amplitude of at most
S can be calculated from this with

Famplitude6S(S) =Fdistance>r(R(S)) = N − ρIg

4S
(4)

whereR(S) = S−1, the inverse of S, i.e., the function that returns
the distance r for a given amplitude S. Finally, the rate density can
be calculated by taking the derivative,

fS(S) =
dFamplitude6S

dS
=
ρIg

4S2
. (5)

Therefore, if we plot the histogram of the RFI amplitudes in
a log-log plot, we expect to see a power law with a slope of −2
over the interval in which the RFI sources are spread like uniform
sources on a two-dimensional plane.

2.1 Propagation effects

So far, we have assumed that the electromagnetic radiation propa-
gates through free space, resulting in an r−2 fall-off. In reality, the
radiation will be affected by complicated propagational effects due
to the surface of the Earth. A commonly used propagation model is
the empirical model determined by Okumura et al. (1968), which
was further developed by Hata (1980). Hata gives the following an-
alytical estimate for Lp, the electromagnetic propagation loss be-
tween two ground-based antennas:

Lp = 69.55 + 26.16 log10 fc − 13.82 log10 hb−
a(hm) + (44.9− 6.55 log10 hb) log10 r, (6)

where Lp the loss in dB; fc the radiation frequency in MHz; hb
the height of the transmitting antenna in meters; hm the height of

c© 2013 RAS, MNRAS 000, 1–13
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Figure 1. A dynamic spectrum of a small part of an observation. The features with significantly higher values are caused by interference. Some of these have
a constant frequency, while others are more erratic.

the receiving antenna in meters; r the distance between the anten-
nas in meters; and a(hm) a correction factor in dB that corrects
for the height of the receiving antenna and the urban density. Hata
found this model to be representative for frequencies fc ∼ 150–
1500 MHz, with transmitter heights hb ∼ 30–200 m, receiver
heights hm ∼ 1–10 m and over distances r ∼ 1–20 km.

Converting from a subtracted term in decibels to a flux density
factor LS results in

LS =
1

10
10Lp = ζrη, (7)

with η and ζ given by

η = 4.49− 0.655 log10 hb, (8)

ζ =
f2.616
c

h1.382
b

− 106.955− 1
10
a(hm). (9)

Note that according to Hata’s model, the exponent of the power
law η depends only on the height of the transmitting antenna, i.e.,
it is independent of frequency, receiver height and urban density. To
find the rate density function fp that considers propagation effects,
one can replace S(r) in Eqs. (4) and (5) with one that includes the
propagation effects,

S(r) =
Ig

4πζrη
. (10)

The resulting rate density function fp is

fp(S) =
d

dS

[
N − ρπ

(
Ig

4πζS

)2/η
]

=
ρ2π

ηS

(
Ig

4πζS

)2/η

.

(11)

Consequently, due to non-free-space propagation effects, the ob-
served log-log histogram is predicted to have a−( 2

η
+ 1) slope. By

substituting η, one finds

slope(hb) =
1

0.3275 log10 hb − 2.245
− 1. (12)

This yields estimated distribution slopes of −1.57 and −1.67 for
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Figure 2. Effect of transmitter height on the slope of a log-log histogram.
According to Hata’s model, this is valid for the range 30–200 m. The trend
of the slope will not continue indefinitely when increasing the height fur-
ther. Instead it will converge to a−2 slope, which corresponds to free-space
propagation.

30 m and 200 m high transmitters respectively. In Figure 2, the
slope value is plotted as a function of the transmitter height, in-
cluding extrapolated values for transmitter heights down to 1 m.

We note that a uniform distribution of meteors or aircrafts
which reflect free-space propagating RFI can create a power-law
distribution with a similar slope: a uniform two-dimensional distri-
bution of reflecting sources will create a −1.5 slope, while a uni-
form three-dimensional distribution will create a−1.75 slope. With
brightness-distribution analyses one can therefore not distinguish
between transmitters affected by Hata’s propagation model and re-
flectors affected by free-space propagation. Reflected RFI might
become relevant at lower amplitude levels.

2.2 Thermal noise contribution

The full measured distribution will consist of the power-law dis-
tribution combined with that of the thermal noise and the celestial
signal. For now, we will ignore the contribution of the celestial sig-
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nal, as its contribution to the amplitude distribution will be minimal
when observing fields without strong celestial sources. For exam-
ple, the strongest apparent celestial source in the NCP EoR field is
around 5 Jy (Yatawatta et al. 2013). The standard deviation of the
noise, however, is around 100 Jy on highest LOFAR resolutions,
and will have a larger contribution on the histogram.

The real and imaginary components of the noise in the cross-
correlations are independent and identically Gaussian distributed
with zero mean and equal variance. Consequently, an amplitude x
will be Rayleigh distributed (Papoulis & Pillai 2001, §6-2):

fnoise(x) =

{
x
σ2 e

−x2
2σ2 x > 0,

0 otherwise.
(13)

Because most of the samples will be unaffected by RFI, this will
be the dominating distribution. The Rayleigh distribution is plotted
together with the -2 power-law distribution of Eq. (5) in Fig. 3.

So far, these are the expected histograms for pure noise and
pure RFI that propagates through free space. However, the mea-

sured distribution is a mixture of the two. Analytic derivation of
the corresponding mixed amplitude distribution is not trivial, but
the distributions can easily be estimated by drawing complex sam-
ples from the two distributions and calculating and counting the
amplitudes. A sample can be drawn from the RFI distribution by
integration, scaling and inversion of the rate density function in
Eq. (11). To invert the cumulative function, one needs to assume
that there are no sources beyond some limiting distance rL. With
this assumption, a single complex RFI contaminated sample SRFI

can be sampled with:

SRFI ←
Ig

4πζx
η/2
u rηL

ei2πyu . (14)

Here, SRFI is a new complex RFI sample that follows a power-law
distribution; η and ζ are defined in Eqs. (8) and (9); I is the average
intrinsic strength; g is the gain of the instrument; 0 < xu, yu 6 1
are two independently drawn uniformly distributed samples; and
rL is the maximum distance of visible sources. A sample S that
is contaminated by both RFI and noise can be drawn with S ←
vn+wni+SRFI, with vn, wn ∼ N(µ = 0;σ). An example of dis-
tribution curves of S for η = 2 and various settings of Ig/4πζr2L
is given in Fig. 4.

2.3 Parameter variability

In reality, the parameters ρ, I and g, which are the RFI source
density per unit area, RFI source strength and instrumental gain
respectively, will not be constant, but can change over time and
frequency. Therefore, they are stochastic variables. However, since
each specific value for these parameters produces a power law, the
combined distribution will still show a power law, as long as the
parameters follow a distribution that is steep at high amplitudes (in
log–log space), such as a Gaussian or uniform distribution.

One instrumental effect that is absorbed in g is the frequency
response of the instrument, i.e., the antenna response in combina-
tion with the band-pass of the analogue and digital filters. Because
the data that are analysed in Sect. 5 have initially not been band-
pass calibrated, the instrumental response is not uniform over fre-
quency. We determined that the gain variation due to the band-pass
is about one order of magnitude for the low-band antennas (LBA,
30.1–77.5 MHz) and about a factor of two for the high-band an-
tennas (HBA, 115.0–163.3 MHz). The frequency dependency of
the gains due to the band-pass will consequently smooth the data
in the brightness histogram in horizontal direction by one order of
magnitude or less.

Another effect that is absorbed in g, is the beam of the in-
strument. At the point of writing, LOFAR beam models are still
being developed and are not yet well parametrized near the hori-
zon. It is likely that most RFI sources are observed at the edges of
the beam. Nevertheless, most sources will be observed with simi-
lar gains (within one order of magnitude), and it can be expected
that the beam will have a limited effect on the histogram properties
of an observation. It is therefore comparable with the effect of the
frequency response.

The stochastic nature of I , that is caused by the spread of
transmitters with different intrinsic strengths, might also have an ef-
fect on the logN – logS histograms. It is unlikely that I follows a
uniform or Gaussian distribution, because the distribution will con-
tain few strong transmitters (such as radio stations) and many weak
transmitters (such as remote controls). Therefore, variable I might
follow a power-law distribution by itself. It is likely that strong
transmitters transmit more on average, and therefore contaminate
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more samples as well. High-power transmitters, such as radio sta-
tions, have a typical equivalent isotropically radiated power (EIRP)
in the order of 10–100 kW. Low-power transmitters, such as remote
controls, transmit with an order of 100 mW or even less. There-
fore, these devices have a spread of around 6 orders of magnitudes
in power. As long as the exponent of the power law of I is less
steep (i.e., less negative) compared to the power law caused by the
spatial distribution, the spatial distribution will dominate the his-
togram at high amplitudes. With a spatial −1.5 power law and the
given transmitting powers, the low-power transmitters should con-
taminate a factor of 109 more samples compared to the high-power
transmitters to dominate the high-amplitude distribution, which is
unlikely. Therefore, it is likely that the spatial distribution will dom-
inate the power law in the histogram. Otherwise, a turn-over point
should be visible in the histogram.

From Eq. (11) it can be seen that the ρ, I and g parameters
have the same effect of scaling the power-law distribution, and do
not change its shape or slope. Therefore, with distribution analyses
one can e.g. not determine whether the distribution is dominated
by low-power sources within the horizon or by scattered signals
from over the horizon. The horizon of an antenna is estimated with√

2hr (Bullington 1977), with r the radius of the Earth and h the
height of the antenna. For LOFAR, the horizon is at about 5 km.

3 METHODS

In this section we will briefly discuss how the histograms are cre-
ated, how the slope of the underlying RFI distribution is estimated
and show how to constrain some of the intrinsic RFI parameters.

3.1 Creating a histogram

While creating a histogram is trivial, it is important to note that it is
necessary to have a variable bin size. This is mandated by the large
dynamic range of the histogram that we are interested in. There-
fore, we chose to have a bin size that increases linearly with the
amplitude S, and the rate counts are divided by the bin size after
counting.

3.2 Estimating σ and slope parameters

The mode σ of the Rayleigh distribution is estimated by finding
the amplitude with the maximum occurrences, i.e., the amplitude
corresponding to the peak of the histogram. The slope is estimated
using linear regression over a visually selected interval. We have
validated that the slope does not significantly change by using a
slightly different interval.

Fitting straight lines to the distribution curve in a log-log plot
is not the most accurate way of estimating the exponent of a power-
law distribution (Clauset et al. 2009). However, because of our
enormous sample size, which allows fitting the line over a large
interval, the estimator will be sufficiently accurate for our purpose.
Nevertheless, we will additionally calculate a maximum-likelihood
estimator for comparison. The maximum-likelihood estimator for
the exponent in a power-law distribution is given by the Hill esti-
mator α̂H (Hill 1975; Clauset et al. 2009), defined as:

α̂H = 1 +N

(
N∑
i=1

ln
xi
xmin

)−1

, (15)

with N the number of samples and xi for 0 < i 6 N the samples
that follow a power law with lower bound xmin.
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Figure 5. Cartoon of how a constraint on the lower fall-off point of the
power-law distribution can be determined. Note that the labelled areas are
areas as occupied in a linear plot, i.e., the integration of the density function.
Areas in a log-log plot are not linearly related to the integral. There are two
ways to estimate the lower constraint SL: (i) the areas Na and Ntotal −
Npart are equal if Ig/rηL is constant during the observation, and (ii) if one
assumes Ig/rηL ∼ uniform, then Na +Nb = Ntotal −Npart.

3.3 Determining RFI distribution limits

In this section we will show how to put upper and lower con-
straints on the power-law distribution. Assume that we have found
a power law with exponent α and factor β over an amplitude region
[S1;S2], resulting in the rate density function h(S) = βSα. S1 and
S2 are selected by visual inspection of the histogram. Assume that
the histogram contains Npart (RFI) samples with amplitude > S1,
as sketched in Fig. 5, and that the effect of the Rayleigh component
on the histogram > S1 is negligible. The hypothetical upper limit
SU of the distribution can be found by solving

SU∫
S1

h(S)dS = Npart. (16)

The observed histogram will break down beyond some ampli-
tude because of several reasons: the samples are digitized with an
analogue-to-digital converter (ADC) with limited range; we ob-
serve for a limited time and the rate count is discrete; and, under
the assumption of a uniform spatial distribution of RFI transmit-
ters, samples with very high amplitude would have to be produced
by transmitters that are very close to the telescope. However, it is
likely that the uniform spatial distribution of transmitters will break
down at closer distances.

Solving Eq. (16) results in

SU = α+1

√
α+ 1

β
Npart + Sα+1

1 . (17)

One can estimate the lower limit SL in a similar way. This
can be solved by assuming the area labelled Na in Fig. 5 equals
the number of samples to the left of S1. The area labelled Nb is
assumed to be zero for now, which assumes the power law has a
sharp cut-off on the left side, e.g., because of the curvature of the
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Earth. Solving Na = Ntotal −Npart results in

SL = α+1

√
α+ 1

β
(Npart −Ntotal) + Sα+1

1 . (18)

With the assumption that Ig/rηL ∼ a uniform distribution, the
area labelled in Fig. 5 asNb is also part of the RFI distribution, and
a stronger constraint S̃L can be found, yielding

S̃L = α+1

√
− 1

α

(
α+ 1

β
(Npart −Ntotal) + Sα+1

1

)
. (19)

With estimates of α, β, SL and SU , one has obtained a parametriza-
tion of the RFI distribution. As was shown in §2.2, the left-
most point where the power-law distribution falls off is SL =
Ig/4πζrηL. This value represents the apparent brightness of the
RFI sources that are furthest away from the telescope. With a fully
parametrized distribution of the effect of RFI sources, an empirical
model for RFI effects can be made. Moreover, one can calculate
E(SR), the expected apparent strength of RFI:

E(SR) =
1

NLU

SU∫
SL

βSαSdS =
β

NLU

[
1

α+ 2
Sα+2

]SU
SL

(20)

Here, NLU is the number of samples between SL and SU after
normalizing for the bin size. Evaluating this results in

E(SR) =

(
Sα+2
U − Sα+2

L

)
(α+ 1)(

Sα+1
U − Sα+1

L

)
(α+ 2)

. (21)

This is essentially the average flux density that is caused by RFI
without using RFI detection or excision algorithms. E(SR) has the
same units as SL and SU , thus after calibration (see §3.4) could be
given in Jy. In practice, the increase of data noise after correlation
is much less severe because of RFI flagging, which excises a part of
the RFI. One can assume that all RFI above a certain power level is
found by the detector. Since modern RFI detection algorithms can
find all RFI that is detectable “by eye” (Offringa et al. 2010a), this
power level will be near the level of the noise mode. We use the
AOFlagger for RFI detection, which will be described in Sect. 4.

Another interesting parameter is Sd, the average lower limit
of detected RFI. It can be calculated by finding the point on the
distribution where the area under the distribution to the right of Sd
equals the real number (true positives) of RFI samples. Therefore,
the limit is calculated similar to Eq. (18), where the term Npart −
Ntotal needs to be replaced withNRFI, which equals the total number
of samples detected as RFI minus the false positives. In Offringa
et al. (2013) the false-positives rate for the AOFlagger is estimated
to be 0.5%.

Finally, E(Sleak), which is the expected value of leaked RFI
not detected by the flagger, can be calculated by replacing SU with
Sd in the numerator of Eq. (21) and subtracting the removed num-
ber of samples from the total of number of samples. Assume that a
fraction of κ samples are not detected as RFI and 1− κ have been
detected as RFI, then

E(Sleak) =
1

κNLU

Sd∫
SL

βSαSdS =

(
Sα+2
d − Sα+2

L

)
(α+ 1)

κ
(
Sα+1
U − Sα+1

L

)
(α+ 2)

.

(22)

This is the average contribution that leaked RFI will have on a sin-
gle sample. It has the same units as the parameters SL, SU and Sd.
Typical values for κ are 0.95–0.99.

3.4 Calibration

We can assign flux densities to the horizontal axis of the histogram
by using the system equivalent flux density (SEFD) of a single
station. The current LOFAR SEFD is found to be approximately
3400 Jy for the HBA core stations and 1700 Jy for the remote sta-
tions in the frequency range from 125–175 MHz. For all Dutch
LBA stations, in the frequency range 40–70 MHz the SEFD is ap-
proximately 34,000 Jy. The standard deviation σ in the real and
imaginary values is related to the SEFD with

σ =
SEFD√
2∆ν∆t

, (23)

where ∆ν is the bandwidth and ∆t is the correlator integra-
tion time. The standard deviation will appear as the mode of the
Rayleigh distribution. By fitting a Rayleigh function with fitting
parameter σ to the distribution, one finds the corresponding flux
density scale.

RFI sources will enter through the distant sidelobes of the sta-
tion beams from many unknown directions. Moreover, models for
the full beam are often hard to construct. Therefore, we will not
try to calibrate the beam, and the flux densities in the histogram
are apparent quantities. Consequently, we will not be able to say
something about the true intrinsic power levels of RFI sources.

3.5 Error analysis

An estimate for the standard deviation of the slope estimator α̂ can
be found by calculating SE(α̂), the standard error of α̂. The stan-
dard error of the slope of a straight line (Acton 1966, pp. 32–35) is
given by

SE(α̂) =

√
SSyy − α̂SSxy
(n− 2)SSxx

, (24)

where SSxx, SSxy and SSyy are the sums of squares, e.g.,
SSxy =

∑n
i=1(xi − x̄)(yi − ȳ) and n is the number of sam-

ples. However, we found that this is not a representative error in our
case, because the errors in the slope are not normally distributed.
Therefore, we also introduce an error estimate εα that quantifies a
normalized standard deviation of the slope over the range. This er-
ror is formed by calculating the slope over nα smaller sub-ranges
in the histogram, creating nα estimates αi. If the errors in αi are
normally distributed with zero mean, an estimate of the variance of
α̂ can be calculated with

εα̂ =

√∑
(αi − α̂)2

n2
α − nα

. (25)

This estimate is slightly depending on the number of sub-ranges
that is used, nα, because the errors are not Gaussian distributed,
but we found that εα̂ is more representative than the standard error
of α̂.

The standard error of the Hill estimator of Eq. (15) is (Clauset
et al. 2009)

SE(α̂H) =
−α− 1√

n
+O(

1

n
). (26)

Because the number of samples is very large (> 1011), the O-term
will be very small. Therefore, we will calculate the quantity without
this term.
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4 DATA DESCRIPTION

We have analysed the distributions of two data sets. Both data sets
are 24-h LOFAR RFI surveys and are extensively analysed in Of-
fringa et al. (2013). We refer to Van Haarlem et al. (2013) for a full
description of the capabilities of LOFAR. The analyses will cover
only Dutch stations. Each Dutch station consists of 96 dipole low-
band antennas (LBA) and one or two fields totalling 48 tiles of 4x4
bow-tie high-band antennas (HBA). The core area of LOFAR is lo-
cated near the village of Exloo in the Netherlands, where the station
density is at its highest. The six most densely packed stations are on
the Superterp, an elevated area surrounded by water situated 3 km
North of Exloo. A radio-quiet zone of 2 km around the Superterp
has been established, but is relatively small and households exist
within 1 km of the Superterp. With the help of the spectrum alloca-
tion registry, the most-obvious transmitters can easily be identified
and ignored in LOFAR data (Offringa et al. 2013). However, many
interfering sources have an unknown origin.

In the two data sets, we have used the correlation coefficients
of cross-correlated stations, i.e., the raw visibilities. In one data set,
the low-band antennas (LBA) were used and the frequency range
30.1–77.5 MHz was recorded, while in the other the high-band
antennas (HBA) were used to record the frequency range 115.0–
163.3 MHz. More stations were used in the LBA set. The specifi-
cations of the two sets are listed in Table 1. The stations that have
been used are geometrically spread over an area of about 80 km and
30 km in diameter at maximum for the LBA and HBA sets respec-
tively. For EoR detection experiments, the HBA are more important
than the LBA, because they cover the frequency range of the red-
shifted EoR signal.

Although we have used Hata’s model to estimate the RFI log-
log histogram slope, our frequency range falls partly outside the
frequency range over which Hata’s model has been verified. How-
ever, according to Hata’s model the observing frequency does not
influence the power-law exponent in the frequency range 150–1500
MHz, thus it can be assumed the exponent will at least not signifi-
cantly differ over the HBA range.

To detect RFI, the AOFlagger (Offringa et al. 2010b) is used.
This RFI detector estimates the sky contribution by iteratively ap-
plying a high-pass filter to the visibility amplitudes of a single base-
line in the time-frequency plane. Subsequently, it flags line-shaped
features with the SumThreshold method, which is a combinato-
rial threshold method (Offringa et al. 2010a). Finally, the scale-
invariant rank operator, a morphological technique to search for
contaminated samples, is applied on the two-dimensional flag mask
(Offringa et al. 2012a).

Because the AOFlagger detector is partly amplitude-based, it
is likely that low-level RFI will leak through the detector. Since it is
also low-level RFI we are interested in, we will analyse unflagged
data and the RFI classified data.

5 RESULTS

In this section we present the histograms of the LBA and HBA sets
and the results that were obtained by applying the methodology
discussed in Sect. 3.

5.1 Histogram analysis

Fig. 6 shows the histograms with logarithmic axes for the LBA
and HBA sets. In both sets, it is clear that at least one component

Table 1. Data set specifications

LBA set HBA set
Observation date 2011-10-09 2010-12-27
Start time 06:50 UTC 0:00 UTC
Length 24 h 24 h
Time resolution 1 s 1 s
Frequency range 30.1–77.5 MHz 115.0–163.3 MHz
Frequency resolution 0.76 kHz 0.76 kHz
Number of stations 33 13
Total size 96.3 TB 18.6 TB
Field NCP NCP
Amount of RFI detected
by the AOFlagger 1.77% 3.18%

with a Rayleigh and one with a power-law distribution have been
observed. The left part of the histogram matches the Rayleigh dis-
tribution well up to the mode of the distribution. The bulge around
the mode of the LBA histogram is wider due to the larger effect of
the antenna response, i.e., variability of g as discussed in §2.3. As
can be seen in Fig. 7, the Rayleigh-bulges of individual sub-bands
are not that wide, but they are not aligned because of the differing
noise levels.

It is to be expected that the RFI-dominated part of the distribu-
tions at different frequencies will reflect the underlying RFI source
populations. Both Figs. 7 and 8 show that the power-law part of the
distributions are very different for different sub-bands. Neverthe-
less, combining the data of all the sub-bands results in reasonably
stable power-law distributions. The variation could be caused by
the different power-law exponents that source populations at dif-
ferent frequencies might have. It could also be caused by a dif-
fering number of transmitters. In that case, the underlying power
law might not always be apparent, because not enough samples
are combined. By making distributions over different frequency
ranges, we have verified that the power law is not dominated by
a few obvious and known sources.

To make sure that the antenna response does not influence the
result of the slope, we have also analysed the curves after a simple
band-pass calibration. This was performed by dividing each sub-
band by its standard deviation after RFI excision. Because the stan-
dard deviation of the distribution might be affected by the RFI tail
of the distribution, we compare the two histograms to make sure
the power-law distribution is not significantly changed. The result-
ing histograms are shown in Fig. 9. This procedure makes the bulge
of the LBA histogram similar to the bulge of a Rayleigh curve and
extends the power-law part. Nevertheless, it does not change the
log-log slope of the power law in either histograms. This validates
that the variable gain that is caused by the antenna response does
not change the observed power law. Consequently, it can be ex-
pected that other stochastic effects, such as the intrinsic RFI source
strength and the beam gain due to a differing direction of arrival,
will similarly not affect the power law. Because the band-pass cor-
rected histograms should provide a more accurate analysis, we will
use the corrected histograms for further analysis.

The Rayleigh parts of the distributions are plotted in Fig. 10,
along with a least-squares fit and its residuals. Both histograms fol-
low the Rayleigh distribution for about five orders of magnitude,
which is validated by the residuals that show only noise. It breaks
down about one order of magnitude before the mode of the dis-
tributions. This is because of the multi-component nature of the
distributions, as was described in §2.2.

If we go back to Fig. 9, we see that in the LBA the power law
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Figure 6. The histograms of the two data sets before band-pass correction and flux calibration.
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Figure 7. Histograms for 5 different 0.2 MHz LBA sub-bands without
band-pass correction and flux calibration. The continuous lines represent
the data before RFI flagging. The dashed lines are the histograms of the
samples that have been classified as RFI.

is stable for about three orders of magnitude, and one order more in
the HBA. Fig. 11 shows the slope of the log-log plot as a function
of amplitude, which was constructed by performing linear regres-
sion in a sliding window, with a window size of 1 decade. The
HBA shows very little structure in the slope, but the LBA is less
stable and shows some features in its power-law part. Linear re-
gression on the power-law part of the log-log plot results in a slope
of−1.62 for the LBA and−1.53 for the HBA. These and the other
derived quantities have been summarized in Table 2. Although the
HBA slope does not show any other significant features besides the
Rayleigh and power-law curves, the LBA power law ends with a
bulge around an amplitude of 106. This bulge is caused by a very
strong RFI source affecting lots of samples, and is a single outlier
in the spatial distribution. We found this is caused by RFI observed
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Figure 8. Histograms for 5 different 0.2 MHz HBA sub-bands without
band-pass correction and flux calibration. The continuous lines represent
the data before RFI flagging. The dashed lines are the histograms of the
samples that have been classified as RFI.

for about an hour in the late afternoon in the lower LBA frequency
regime, around 30–40 MHz. Leaving this frequency range out flat-
tens the bulge significantly, but does not completely eliminate it,
because the source put the receivers in a non-linear state, causing
leakage at lower intensity levels in the other sub-bands. Unlike lin-
ear regression, the fitting region of the Hill estimator is not limited
at the high end. Consequently, because of the bulge, the Hill esti-
mator evaluates for the LBA into a slope that is less steep, with a
value of −1.53. For the HBA set, the Hill estimator is equal to the
−1.53 value found by linear regression.

On the assumption that the histogram is zero below amplitude
SL, we find that SL = 21 mJy for the LBA and SL = 6.2 mJy for
the HBA (see Table 2). If instead it is assumed that the histogram
has a uniform distribution below some amplitude S̃L, we find that
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the amplitude at which the power-law distribution breaks down is
approximately a factor two higher. The two different assumptions
on how the power-law distribution breaks down have a small effect
on E(Sleak), the expected value of the leaked RFI. By using S̃L
instead of SL, it is a few percent lower. By assuming a 100% RFI
occupancy, we find that the expected value of leaked RFI is 484–

496 mJy for the LBA and 167–171 mJy for the HBA. By assuming
10% occupancy, the value for E(Sleak) is about 25% reduced. The
RFI occupancy only starts to have a significant effect on E(Sleak)
if it is well below 10%.
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Table 2. Estimated distribution quantities per data set.

Symbol Description LBA set HBA set
Ntotal Total number of samples in histogram 8.0× 1011 5.4× 1011

σ Rayleigh mode (assumed to be SEFD/
√

2∆t∆ν, 770 Jy 77 Jy
where SEFD is the System Equivalent Flux Density)

Estimators for power-law distribution parameters
α Exponent of power law in RFI distribution −1.62 −1.53
SE(α) Standard error of α 2.8× 10−3 6.9× 10−4

αH Hill estimator for power-law exponent −1.53 −1.53
SE(αH) Standard error of αH 8.9× 10−6 1.0× 10−5

εα Sampled estimate of standard deviation of α 6.1× 10−2 1.2× 10−2

β Scaling factor of power law with exponent α 4.0× 1017 3.4× 1015

η Radiation fall-off speed for α (η = 2 is free space) 3.23 3.77
Limits

SL Constraint on lower fall-off point of power law 21 mJy 6.2 mJy
S̃L As SL, but assuming Ig/rη ∼ uniform 47 mJy 14 mJy
Sd Expected lowest apparent level of RFI detected 26 Jy 5.7 Jy
E(SR) Apparent RFI flux density 2, 700 Jy 140 Jy
E(Sleak) Residual apparent RFI flux density after excision 484–496 mJy 167–171 mJy

Same as above, but by assuming 10% occupancy 384 mJy 120 mJy
REFD RFI equivalent flux density 18.9–19.3 Jy 6.5–6.7 Jy

Average station temperatures
Tsys System temperature (in clean bands) 5,000 K 640 K
TR RFI Temperature 17,000 K 1,200 K
Tleak Temperature of undetected RFI 3.2 K 1.4 K

6 CONCLUSIONS AND DISCUSSION

We have analysed the histogram of visibility amplitudes of LOFAR
observations and found that, within a significant range of the his-
togram, the contribution of RFI sources follows a power-law distri-
bution. The found power-law exponents of −1.62 and −1.53 for
the 30–78 MHz LBA and 115–163 MHz HBA observations re-
spectively, can be explained by a uniform spatial distribution of
RFI sources, affected by propagation described surprisingly well
by Hata’s electromagnetic propagation model. Taken at face value
these exponents imply in Hata’s model that the average transmitting
heights for sources affecting the LBA and HBA are 79 and 13 m re-
spectively. There are no 79 m high transmitters nearby LOFAR sta-
tions in the LBA frequency range. Additionally, Hata’s model only
goes down to 150 MHz, and it is possible that the electromagnetic
fall-off due to propagation will be different for lower frequencies.
Intervals for the exponents with representative 3σ boundaries are
[−1.80;−1.44] for the LBA and [−1.57;−1.49] for the HBA, giv-
ing average transmitter heights of [0.6; 800] and [3.1; 23] m for the
LBA and HBA respectively. Therefore, the LBA measurements are

clearly not accurate enough to be conclusive. Moreover, because
the power-law distribution analyses involve many assumptions, it
is uncertain whether the analyses are sufficiently accurate for mak-
ing these detailed conclusions.

On the assumption that the power-law distribution for RFI
sources will continue down into the noise, we have constructed a
full parametrization of the RFI apparent flux distribution. By as-
suming that all samples contain some contribution of RFI, we find
that the average flux density of RFI after excision by automated
flagging is 484–496 mJy for the LBA and 167–171 mJy for the
HBA. These values should be compared to the noise in individual
samples of 770 Jy (LBA) and 77 Jy (HBA) (see Table 2), and are
upper limits for what can be expected. If in fact not all samples are
affected by RFI, the leaked RFI flux will be smaller, and will of
course be zero in the extreme case that the detector has found and
removed all RFI.

The apparent RFI flux densities can be converted to a RFI sta-
tion temperature that excludes the system noise and sky noise com-
ponents. If we use a station efficiency factor ηst = 1 and effective
areas LBA Aeff = 398 and HBA Aeff = 512 with again 100% RFI
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occupancy, our models lead to RFI temperatures of 17,000 K and
1,200 K for respectively the LBA and the HBA. These are relatively
high compared to for example the survey by Rogers et al. (2005),
who report that on two different sites, 20% and 27% of the spec-
trum has a temperature above 450 K in the range of 50–1500 MHz.
However, our post-detection RFI station temperatures, which arise
from the residual apparent RFI flux density estimates, are 3.2 K
and 1.4 K for the LBA and HBA respectively. Due to LOFAR’s
high resolution and accurate flagging strategy, this is achieved by
flagging a relatively small data percentage of 1.8 (LBA) and 3.2%
(HBA).

In projects such as the EoR detection experiment with LO-
FAR, a simulation pipeline is used to create a realistic estimate
of the signal that can be expected. Currently, these simulations do
not include the effects of RFI. With the construction of empirical
models for the RFI source distributions, we are one step closer to
including these effects in the simulation. Using Eq. (14), one can
sample a realistic strength of a single RFI source, add the feature to
the data and run the AOFlagger. What is still needed for accurate
simulation, is to obtain a likely distribution for the duration that one
such source affects the data. For example, it is neither realistic that
all RFI sources are continuously transmitting nor that they affect
only one sample. The RFI detector is highly depending on the mor-
phology of the feature in the time-frequency domain. Finally, the
coherency properties of the RFI might be even more important to
simulate correctly, but these have been not been explored. However,
these have large implications for observations with high sensitivity.
This will be discussed in the next section.

The derived values for the average lower level of detected RFI,
Sd, show that the AOFlagger has detected a large part of the RFI
that is well below the sample noise. In both sets, Sd is more than
one order of magnitude below the Rayleigh mode. This can be ex-
plained with two of the algorithms it implements. The first one is
the SumThreshold method (Offringa et al. 2010a), that thresh-
olds on combinations of samples, and is thus able to detect RFI
that is weaker than the sample noise. The second one is the scale-
invariant rank (SIR) operator (Offringa et al. 2012a). This operator
is not dependent on the sample amplitude, but flags based on mor-
phology.

6.1 Implications for very long integrations

Faint RFI could impose a fundamental limit on the attainable noise
limit of long integrations. We will analyse the situation for the LO-
FAR EoR project. This project will use the LOFAR high-band an-
tennas to collect on the order of 50–100 night-time observations of
6 h for a few target fields. The final resolution required for signal
extraction will be about 1 MHz. The project will use about 60 sta-
tions, each of which provides two polarized feeds. This will bring
the noise level in a single 6 h observation in 1 MHz bandwidth to

σeor-night = SEFD (2∆t∆νNfeedNinterferometers)
− 1

2 ≈ 250 µJy,
(27)

where Nfeed = 2 is the number of feeds per antenna and
Ninterferometers = 1

2
60× 59 is the number of interferometers. There-

fore, after 100 nights the thermal noise level will be 25 µJy.
Because some RFI sources might be stationary, the signals

from these sources will add consistently over time, meaning that
the geometrical phase will be the same every day. Therefore, the
amount that time integration can decrease the flux density of RFI
might be limited. On the other hand, many RFI signals observed in
the LOFAR bands have a limited bandwidth, and the majority of

the detected RFI sources affect only one or a few LOFAR channels
of 0.76 kHz. Therefore, frequency averaging will lower the flux
density of the RFI signal. If the frequency range contains only one
stationary RFI source, the strength of this source will go down lin-
early with the total bandwidth. If we assume that all channels are
affected by RFI sources and all these sources transmit in approx-
imately one channel, then the noise addition that is produced by
RFI will go down with the square root of the number of averaged
channels. This is a consequence of the random phase that different
RFI sources have.

In summary, some class of stationary RFI sources are expected
to add consistently over time, polarization and interferometer, but
not over frequency. Therefore, in this case the noise level at which
RFI leakage approximately becomes relevant is given by

σRFI =
REFD√

2∆ν
, (28)

where REFD is the RFI equivalent flux density at 1 Hz and 1 s
resolution for a single station, in analogue to how the SEFD is de-
fined. This only holds when the observational integrated bandwidth
∆ν is substantially higher than the average bandwidth of a single
RFI source. The empirically found upper limits in this work are
REFDLBA = 18.9–19.3 Jy and REFDHBA = 6.5–6.7 Jy (see Ta-
ble 2).

For the EoR project with 1 MHz resolution, Eq. 28 results in
σRFI ≈ 4.7 mJy. However, the first EoR results of observations
of one day have approximately reached the thermal noise of about
1.7 mJy per 0.2 MHz sub-band (Yatawatta et al. 2013), and the
resulting images show no signs of RFI. This implies that either the
upper limit is far from the actual RFI situation, or Eq. 28 is not
applicable to most of the RFI that is observed with LOFAR. In the
following section we will discuss effects that could cause a reduced
contribution of RFI.

6.2 Interference-reducing effects

When integrating data, it is likely that the actual noise limit from
low-level RFI will be significantly lower than the given upper limit,
which was determined at highest LOFAR resolution. There are sev-
eral reasons for this: Many RFI sources have a variable geomet-
ric phase, because they move or because their path of propagation
changes; many RFI sources will be seen by only a few stations or
are not constant over time; for the shortest baselines at 150 MHz,
the far field starts around 1 km, and some RFI sources will there-
fore be in the near field; and finally, a large number of stationary
RFI sources in a uniform spatial distribution will interfere both con-
structively and destructively with each other. These arguments are
valid only for interferometric arrays. Global EoR experiments that
use a single antenna will not benefit from these effects, and will
still be limited by low-level RFI.

Fringe stopping interferometers can partly average out RFI
sources. Nevertheless, stationary RFI that is averaged out by fringe
stopping will leave artefacts in the field centre (Offringa et al.
2012b). This is not relevant when observing the North Celestial
Pole — which is one of the LOFAR EoR fields — because no fringe
stopping is applied when observing the NCP. Imaging of the data
will localize the contribution from stationary RFI near the NCP. If
RFI artefacts would show in the image of the NCP field, they can
easily be detected and possibly be removed, or processing could
ignore data near the pole. Because of these arguments, it is a risk
to use the NCP as one of the EoR target fields. At the same time,
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this field is useful for analysing the RFI coherency properties. Pre-
liminary analysis of EoR NCP observations of a single night have
almost reached the thermal noise, but do not show leaked RFI at
the pole (Yatawatta et al. 2013, §4.3).

Because we have assumed 100% of the spectrum is occupied
by RFI, our given RFI constraints could be too pessimistic. If only
10% of the samples are affected by RFI, the expected value of the
leaked RFI level decreases by about 25%, and if the detected 2.68%
true-positives contain all RFI, there is no leaked RFI at all. With
current data, one can only speculate how much of the electromag-
netic spectrum is truly occupied.

Finally, future RFI excision strategies can further enhance de-
tection accuracy. Once data from a large number of nights are col-
lected, it will be possible to detect and excise RFI more accurately.
With the current strategy, it is likely that the LOFAR EoR project
will encounter some RFI on some frequencies when averaging lots
of observing nights, although this still remains to be seen. To miti-
gate this leaked RFI, the detection can be executed at higher signal-
to-noise levels. The current results indicate that a lot of RFI does
not add up consistently, and the situation is promising. Considering
the current RFI results, and the availability of further mitigation
steps, we conclude that RFI will likely not be problematic for the
detection of the Epoch of Reionisation with LOFAR.
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